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Keywords: A large body of research has shown that engaging in self-explanation improves learning across a range of tasks. It
Explanation has been proposed that the act of explaining draws attention and cognitive resources towards evidence that
?efarmng supports good explanations—information that is broad, abstract, and consistent with prior knowledge—which in
nrerence

turn aids discovery and promotes generalization. However, it remains unclear whether explanation impacts the
learning process via improved hypothesis generation, increasing the probability that the most generalizable
hypotheses are considered in the first place, or hypothesis evaluation, the appraisal of such hypotheses in light of
observed evidence. In two experiments with adults, we address this question by separating hypothesis generation
and evaluation in a novel category learning task and quantifying the effect of explaining on each process
independently. We find that explanation supports learners' generation of broad and abstract hypotheses but does
not impact their evaluation of them. These results provide a more precise account of the process by which
explanation impacts learning and offer additional support for the claim that hypothesis generation and evalu-

Hypothesis Generation
Hypothesis Evaluation

ation play distinct roles in problem solving.

Though every student knows the fear of being asked to explain their
answer in front of the class, the benefits of explaining for learning have
been shown across a broad range of tasks and knowledge domains. These
effects have also been observed across the lifespan: Children as young as
three years of age are more likely to generalize on the basis of causal
properties over salient perceptual features when prompted to explain
(Legare & Lombrozo, 2014; Walker, Lombrozo, Legare, & Gopnik,
2014), five- and six-year-olds are better able to abstract the moral of a
story when they are asked to explain key events (Walker & Lombrozo,
2017), and adolescents learning biology concepts construct better
mental models and show improved abstraction when they self-explain
during study (Chi, De Leeuw, Chiu, & LaVancher, 1994). Explaining
also supports learning among adults. In a category learning task with
unfamiliar stimuli, adults prompted to explain why the evidence they
observed was consistent with category distinctions were more likely to
discover the underlying rule for category discrimination (Williams &
Lombrozo, 2010; Williams & Lombrozo, 2013).

Why might explaining benefit learning across such a broad range of
ages and domains? Some researchers have proposed that learners who
are prompted to explain tend to privilege hypotheses that support “good
explanations,” focusing on simplicity, breadth, and consistency with

prior knowledge (e.g., Bonawitz & Lombrozo, 2012; Lombrozo, 2016;
Walker, Bonawitz, & Lombrozo, 2017). In other words, the act of
explaining may help guide learners towards hypotheses that best exhibit
these explanatory virtues (Lipton, 2008; Walker et al., 2014). While this
typically supports causal inference and abstract reasoning, in some
contexts, explaining makes learners less attentive to counterevidence,
biasing them too strongly in favor of broad generalizations and align-
ment with existing knowledge (e.g., Engle & Walker, 2021; Kuhn & Katz,
2009; Walker, Lombrozo, Williams, Rafferty, & Gopnik, 2016; Williams
& Lombrozo, 2013; Williams, Lombrozo, & Rehder, 2013). In other
contexts, when the available counterevidence is sufficiently strong,
explaining can facilitate belief revision (Macris & Sobel, 2017; Walker
et al., 2016) and encourage exploratory behavior aimed at forming new
hypotheses (Legare, 2012). Taken together, this literature suggests that
explaining prompts learners to pursue hypotheses that have the broadest
scope, incorporating both their prior knowledge and their current ob-
servations (Walker et al., 2016; Williams & Lombrozo, 2013). Across
studies, the act of constructing an explanation plays a selective role in
the learning process by influencing which solutions the learner is most
likely to entertain (Legare, Gelman, & Wellman, 2010; Schulz, 2012;
Williams & Lombrozo, 2010).
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This ability to privilege certain kinds of hypotheses over others is
central to commonsense reasoning. Despite the infinite space of solu-
tions for everyday problems, learners tend to restrict their responses to
those that best fit (Lake, Ullman, Tenenbaum, & Gershman, 2017;
Schulz, 2012). However, it remains unclear how people do this so
effectively. Here, we explore this question by examining the particular
effect of explanation on learning: How does the act of explaining lead
learners to select certain hypotheses over others? If explaining ulti-
mately supports learning by influencing the solutions that learners
endorse, does it modify the set of hypotheses that they initially enter-
tain, or does it change how they appraise the hypotheses under
consideration? In other words, does explaining facilitate reasoning via
hypothesis generation or hypothesis evaluation?

Generating hypotheses in novel situations is a central challenge for
learners engaged in inductive inference (Kuhn, 1989; Mehle, 1982;
Weber, Bockenholt, Hilton, & Wallace, 1993). Early theories of hy-
pothesis generation proposed structured search processes in long-term
memory (Gettys & Fisher, 1979) and stressed the foundational role of
drawing analogies to other domains (Gentner, 1983; Gick & Holyoak,
1980). In settings that require generating hypotheses about decontex-
tualized or unfamiliar stimuli, researchers have observed biases and
limitations in the generation process, such as the tendency to narrow
existing hypotheses rather than generate them anew (Goodman, Ten-
enbaum, Feldman, & Griffiths, 2008; Klayman & Ha, 1987; Klayman &
Ha, 1989). In fact, hypothesis generation is often highly dependent on
contextual factors. For example, early research exploring the role of
schemas in problem solving found that, when faced with logically
equivalent problems, people produce strikingly different hypotheses
depending on the semantic content of those problems (e.g., evaluating
the logical implications of p & q using rules about the legal drinking age
vs. using abstract letter and number associations, Griggs & Cox, 1982;
Cheng & Holyoak, 1985).

Indeed, a substantial body of subsequent work has provided evidence
for the impact of environmental factors in determining which hypoth-
eses are generated during a particular task, including working memory
capacity, cognitive load, perceived likelihood, the number of alterna-
tives available, and the design of the learning environment, among
others (e.g., Dougherty & Hunter, 2003; Klein, 1993; Koehler, 1994;
Schunn & Klahr, 1993; Walker, Rett, & Bonawitz, 2020). Recent results
suggest that even young children are responsive to environmental fea-
tures that restrict the hypothesis space, including how the data were
sampled, who provided the evidence, and why (e.g., Bonawitz et al.,
2011; Butler & Markman, 2012; Gergely, Bekkering, & Kiraly, 2002;
Walker et al., 2014). If the effectiveness of explanation for learning lies
in directing the learner's attention and cognitive resources to hypotheses
that are consistent with explanatory virtues, we might expect explaining
to impact hypothesis generation in a similar way as other contextual
changes.

