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A B S T R A C T   

A large body of research has shown that engaging in self-explanation improves learning across a range of tasks. It 
has been proposed that the act of explaining draws attention and cognitive resources towards evidence that 
supports good explanations—information that is broad, abstract, and consistent with prior knowledge—which in 
turn aids discovery and promotes generalization. However, it remains unclear whether explanation impacts the 
learning process via improved hypothesis generation, increasing the probability that the most generalizable 
hypotheses are considered in the first place, or hypothesis evaluation, the appraisal of such hypotheses in light of 
observed evidence. In two experiments with adults, we address this question by separating hypothesis generation 
and evaluation in a novel category learning task and quantifying the effect of explaining on each process 
independently. We find that explanation supports learners' generation of broad and abstract hypotheses but does 
not impact their evaluation of them. These results provide a more precise account of the process by which 
explanation impacts learning and offer additional support for the claim that hypothesis generation and evalu
ation play distinct roles in problem solving.   

Though every student knows the fear of being asked to explain their 
answer in front of the class, the benefits of explaining for learning have 
been shown across a broad range of tasks and knowledge domains. These 
effects have also been observed across the lifespan: Children as young as 
three years of age are more likely to generalize on the basis of causal 
properties over salient perceptual features when prompted to explain 
(Legare & Lombrozo, 2014; Walker, Lombrozo, Legare, & Gopnik, 
2014), five- and six-year-olds are better able to abstract the moral of a 
story when they are asked to explain key events (Walker & Lombrozo, 
2017), and adolescents learning biology concepts construct better 
mental models and show improved abstraction when they self-explain 
during study (Chi, De Leeuw, Chiu, & LaVancher, 1994). Explaining 
also supports learning among adults. In a category learning task with 
unfamiliar stimuli, adults prompted to explain why the evidence they 
observed was consistent with category distinctions were more likely to 
discover the underlying rule for category discrimination (Williams & 
Lombrozo, 2010; Williams & Lombrozo, 2013). 

Why might explaining benefit learning across such a broad range of 
ages and domains? Some researchers have proposed that learners who 
are prompted to explain tend to privilege hypotheses that support “good 
explanations,” focusing on simplicity, breadth, and consistency with 

prior knowledge (e.g., Bonawitz & Lombrozo, 2012; Lombrozo, 2016; 
Walker, Bonawitz, & Lombrozo, 2017). In other words, the act of 
explaining may help guide learners towards hypotheses that best exhibit 
these explanatory virtues (Lipton, 2008; Walker et al., 2014). While this 
typically supports causal inference and abstract reasoning, in some 
contexts, explaining makes learners less attentive to counterevidence, 
biasing them too strongly in favor of broad generalizations and align
ment with existing knowledge (e.g., Engle & Walker, 2021; Kuhn & Katz, 
2009; Walker, Lombrozo, Williams, Rafferty, & Gopnik, 2016; Williams 
& Lombrozo, 2013; Williams, Lombrozo, & Rehder, 2013). In other 
contexts, when the available counterevidence is sufficiently strong, 
explaining can facilitate belief revision (Macris & Sobel, 2017; Walker 
et al., 2016) and encourage exploratory behavior aimed at forming new 
hypotheses (Legare, 2012). Taken together, this literature suggests that 
explaining prompts learners to pursue hypotheses that have the broadest 
scope, incorporating both their prior knowledge and their current ob
servations (Walker et al., 2016; Williams & Lombrozo, 2013). Across 
studies, the act of constructing an explanation plays a selective role in 
the learning process by influencing which solutions the learner is most 
likely to entertain (Legare, Gelman, & Wellman, 2010; Schulz, 2012; 
Williams & Lombrozo, 2010). 
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This ability to privilege certain kinds of hypotheses over others is 
central to commonsense reasoning. Despite the infinite space of solu
tions for everyday problems, learners tend to restrict their responses to 
those that best fit (Lake, Ullman, Tenenbaum, & Gershman, 2017; 
Schulz, 2012). However, it remains unclear how people do this so 
effectively. Here, we explore this question by examining the particular 
effect of explanation on learning: How does the act of explaining lead 
learners to select certain hypotheses over others? If explaining ulti
mately supports learning by influencing the solutions that learners 
endorse, does it modify the set of hypotheses that they initially enter
tain, or does it change how they appraise the hypotheses under 
consideration? In other words, does explaining facilitate reasoning via 
hypothesis generation or hypothesis evaluation? 

Generating hypotheses in novel situations is a central challenge for 
learners engaged in inductive inference (Kuhn, 1989; Mehle, 1982; 
Weber, Böckenholt, Hilton, & Wallace, 1993). Early theories of hy
pothesis generation proposed structured search processes in long-term 
memory (Gettys & Fisher, 1979) and stressed the foundational role of 
drawing analogies to other domains (Gentner, 1983; Gick & Holyoak, 
1980). In settings that require generating hypotheses about decontex
tualized or unfamiliar stimuli, researchers have observed biases and 
limitations in the generation process, such as the tendency to narrow 
existing hypotheses rather than generate them anew (Goodman, Ten
enbaum, Feldman, & Griffiths, 2008; Klayman & Ha, 1987; Klayman & 
Ha, 1989). In fact, hypothesis generation is often highly dependent on 
contextual factors. For example, early research exploring the role of 
schemas in problem solving found that, when faced with logically 
equivalent problems, people produce strikingly different hypotheses 
depending on the semantic content of those problems (e.g., evaluating 
the logical implications of p ➔ q using rules about the legal drinking age 
vs. using abstract letter and number associations, Griggs & Cox, 1982; 
Cheng & Holyoak, 1985). 

Indeed, a substantial body of subsequent work has provided evidence 
for the impact of environmental factors in determining which hypoth
eses are generated during a particular task, including working memory 
capacity, cognitive load, perceived likelihood, the number of alterna
tives available, and the design of the learning environment, among 
others (e.g., Dougherty & Hunter, 2003; Klein, 1993; Koehler, 1994; 
Schunn & Klahr, 1993; Walker, Rett, & Bonawitz, 2020). Recent results 
suggest that even young children are responsive to environmental fea
tures that restrict the hypothesis space, including how the data were 
sampled, who provided the evidence, and why (e.g., Bonawitz et al., 
2011; Butler & Markman, 2012; Gergely, Bekkering, & Kiraly, 2002; 
Walker et al., 2014). If the effectiveness of explanation for learning lies 
in directing the learner's attention and cognitive resources to hypotheses 
that are consistent with explanatory virtues, we might expect explaining 
to impact hypothesis generation in a similar way as other contextual 
changes. 

However, it is possible that explaining might also affect hypothesis 
evaluation, by, for example, causing learners to overweight the data 
they observe in favor of hypotheses that are more consistent with 
explanatory virtues. Indeed, there is some evidence to support this 
possibility: Williams, Lombrozo, and Rehder (2013) found that when 
learners were given statistics problems in which the solutions violated 
their intuitions, participants who explained the evidence performed 
better than controls, even when they had been provided with the correct 
procedure in advance. The authors conclude that since explanation still 
facilitates learning when participants had prior exposure to the rule, 
explaining must be helping them to apply this rule to the data they 
observe. 

