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We present methods for autonomous collaborative surveying of volcanic CO, emissions
using aerial robots. CO, is a useful predictor of volcanic eruptions and an influential
greenhouse gas. However, current CO, mapping methods are hazardous and inefficient,
as a result, only a small fraction of CO, emitting volcanoes have been surveyed. We
develop algorithms and a platform to measure volcanic CO, emissions. The Dragonfly
Unpiloted Aerial Vehicle (UAV) platform is capable of long-duration CO, collection flights in
harsh environments. We implement two survey algorithms on teams of Dragonfly robots
and demonstrate that they effectively map gas emissions and locate the highest gas
concentrations. Our experiments culminate in a successful field test of collaborative
rasterization and gradient descent algorithms in a challenging real-world environment
at the edge of the Valles Caldera supervolcano. Both algorithms treat multiple flocking
UAVs as a distributed flexible instrument. Simultaneous sensing in multiple UAVs gives
scientists greater confidence in estimates of gas concentrations and the locations of
sources of those emissions. These methods are also applicable to a range of other
airborne concentration mapping tasks, such as pipeline leak detection and contaminant
localization.

Keywords: coverage, flocking, robotics, unmanned aerial vehicle, CO,, volcanic

1 INTRODUCTION

Distributed mobile sensing has many application areas, such as monitoring of industrial gas leaks,
hazardous material releases, and agricultural monitoring (Rossi et al., 2014; Gomez and Purdie, 2016;
Radoglou-Grammatikis et al., 2020)." Often the materials we are interested in sensing can only be
directly sampled, as the signal of CO, emissions relative to background is low. Remote sensing
methods such as satellite imaging are capable of measuring total column integrated CO, on a global
scale, but specific eruptions and volcanic plumes must be spatially and temporally targeted in order
to capture events (Johnson et al., 2020). Atmospheric levels of CO, prevent accurate satellite imaging
and remote laser methods require bulky equipment and have unrealistic line-of-site requirements.

"Located in Jemez Springs, NM, United States.
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But, relatively small instruments exist that can make very accurate
point-measurements of CO,. This requires that the measurement
instrument be moved through the area of interest. In the case of
volcanic emissions, this has been done by hand-carrying the
instruments into dangerous locations or by human-piloted
aircraft flying through hazardous volcanic plumes. Ground
surveys, in addition to the risk involved, are biased by
surveyors’ inability to survey areas of unstable rock, sheer
cliffs, scalding mud-pots, or (without specialized breathing
equipment) areas with poisonous gas.

Several groups recently used remote-piloted aircraft to
measure volcanic CO, at Manam volcano (Liu et al., 2020).
That work provided new insights into volcanic CO, emissions
but was hampered by the challenges of remote-piloting from great
distances, with limited visibility, and under extremely hazardous
conditions. Only a small subset of the drones deployed by the
various teams involved was able to reach Manam volcano’s
plume, and only one drone survived the expedition.

Here we present the first autonomous surveys of volcanic
CO,. Autonomous UAVs are not restricted by line-of-sight or
radio communication limitations, are not subject to hazardous
ground conditions, and are immune to most poisonous gases.
Autonomous UAVs can therefore survey volcanic CO, more
effectively than human-piloted drones or ground-based
surveys. Additionally, autonomous drones can coordinate
their flight and sensor readings and make decisions based
on those readings in real-time. Autonomy allows a team of
UAVs, each equipped with a point-source measurement
device, to become a much larger physically disconnected
and therefore re-configurable sensor. In our case, three
UAVs are required to map the CO, gradient fields required
to localize CO, sources.

We designed, built, and field-tested a small swarm of UAVs
called the Volcano Co-robot with Adaptive Natural algorithms
(VolCAN) swarm. The VolCAN swarm executes a variety of
surveillance algorithms to estimate the gas concentrations critical
to volcanic eruption forecasting. The VolCAN swarm also
implements a flocking algorithm for gradient descent to
navigate to the locations where CO, is emitted from the
ground. We test the swarm in simulation, in a hybrid field-
simulation experiment in an open field, and ultimately perform
multi-UAV atmospheric CO, emission surveys at the Valles
Caldera supervolcano in New Mexico.

Volcanic Emissions

Worldwide, there are over 50 volcanic eruptions each year. More
than 500 volcanoes are thought to be atmospheric CO, sources,
yet less than 5% of those volcanoes have been surveyed (Fischer
etal., 2019). Changes in the ratio of CO, to SO, from gas-emitting
fumaroles have been observed to precede explosive volcanic
eruptions (Aiuppa et al, 2010; Stix and de Moor, 2018),
highlighting the potential of real-time gas measurements for
eruption forecasting. Better forecasting of these eruptions is
one of the three Grand Challenges recently highlighted by the
National Academies because forecasting eruptions can save lives
and mitigate volcanic hazards (Manga et al., 2017). Though
dwarfed by anthropogenic emissions, volcanic CO, flux is also
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FIGURE 1 | Flocking Dragonfly UAVs in formation. The flocking
Dragonfly UAVs are used to survey volcanic CO, plumes.

important to a complete understanding of global volatile budget.
(Fischer and Aiuppa, 2020).