However, it is possible that explaining might also affect hypothesis
evaluation, by, for example, causing learners to overweight the data
they observe in favor of hypotheses that are more consistent with
explanatory virtues. Indeed, there is some evidence to support this
possibility: Williams, Lombrozo, and Rehder (2013) found that when
learners were given statistics problems in which the solutions violated
their intuitions, participants who explained the evidence performed
better than controls, even when they had been provided with the correct
procedure in advance. The authors conclude that since explanation still
facilitates learning when participants had prior exposure to the rule,
explaining must be helping them to apply this rule to the data they
observe.

In the current study, we examine the role of explaining in hypothesis
generation and evaluation by modifying methods used in prior work that
was designed to pull these interrelated cognitive processes apart. Spe-
cifically, Bonawitz and Griffiths (2010) show that when participants
were given a simple prime before performing a rule learning task, the
prime impacted the proportion of participants who correctly inferred the

Cognition 225 (2022) 105100

rule but did not impact how likely participants rated the correct rule to
be. In this way, priming can be interpreted as constraining hypothesis
generation, but not evaluation. Building on these results, the current
study asks whether there is a similar effect of engaging in explanation
during learning.

1. The current study

To test this, we presented participants with a category learning task
which required them to generate and evaluate hypotheses about which
kinds of fishing lures were most likely to catch fish. All participants were
presented with a series of events in which particular lure combinations
did or did not catch fish. After each event, participants in an explanation
condition were prompted to explain the evidence they observed, while
control participants were asked to describe it. In Experiment 1, all
participants were then presented with a hypothesis generation task,
drawing on the “explicit report” method used in prior research on
explanation (Williams & Lombrozo, 2010), as well as a related classifi-
cation task to test their generalization. This was followed by a separate
hypothesis evaluation task modeled after Bonawitz and Griffiths (2010).
We then examined the effects of explanation on learning outcomes in
each task.

Given prior findings that explanation recruits prior knowledge and
encourages learners to search for abstract patterns, we designed the rule
learning task so that it could be solved by capitalizing on these strate-
gies. Specifically, each fishing lure was composed of two stacked shapes,
and any lure combination with a triangle, diamond, or four-pointed star
on the bottom would catch fish (see Fig. 1). It is therefore possible to
succeed on this task by attending to each lure's concrete features in
pursuit of rule-like statistical patterns. Critically, however, this evidence
was also consistent with an abstract rule: lures with pointy shapes on the
bottom catch fish. This rule was chosen based on prior research sug-
gesting that explainers are more likely to infer abstract hypotheses (i.e.,
pointy, rather than triangle, diamond, or star) (Williams & Lombrozo,
2010), and those that are more consistent with prior mechanistic
knowledge (i.e., pointed objects are used to catch fish) (Williams &
Lombrozo, 2013).

We expected that participants would apply different cognitive stra-
tegies depending on whether they were prompted to explain or describe
their observations. Specifically, while explainers may be more likely to
recruit real world knowledge and search for broad patterns, describers
may be more likely to attend to concrete features. Although both stra-
tegies can lead to success on the current task, the pursuit of an abstract
rule is likely to increase the availability of the target hypothesis. Criti-
cally, our goal was not to demonstrate that explanation makes learners
more likely to privilege this target hypothesis. We anticipated this
outcome based on the prior work. Instead, by combining research on the
effects of explanation during learning with investigations of hypothesis
generation and evaluation, we aim to provide a more precise description
of the expected impact that explaining has on the learning process.

2. Experiment 1
2.1. Participants

Participants were 86 undergraduate students at a major West Coast
university who received course credit for their participation. Given that
our study design was based on Bonawitz and Griffiths (2010), we con-
ducted a power analysis using their free response results. This analysis
suggests that 88 participants would be required to detect a similar effect
size (Cohen's w = 0.3) as the priming intervention they report. For a
closer comparison to the specific effects of explanation on category
learning, we also analyzed the effect size reported in Williams and

1 This was also confirmed in a pilot study.
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In the space below, explain why your friend might have caught a fish with this lure combination.

Observed lure combinations

In the space below, describe this lure combination that your friend caught a fish with.

Observed lure combinations

Fig. 1. A sample trial from the trial phase of Experiments 1 and 2. (A) A sample evidence component in which participants see a lure combination that does or does
not catch fish. (B) Response components for participants in the explain condition (top) and describe (control) condition (bottom). (C) A sample prediction component

for a new lure.

Lombrozo (2010), Experiment 1 (Cohen's w = 0.33, see Table 2 in
Williams & Lombrozo, 2010). With 43 participants per condition, we
had an estimated 86% power to detect a similar effect for hypothesis
generation. Informed consent was obtained from all participants in
accordance with the Institutional Review Board's approved protocol.
Participants were randomly assigned to either explain or describe (con-
trol) conditions.

2.2. Procedure

Participants completed the experiment in a web browser on labora-
tory computers.” All participants were given instructions indicating that
they would see a number of different fishing lure combinations, and that
their task was to determine which combinations were most likely to
catch fish. The fishing lures used throughout the experiment were
composed of two stacked shapes: one smaller shape on the bottom of the
fishing lure and one larger shape on the top (see Fig. 1). Each of the top
and bottom pieces were composed of one of six possible shapes, three of
which were rounded (circle, oval, and teardrop) and three of which were

2 All code for Experiment 1, as well as data and analysis code for the results
presented, can be found at: https://github.

com/erik-brockbank/go_fish.

pointy (triangle, diamond, and four-pointed star). Each shape in the
fishing lure combination was one of four possible colors: red, blue,
green, or yellow. In addition, each shape either did or did not have a
purple dot. As noted previously, the fishing lure combinations that
caught fish were determined by the following rule: lures with pointy
shapes on the bottom catch fish.

The experiment was composed of a trial phase, a hypothesis gener-
ation phase, a hypothesis evaluation phase, and a memory check.

2.2.1. Trial phase

In the trial phase, participants observed eight fishing lure trials, each
consisting of an evidence component, a description or explanation
component, and a prediction component. These are illustrated in Fig. 1.