In the current study, we examine the role of explaining in hypothesis 
generation and evaluation by modifying methods used in prior work that 
was designed to pull these interrelated cognitive processes apart. Spe
cifically, Bonawitz and Griffiths (2010) show that when participants 
were given a simple prime before performing a rule learning task, the 
prime impacted the proportion of participants who correctly inferred the 

rule but did not impact how likely participants rated the correct rule to 
be. In this way, priming can be interpreted as constraining hypothesis 
generation, but not evaluation. Building on these results, the current 
study asks whether there is a similar effect of engaging in explanation 
during learning. 

1. The current study 

To test this, we presented participants with a category learning task 
which required them to generate and evaluate hypotheses about which 
kinds of fishing lures were most likely to catch fish. All participants were 
presented with a series of events in which particular lure combinations 
did or did not catch fish. After each event, participants in an explanation 
condition were prompted to explain the evidence they observed, while 
control participants were asked to describe it. In Experiment 1, all 
participants were then presented with a hypothesis generation task, 
drawing on the “explicit report” method used in prior research on 
explanation (Williams & Lombrozo, 2010), as well as a related classifi
cation task to test their generalization. This was followed by a separate 
hypothesis evaluation task modeled after Bonawitz and Griffiths (2010). 
We then examined the effects of explanation on learning outcomes in 
each task. 

Given prior findings that explanation recruits prior knowledge and 
encourages learners to search for abstract patterns, we designed the rule 
learning task so that it could be solved by capitalizing on these strate
gies. Specifically, each fishing lure was composed of two stacked shapes, 
and any lure combination with a triangle, diamond, or four-pointed star 
on the bottom would catch fish (see Fig. 1). It is therefore possible to 
succeed on this task by attending to each lure's concrete features in 
pursuit of rule-like statistical patterns. Critically, however, this evidence 
was also consistent with an abstract rule: lures with pointy shapes on the 
bottom catch fish. This rule was chosen based on prior research sug
gesting that explainers are more likely to infer abstract hypotheses (i.e., 
pointy, rather than triangle, diamond, or star) (Williams & Lombrozo, 
2010), and those that are more consistent with prior mechanistic 
knowledge (i.e., pointed objects are used to catch fish) (Williams & 
Lombrozo, 2013).1 

We expected that participants would apply different cognitive stra
tegies depending on whether they were prompted to explain or describe 
their observations. Specifically, while explainers may be more likely to 
recruit real world knowledge and search for broad patterns, describers 
may be more likely to attend to concrete features. Although both stra
tegies can lead to success on the current task, the pursuit of an abstract 
rule is likely to increase the availability of the target hypothesis. Criti
cally, our goal was not to demonstrate that explanation makes learners 
more likely to privilege this target hypothesis. We anticipated this 
outcome based on the prior work. Instead, by combining research on the 
effects of explanation during learning with investigations of hypothesis 
generation and evaluation, we aim to provide a more precise description 
of the expected impact that explaining has on the learning process. 

2. Experiment 1 

2.1. Participants 

Participants were 86 undergraduate students at a major West Coast 
university who received course credit for their participation. Given that 
our study design was based on Bonawitz and Griffiths (2010), we con
ducted a power analysis using their free response results. This analysis 
suggests that 88 participants would be required to detect a similar effect 
size (Cohen's w = 0.3) as the priming intervention they report. For a 
closer comparison to the specific effects of explanation on category 
learning, we also analyzed the effect size reported in Williams and 

1 This was also confirmed in a pilot study. 
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Lombrozo (2010), Experiment 1 (Cohen's w = 0.33, see Table 2 in 
Williams & Lombrozo, 2010). With 43 participants per condition, we 
had an estimated 86% power to detect a similar effect for hypothesis 
generation. Informed consent was obtained from all participants in 
accordance with the Institutional Review Board's approved protocol. 
Participants were randomly assigned to either explain or describe (con
trol) conditions. 

2.2. Procedure 

Participants completed the experiment in a web browser on labora
tory computers.2 All participants were given instructions indicating that 
they would see a number of different fishing lure combinations, and that 
their task was to determine which combinations were most likely to 
catch fish. The fishing lures used throughout the experiment were 
composed of two stacked shapes: one smaller shape on the bottom of the 
fishing lure and one larger shape on the top (see Fig. 1). Each of the top 
and bottom pieces were composed of one of six possible shapes, three of 
which were rounded (circle, oval, and teardrop) and three of which were 

pointy (triangle, diamond, and four-pointed star). Each shape in the 
fishing lure combination was one of four possible colors: red, blue, 
green, or yellow. In addition, each shape either did or did not have a 
purple dot. As noted previously, the fishing lure combinations that 
caught fish were determined by the following rule: lures with pointy 
shapes on the bottom catch fish. 

The experiment was composed of a trial phase, a hypothesis gener
ation phase, a hypothesis evaluation phase, and a memory check. 

2.2.1. Trial phase 
In the trial phase, participants observed eight fishing lure trials, each 

consisting of an evidence component, a description or explanation 
component, and a prediction component. These are illustrated in Fig. 1. 

In the evidence component of each trial, participants were shown a 
novel fishing lure combination and told whether or not this combination 
successfully caught a fish. In the subsequent explanation or description 
component, participants in the explain condition were prompted to 
provide a written explanation for the evidence they had just seen 
(“Explain why your friend might have [not have] caught a [any] fish with this 
lure combination”), while in the control describe condition, participants 
were simply asked to describe the evidence they had just seen (“Describe 
this lure combination that your friend caught a fish [didn't catch a fish] 
with”). This was the only difference between conditions. In the predic
tion component of each trial, participants were shown a novel fishing 

Fig. 1. A sample trial from the trial phase of Experiments 1 and 2. (A) A sample evidence component in which participants see a lure combination that does or does 
not catch fish. (B) Response components for participants in the explain condition (top) and describe (control) condition (bottom). (C) A sample prediction component 
for a new lure. 

2 All code for Experiment 1, as well as data and analysis code for the results 
presented, can be found at: https://github. 

com/erik-brockbank/go_fish. 
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lure combination which retained one of the elements of the earlier lure 
combination they observed. They were then asked to indicate whether 
they thought this new combination would catch fish or not. All partic
ipants saw the same prediction lure combinations on each trial, since 
these lures were designed to share a common element with the previ
ously presented lure combination (see Supplementary Materials for all 
prediction stimuli). Participants were not given feedback about their 
predictions. 