Volcano surveys are hampered by the difficulty and danger of
sampling gases in and around active craters. Volcanic CO,
emissions can only be measured remotely by satellite when a
satellite orbit is capable of capturing a specific location during an
event. The NASA Orbital Climate Observatory has a 16-day
repeat cycle and a narrow sampling width (Crisp et al., 2017),
making targeting specific eruptions challenging. Ground-based
remote sensing involves bulky instruments which are costly and
difficult to deploy in remote areas (Aiuppa et al, 2015).
Volcanologists, therefore, use hand-held detectors to gather
point-source measurements by collecting and analyzing CO,
concentration in-situ (Diaz et al, 2010). This is currently
accomplished either by aircraft or by ground surveys
(Chiodini et al., 1998), both of which are hazardous and
inefficient. Our driving mission is to remove the human from
these dangerous conditions while giving Volcanologists this
critical data promptly.

Environmental Sensing by UAVs

We designed and built the Dragonfly UAV as shown in Figure 1
as the VolCAN swarm hardware platform. The Dragonfly is
designed to meet the requirements to survey active volcanoes
in real-world conditions. These requirements are informed by our
experiences surveying volcanoes with manually piloted UAVs
(Liu et al., 2020). Currently, the state-of-the-art for volcanic UAV
surveys is manually piloted using a single, typically combustion-
powered, UAVs (James et al, 2020). Combustion engines
introduce organic CO, into measurements which can be a
source of significant error (Fischer and Lopez, 2016). Piloted
flights introduce the possibility of human error and does not
leverage the collected data in real-time. Our objective is to
autonomously fly multiple UAVs to map CO, gas
concentrations automatically and act as a single collaborative
instrument capable of measuring multiple CO, reading point-
sources at a time. This technique provides redundancy in gas
readings, and the ability to calculate a gas concentration gradient.
This follows our previous work where we developed and analyzed
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the Loss-tolerant Cohesive UAV Swarm (LoCUS) Ericksen et al.
(2020) algorithm.

Our work adds to the rapidly growing literature of
environmental chemical sensing with small UAVs outlined by
Burgués and Marco (2020), spurred by decreasing costs of
chemical sensors and commercially-available drones. For a
motion planning approach using chemical-sensing drones see
Bourne et al. (2020). Nano drone chemical-sensing approaches
have been demonstrated (Burgués et al., 2019; Anderson et al,,
2020). However short flight times make them impractical for the
larger-scale volcano surveys we target. Our Gradient following
technique is similar to one demonstrated by Adamek et al. (2015)
in aquatic environments for collaboratively mapping a lake
boundary using three aquatic drones.

Autonomous robotic systems are becoming more resilient and
capable of performing monitoring tasks in degraded and
hazardous environments Chung et al. (2018). Applications
include volcano monitoring Wood et al. (2020), subterranean
exploration Dang et al. (2020), mapping mines Weber (1995), and
nuclear facilities Thakur et al. (2020), surveying penguin colonies
Shah et al. (2020), and disaster relief operations Sun et al. (2020),
to name just a few. The underlying requirement across all these
examples is one we share; to take the human out of harm’s way,
putting the risk on the expendable robotic hardware.

UAVs are an attractive solution for performing in-situ
volcanic gas measurements. The Deep Carbon Observatory
expedition to volcanoes in Papua New Guinea tested several
remotely piloted, single-drone approaches to measuring gas
plumes Liu et al. (2020). Several remote-piloted platforms
were also tested at Masaya Volcano, Nicaragua Stix et al.
(2018). Diaz et al. (2015) used UAVs equipped with miniature
mass spectrometers to perform in-situ gas measurements the
Turrialba Volcano in Costa Rica. The 2018 eruption at Kilauea
Neal et al. (2019) and subsequent caldera collapse was extensively
monitored with UAV-based imagery. These examples highlight
hand-piloted UAVs and further underscore the need for
automation in this space.

Vasarhelyi et al. (2014), developed and demonstrated a
decentralized autonomous multi-drone flocking algorithm that
avoids collisions between drones while maintaining a cohesive
flock, a specialization of the canonical Boids flocking simulation
in Reynolds (1987). We apply the collision-avoidance and
velocity-matching techniques described there and add our
formation strategy.

The contributions of this work are as follows:

1. We develop the Dragonfly UAV platform as a versatile
autonomous volcano survey tool.

2. We implement rasterization survey algorithms and extend our
LoCUS algorithm to use a flocking strategy to follow gas
gradients to their source.

3. We demonstrate that the hardware platform and algorithms
successfully measure known simulated gas concentrations and
sources in the field using hybrid simulation/hardware
experiments.