In the evidence component of each trial, participants were shown a
novel fishing lure combination and told whether or not this combination
successfully caught a fish. In the subsequent explanation or description
component, participants in the explain condition were prompted to
provide a written explanation for the evidence they had just seen
(“Explain why your friend might have [not have] caught a [any] fish with this
lure combination™), while in the control describe condition, participants
were simply asked to describe the evidence they had just seen (“Describe
this lure combination that your friend caught a fish [didn't catch a fish]
with”). This was the only difference between conditions. In the predic-
tion component of each trial, participants were shown a novel fishing
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lure combination which retained one of the elements of the earlier lure
combination they observed. They were then asked to indicate whether
they thought this new combination would catch fish or not. All partic-
ipants saw the same prediction lure combinations on each trial, since
these lures were designed to share a common element with the previ-
ously presented lure combination (see Supplementary Materials for all
prediction stimuli). Participants were not given feedback about their
predictions.

Accumulated evidence from previous trials remained visible at the
bottom of the screen throughout all subsequent trials to help partici-
pants recall which fishing lure combinations did and did not catch fish.
The evidence and prediction components of the trials included four
fishing lure combinations that did catch fish and four that did not. The
fishing lures chosen and the order in which they appeared were identical
across conditions (refer to Figs. 1 and 2). The decision to present fishing
lures in the same order for all participants allowed for tight control over
when participants saw each negative exemplar, and therefore when
various hypotheses could be ruled out by the evidence. Any order effects
resulting from the presentation of evidence would therefore impact
participants in both conditions equally.

2.2.1.1. Trial response coding. Following similar analyses used in past
work (Williams & Lombrozo, 2010), each of the eight explanations and
descriptions participants provided during the trial phase were coded for
the number of concrete and abstract references to fishing lure features.
Features of the fishing lure combinations were limited to their top and
bottom shape, color, and the presence of a purple dot. A reference was
coded as concrete if it was specific to that feature (e.g., “triangle,”
“yellow,” “has a dot”) and abstract if the reference was also true of other
lures with different features (e.g., “pointy shape” refers to triangles,
diamonds, and four-pointed stars, “bright color” refers to yellow and
red, “has an eye” refers to lures with a dot) (Williams & Lombrozo,
2010). Critically, the number of abstract references do not by themselves
indicate success on the task, since participants could detect the rule
based on the use of an abstract strategy (“pointy shapes™) or by attending
to concrete patterns (“triangles, diamonds, or squares”) (see below).
However, examining the frequency of each type of reference does pro-
vide evidence for differences in participants' problem-solving approach.

In this vein, we compared the average number of abstract and con-
crete feature references made by participants in each condition to assess
whether explainers generated a greater number of abstract hypotheses,
relative to describers. We also coded explanations and descriptions for
the number of references to an underlying mechanism to explain the data
(e.g., “Perhaps this teardrop piece is too round for the fish to latch onto”,
“Because the bottom blue part of the lure blended in with the water”). In line
with prior work, we predicted that explainers would be more likely to
draw on prior knowledge and provide mechanism-based responses
(Williams & Lombrozo, 2013). Again, although we anticipated that this
tendency was likely to be beneficial for explainers, our primary aim was
to examine whether these effects are associated with hypothesis gener-
ation, evaluation, or both.

A second coder who was blind to condition coded explanations and
descriptions for reliability. A total of 552 explanations and descriptions
belonging to 69 subjects were coded (this constitutes 80% of the com-
plete set; the remaining 20% was used to train the second coder).
Agreement ranged from 95.3% to 99.5% for shape, color, and purple dot
references, with 94.6% agreement for references to mechanism. Dis-
agreements were resolved through discussion among the two coders.

2.2.2. Hypothesis generation phase

After completing the eight evidence trials in the trial phase, partic-
ipants were tested on hypothesis generation. First, they were given a free
response prompt to assess whether they had inferred the target rule:
“Describe the single best rule you used for deciding whether or not each lure
combination will catch fish.” Next, they were given a classification task in
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which they were shown a set of eight novel fishing lure combinations
and asked to indicate whether each of these combinations would catch
fish, along with a confidence rating from 1 to 7 (see Fig. 2). This clas-
sification task provided an indirect measure as a means of validating the
hypothesis generation process alongside participants' free response an-
swers. Critically, during the hypothesis generation phase, the evidence
from earlier trials was not available for reference; this ensured that the
rules participants provided were generated during the trial phase, rather
than by careful study during the generation phase itself.

2.2.2.1. Generation response coding. Participants' free responses were
coded as either correct or incorrect, depending on whether they were
able to provide a rule which was consistent with 100% of the evidence
and would allow them to successfully classify a novel fishing lure
combination. By this criterion, participants who were explicit about the
shapes that caught fish (noting the triangle, diamond, and star), but did
not refer to them as “pointy,” were still coded as correct. Responses that
provided insufficient evidence that the learner generated the correct
rule (e.g., “I used the lure's shape”) were coded as incorrect. A second
researcher who was blind to condition coded the responses for reli-
ability, and agreement was 99%. Though it was possible to come up with
a rule other than the target rule which was consistent with all of the
evidence, no participant did so.

2.2.3. Hypothesis evaluation phase

Next, participants were tested on hypothesis evaluation. Participants
were shown a series of six possible rules representing candidate hy-
potheses about which types of fishing lure combinations catch fish (see
Table 1). The same six rules were presented to all participants in both
conditions. Participants were asked to rate the strength of each rule as an
explanation of the evidence on a 1 to 7 scale (see Fig. 2). During this
phase, participants were provided with a visual reminder of the outcome
of each of the eight trials at the bottom of the screen. Following Bona-
witz and Griffiths (2010), this was done to assess participants' appraisal
of each hypothesis in light of the evidence. The decision to display the
evidence during the evaluation phrase was critical. If the evidence had
not been available, there is considerable risk that any variance observed
in evaluation might have reflected variance in participants' memory of
the training trials. Further, we might expect ratings of the target rule to
be different depending on whether participants had generated it during
the earlier trials; those who did may be more likely to rate this rule
highly.