Accumulated evidence from previous trials remained visible at the 
bottom of the screen throughout all subsequent trials to help partici
pants recall which fishing lure combinations did and did not catch fish. 
The evidence and prediction components of the trials included four 
fishing lure combinations that did catch fish and four that did not. The 
fishing lures chosen and the order in which they appeared were identical 
across conditions (refer to Figs. 1 and 2). The decision to present fishing 
lures in the same order for all participants allowed for tight control over 
when participants saw each negative exemplar, and therefore when 
various hypotheses could be ruled out by the evidence. Any order effects 
resulting from the presentation of evidence would therefore impact 
participants in both conditions equally. 

2.2.1.1. Trial response coding. Following similar analyses used in past 
work (Williams & Lombrozo, 2010), each of the eight explanations and 
descriptions participants provided during the trial phase were coded for 
the number of concrete and abstract references to fishing lure features. 
Features of the fishing lure combinations were limited to their top and 
bottom shape, color, and the presence of a purple dot. A reference was 
coded as concrete if it was specific to that feature (e.g., “triangle,” 
“yellow,” “has a dot”) and abstract if the reference was also true of other 
lures with different features (e.g., “pointy shape” refers to triangles, 
diamonds, and four-pointed stars, “bright color” refers to yellow and 
red, “has an eye” refers to lures with a dot) (Williams & Lombrozo, 
2010). Critically, the number of abstract references do not by themselves 
indicate success on the task, since participants could detect the rule 
based on the use of an abstract strategy (“pointy shapes”) or by attending 
to concrete patterns (“triangles, diamonds, or squares”) (see below). 
However, examining the frequency of each type of reference does pro
vide evidence for differences in participants' problem-solving approach. 

In this vein, we compared the average number of abstract and con
crete feature references made by participants in each condition to assess 
whether explainers generated a greater number of abstract hypotheses, 
relative to describers. We also coded explanations and descriptions for 
the number of references to an underlying mechanism to explain the data 
(e.g., “Perhaps this teardrop piece is too round for the fish to latch onto”, 
“Because the bottom blue part of the lure blended in with the water”). In line 
with prior work, we predicted that explainers would be more likely to 
draw on prior knowledge and provide mechanism-based responses 
(Williams & Lombrozo, 2013). Again, although we anticipated that this 
tendency was likely to be beneficial for explainers, our primary aim was 
to examine whether these effects are associated with hypothesis gener
ation, evaluation, or both. 

A second coder who was blind to condition coded explanations and 
descriptions for reliability. A total of 552 explanations and descriptions 
belonging to 69 subjects were coded (this constitutes 80% of the com
plete set; the remaining 20% was used to train the second coder). 
Agreement ranged from 95.3% to 99.5% for shape, color, and purple dot 
references, with 94.6% agreement for references to mechanism. Dis
agreements were resolved through discussion among the two coders. 

2.2.2. Hypothesis generation phase 
After completing the eight evidence trials in the trial phase, partic

ipants were tested on hypothesis generation. First, they were given a free 
response prompt to assess whether they had inferred the target rule: 
“Describe the single best rule you used for deciding whether or not each lure 
combination will catch fish.” Next, they were given a classification task in 

which they were shown a set of eight novel fishing lure combinations 
and asked to indicate whether each of these combinations would catch 
fish, along with a confidence rating from 1 to 7 (see Fig. 2). This clas
sification task provided an indirect measure as a means of validating the 
hypothesis generation process alongside participants' free response an
swers. Critically, during the hypothesis generation phase, the evidence 
from earlier trials was not available for reference; this ensured that the 
rules participants provided were generated during the trial phase, rather 
than by careful study during the generation phase itself. 

2.2.2.1. Generation response coding. Participants' free responses were 
coded as either correct or incorrect, depending on whether they were 
able to provide a rule which was consistent with 100% of the evidence 
and would allow them to successfully classify a novel fishing lure 
combination. By this criterion, participants who were explicit about the 
shapes that caught fish (noting the triangle, diamond, and star), but did 
not refer to them as “pointy,” were still coded as correct. Responses that 
provided insufficient evidence that the learner generated the correct 
rule (e.g., “I used the lure's shape”) were coded as incorrect. A second 
researcher who was blind to condition coded the responses for reli
ability, and agreement was 99%. Though it was possible to come up with 
a rule other than the target rule which was consistent with all of the 
evidence, no participant did so. 

2.2.3. Hypothesis evaluation phase 
Next, participants were tested on hypothesis evaluation. Participants 

were shown a series of six possible rules representing candidate hy
potheses about which types of fishing lure combinations catch fish (see 
Table 1). The same six rules were presented to all participants in both 
conditions. Participants were asked to rate the strength of each rule as an 
explanation of the evidence on a 1 to 7 scale (see Fig. 2). During this 
phase, participants were provided with a visual reminder of the outcome 
of each of the eight trials at the bottom of the screen. Following Bona
witz and Griffiths (2010), this was done to assess participants' appraisal 
of each hypothesis in light of the evidence. The decision to display the 
evidence during the evaluation phrase was critical. If the evidence had 
not been available, there is considerable risk that any variance observed 
in evaluation might have reflected variance in participants' memory of 
the training trials. Further, we might expect ratings of the target rule to 
be different depending on whether participants had generated it during 
the earlier trials; those who did may be more likely to rate this rule 
highly. 

During the hypothesis evaluation task, the rules were presented in a 
fixed order for all participants: Any effects of order should therefore be 
stable across conditions. Of the six rules, the target rule and a “dis
tractor” rule were both consistent with 100% of the evidence, but the 
distractor rule was considerably more complex (“If a lure combination has 
a yellow shape or a diamond on the bottom, it will catch fish.”).3 If 
explaining influences learners' evaluation of candidate hypotheses, we 
predict that explainers may be more likely to privilege the abstract 
target rule that better reflects explanatory virtues (i.e., simplicity, 
breadth, mechanism). The distractor rule was included to test whether 
explainers also disfavored rules that were consistent with all (or most) of 
the evidence but did not provide a “good” explanation. Three additional 

3 There is an alternative, pragmatically valid interpretation of the distractor 
rule (i.e., if a lure combination has a yellow shape or a diamond on the bottom, it 
will catch fish can be interpreted as either [1] if a lure combination has a yellow 
shape anywhere or a diamond on the bottom, or [2] if a lure combination has a 
yellow shape on the bottom or a diamond on the bottom). The latter interpretation 
is only consistent with 88% of the evidence (seven out of eight lure combina
tions). While the distractor remains appealing from an evidentiary standpoint in 
either case, it is possible that not all participants interpreted it as equivalent to 
the target rule [1]. Comparisons between distractor and target rule evaluations 
should therefore be interpreted with caution. 
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miscellaneous rules that were plausible but less consistent with the ev
idence (62.5% or 75%) were also included, as well as one rule suggesting 
that it was randomly determined which fishing lure combinations 
caught fish. 