4. We validate that the VoICAN swarm can detect gas emissions
and locate known gas sources in the challenging field

Flocking UAVs Mapping Volcanic CO,

FIGURE 2 | Dragonfly UAV designed for volcano monitoring with arms

and landing gear unfolded in flight-ready configuration. (A) 57 cm diameter
propellers (highlighted for scale reference). (B) PP-Systems SBA-5 CO,
sensor with absorber column weighing 0.5 kg. (C) Onboard flight
computers and electronics, including a Raspberry Pi. (D) Hex Here2 GPS. (E)
T-Motor MNB007 320 kV motors and Flame 60 A ESCs.

conditions at the Valles Caldera active volcano. Our field
tests demonstrate the utility of distributed sensing and
communication among coordinated UAVs for surveys in
challenging environments.

2 METHODS

This section describes the development of the VolICAN swarm
hardware and software as well as testing in simulation, hybrid
simulation/field experiments, and natural field conditions.
Simulation experiments were performed using the Gazebo
real-physics simulator (Koenig and Howard, 2004). Field
experiments were conducted at two New Mexico, US sites:
Balloon Fiesta Park in Albuquerque and near the Valles
Caldera supervolcano.

2.1 Dragonfly Design and Mission

Parameters

We designed and built the Dragonfly UAV (Figure 2) to fly with a
2 kg payload, including a CO, sensor, for 1 h duration. We chose
larger motors and propellers to provide enough thrust to be able
to fly in high winds. The highest wind speed under which we
successfully tested the platform was 16 m/s. During hover and
under normal flight dynamics, the system uses between 15 and
20 A. The Dragonfly folds to fit in a backpack case for
transportation on foot to volcanic field sites. The foldable
Tarot 650 frame allows for a variety of sensor configurations
and payloads mounted to the payload rails. The UAVs
communicate with each other and a base station through an
ad-hoc wifi network. They can operate autonomously and under
the guidance of a scientist-in-the-loop (Aodha et al., 2014). The
Dragonfly design is centered around the MavROS programming
interface to implement autonomous control. The Dragonflies
were built using commodity hardware and 3D-printed parts to
reduce costs and make it possible to do common repairs on-site.
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FIGURE 3| Block level diagram of the VoICAN swarm. Each Dragonfly in the swarm maintains flight using the on board Arducopter flight computer which is directed
by the companion Raspberry Pi computer running the Dragonfly Controller. The Controller executes mission commands autonomously flying the Dragonfly as a virtual
pilot while also communicating to other Dragonflies and the Base Station via an ad-hoc wifi network.

The laboratory-grade PP-Systems SBA-5 CO, detection sensor
was chosen to fill the requirement of CO, gas concentration
sensing because its durability, accuracy of 1-2 ppm, wide
detection range, and mass of only 200 g (Stix et al., 2018). The
sensor is also capable of operating at high altitudes and in a wide
range of operating temperatures (Lee et al., 2016; Ilanko et al,
2019). In our initial design experiments rotor wash was a
confounding factor in CO, measurement, for scales less than
3 m; however, 3 m is below the relevant resolution for volcanic
plumes.

2.2 The Dragonfly Software Platform

Dragonfly software is comprised of two main components: the
Dragonfly dashboard and the onboard controller. These
components integrate the ecosystem of modules to control the
VoICAN swarm as a whole as depicted in Figure 3.

The Dragonfly dashboard® is a human-friendly interface for
planning missions. The dashboard provides a convenient
Graphical User Interface (GUI) ground station for visualizing
and managing the swarm of networked Dragonflies on a 3D map.
The dashboard gives the user the ability to control and provide
expert feedback to the entire swarm, a foundation of the scientist-
in-the-loop goal.

The Dragonfly Controller’ acts as a virtual pilot. It is a
collection of Robot Operating System (ROS) Quigley et al

*Dragonfly Dashboard source code: https:/github.com/BCLab-UNM/dragonfly-
dashboard/tree/FRONTIERS2021.
*Dragonfly Controller source code: https://github.com/BCLab-UNM/dragonfly-
controller/tree/FRONTIERS2021.

(2009) melodic nodes running on the onboard companion
computer. These nodes were run in a multimaster ROS
environment, allowing ROS to broker communication between
Dragonflies and the ground station.

The Dragonfly Controller contains the following ROS nodes.

1. CO, ROS Sensor Node publishes data from the connected
SBA-5 CO, sensor at 10 Hz. This allows any Dragonfly to
stream any other Dragonfly’s CO, readings.

. Data Logger records CO, measurements and their global
positioning system (GPS) coordinates.

. Command Service provides high-level flight commands to
operate the Dragonflies, including common actions like
takeoff, land, return to launch (RTL), goto waypoint along
with the following actions:

a. Execute DDSA or Lawnmower (Section 2.3).

b. Flock and Coordinated Gradient Descent. These two
commands direct the Dragonflies to organize into a
flock and follow CO, gradients (Section 2.4).

Mission executes a list of actions in series on the

Dragonflies but in parallel across the swarm. Mission

actions included all of the command service actions

along with a semaphore that acts as an execution barrier
to synchronize survey algorithm execution across multiple

Dragonflies.

C.