During the hypothesis evaluation task, the rules were presented in a
fixed order for all participants: Any effects of order should therefore be
stable across conditions. Of the six rules, the target rule and a “dis-
tractor” rule were both consistent with 100% of the evidence, but the
distractor rule was considerably more complex (“If a lure combination has
a yellow shape or a diamond on the bottom, it will catch fish.”).> If
explaining influences learners' evaluation of candidate hypotheses, we
predict that explainers may be more likely to privilege the abstract
target rule that better reflects explanatory virtues (i.e., simplicity,
breadth, mechanism). The distractor rule was included to test whether
explainers also disfavored rules that were consistent with all (or most) of
the evidence but did not provide a “good” explanation. Three additional

3 There is an alternative, pragmatically valid interpretation of the distractor
rule (i.e., if a lure combination has a yellow shape or a diamond on the bottom, it
will catch fish can be interpreted as either [1] if a lure combination has a yellow
shape anywhere or a diamond on the bottom, or [2] if a lure combination has a
yellow shape on the bottom or a diamond on the bottom). The latter interpretation
is only consistent with 88% of the evidence (seven out of eight lure combina-
tions). While the distractor remains appealing from an evidentiary standpoint in
either case, it is possible that not all participants interpreted it as equivalent to
the target rule [1]. Comparisons between distractor and target rule evaluations
should therefore be interpreted with caution.
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In the space below, check the box next to each lure combination to indicate whether you think it

will catch fish and how confident you are.
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Fig. 2. Top, the classification task used to test whether participants had generated a correct rule for categorizing fishing lure combinations in Experiment 1. Bottom,

the hypothesis evaluation task for a sample rule in Experiment 1.

miscellaneous rules that were plausible but less consistent with the ev-
idence (62.5% or 75%) were also included, as well as one rule suggesting
that it was randomly determined which fishing lure combinations
caught fish.

2.2.4. Memory check

Finally, after completing the hypothesis evaluation task, participants
were given a memory probe in which they were shown a set of eight
fishing lure combinations, including four novel combinations and four
that had previously appeared during the training phase. Participants all
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Table 1
Rules presented in the hypothesis evaluation task in Experiment 1.

Rule Category Consistency with
Evidence
If a lure combination has a red shape or a blue Misc. 62.5% (5/8)
shape, it will catch fish.
If a lure combination has a diamond, it will catch Misc. 62.5% (5/8)
fish.

If a lure combination has a pointy shape on the 100% (8/8)
bottom, it will catch fish.

There is no pattern to which lure combinations catch
fish: the results are random, but there are
approximately equal numbers that catch fish and
don't.

If a lure combination has a yellow shape or a
diamond on the bottom, it will catch fish.

If a lure combination has a purple dot on at leastone ~ Misc.
of the lures, it will catch fish.

Target
Random NA
Distractor 100% (8/8)*

75% (6/8)

Note: These six rules were presented in the fixed order above.
" See Footnote 3.

saw the same eight fishing lure combinations in the memory probe; the
novel combinations were chosen from among a fairly limited set that
participants had not previously seen on the evidence trials, predictions,
or on the classification task. Participants were prompted to indicate
whether they had seen each fishing lure combination at any point during
the experiment. This was included to assess any differences in general
attention between conditions. The memory probe also addressed the
possibility that any condition differences observed on the hypothesis
generation task were due to explainers having better memory for the
evidence. Since participants were not provided with the evidence during
the generation task, those learners who had not previously generated the
target hypothesis but had improved memory for the stimuli might
nonetheless have come up with the target hypothesis purely from
memory. If so, we would expect better performance on the memory
probe from participants in the explain condition.

2.3. Results

To understand the role of explaining on hypothesis generation and
evaluation, we compare the explain and describe (control) conditions on
the hypotheses they generate, their accuracy at classifying novel fishing
lure combinations based on these hypotheses, and their subsequent
evaluation of candidate hypotheses about which combinations catch
fish. For a summary of the evidence trial prediction results, refer to the
Supplementary Materials.

2.3.1. Hypothesis generation

We first examine the effect of explanation on hypothesis generation.
Fig. 3 shows accuracy on both hypothesis generation tasks. In line with
our hypothesis, a significantly greater proportion of participants in the
explain condition provided a correct hypothesis in their free response
(51.2%) compared with describers (18.6%), ;(2(N =86,1) =8.65,p =
.003. This difference is further borne out in participants' ability to apply
the hypotheses they generated to novel stimuli; participants in the
explain condition were better able to classify novel fishing lure combi-
nations in the classification task compared with describers. First, we
applied a similar strategy as the one used to analyze free responses
above by coding participants who scored 100% on the classification task
as having the correct hypothesis and all others as incorrect. The pro-
portion of participants meeting this criterion is significantly higher in
the explain condition than in the describe condition (explain: 0.54;
describe: 0.30; ;(2(N =86,1)=3.87,p = .049).%

However, this provides a rather coarse indication of the condition

4 These results are robust to lower cutoff scores of 7/8 and 6/8 correct.
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differences observed. To better account for the potential role of indi-
vidual and item variation in classification accuracy across conditions,
we fit a generalized linear mixed effects model (GLMM) to participants'
response accuracy with condition as a fixed effect and random intercepts
for participant and question item.® A likelihood ratio test revealed a
significant effect of condition, with explainers more likely to produce
correct classification responses, y%(1) = 8.31, p = .004. Weighting par-
ticipants' response accuracy by their confidence ratings—1 for correct
answers, —1 for incorrect—produces similar results. Again, condition
was a significant predictor of weighted accuracy judgments, y%(1) =
7.45, p = .006. In sum, both the free response and classification mea-
sures indicate that participants in the explain condition were more likely
to produce and apply a version of the target hypothesis, providing strong
evidence that explanation plays a role in hypothesis generation.

2.3.2. Hypothesis evaluation

Fig. 4 shows average evaluation ratings for the target rule, the dis-
tractor rule, and the combined average ratings across all remaining
rules.

Broadly, participants in both conditions rated the rules similarly:
Evaluations of the target rule were near ceiling and higher than all other
rules, including the distractor. We first analyzed whether the overall
pattern of ratings differed across conditions and whether evaluations of
the target and distractor rules were different in particular. To do this, we
fit a linear mixed effects model to individual rule evaluations (1-7) with
each rule as a fixed effect interacting with condition and a random
intercept for participant. Model comparison via likelihood ratio test
finds that including the main effect of condition does not improve model
fit relative to a main effect of rule alone, )(2(1) = 0.35, p = .56. This
suggests that the general pattern of responding on each rule does not
differ by condition. Further, including the interaction between condition
and rule (as in the full model above) does not significantly improve
model fit relative to the simple main effects of rule and condition, y*(5)
= 9.53, p = .09. Focusing on the target and distractor rule evaluations,
estimated marginal means from the interaction model are not signifi-
cantly different across conditions on the target or distractor rules (target:
p = .96, distractor: p = .85). Thus, when accounting for individual
variability in ratings, we do not find evidence of an effect of condition on
hypothesis evaluation for the rules provided to participants.