2.2.4. Memory check 
Finally, after completing the hypothesis evaluation task, participants 

were given a memory probe in which they were shown a set of eight 
fishing lure combinations, including four novel combinations and four 
that had previously appeared during the training phase. Participants all 

Fig. 2. Top, the classification task used to test whether participants had generated a correct rule for categorizing fishing lure combinations in Experiment 1. Bottom, 
the hypothesis evaluation task for a sample rule in Experiment 1. 
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saw the same eight fishing lure combinations in the memory probe; the 
novel combinations were chosen from among a fairly limited set that 
participants had not previously seen on the evidence trials, predictions, 
or on the classification task. Participants were prompted to indicate 
whether they had seen each fishing lure combination at any point during 
the experiment. This was included to assess any differences in general 
attention between conditions. The memory probe also addressed the 
possibility that any condition differences observed on the hypothesis 
generation task were due to explainers having better memory for the 
evidence. Since participants were not provided with the evidence during 
the generation task, those learners who had not previously generated the 
target hypothesis but had improved memory for the stimuli might 
nonetheless have come up with the target hypothesis purely from 
memory. If so, we would expect better performance on the memory 
probe from participants in the explain condition. 

2.3. Results 

To understand the role of explaining on hypothesis generation and 
evaluation, we compare the explain and describe (control) conditions on 
the hypotheses they generate, their accuracy at classifying novel fishing 
lure combinations based on these hypotheses, and their subsequent 
evaluation of candidate hypotheses about which combinations catch 
fish. For a summary of the evidence trial prediction results, refer to the 
Supplementary Materials. 

2.3.1. Hypothesis generation 
We first examine the effect of explanation on hypothesis generation. 

Fig. 3 shows accuracy on both hypothesis generation tasks. In line with 
our hypothesis, a significantly greater proportion of participants in the 
explain condition provided a correct hypothesis in their free response 
(51.2%) compared with describers (18.6%), χ2(N = 86, 1) = 8.65, p =
.003. This difference is further borne out in participants' ability to apply 
the hypotheses they generated to novel stimuli; participants in the 
explain condition were better able to classify novel fishing lure combi
nations in the classification task compared with describers. First, we 
applied a similar strategy as the one used to analyze free responses 
above by coding participants who scored 100% on the classification task 
as having the correct hypothesis and all others as incorrect. The pro
portion of participants meeting this criterion is significantly higher in 
the explain condition than in the describe condition (explain: 0.54; 
describe: 0.30; χ2(N = 86, 1) = 3.87, p = .049).4 

However, this provides a rather coarse indication of the condition 

differences observed. To better account for the potential role of indi
vidual and item variation in classification accuracy across conditions, 
we fit a generalized linear mixed effects model (GLMM) to participants' 
response accuracy with condition as a fixed effect and random intercepts 
for participant and question item.5 A likelihood ratio test revealed a 
significant effect of condition, with explainers more likely to produce 
correct classification responses, χ2(1) = 8.31, p = .004. Weighting par
ticipants' response accuracy by their confidence ratings—1 for correct 
answers, −1 for incorrect—produces similar results. Again, condition 
was a significant predictor of weighted accuracy judgments, χ2(1) =

7.45, p = .006. In sum, both the free response and classification mea
sures indicate that participants in the explain condition were more likely 
to produce and apply a version of the target hypothesis, providing strong 
evidence that explanation plays a role in hypothesis generation. 

2.3.2. Hypothesis evaluation 
Fig. 4 shows average evaluation ratings for the target rule, the dis

tractor rule, and the combined average ratings across all remaining 
rules. 

Broadly, participants in both conditions rated the rules similarly: 
Evaluations of the target rule were near ceiling and higher than all other 
rules, including the distractor. We first analyzed whether the overall 
pattern of ratings differed across conditions and whether evaluations of 
the target and distractor rules were different in particular. To do this, we 
fit a linear mixed effects model to individual rule evaluations (1–7) with 
each rule as a fixed effect interacting with condition and a random 
intercept for participant. Model comparison via likelihood ratio test 
finds that including the main effect of condition does not improve model 
fit relative to a main effect of rule alone, χ2(1) = 0.35, p = .56. This 
suggests that the general pattern of responding on each rule does not 
differ by condition. Further, including the interaction between condition 
and rule (as in the full model above) does not significantly improve 
model fit relative to the simple main effects of rule and condition, χ2(5) 
= 9.53, p = .09. Focusing on the target and distractor rule evaluations, 
estimated marginal means from the interaction model are not signifi
cantly different across conditions on the target or distractor rules (target: 
p = .96, distractor: p = .85). Thus, when accounting for individual 
variability in ratings, we do not find evidence of an effect of condition on 
hypothesis evaluation for the rules provided to participants. 

When considering participant evaluations of each rule in isolation, 
we can compare the results above to traditional statistical methods 
based on individual ratings of a given rule. In a simple comparison of 
evaluation ratings across conditions, we find no significant difference in 
evaluations of the distractor rule, t (84) = 1.53, p = .13, but there is a 
significant difference between conditions in ratings of the target rule, t 
(84) = −2.04, p = .045. In paired t-tests comparing the target and dis
tractor rule evaluations, we find that participants in both conditions 
rated the distractor rule significantly lower than the target rule (explain: 
t (42) = −6.99, p < .001; describe: t (42) = −3.87, p < .001). This may 
reflect a general prior preference for explanations which are not only 
consistent with the evidence, but also simple and easily generalizable 
(Williams, Lombrozo and Rehder, 2013). Recall, however, that some 
participants may have interpreted the distractor rule as consistent with 
seven out of eight, rather than all eight of the evidence trials. Although 
we must avoid drawing strong conclusions about participants' overall 
preference for the target rule, a 2 (task: explain, describe) by 2 (rule: 
target, distractor) analysis of variance (ANOVA) comparison of evalua
tion ratings finds a significant interaction between condition and rule 
type. This indicates that the difference between target and distractor 
rules was larger for participants in the explain condition than in the 
describe condition, F (1, 82) = 5.60, p = .019. Explaining may therefore 
have led participants to treat the target and distractor rules as more 

Table 1 
Rules presented in the hypothesis evaluation task in Experiment 1.  

Rule Category Consistency with 
Evidence 

If a lure combination has a red shape or a blue 
shape, it will catch fish. 

Misc. 62.5% (5/8) 

If a lure combination has a diamond, it will catch 
fish. 

Misc. 62.5% (5/8) 

If a lure combination has a pointy shape on the 
bottom, it will catch fish. 

Target 100% (8/8) 

There is no pattern to which lure combinations catch 
fish: the results are random, but there are 
approximately equal numbers that catch fish and 
don't. 

Random NA 

If a lure combination has a yellow shape or a 
diamond on the bottom, it will catch fish. 

Distractor 100% (8/8)* 

If a lure combination has a purple dot on at least one 
of the lures, it will catch fish. 

Misc. 75% (6/8) 

Note: These six rules were presented in the fixed order above. 
* See Footnote 3. 