2.3 Preplanned Survey Algorithms

To map the CO, of a region of interest, we implement two
rasterization survey algorithms: the lawnmower survey algorithm
and the distributed deterministic spiral search algorithm (DDSA)
(Fricke et al., 2016; Aggarwal et al., 2019) survey algorithm. Both
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FIGURE 4 | Flocking Algorithm. This diagram highlights the constituent
forces acting on each Dragonfly, which are summed to produce the v; control
velocity on each of the three drones flocking formation. The dotted circles
represent the minimum repulsion radius ro where a;; pushes two

drones apart (see Eq. 1). The springs labeled with az; ) are the flocking forces
maintaing the drone formation in relation to Dragonfly 2 (see EQ. 2). aj;¢) is the
velocity dampening force (see Eq. 3), and v, is the leader velocity applied to the
flock (see Eq. 4).

of these algorithms create an exhaustive 2D rasterization map by
visiting each area within a given radius. The lawnmower algorithm
scans a polygon region by incrementally following longitudinal
passes across a predefined region. We implement the lawnmower
algorithm using a linear programming framework to perform
boundary calculations against a user-defined polygon. This
technique allows the mapping of irregularly shaped regions and
avoids hazards such as trees, power lines, and sudden elevation
changes which are commonplace in the target environments. The
DDSA algorithm is a multi-agent spiral search algorithm that
navigates multiple drones in interleaved square spiral paths.
Unlike the lawnmower algorithm, the DDSA algorithm
guarantees collision avoidance because the interleaved paths never
cross. The output of these algorithms are waypoints which the
Dragonfly autonomously navigates during a mission. GPS stamped
CO, data sets logged from these flights are ideal to create Kriging
CO, concentration maps due to their uniform region coverage.

2.4 Flocking Algorithm for Gradient Descent
While the lawnmower survey algorithm is an autonomous pre-
planned algorithm, the gradient descent flocking algorithm adapts
the paths of the UAVs in response to the data they sense and
communicate to each other. The gradient descent algorithm goal is
for the Dragonflies to navigate to an unmapped location where the
gas flux is highest which would identify the location from which the
gas is emitted without spending the extra time to rasterize the
surrounding area. This increase in efficiency follows work by
Aggarwal et al. (2019). To spatially coordinate multiple
Dragonflies, we used a leader-based flocking algorithm
following Vasarhelyi et al. (2014) detailed in Figure 4.

® - o0 Gazebo

File Edit Camera

Window Help

% OMN -

OB %Z|m @]

Il  Real Time Factor: Sim Time: Real Time:

FIGURE 5 | Algorithm Testing in Simulation with three simulated
Dragonflies, each running their own instance of Arducopter and the Dragonfly
Controller.

Flocking drones avoid collisions by using a drone i, to drone j,
repulsion force a,. This force acts like a virtual spring between
drones within a radius r, of each other. r; acts as a maximum
repulsion force:

. Xij

a, = —Z mln(rl,ro - |x,<,j|)—. (1)
s |x,~ |
Vi, j: l#:],lxi,jl <ro "]

To maintain the formation, a potential well applies force ag; ¢),
aligns each dragonfly at their respective positions xg;). xg;) is a
specified offset from the leader € of x,; given by,

Xei = Xf(i)
|cei = 50|

2

afie =

A dampening term is used to prevent overshooting the leader £
when matching velocities:

Aqgiey = Ve — Vi (3)

To achieve formation flocking each force vector is scaled by a
corresponding gain term ¢, ¢5 and ¢; and update time At to give a
velocity vector v; m/s:

Vi =V + At(c,a, + Cras i + cdad(,»,g)). (4)

Formation flocking is implemented in Algorithm 1. FLOCK is
called on an interval, once per At time-step which updates the
velocity of the given drone in the flock by calling the sETvELOCITY
function.

In previous work, we developed the LoCUS algorithm for
formation flying which used a lock-step technique to move the
formation in space (Ericksen et al., 2020). We replaced this
technique in LoCUS with the above flocking algorithm. This
enabled the inherent dynamism of flocks to make collision
avoidance more natural and, in general, made the group of
UAVs more responsive to changing inputs.
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FIGURE 6 | Virtual Plume Plotted on Balloon Fiesta Park. The Virtual
Plume, with the source specified to be the middle of the field, is configured
with a northerly wind producing the long tail. The isoconcentration lines are
added to accentuate the plume’s shape at lower concentration levels.

Algorithm 1. Flocking Velocity Update Algorithm.

function FLOCK(leaderIndex, sel f Index, positions, velocities)
a, <+ REPULSION(sel f Index, positions)
ay < FORMATION (leader Index, sel f Index, positions)
ag < velocities|leaderIndex] — velocities[sel f Index]
v« velocities|leader Index] + At(cra, + cpay + cqaq)
SETVELOCITY (v)

end function

The dragonfly flock performs gradient descent by following the
plume’s atmospheric dispersion gradient towards the concentration
maximum at the source of the plume. The gradient is calculated by
the lead drone by aggregating CO, measurement point-sources ¢
and corresponding 2D spatial positions (x, y) of each agent « in the
swarm at each time step. This data is fit with a linear slope b relating
point-source concentration to position in the form Ab + € = s, and
the slope parameter b is calculated by minimizing the magnitude of
the error term e through least-squares approximation:

1 a[l]l.x «[l].y b[0] €[0] alll.e
1 af2].x «[2].y b1] | + e(1] | = | «[2].9 (5)
. . b[2] .