When considering participant evaluations of each rule in isolation,
we can compare the results above to traditional statistical methods
based on individual ratings of a given rule. In a simple comparison of
evaluation ratings across conditions, we find no significant difference in
evaluations of the distractor rule, t (84) = 1.53, p = .13, but there is a
significant difference between conditions in ratings of the target rule, t
(84) = —2.04, p = .045. In paired t-tests comparing the target and dis-
tractor rule evaluations, we find that participants in both conditions
rated the distractor rule significantly lower than the target rule (explain:
t (42) = —6.99, p < .001; describe: t (42) = —3.87, p < .001). This may
reflect a general prior preference for explanations which are not only
consistent with the evidence, but also simple and easily generalizable
(Williams, Lombrozo and Rehder, 2013). Recall, however, that some
participants may have interpreted the distractor rule as consistent with
seven out of eight, rather than all eight of the evidence trials. Although
we must avoid drawing strong conclusions about participants' overall
preference for the target rule, a 2 (task: explain, describe) by 2 (rule:
target, distractor) analysis of variance (ANOVA) comparison of evalua-
tion ratings finds a significant interaction between condition and rule
type. This indicates that the difference between target and distractor
rules was larger for participants in the explain condition than in the
describe condition, F (1, 82) = 5.60, p = .019. Explaining may therefore
have led participants to treat the target and distractor rules as more

5 All GLMMs and LMMs were fit in R using the ‘ime4’ package (Bates,
Maechler, Bolker, & Walker, 2015).
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and all remaining rules aggregated. Error bars indicate one standard error of the
mean (SEM).

distinct.

In sum, our findings are consistent with the hypothesis that partici-
pants across conditions evaluate the target rule based on the available
evidence, as well as its generality. While they do not conclusively sug-
gest a role for explanation in hypothesis evaluation, these results also do
not definitively rule out this possibility. Experiment 2 was designed to
address this.

2.3.3. Memory

To assess whether the observed effects of explaining might be due to
a general increase in attention or engagement that would be reflected in
memory for task items, we tested condition differences in memory for
fishing lure combinations. To account for variation across individual
responses and items, we fit a generalized linear mixed effects model to
participants' response accuracy (binary) with a fixed effect of condition
and random intercepts for subject and memory probe. A model com-
parison revealed no significant role of condition in explaining memory

accuracy, y%(1) = 0.39, p = .535. This suggests that the overall condition
differences observed in hypothesis generation are not attributable to
explainers' better memory of the stimuli.

We also investigated the potential role of attention or task engage-
ment on hypothesis generation on an individual level, once again using
data on the memory probe. We first ran a logistic regression of accuracy
on the free response generation task as a function of condition and in-
dividual accuracy on the memory probe (percent correct). We find that
memory probe accuracy is not a significant predictor of hypothesis
generation behavior (p = .563), and that condition remains a significant
predictor even after controlling for memory probe accuracy (p = .002).
In line with our initial analysis of individual performance on the clas-
sification task, we fit a generalized linear mixed effects model to
participant accuracy on each of the classification questions, this time
with fixed effects of condition and individual memory probe accuracy
(the random effects structure was the same as the previous analysis).
Here, we find that including memory accuracy does not significantly
improve fit over the random effects alone, y%(1) = 3.03, p = .082, while
the fixed effect of condition remains significant, even after including
memory probe accuracy, y*(1) = 8.77, p = .003. This further suggests
that effects of attention or processing that may impact recall of task
items cannot account for accuracy in hypothesis generation.

2.3.4. Explanation and description content

To assess whether explainers generate different types of hypotheses
than describers (i.e., abstract, generalizable, mechanistic), or whether
their improved performance is merely a result of generating more hy-
potheses during the process of explanation, we coded participants' re-
sponses during the trial phase for whether they addressed abstract or
concrete features of the stimuli. In line with prior results (Williams &
Lombrozo, 2010), we hypothesized that explainers would not reference
more features of the lure combinations than describers, but would
instead show a greater tendency to reference abstract features. We also
coded participants' responses for whether they provided a mechanism in
their explanation or description. We hypothesized that explainers would
be more likely to provide a mechanism, though critically, there is
nothing to prevent describe participants from providing this information
in their descriptions as well. For example, one describer wrote: “The
main body of the lure is a circle and attached there is a teardrop shaped
segment. Perhaps this teardrop piece is too round for the fish to latch onto.”
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Fig. 5 shows the average number of mechanisms and concrete and
abstract feature references participants made in each condition, summed
across the eight trials for each participant. Given the possibility of in-
dividual differences in participants' references to features and mecha-
nisms over the eight trials, we analyze feature references using
generalized linear mixed effect models for counts of each type of refer-
ence that factor in variance across subjects and trials (all GLMMs
described in this section use Poisson regression unless otherwise noted).
First, we model each participant's total reference counts on each trial
(shape + color + purple dot) with random intercepts for subject and trial
stimulus and a fixed effect of condition. A model comparison reveals that
including the fixed effect of condition provides a significantly better fit
to the data,y%(1) = 74.94, p < .001, but this is because describers pro-
duce significantly more feature references per trial than explainers
(marginal mean estimates from the model above are 3.83 per trial for
describers and 1.09 for explainers) (refer to Fig. 5). Therefore, ex-
plainers' success in hypothesis generation is likely not a function of
simply generating more hypotheses.

Instead, as Fig. 5 suggests, explainers reference the same stimuli
differently than describers. To better understand this, we model each
participant's a) total mechanisms, b) total abstract references (shape +
color + purple dot), and c) total concrete references (shape + color +
purple dot) in each trial with a similar mixed effect structure to the one
above, but now exploring the interaction between fixed effects of con-
dition and reference “type” (mechanism, abstract, concrete). Model
comparison using a likelihood ratio test reveals that the interaction of
condition and reference type significantly improves model fit over main
effects alone ;(2(2) = 682.88, p < .001. Critically, estimated marginal
mean number of mechanisms and abstract references per trial are
significantly higher for explainers (mechanisms: explain = 0.48, describe
= 0.06, p < .001; abstract references: explain = 0.52, describe = 0.09, p
< .001), while concrete references per trial are significantly higher for
describers (explain = 0.56, describe = 3.76, p < .001). These results echo
previous findings reported by Williams and Lombrozo (2010) and sug-
gest that explanation prompts learners to privilege certain types of hy-
potheses during generation. In particular, explainers were more likely to
refer to the fishing lure combinations in abstract terms and provide
mechanistic accounts of the ones that caught fish; in some cases, these
accounts went well beyond the available evidence (“Because it looks like
food that fish would like to eat and also have the smell the fish like”).