4 These results are robust to lower cutoff scores of 7/8 and 6/8 correct. 

5 All GLMMs and LMMs were fit in R using the ‘lme4’ package (Bates, 
Maechler, Bolker, & Walker, 2015). 
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distinct. 
In sum, our findings are consistent with the hypothesis that partici

pants across conditions evaluate the target rule based on the available 
evidence, as well as its generality. While they do not conclusively sug
gest a role for explanation in hypothesis evaluation, these results also do 
not definitively rule out this possibility. Experiment 2 was designed to 
address this. 

2.3.3. Memory 
To assess whether the observed effects of explaining might be due to 

a general increase in attention or engagement that would be reflected in 
memory for task items, we tested condition differences in memory for 
fishing lure combinations. To account for variation across individual 
responses and items, we fit a generalized linear mixed effects model to 
participants' response accuracy (binary) with a fixed effect of condition 
and random intercepts for subject and memory probe. A model com
parison revealed no significant role of condition in explaining memory 

accuracy, χ2(1) = 0.39, p = .535. This suggests that the overall condition 
differences observed in hypothesis generation are not attributable to 
explainers' better memory of the stimuli. 

We also investigated the potential role of attention or task engage
ment on hypothesis generation on an individual level, once again using 
data on the memory probe. We first ran a logistic regression of accuracy 
on the free response generation task as a function of condition and in
dividual accuracy on the memory probe (percent correct). We find that 
memory probe accuracy is not a significant predictor of hypothesis 
generation behavior (p = .563), and that condition remains a significant 
predictor even after controlling for memory probe accuracy (p = .002). 
In line with our initial analysis of individual performance on the clas
sification task, we fit a generalized linear mixed effects model to 
participant accuracy on each of the classification questions, this time 
with fixed effects of condition and individual memory probe accuracy 
(the random effects structure was the same as the previous analysis). 
Here, we find that including memory accuracy does not significantly 
improve fit over the random effects alone, χ2(1) = 3.03, p = .082, while 
the fixed effect of condition remains significant, even after including 
memory probe accuracy, χ2(1) = 8.77, p = .003. This further suggests 
that effects of attention or processing that may impact recall of task 
items cannot account for accuracy in hypothesis generation. 

2.3.4. Explanation and description content 
To assess whether explainers generate different types of hypotheses 

than describers (i.e., abstract, generalizable, mechanistic), or whether 
their improved performance is merely a result of generating more hy
potheses during the process of explanation, we coded participants' re
sponses during the trial phase for whether they addressed abstract or 
concrete features of the stimuli. In line with prior results (Williams & 
Lombrozo, 2010), we hypothesized that explainers would not reference 
more features of the lure combinations than describers, but would 
instead show a greater tendency to reference abstract features. We also 
coded participants' responses for whether they provided a mechanism in 
their explanation or description. We hypothesized that explainers would 
be more likely to provide a mechanism, though critically, there is 
nothing to prevent describe participants from providing this information 
in their descriptions as well. For example, one describer wrote: “The 
main body of the lure is a circle and attached there is a teardrop shaped 
segment. Perhaps this teardrop piece is too round for the fish to latch onto.” 

Fig. 3. Accuracy on hypothesis generation tasks by condition in Experiment 1. Left: the proportion of responses coded as correct in the free response task. Right: the 
average classification accuracy per subject in the classification task. Error bars indicate one standard error of the mean (SEM). 

Fig. 4. Experiment 1 evaluation ratings by condition for target rule, distractor, 
and all remaining rules aggregated. Error bars indicate one standard error of the 
mean (SEM). 
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Fig. 5 shows the average number of mechanisms and concrete and 
abstract feature references participants made in each condition, summed 
across the eight trials for each participant. Given the possibility of in
dividual differences in participants' references to features and mecha
nisms over the eight trials, we analyze feature references using 
generalized linear mixed effect models for counts of each type of refer
ence that factor in variance across subjects and trials (all GLMMs 
described in this section use Poisson regression unless otherwise noted). 
First, we model each participant's total reference counts on each trial 
(shape + color + purple dot) with random intercepts for subject and trial 
stimulus and a fixed effect of condition. A model comparison reveals that 
including the fixed effect of condition provides a significantly better fit 
to the data,χ2(1) = 74.94, p < .001, but this is because describers pro
duce significantly more feature references per trial than explainers 
(marginal mean estimates from the model above are 3.83 per trial for 
describers and 1.09 for explainers) (refer to Fig. 5). Therefore, ex
plainers' success in hypothesis generation is likely not a function of 
simply generating more hypotheses. 

Instead, as Fig. 5 suggests, explainers reference the same stimuli 
differently than describers. To better understand this, we model each 
participant's a) total mechanisms, b) total abstract references (shape +
color + purple dot), and c) total concrete references (shape + color +
purple dot) in each trial with a similar mixed effect structure to the one 
above, but now exploring the interaction between fixed effects of con
dition and reference “type” (mechanism, abstract, concrete). Model 
comparison using a likelihood ratio test reveals that the interaction of 
condition and reference type significantly improves model fit over main 
effects alone χ2(2) = 682.88, p < .001. Critically, estimated marginal 
mean number of mechanisms and abstract references per trial are 
significantly higher for explainers (mechanisms: explain = 0.48, describe 
= 0.06, p < .001; abstract references: explain = 0.52, describe = 0.09, p 
< .001), while concrete references per trial are significantly higher for 
describers (explain = 0.56, describe = 3.76, p < .001). These results echo 
previous findings reported by Williams and Lombrozo (2010) and sug
gest that explanation prompts learners to privilege certain types of hy
potheses during generation. In particular, explainers were more likely to 
refer to the fishing lure combinations in abstract terms and provide 
mechanistic accounts of the ones that caught fish; in some cases, these 
accounts went well beyond the available evidence (“Because it looks like 
food that fish would like to eat and also have the smell the fish like”). 

An important question that arises from these results is whether ex
plainers' success is a function of being prompted to explain (the process 
of explaining) or generating the right sort of explanation (the product of 
explaining) (e.g., Wilkenfeld & Lombrozo, 2015). To better understand 
this, we ran a logistic regression with the free response data from par
ticipants in the explain condition to explore whether accuracy was pre
dicted by the kinds of explanations provided in the earlier evidence 
trials. As predictors, we used: a) the total number of references (mech
anism + abstract + concrete) across all eight evidence trials, b) the total 
number of mechanisms across all trials, and c) the proportion of abstract 
feature references out of all abstract and concrete references across all 
trials. This last metric was selected in place of total abstract or concrete 
references because we found that these references had a significant 
negative correlation (r = −0.36, p = .04). The proportion metric 
therefore allowed us to test whether the ratio of these features 
contributed separately from the overall number. We find a significant 
positive slope on proportion of abstract references only (p = .004).6 To 
complement this, we ran a generalized linear mixed effects model 
comparison using individual responses on the classification task (rather 
than subjects' binary accuracy on the free response task); this analysis 
used a binomial link function for classification accuracy. A nested model 
comparison found that effects of mechanism and abstract reference 

proportion significantly improved model fit, while total references did 
not (total references: χ2(1) = 1.80, p = .18; mechanisms: χ2(1) = 10.31, p 
= .001; abstract proportion: χ2(1) = 9.20, p = .002). 