—_—

A b € s

The linear fit slope b components include the vector (b [1], b [2])
which points in the direction of maximum CO,. To gradient descend
in two dimensions, at least three drones are required for the linear fit.
Additional drones above this minimum provide redundancy and an
averaging effect across the swarm’s CO, readings.

2.5 Simulation
To facilitate repeatable experiments under controlled conditions
and to accelerate development, the Dragonfly hardware,

Flocking UAVs Mapping Volcanic CO»

Ardupilot flight control software, and the onboard Dragonfly
Controller were implemented in the Gazebo real-physics
simulation as shown in Figure 5.* We ran the same software
in simulation (also known as Simulation-in-the-Loop) as in the
physical hardware which expedited algorithm prototyping and
debugging before flying in a physical UAVs.

We define a Virtual Plume for use in Gazebo simulations and
hardware/simulation hybrid experiments (described in the next
section). The plume model is a horizontal 2D slice through a 3D
Gaussian plume. The concentration is calculated from a x, y GPS
coordinate offset with constants stack height H, wind speed u,
emission rate Q, and diffusion rate K (Stockie, 2011):

u(y2+H2)).

4 Kx

PLUME(x, y) = 273<x exp( 6)

3 RESULTS

Experiments were conducted at two field sites. First, hardware
Dragonflies were flown in an open field and tasked with the
mission of mapping and finding the source of a virtual plume.
This allowed us to evaluate how the algorithms would behave in
real hardware in an outdoor environment. The virtual plume
allowed us to evaluate how effectively the UAVs would map
known gas concentrations and the known source location of the
simulated CO, plume.

Second, experiments were performed at a natural volcanic site
to test the plume-sensing capabilities of the Dragonfly platform
under real-world conditions. Previous field studies were
conducted by geoscientists at the site and sites of elevated CO,
were identified in Golla (2019). This provided us with a likely
location for CO, emissions; however, CO, emissions change
frequently, and measurements are affected by wind and
temperature. Thus, it is difficult to acquire accurate ground
truth. Therefore, we used the simulated plume at the first field
site to show the VolCAN swarm could accurately map CO,
concentrations and source location. The field study at Valles
Caldera volcano demonstrated that the swarm could produce
rasterized surveys and flock to a suspected source of CO, under
difficult field conditions but where there is uncertainty in true
sources and concentrations of CO,. All field experiments were
conducted according to US Federal Aviation Administration
(FAA) Unmanned Aircraft Systems (UAS) regulations and
with permission in relevant airspaces.

3.1 Open Field Experiments

Our open field site was the large flying field of Balloon Fiesta Park
in Albuquerque, New Mexico. We used the Virtual Plume during
field experiments to add a plume for the algorithms to map and
follow. We centered the Virtual Plume at latitude 35.19465,

“Simulation source code: https://github.com/BCLab-UNM/dragonfly-sim/tree/
FRONTIERS2021.
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FIGURE 7 | Coarse-grained lawnmower flight and more thorough survey
using the DDSA (inset) flight at Balloon Fiesta Park. Each lawnmower pass
across the field is separated by 10 m whereas each arm of the DDSA is
separated by 1 m. Virtual plume data collected on the field is represented

in the Kriging map. This map is compared with the Virtual Plume plot to see
how the Kriging map represents the plume with limited information.

longitude —106.59625 with parameters H=2m, u = 1 m/s, Q =
5kg/s, K = 2 kg/s.

3.1.1 Rasterization Survey

To map the virtual plume a large-scale 10 m resolution
rasterization survey of the field was performed using the
lawnmower algorithm within a polygon outlining the
designated field. The Dragonfly flew at 10m altitude, with
each longitudinal pass at 10m spacing. We used the
lawnmower survey to produce a Kriging heat map of the
virtual plume seen in Figure 6.

For a fine-grained 1 m resolution survey of the virtual plume,
we executed a DDSA slightly to the north of the detected plume.
We used a single Dragonfly in the DDSA with spiral arms
separated by 1 m spacing, and we performed 10 loops at a
single altitude of 10m. The goal was to produce a detailed
Kriging heat map of the Virtual Plume.