An important question that arises from these results is whether ex-
plainers' success is a function of being prompted to explain (the process
of explaining) or generating the right sort of explanation (the product of
explaining) (e.g., Wilkenfeld & Lombrozo, 2015). To better understand
this, we ran a logistic regression with the free response data from par-
ticipants in the explain condition to explore whether accuracy was pre-
dicted by the kinds of explanations provided in the earlier evidence
trials. As predictors, we used: a) the total number of references (mech-
anism + abstract + concrete) across all eight evidence trials, b) the total
number of mechanisms across all trials, and c) the proportion of abstract
feature references out of all abstract and concrete references across all
trials. This last metric was selected in place of total abstract or concrete
references because we found that these references had a significant
negative correlation (r = —0.36, p = .04). The proportion metric
therefore allowed us to test whether the ratio of these features
contributed separately from the overall number. We find a significant
positive slope on proportion of abstract references only (p = .004).° To
complement this, we ran a generalized linear mixed effects model
comparison using individual responses on the classification task (rather
than subjects' binary accuracy on the free response task); this analysis
used a binomial link function for classification accuracy. A nested model
comparison found that effects of mechanism and abstract reference

6 This result and the one below are the same if we use total abstract refer-
ences rather than the proportion.
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proportion significantly improved model fit, while total references did
not (total references: ;{2(1) = 1.80, p = .18; mechanisms: ;(2(1) =10.31,p
= .001; abstract proportion: )(2(1) =9.20, p =.002).

Broadly, this suggests that an explainer's probability of generating a
correct hypothesis likely increased with the proportion of abstract ref-
erences and may also have increased by including mechanisms. Thus,
our results suggest that the kind of explanation produced matters; par-
ticipants who used more abstract references were also more likely to
generate a correct hypothesis. However, given that nearly all explainers
included these references in their explanations, these results cannot rule
out the possibility that the act of explaining was itself epistemologically
valuable, regardless of the explanation produced.

2.4. Discussion

In this experiment, we developed a novel category learning task to
investigate the role that explaining plays in the processes of hypothesis
generation and evaluation. We find that participants who are prompted
to explain the evidence they observe are more likely to generate a cor-
rect rule for category membership than participants who were asked to
describe the same evidence. This suggests that explaining may constrain
the initial set of hypotheses generated by the learner. By comparison, the
effect of explaining on hypothesis evaluation is less clear. Although
participants in both conditions rated the target rule significantly higher
than all other rules, including the distractor rule, we did find a small but
significant difference between conditions in their rating of the target
rule. However, given that these ratings were near ceiling in both groups
and that no such difference was observed when applying a mixed effects
model, this finding is difficult to interpret. We address this issue in
Experiment 2.

3. Experiment 2

Though the condition differences in hypothesis generation found in
Experiment 1 were consistent with our initial predictions, the modest
impact of explaining on hypothesis evaluation deserves further atten-
tion. One possibility is that the subtle difference we observed between
conditions in their evaluations of the target rule was spurious. This
seems likely, given that the target rule was rated highly across condi-
tions and that our additional analysis accounting for individual subject
variation in ratings did not find a significant effect of condition. In
Experiment 2, we address this concern by increasing our sample size,
modifying the hypothesis rating scale to reduce ceiling effects, and
assessing participants' evaluation of a broader range of rules.

In addition to resolving this remaining uncertainty, we also aimed to
address whether any effect of explaining on hypothesis evaluation was
attenuated by the demands of the hypothesis generation task. First, the
hypothesis generation task may itself involve some amount of tacit hy-
pothesis evaluation. In particular, during the free response generation
prompt, all participants were asked to provide the best rule for which
lure combinations catch fish. This may have caused participants in both
conditions to evaluate the goodness of the rule they were providing. In
such a case, the hypothesis generation task might plausibly interfere
with participants' subsequent evaluations, thereby masking effects of
explaining on hypothesis evaluation.

A second possibility is that the free response hypothesis generation
prompt served to reduce any differences between conditions on hy-
pothesis evaluation by prompting describe participants to explain the
evidence they saw. In other words, if the hypothesis generation prompt
(“Describe the single best rule you used for deciding whether or not each lure
combination will catch fish”) led describers to seek a broad and general-
izable hypothesis to apply to the data, they may have behaved more
similarly to explainers in the subsequent hypothesis evaluation task.
Concretely, producing “the single best rule” in the hypothesis generation
task might have biased participants to evaluate abstract rules more
favorably in both conditions. To address each of these concerns in
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Experiment 2, we removed the hypothesis generation tasks to assess
condition effects on evaluation in isolation.

3.1. Participants

Participants were 164 undergraduate students from a major West
Coast university who received course credit for their participation.
Unlike Experiment 1, which was completed on lab computers, Experi-
ment 2 was administered to students online.” As in Experiment 1, par-
ticipants were randomly assigned to either explain or describe (control)
conditions. This sample size was chosen based on a power analysis
indicating that we needed 82 participants in each condition to detect a
difference in target rule evaluations with 80% power and an estimated
effect size similar to Experiment 1.

An additional 9 participants were tested, but excluded, based on
criteria established prior to data collection. Specifically, seven (explain:
4, describe: 3) were excluded for providing a rating above 80 on a scale
from 1 (“not good”) - 100 (“very good”) for a rule that was only
consistent with 25% of the evidence observed (i.e., a very poor rule), and
two (explain: 1, describe: 1) were excluded for total experiment
completion times that were greater than five standard deviations above
the group mean (i.e., over 8 h). Note, however, that all reported results
remain in the absence of one or both of these exclusions.

3.2. Procedure

The procedure for Experiment 2 was identical to Experiment 1,
except for the following changes. First, we removed both hypothesis
generation tasks. After completing the training phase, all participants
proceeded directly to the hypothesis evaluation phase. Second, we
modified the hypothesis evaluation task to include a set of eight rules
(see Table 2). In addition to the target rule, distractor rule, and random

7 All code for Experiment 2, as well as data and analysis code for the results
presented, can be found at: https://github.

com/erik-brockbank/go_fish_v2.