Broadly, this suggests that an explainer's probability of generating a 
correct hypothesis likely increased with the proportion of abstract ref
erences and may also have increased by including mechanisms. Thus, 
our results suggest that the kind of explanation produced matters; par
ticipants who used more abstract references were also more likely to 
generate a correct hypothesis. However, given that nearly all explainers 
included these references in their explanations, these results cannot rule 
out the possibility that the act of explaining was itself epistemologically 
valuable, regardless of the explanation produced. 

2.4. Discussion 

In this experiment, we developed a novel category learning task to 
investigate the role that explaining plays in the processes of hypothesis 
generation and evaluation. We find that participants who are prompted 
to explain the evidence they observe are more likely to generate a cor
rect rule for category membership than participants who were asked to 
describe the same evidence. This suggests that explaining may constrain 
the initial set of hypotheses generated by the learner. By comparison, the 
effect of explaining on hypothesis evaluation is less clear. Although 
participants in both conditions rated the target rule significantly higher 
than all other rules, including the distractor rule, we did find a small but 
significant difference between conditions in their rating of the target 
rule. However, given that these ratings were near ceiling in both groups 
and that no such difference was observed when applying a mixed effects 
model, this finding is difficult to interpret. We address this issue in 
Experiment 2. 

3. Experiment 2 

Though the condition differences in hypothesis generation found in 
Experiment 1 were consistent with our initial predictions, the modest 
impact of explaining on hypothesis evaluation deserves further atten
tion. One possibility is that the subtle difference we observed between 
conditions in their evaluations of the target rule was spurious. This 
seems likely, given that the target rule was rated highly across condi
tions and that our additional analysis accounting for individual subject 
variation in ratings did not find a significant effect of condition. In 
Experiment 2, we address this concern by increasing our sample size, 
modifying the hypothesis rating scale to reduce ceiling effects, and 
assessing participants' evaluation of a broader range of rules. 

In addition to resolving this remaining uncertainty, we also aimed to 
address whether any effect of explaining on hypothesis evaluation was 
attenuated by the demands of the hypothesis generation task. First, the 
hypothesis generation task may itself involve some amount of tacit hy
pothesis evaluation. In particular, during the free response generation 
prompt, all participants were asked to provide the best rule for which 
lure combinations catch fish. This may have caused participants in both 
conditions to evaluate the goodness of the rule they were providing. In 
such a case, the hypothesis generation task might plausibly interfere 
with participants' subsequent evaluations, thereby masking effects of 
explaining on hypothesis evaluation. 

A second possibility is that the free response hypothesis generation 
prompt served to reduce any differences between conditions on hy
pothesis evaluation by prompting describe participants to explain the 
evidence they saw. In other words, if the hypothesis generation prompt 
(“Describe the single best rule you used for deciding whether or not each lure 
combination will catch fish”) led describers to seek a broad and general
izable hypothesis to apply to the data, they may have behaved more 
similarly to explainers in the subsequent hypothesis evaluation task. 
Concretely, producing “the single best rule” in the hypothesis generation 
task might have biased participants to evaluate abstract rules more 
favorably in both conditions. To address each of these concerns in 

6 This result and the one below are the same if we use total abstract refer
ences rather than the proportion. 
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Experiment 2, we removed the hypothesis generation tasks to assess 
condition effects on evaluation in isolation. 

3.1. Participants 

Participants were 164 undergraduate students from a major West 
Coast university who received course credit for their participation. 
Unlike Experiment 1, which was completed on lab computers, Experi
ment 2 was administered to students online.7 As in Experiment 1, par
ticipants were randomly assigned to either explain or describe (control) 
conditions. This sample size was chosen based on a power analysis 
indicating that we needed 82 participants in each condition to detect a 
difference in target rule evaluations with 80% power and an estimated 
effect size similar to Experiment 1. 

An additional 9 participants were tested, but excluded, based on 
criteria established prior to data collection. Specifically, seven (explain: 
4, describe: 3) were excluded for providing a rating above 80 on a scale 
from 1 (“not good”) - 100 (“very good”) for a rule that was only 
consistent with 25% of the evidence observed (i.e., a very poor rule), and 
two (explain: 1, describe: 1) were excluded for total experiment 
completion times that were greater than five standard deviations above 
the group mean (i.e., over 8 h). Note, however, that all reported results 
remain in the absence of one or both of these exclusions. 

3.2. Procedure 

The procedure for Experiment 2 was identical to Experiment 1, 
except for the following changes. First, we removed both hypothesis 
generation tasks. After completing the training phase, all participants 
proceeded directly to the hypothesis evaluation phase. Second, we 
modified the hypothesis evaluation task to include a set of eight rules 
(see Table 2). In addition to the target rule, distractor rule, and random 

(i.e., “no rule”) prompts from Experiment 1, we included two “virtuous” 
abstract rules that were consistent with 75% of the evidence (abstract 
shape rule: “If a lure combination has a rounded top shape that resembles a 
fish's body, it will catch fish”; abstract color rule: “If a lure combination has 
a top lure with bright colors that are more visible under water (red or yellow), 
it will catch fish”). If explaining influences hypothesis evaluation, we 
predicted that explainers might rate these rules higher, despite their lack 
of parsimony (Williams & Lombrozo, 2013). Participants were also 
asked to evaluate three “miscellaneous” rules, which represented a 
broader range of consistency with the evidence. 

Further, unlike in Experiment 1, in which the rule order was fixed, 
we randomized the rule order in Experiment 2 to avoid the possibility of 
order effects in either condition. Finally, participants evaluated all rules 

Fig. 5. Average total number of mechanisms and concrete and abstract references to shape, color, and purple dot features in the explanations and descriptions 
provided by each participant in Experiment 1. Error bars indicate one standard error of the mean (SEM). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table 2 
Rules presented in the hypothesis evaluation task in Experiment 2.  

Rule Category Consistency with 
Evidence 

If a lure combination has a red shape on the 
bottom, it will catch fish. 

Misc. 25% (2/8) 

If a lure combination has a blue shape, it will 
catch fish. 

Misc. 50% (4/8) 

If a lure combination has a purple dot on at least 
one of the lures, it will catch fish. 

Misc. 75% (6/8) 

If a lure combination has a pointy shape on 
the bottom, it will catch fish. 

Target 100% (8/8) 

There is no pattern to which lure combinations 
catch fish: the results are random, but there are 
approximately equal numbers that catch fish 
and don't. 

Random NA 

If a lure combination has a yellow shape or a 
diamond on the bottom, it will catch fish. 

Distractor 100% (8/8*) 

If a lure combination has a rounded top shape 
that resembles a fish's body, it will catch fish. 