We generated two maps to test the ability of the two sample
rasterization methods to recreate the simulated plume over the
open field. The ground-truth virtual plume is depicted in
Figure 6. The coarse-grained map of CO, generated from data
using the lawnmower algorithm and the fine-grained map
generated using the DDSA are displayed in Figure 7. The CO,
plume is visible in the center of the field, even with the limited
data available from the 10 m separated longitudinal passes of the
lawnmower algorithm. The DDSA map, displayed in the lower
right detail, has more structure due to the finer-grained arm
separation of 1 m that closely resembles the simulated plume. The
fine-grained DDSA algorithm estimated the highest CO,
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concentration very close to the location of the plume source
(indicated by the red star). To compare the sampled maps S
against the ground-truth maps G of shared dimensions (m, n), we
find the mean absolute difference MD over the 2D space of these
normalized data sets:

1S =Gy
MD(S,G)=7ZI’]| d Jl. (7)
mxn
The coarse-grainedcourse-grained'  lawnmower mean

absolute difference is 0.1306 and the fine-grained DDSA mean
absolute difference is 0.0380 indicating the higher resolution of
the fine-grained DDSA was able to reproduce a more accurate
representation of the ground-truth data. In addition, the course-
grained lawnmower estimated the source at approximately 10 m
away from its actual location whereas the fine-grained DDSA
estimated the source at approximately 1 m from the ground-truth
source, again representing that a finer-grained map produces a
more accurate representation of the ground truth.

3.1.2 Flocking and Gradient Descent

We implemented LoCUS on three Dragonflies with Dragonfly 2
as the lead UAV and Dragonfly 1 and three oriented at (x, y)
offsets (—6 m,—6 m) and (6 m,—6 m), respectively. This produced
a V-formation orienting Dragonfly 1 and three orthogonally via
Dragonfly 2, which is ideal for detecting a 2D gradient and
separating the drones to avoid collisions due to GPS accuracy.
For these experiments, we flew each Dragonfly at different
altitudes, separated by 1 m, as an additional safety measure to
avoid mid-air collisions. To test gradient descent, Dragonfly 2 was
commanded to perform gradient descent autonomous flight
using CO, readings correlated with location information from
Dragonfly 1, 2, and 3. The Dragonfly flock was positioned in the
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FIGURE 8 | Flocking Algorithm Achieves Target Separation. The

distance magnitude between Dragonfly a and b is signified |xap|. All three
Dragonflies stay well away from each other, only reaching a minimum distance
of 7.0 m. Likewise, Dragonflies 1 and 2 stay within a maximum of 11 m of
Dragonfly 2, keeping the flock in formation.
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FIGURE 9 | Flocking Gradient Descent in the Field mapping a virtual
plume. Colored lines represent the flight paths of the Dragonfly flock in
V-formation following the gradient. Dotted lines between key points in time,
marked as directional triangles, indicate the network connections during
flight. Arrows indicate the normalized gradient of the virtual plume, which is
represented as a Kriging heat map. From the starting point, the flight path
length was about 100 m and took the flock about 2 min to reach and identify
the plume’s maximum concentration, which is within 0.30 m of the source.
The Virtual Plume was moved up field from the previous experiments to allow
for more travel distance of the flock.

plume’s tail to start with an initial signal that was used to follow
the virtual CO, plume towards the source. The goal of this
experiment was for the flock to identify the source of the
plume represented by the location with maximum CO,
concentration.

The purpose of flocking is to identify the location with the
highest CO, concentration using multiple UAVs close while
preventing collisions. Figure 8 shows the Euclidean distances
between drones during a manually piloted test flight. Dragonfly 1
and three reach a minimum and maximum distance between
themselves and the lead Dragonfly 2 of 7.0 and 11 m, respectively.
These distances lie within 2.3 m of the ideal configured distance of
8.5 m. Similarly, Dragonfly 1 and three stay within 2.4 m of the
ideal configured distance of 12 m. All three Dragonflies fly more
than 6 m away from each other, greater than the acceptable GPS
error radius of 6 m. This effectively kept each drone in an
orthogonal orientation which is essential for collecting a 2D
sample gradient vector while avoiding collisions between
members of the flock.

Figure 9 shows the path of the three flocking Dragonflies as
they follow the gradient vector indicated by the black arrow. The
arrow is a normalized representation of the (b [1], b [2]) vector
described in Section 2.4. Dragonfly 2 successfully navigates into
the virtual CO, plume by following the b vector, finding the

FIGURE 10 | Valles Caldera Supervolcano: Overview of Field Site. A
visible imagery mosaic of the field site, with an inset displaying the terrain of the
Valles Caldera volcano. In previous surveys, CO, emissions were associated
with the white calcite surface deposits (Rahilly, 2020). The calcite
associate with the primary CO, source, circled in red, has been obscured by
brush. The white rectangles indicates the survey site. The red x indicates the
position of a fixed ground sensor.

maximum CO, value of 710 ppm. This result matches our results
from Ericksen et al. (2020), where the flock can quickly and
directly follow the plume’s gradient back to the source. Just as
with the flocking result, we produce an accurate Kriging map
from the data collected across all three drones, which produces a
map similar to the one produced in Figures 7, 9.