Table 2
Rules presented in the hypothesis evaluation task in Experiment 2.

Rule Category Consistency with
Evidence

If a lure combination has a red shape on the Misc. 25% (2/8)
bottom, it will catch fish.

If a lure combination has a blue shape, it will Misc. 50% (4/8)
catch fish.

If a lure combination has a purple dot on at least ~ Misc. 75% (6/8)
one of the lures, it will catch fish.

If a lure combination has a pointy shape on Target 100% (8/8)
the bottom, it will catch fish.

There is no pattern to which lure combinations Random NA
catch fish: the results are random, but there are
approximately equal numbers that catch fish
and don't.

If a lure combination has a yellow shape or a Distractor 100% (8/8%)
diamond on the bottom, it will catch fish.

If a lure combination has a rounded top shape Abstract 75% (6/8)
that resembles a fish's body, it will catch fish. (shape)

If a lure combination has a top lure with bright Abstract 75% (6/8)
colors that are more visible under water (red or ~ (color)

yellow), it will catch fish.

Note: The order of presentation for these eight rules was randomized.
" See footnote 8.

(i.e., “no rule”) prompts from Experiment 1, we included two “virtuous”
abstract rules that were consistent with 75% of the evidence (abstract
shape rule: “If a lure combination has a rounded top shape that resembles a
fish's body, it will catch fish”; abstract color rule: “If a lure combination has
a top lure with bright colors that are more visible under water (red or yellow),
it will catch fish”). If explaining influences hypothesis evaluation, we
predicted that explainers might rate these rules higher, despite their lack
of parsimony (Williams & Lombrozo, 2013). Participants were also
asked to evaluate three “miscellaneous” rules, which represented a
broader range of consistency with the evidence.

Further, unlike in Experiment 1, in which the rule order was fixed,
we randomized the rule order in Experiment 2 to avoid the possibility of
order effects in either condition. Finally, participants evaluated all rules
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on a continuous 1-100 scale, from “not good” to “very good”, rather
than a discrete 1-7 scale. As in Experiment 1, our primary dependent
variable is the ratings that participants provided for each rule. However,
once again, we also examine the content of the explanations and de-
scriptions provided during the trial phase to better understand how
providing explanations may support the learning process.

3.3. Results

To probe the role of explaining on hypothesis evaluation, we
compare the explain and describe conditions on their evaluation of the
eight candidate rules provided to all participants.

3.3.1. Hypothesis evaluation

Fig. 6 shows evaluation ratings for each rule: target, distractor, the
two “abstract” rules, the “random” rule, and the “miscellaneous” rules,
all indicated by their consistency with the evidence observed during the
training phase (25%, 50%, 75%, or 100%).° The changes made in
Experiment 2 removed the ceiling effects from Experiment 1, allowing
for more meaningful analysis of target rule evaluations (explain: M =
81.1, SD = 23.5; describe: M = 84.9, SD = 24.6).

Paralleling our approach in Experiment 1, we begin with a mixed
effects analysis with individual rule evaluations (1—100) modeled using
interacting fixed effects of rule and condition and random intercepts for
each subject. As in Experiment 1, the main effect of condition did not
significantly improve model fit over a main effect of rule alone, y*(1) =
0.32, p = .57, and the interaction between condition and rule did not
improve model fit over the main effects )(2(7) = 5.11, p = .65. Consid-
ered alongside the previous findings, this suggests that explanation does
not meaningfully intervene in hypothesis evaluation. Once again, we
also evaluate the pairwise difference between rules across conditions
using the full model described above. Here, a comparison of marginal
means estimates finds no significant differences across conditions in
their ratings of the individual rules.

We next turn to traditional statistics to complement these findings.
Unlike in Experiment 1, a t-test of subject ratings on the target rule finds
no significant difference in target rule evaluation (explain: M = 81.1,
describe: M = 84.9), t(162) = —1, p = .32. We observe similar results in
participant evaluations of the distractor rule (explain: M = 63.8; describe:
M=61.6,t(162) = 0.43, p = .67) as well as the “abstract” rules (abstract
color rule; explain: M = 40.3; describe: M = 38.0, t (162) = 0.52, p = .60;
abstract shape rule; explain: M = 44.5; describe: M = 39.4, t (162) = 1.15,
p = .25). Taken together, findings of Experiment 2 provide no evidence
that explanation impacts the process of hypothesis evaluation.

Instead, the current results suggest that hypothesis evaluation is
sensitive to both the likelihood of the hypotheses (i.e., their consistency
with the evidence), as well as information about their prior probabili-
ties, signaled by their consistency with explanatory virtues. Further,
results suggest that this sensitivity is not affected by explanation. First,
as noted above, we replicate the finding from Experiment 1 that, on
average, the distractor rule is rated close to the midpoint of the scale,
despite being consistent with all (or most) of the evidence. This indicates
that prior knowledge likely plays an additional role in learner evalua-
tions. Second, participant ratings of the “miscellaneous” rules suggest
that learners incorporate likelihood information into their rule evalua-
tions, with increases in mean ratings paralleling increases in consistency
with the evidence (25%, 50%, and 75%). People's responsiveness to
considerations of likelihood and prior knowledge appears to be equiv-
alent for both explain and describe participants.

8 As in Experiment 1, we note the possibility that the distractor rule, which
was intended to be unambiguously consistent with 100% of the evidence, can
also be interpreted in a way that is consistent with seven of the eight evidence
trials.
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3.3.2. Explanation and description content

As in Experiment 1, we coded participant response data from the
evidence phase of Experiment 2 to assess whether there were systematic
differences in the kinds of hypotheses participants considered when
viewing successful and unsuccessful lure combinations for the first time.
For each participant's response on each of the eight evidence trials
(explanation or description of the outcome), we count the number of
abstract and concrete shape, color, and purple dot references, as well as
the number of mechanisms provided in the response. The coding criteria
were identical to those used in Experiment 1. As before, we hypothesized
that explainers would show a greater tendency to reference abstract
features, but not necessarily more features in aggregate (Williams &
Lombrozo, 2010), and be more likely to provide a mechanistic account.

The trials were divided into two roughly equal sets and each set was
coded by a pair of coders who were naive to the subsequent analysis. The
analysis reported here is based on 75% of the responses in each set (1328
total), with the remaining responses used to train coders. Agreement
between coders across the two sets averaged 95% for feature references
and 88% for mechanisms. Disagreements were resolved by the
experimenter.