Abstract 
(shape) 

75% (6/8) 

If a lure combination has a top lure with bright 
colors that are more visible under water (red or 
yellow), it will catch fish. 

Abstract 
(color) 

75% (6/8) 

Note: The order of presentation for these eight rules was randomized. 
* See footnote 8. 

7 All code for Experiment 2, as well as data and analysis code for the results 
presented, can be found at: https://github. 

com/erik-brockbank/go_fish_v2. 
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on a continuous 1–100 scale, from “not good” to “very good”, rather 
than a discrete 1–7 scale. As in Experiment 1, our primary dependent 
variable is the ratings that participants provided for each rule. However, 
once again, we also examine the content of the explanations and de
scriptions provided during the trial phase to better understand how 
providing explanations may support the learning process. 

3.3. Results 

To probe the role of explaining on hypothesis evaluation, we 
compare the explain and describe conditions on their evaluation of the 
eight candidate rules provided to all participants. 

3.3.1. Hypothesis evaluation 
Fig. 6 shows evaluation ratings for each rule: target, distractor, the 

two “abstract” rules, the “random” rule, and the “miscellaneous” rules, 
all indicated by their consistency with the evidence observed during the 
training phase (25%, 50%, 75%, or 100%).8 The changes made in 
Experiment 2 removed the ceiling effects from Experiment 1, allowing 
for more meaningful analysis of target rule evaluations (explain: M =

81.1, SD = 23.5; describe: M = 84.9, SD = 24.6). 
Paralleling our approach in Experiment 1, we begin with a mixed 

effects analysis with individual rule evaluations (1−100) modeled using 
interacting fixed effects of rule and condition and random intercepts for 
each subject. As in Experiment 1, the main effect of condition did not 
significantly improve model fit over a main effect of rule alone, χ2(1) =
0.32, p = .57, and the interaction between condition and rule did not 
improve model fit over the main effects χ2(7) = 5.11, p = .65. Consid
ered alongside the previous findings, this suggests that explanation does 
not meaningfully intervene in hypothesis evaluation. Once again, we 
also evaluate the pairwise difference between rules across conditions 
using the full model described above. Here, a comparison of marginal 
means estimates finds no significant differences across conditions in 
their ratings of the individual rules. 

We next turn to traditional statistics to complement these findings. 
Unlike in Experiment 1, a t-test of subject ratings on the target rule finds 
no significant difference in target rule evaluation (explain: M = 81.1, 
describe: M = 84.9), t(162) = −1, p = .32. We observe similar results in 
participant evaluations of the distractor rule (explain: M = 63.8; describe: 
M = 61.6, t (162) = 0.43, p = .67) as well as the “abstract” rules (abstract 
color rule; explain: M = 40.3; describe: M = 38.0, t (162) = 0.52, p = .60; 
abstract shape rule; explain: M = 44.5; describe: M = 39.4, t (162) = 1.15, 
p = .25). Taken together, findings of Experiment 2 provide no evidence 
that explanation impacts the process of hypothesis evaluation. 

Instead, the current results suggest that hypothesis evaluation is 
sensitive to both the likelihood of the hypotheses (i.e., their consistency 
with the evidence), as well as information about their prior probabili
ties, signaled by their consistency with explanatory virtues. Further, 
results suggest that this sensitivity is not affected by explanation. First, 
as noted above, we replicate the finding from Experiment 1 that, on 
average, the distractor rule is rated close to the midpoint of the scale, 
despite being consistent with all (or most) of the evidence. This indicates 
that prior knowledge likely plays an additional role in learner evalua
tions. Second, participant ratings of the “miscellaneous” rules suggest 
that learners incorporate likelihood information into their rule evalua
tions, with increases in mean ratings paralleling increases in consistency 
with the evidence (25%, 50%, and 75%). People's responsiveness to 
considerations of likelihood and prior knowledge appears to be equiv
alent for both explain and describe participants. 

3.3.2. Explanation and description content 
As in Experiment 1, we coded participant response data from the 

evidence phase of Experiment 2 to assess whether there were systematic 
differences in the kinds of hypotheses participants considered when 
viewing successful and unsuccessful lure combinations for the first time. 
For each participant's response on each of the eight evidence trials 
(explanation or description of the outcome), we count the number of 
abstract and concrete shape, color, and purple dot references, as well as 
the number of mechanisms provided in the response. The coding criteria 
were identical to those used in Experiment 1. As before, we hypothesized 
that explainers would show a greater tendency to reference abstract 
features, but not necessarily more features in aggregate (Williams & 
Lombrozo, 2010), and be more likely to provide a mechanistic account. 

The trials were divided into two roughly equal sets and each set was 
coded by a pair of coders who were naïve to the subsequent analysis. The 
analysis reported here is based on 75% of the responses in each set (1328 
total), with the remaining responses used to train coders. Agreement 
between coders across the two sets averaged 95% for feature references 
and 88% for mechanisms. Disagreements were resolved by the 
experimenter. 

Results from this analysis mirror those of Experiment 1. First, we 
model each participant's total reference counts on each trial (shape +
color + purple dot) using a Poisson link function with random intercepts 
for subject and trial stimulus and a fixed effect of condition. As in 
Experiment 1, including the fixed effect of condition provides a signif
icantly better fit to the data, χ2(1) = 120.74, p < .001, but this is 
because, once again, describers produced significantly more feature 
references per trial than explainers (marginal mean estimates are 3.8 per 
trial for describers and 0.8 for explainers, similar to the means in 
Experiment 1). Next, we model total a) mechanisms, b) abstract refer
ences (shape + color + purple dot), and c) concrete references (shape +
color + purple dot) for each participant in each trial with the identical 
mixed effects structure used in Experiment 1. As in Experiment 1, we 
find that the interaction between condition and reference type signifi
cantly improves model fit, χ2(2) = 1220.79, p < .001. Critically, esti
mated marginal mean number of mechanisms and abstract references 
per trial are significantly higher for explainers (mechanisms: explain =
0.42, describe = 0.04, p < .001; abstract references: explain = 0.41, 
describe = 0.07, p < .001), while concrete references per trial are 
significantly higher for describers (explain: 0.43, describe: 3.82, p <

.001). Again, these are similar to the findings in Experiment 1. Together, 
findings suggest that explainers' success is due to generation of abstract 
and mechanistic hypotheses, not their generation of a greater number of 
hypotheses overall. 

4. General discussion 

In two experiments, we examine whether explaining supports cate
gory learning by promoting generation of broad hypotheses, by leading 
learners to evaluate those hypotheses as more likely, or both. In Exper
iment 1, we found that participants who explained the evidence they 
observed were more likely to generate the target rule about which lure 
combinations catch fish. However, we obtained mixed results with 
respect to the role of explanation in hypothesis evaluation. In Experiment 
2, using a more diagnostic evaluation procedure and rule set, we find no 
evidence that explanation impacts hypothesis evaluation when exam
ined in isolation. These findings provide strong evidence that explaining 
improves learning by intervening on the process of hypothesis genera
tion, but not the evaluation of those same hypotheses. 