3.2 Volcano Field Tests

Valles Caldera is a supervolcano in northern New Mexico
(Figure 10). The caldera is more than 22 km in diameter with
CO, emissions at several sites (Goff and Janik, 2002). The field
site chosen for VolCAN swarm surveys and flocking is a small
canyon formed by the Jemez River. CO, degases diffusely out of
the ground on the northern side of the canyon (Golla, 2019). The
location offers a challenging flight environment because of the
forest and steep canyon hills on either side. This bracketed the
available flight space and required extremely accurate mission
planning and flight control. Our challenge was to balance flying
low enough to detect the degassing CO, emitted from the ground,
high enough to clear the tallest trees, and within a boundary to
not collide with the canyon hills. There was quite a bit of effort put
into mission plans including sighting the treetops, creating and
analyzing a topology map, reviewing CO, data collected during
the missions, and manually adjusting mission boundaries.
Additionally, the design and tuning of the Dragonflies played
a large component in flying accurately even in windy conditions.
Despite our efforts, We experienced occasional catastrophic
collisions with trees while tuning flight parameters.
Unfortunately, damage to the platform significantly affects the
flight characteristics of the UAVs which underscores the

Frontiers in Control Engineering | www.frontiersin.org

March 2022 | Volume 3 | Article 836720


https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles

Ericksen et al.

v CO3 Maximum M
CO; Mean

o J v

S

S

<+
_— v
E 81 v,
ao £
gm v
& v
o v vy ¥
O o

S

S

o

8 -l

S ;

-l

%0, %, Y %5 %6 o <> <%

FIGURE 11 | CO, Concentrations Measured by Ground Sensor from a
permanently installed multiGAS system developed at the University of New
Mexico (Aluppa et al., 2005).

importance of planning flights clear of obstacles. While Valles
Caldera is safe for researchers because there is no current danger
of eruption, it is an ideal real-world test site for the VolCAN
swarm due to its active release of gasses and its topology typical of
challenges in volcanic regions.

The site was previously surveyed in Rahilly (2020) for CO,
emissions. The evidence for historical emissions is the white areas
of hydrothermal alteration. A permanent ground sensor is located
at the location of the highest CO, emissions indicated by the red
star in Figure 10. An example of the CO, emissions detected from
the ground sensor is shown in Figure 11 and highlights the
variability of CO, over time.

3.2.1 Rasterization Survey

We executed a large-scale rasterization of the area at 50 m above
the canyon floor takeoff location. Flying at this height cleared the
tallest trees in the area but still was able to detect a difference in
CO,. The large-scale rasterization lawnmower was executed with
longitudinal passes at 5m spacing. Additionally, we flew the
lawnmower with three dragonflies in flocking v-formation with
Dragonfly 1 and three oriented at (x, y) offsets (—6 m,—6 m) and
(6 m,—6 m), respectively. Flocking allowed us to gather redundant
data during the rasterization survey. By simultaneously collecting
CO, data from multiple nearby UAVs, we increased the volume
of data collected during the mission to create more detailed maps.
Additionally, this approach allowed us to compare CO,
concentrations from three different sensors to understand
variation in both the environment and the sensors over the
same period. CO, concentration readings from this survey
were gathered and used to generate a Kriging map of the
concentration gradient against aerial photography of the region.’

*Video of the survey: https://youtu.be/VVz68ZqhD8k.
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Figure 12 shows the Kriging map generated from CO, data
combined from all dragonflies in the flock. The Kriging map
shows a complex distribution of CO, with the highest elevated
CO, emanating from a previously unknown source to the east,
and an elevated plume above and slightly to the east of the known
source indicated by the dashed red circle. Detected CO, across the
swarm and overtime is normalized to produce the percentage
difference in CO, shown in the figure. Normalization is
performed by linearly scaling the data to the minimum and
maximum CO, reading over the data set. Detected CO,
readings were between 410 and 430 ppm across Dragonfly 1,
2, and 3. The total flight time to rasterize the area was 13 min 42 s.

3.2.2 Flocking and Gradient Descent

We followed a CO, gradient to its source by performing gradient
descent with the following mission. First, we flocked Dragonflies
1, 2, and three in V-formation with Dragonfly 2 as the leader. We
then navigated the flock to a waypoint position south of the
known source along the Jemez River. Finally, we triggered
Dragonfly 2 to follow the gradient calculated from data
collected from the swarm. The goal of this experiment is to
validate that gradient descent can navigate the swarm of drones
using a previously identified natural source of CO,.

In addition to the Kriging map survey, Figure 12 displays the
path of the Dragonfly flock following the CO, concentration
gradient using gradient descent in real-time. The path starts to the
south of the known source and proceeds to move north until a
maximum CO, of 430 ppm was reached due east of the known
source indicated by the dashed red circle. This path follows the
gradient previously detected by the rasterized survey and shows
the flock effectively using the input CO, data to fly towards the
known source plume’s highest concentration. The total flight time
for the gradient descent portion of the mission was 25s.