There are several alternative explanations for the condition differ
ences in hypothesis generation that are worth considering. First, it's 
possible that participants in the explain condition simply paid more 
attention to the evidence. Generating explanations is undoubtedly more 
challenging than simply describing that same evidence, so the increased 
attention required in this condition could have accounted for the results 
(e.g., Siegler, 2002). If this were the case, we might expect participants 

8 As in Experiment 1, we note the possibility that the distractor rule, which 
was intended to be unambiguously consistent with 100% of the evidence, can 
also be interpreted in a way that is consistent with seven of the eight evidence 
trials. 
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in the explain condition to have better memory for the fishing lure 
combinations. However, the results from the memory probe do not 
support this explanation. These same results also rule out a related 
interpretation of the observed condition differences, namely, that effects 
of explanation on generation were due to explainers' better recall of the 
training trials, since the evidence was not available for reference during 
the generation tasks. 

Although these results rule out alternative proposals that the 
observed effects are due to increases in overall attention, it remains 
possible that explanation impacted performance by leading participants 
to generate more hypotheses than were generated in response to the 
describe prompt. Consistently re-sampling hypotheses over the eight 
evidence trials may have ultimately resulted in a greater proportion of 
explainers generating the target hypothesis. However, in that case, we 
would expect to find no differences in the manner in which fishing lure 
features were mentioned in explanations compared to descriptions; ex
plainers might have provided candidate rules on the basis of features like 
shape and color (e.g., “lure combinations with yellow shapes catch 
fish”), while describers might have simply described the same features 
(e.g., “this lure combination has a yellow shape on top”). Our analysis of 
the trial phase explanations and descriptions suggests that explainers 
were not merely sampling more rules about the same set of features but 
thinking about those features in fundamentally different ways. Specif
ically, although explainers provided fewer references to the fishing lure 
features overall, they were far more likely to make abstract references to 
those features (e.g., “round” rather than “circle”). Similar findings from 
the coded responses in our second experiment support these claims. 

Finally, while we have suggested that it is broadly the act of 
explaining which produces the differences in hypothesis generation 
observed in our results, it is possible that producing the right kind of 
explanation (i.e., one that is sufficiently abstract and generalizable) fa
cilitates success instead. Since nearly all explainers produced abstract or 
mechanistic references during the training trials, we are unable to 
evaluate whether the act of explaining supported hypothesis generation 
over and above the effect of explanation quality (e.g., see Wilkenfeld & 
Lombrozo, 2015). This represents a promising avenue for future work. 

Future research might also explore the role of explaining in a wider 

range of generation contexts. Specifically, the constraints of the current 
task likely simplified hypothesis generation to a process of extrapolating 
from the available data and winnowing the set of possible hypotheses as 
evidence accumulates (Goodman et al., 2008; Klayman & Ha, 1989). 
However, this approach bypasses the more constructive process of hy
pothesis generation in everyday settings, in which the hypothesis space 
is initially less well-defined (Bramley, Rothe, Tenenbaum, Xu, & Gur
eckis, 2018; Gureckis & Markant, 2012). 

Further, our finding that explaining does not impact hypothesis 
evaluation contrasts with at least one prior study (Williams, Walker, 
Maldonado and Lombrozo, 2013) and raises additional questions for 
future inquiry into the process of hypothesis evaluation. In Williams and 
colleagues, participants were asked to apply subtle statistical reasoning 
techniques to the evidence in order to evaluate hypotheses. In contrast, 
the current study provided participants with all the necessary evidence 
during evaluation, reducing the level of difficulty. It is therefore possible 
that explaining plays a greater role in the process of hypothesis evalu
ation in settings where evaluation itself is more cognitively demanding. 
It is also possible that explanation might impact hypothesis evaluation 
when the explanations are not generated by the participants themselves, 
e.g., in pedagogical settings where learners receive explanations from a 
teacher. In these situations, receiving possible explanations might affect 
the learner's evaluations of candidate hypotheses, independent of the 
evidence observed. Future work is needed to explore whether the effects 
of explanation in the current study generalize across learning contexts. 

The present results provide several meaningful contributions to 
existing work on explanation and learning more broadly. First, they help 
to resolve a key question left unanswered by prior work on explanation: 
Though earlier results with children and adults showed that learners 
who explain tend to privilege hypotheses that are abstract and consistent 
with prior knowledge (Walker et al., 2014, 2017; Williams & Lombrozo, 
2010, 2013), this might have been due to learners selectively generating 
these hypotheses, evaluating them differently, or both. Here, we show 
that explanation's primary function is to intervene on the process of 
hypothesis generation. This is consistent with prior literature on hy
pothesis testing, which has found that the set of hypotheses people 
entertain may be heavily dependent on contextual factors such as the 

Fig. 6. Evaluation results for Experiment 2. From left to right, ratings for the target rule, the distractor rule, the two abstract rules, the “random” rule, and three 
“miscellaneous” rules. Each label includes the percent of lure combinations (out of eight) that were consistent with the rule. Error bars indicate one standard error of 
the mean (SEM). 
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framing of the task (Cheng & Holyoak, 1985) or the physical affordances 
of the problem (Walker et al., 2020). Prompting participants to explain 
can be viewed as a modification of the learning context which narrows 
the space of candidate solutions to the most broad and generalizable ones 
(see, e.g., Ullman, Siegel, Tenenbaum, & Gershman, 2016). This may 
provide additional insight into developmental results in which 
explaining has a dramatic and immediate effect on reasoning (Brock
bank, Lombrozo, Gopnik, & Walker, 2022; Walker et al., 2017; Walker 
et al., 2014 Experiment 1) and belief revision (Macris & Sobel, 2017). 
Further, this account may open the door to computational models of 
explanation, as well as hypothesis generation more broadly (e.g., 
Thomas, Dougherty, Sprenger, & Harbison, 2008). 

More generally, the current work sheds light on some of the larger 
questions that lie at the heart of human learning and problem solving. 
First, our findings provide additional support for prior claims that hy
pothesis generation and evaluation are separable processes, and that 
different cognitive scaffolds may target learning in unique ways 
(Bonawitz & Griffiths, 2010). Second, these results add to a growing 
body of work examining the effects of learning context and goals in 
learners' ability to generate the right type of solution (Lake et al., 2017; 
Schulz, 2012; Walker et al., 2020). Despite the potentially infinite 
number of possible solutions to everyday problems, people are 
remarkably adept at selecting solutions that “make sense” (Phillips, 
Morris, & Cushman, 2019; Ullman et al., 2016). Constraining the hy
pothesis space in this way remains a challenge for computational models 
of human inductive reasoning in many domains (Bonawitz & Griffiths, 
2010; Lake et al., 2017). The current findings refine our understanding 
of how human learners accomplish this; the goal of producing good ex
planations constrains which hypotheses are initially generated when the 
learner is confronted with a novel problem. 
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