4 DISCUSSION

Our results show that the Dragonfly UAV platform effectively
maps aerial CO, emissions in the challenging, real-world
conditions of volcanic environments. We developed the
Dragonfly UAVs platform with the navigational capabilities,
flight duration, and payload capacity foundations to be able to
accurately collect CO, gasses, analyze them in-situ, and respond
to the detected concentrations in real-time across multiple UAVs.
This culminated in the rasterization survey of a known hot-spot
in the Valles Caldera where we autonomously flew the VolCAN
swarm in formation and mapped the CO, at 50 m. This
highlighted the elevated CO, around the known source but
also indicated an additional previously unknown source to the
northeast. Additionally, we executed an autonomous gradient
descent that successfully navigated into the elevated CO, near the
known source in the area. These field tests demonstrate the utility
of the VolCAN swarm in mapping and navigating CO, gradients
in real-world extreme environments.

The development of the Dragonfly UAV platform took
considerable efforst to meet the mission requirements. The
biggest driving requirement was the flight time which dictated
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which corresponds to the known source and previously mapped gradient.

FIGURE 12 | Kriging isoconcentration map produced from CO, data collected during the flight. This map is the result of data collected using three Dragonfly
drones flying the pattern in formation. Regions of note are the elevated concentration above and slightly to the east of the known source outlined in the dashed-red
circle and the region in the east of the plot indicating another CO, source plume. The path of the flock of Dragonflies is drawn as they follow the detected gradient
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FIGURE 13| Kriging maps of the individual component Dragonfly CO, readings combined in Figure 12. Of note are the common elevated regions in the upper
right and mid-left of each survey. These common readings confirm that there is elevated CO, in that region of the sky.

the overall weight of the aircraft, specifically the large battery
requirements. This drove motor and propeller sizes to be able to
produce enough lift with agility. To control the aircraft, we found
that the flight controller PID tune was critical and only found
success after hand-tuning these parameters. Tuning the PID loop
to be somewhat aggressive resulted in an aircraft that would
behave well in gusty high wind conditions, perform as expected
around other aircraft, and mirror the aircraft’s simulation
behavior.

Trials of the Dragonfly UAV in the open field helped solidify
the algorithms developed in simulation in a real-world
environment. Flying in the semi-controlled environment with
a virtual plume ensured that we could map a CO, plume and
represent it with a level of confidence. Our results show that the
coarse-grainedcourse-grained' rasterization produced a map
with a mean absolute difference of 13% to ground truth, with
a smaller mean absolute difference of 3% for the fine-grained
rasterization. Flocking the Dragonflies and following the virtual
plume gradient demonstrated that we could identify the source of
the plume, represented by the highest CO, concentration in the
gradient.

Mapping the known sources around the Jemez river in the
Valles Caldera offered a chance to test the VolCAN swarm against
real CO, sources. To map the overall region we had to fly at a high

elevation above ground level to avoid the tree canopy
obstructions. This resulted in a relatively low CO, signal
compared with ground measurements. However, due to the
accuracy of the SBA-5, we were still able to detect differences
on the order of 1ppm making the collection missions still
effective. This further highlights the efficacy of our technique
in mapping and responding to the aerial CO, signal.

The missions at the Valles Caldera highlighted the survey
speeds. During the same day as the aerial surveys, a ground survey
team was gathering CO, groud flux and concentration readings
using portable CO, fluxmeters. Their survey of a region similar to
the lawnmower survey took 8 h to complete. In comparison, the
lawnmower survey took less than 15 min and the gradient descent
took less than 30's, each an order of magnitude faster than the
previous.

Our survey methods are also applicable to a variety of other
environmental —monitoring tasks that require in-situ
measurements and efficient localization, such as detecting gas
line leaks and environmental monitoring.

4.1 Caveats and Future Work

With any data collection task, especially one of such a dynamic
process, the challenge is to tie the data back to known ground
truth. In our case, the data and Kriging maps demonstrate a high
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FIGURE 14 | 3D flight map of the Dragonflies executing the lawnmower
mission to produce the Kriging map displayed in Figure 12. The VolCAN
swarm takes off and assembles in V-formation then proceeds to execute the
lawnmower pattern in the predefined polygon region. The flocking flight
paths overlap over time producing redundant confirmation data of the CO,
concentrations.

correlation to the virtual plume in the open field environment.
This ensures that data collection missions in the field represent a
facsimile of what is truly occurring. That being said, the data
represented by flying high above the ground and known sources
in Jemez Springs should be interpreted with caution. The low CO,
readings did correlate to the known source on the ground, and
indicate another source to the northeast, but a slight breeze can
easily shift the location of these gasses. We propose that mapping
larger regions, on the order of 100 m will help in localizing gas
sources or taking into account wind direction and speed to
produce an offset.

Upon inspection of the data used for gradient descent, it is
feasible that the low CO, concentrations and proximity of each
drone to each other that differences in sensor temperatures and
calibration played a factor in the detected gradient. The bottom
line is that the drones did respond to the gradient and future work
will be dedicated to determining the spacing of the flock to best
gather and follow gradients.

With the development of the VolCAN swarm including the
Dragonfly platform and the algorithms to map and follow
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