Results from this analysis mirror those of Experiment 1. First, we
model each participant's total reference counts on each trial (shape +
color + purple dot) using a Poisson link function with random intercepts
for subject and trial stimulus and a fixed effect of condition. As in
Experiment 1, including the fixed effect of condition provides a signif-
icantly better fit to the data, )(2(1) = 120.74, p < .001, but this is
because, once again, describers produced significantly more feature
references per trial than explainers (marginal mean estimates are 3.8 per
trial for describers and 0.8 for explainers, similar to the means in
Experiment 1). Next, we model total a) mechanisms, b) abstract refer-
ences (shape + color + purple dot), and c¢) concrete references (shape +
color + purple dot) for each participant in each trial with the identical
mixed effects structure used in Experiment 1. As in Experiment 1, we
find that the interaction between condition and reference type signifi-
cantly improves model fit, y%(2) = 1220.79, p < .001. Critically, esti-
mated marginal mean number of mechanisms and abstract references
per trial are significantly higher for explainers (mechanisms: explain =
0.42, describe = 0.04, p < .001; abstract references: explain = 0.41,
describe = 0.07, p < .001), while concrete references per trial are
significantly higher for describers (explain: 0.43, describe: 3.82, p <
.001). Again, these are similar to the findings in Experiment 1. Together,
findings suggest that explainers' success is due to generation of abstract
and mechanistic hypotheses, not their generation of a greater number of
hypotheses overall.

4. General discussion

In two experiments, we examine whether explaining supports cate-
gory learning by promoting generation of broad hypotheses, by leading
learners to evaluate those hypotheses as more likely, or both. In Exper-
iment 1, we found that participants who explained the evidence they
observed were more likely to generate the target rule about which lure
combinations catch fish. However, we obtained mixed results with
respect to the role of explanation in hypothesis evaluation. In Experiment
2, using a more diagnostic evaluation procedure and rule set, we find no
evidence that explanation impacts hypothesis evaluation when exam-
ined in isolation. These findings provide strong evidence that explaining
improves learning by intervening on the process of hypothesis genera-
tion, but not the evaluation of those same hypotheses.

There are several alternative explanations for the condition differ-
ences in hypothesis generation that are worth considering. First, it's
possible that participants in the explain condition simply paid more
attention to the evidence. Generating explanations is undoubtedly more
challenging than simply describing that same evidence, so the increased
attention required in this condition could have accounted for the results
(e.g., Siegler, 2002). If this were the case, we might expect participants
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Fig. 6. Evaluation results for Experiment 2. From left to right, ratings for the target rule, the distractor rule, the two abstract rules, the “random” rule, and three
“miscellaneous” rules. Each label includes the percent of lure combinations (out of eight) that were consistent with the rule. Error bars indicate one standard error of

the mean (SEM).

in the explain condition to have better memory for the fishing lure
combinations. However, the results from the memory probe do not
support this explanation. These same results also rule out a related
interpretation of the observed condition differences, namely, that effects
of explanation on generation were due to explainers' better recall of the
training trials, since the evidence was not available for reference during
the generation tasks.

Although these results rule out alternative proposals that the
observed effects are due to increases in overall attention, it remains
possible that explanation impacted performance by leading participants
to generate more hypotheses than were generated in response to the
describe prompt. Consistently re-sampling hypotheses over the eight
evidence trials may have ultimately resulted in a greater proportion of
explainers generating the target hypothesis. However, in that case, we
would expect to find no differences in the manner in which fishing lure
features were mentioned in explanations compared to descriptions; ex-
plainers might have provided candidate rules on the basis of features like
shape and color (e.g., “lure combinations with yellow shapes catch
fish™), while describers might have simply described the same features
(e.g., “this lure combination has a yellow shape on top”). Our analysis of
the trial phase explanations and descriptions suggests that explainers
were not merely sampling more rules about the same set of features but
thinking about those features in fundamentally different ways. Specif-
ically, although explainers provided fewer references to the fishing lure
features overall, they were far more likely to make abstract references to
those features (e.g., “round” rather than “circle™). Similar findings from
the coded responses in our second experiment support these claims.

Finally, while we have suggested that it is broadly the act of
explaining which produces the differences in hypothesis generation
observed in our results, it is possible that producing the right kind of
explanation (i.e., one that is sufficiently abstract and generalizable) fa-
cilitates success instead. Since nearly all explainers produced abstract or
mechanistic references during the training trials, we are unable to
evaluate whether the act of explaining supported hypothesis generation
over and above the effect of explanation quality (e.g., see Wilkenfeld &
Lombrozo, 2015). This represents a promising avenue for future work.

Future research might also explore the role of explaining in a wider
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range of generation contexts. Specifically, the constraints of the current
task likely simplified hypothesis generation to a process of extrapolating
from the available data and winnowing the set of possible hypotheses as
evidence accumulates (Goodman et al., 2008; Klayman & Ha, 1989).
However, this approach bypasses the more constructive process of hy-
pothesis generation in everyday settings, in which the hypothesis space
is initially less well-defined (Bramley, Rothe, Tenenbaum, Xu, & Gur-
eckis, 2018; Gureckis & Markant, 2012).

Further, our finding that explaining does not impact hypothesis
evaluation contrasts with at least one prior study (Williams, Walker,
Maldonado and Lombrozo, 2013) and raises additional questions for
future inquiry into the process of hypothesis evaluation. In Williams and
colleagues, participants were asked to apply subtle statistical reasoning
techniques to the evidence in order to evaluate hypotheses. In contrast,
the current study provided participants with all the necessary evidence
during evaluation, reducing the level of difficulty. It is therefore possible
that explaining plays a greater role in the process of hypothesis evalu-
ation in settings where evaluation itself is more cognitively demanding.
It is also possible that explanation might impact hypothesis evaluation
when the explanations are not generated by the participants themselves,
e.g., in pedagogical settings where learners receive explanations from a
teacher. In these situations, receiving possible explanations might affect
the learner's evaluations of candidate hypotheses, independent of the
evidence observed. Future work is needed to explore whether the effects
of explanation in the current study generalize across learning contexts.

The present results provide several meaningful contributions to
existing work on explanation and learning more broadly. First, they help
to resolve a key question left unanswered by prior work on explanation:
Though earlier results with children and adults showed that learners
who explain tend to privilege hypotheses that are abstract and consistent
with prior knowledge (Walker et al., 2014, 2017; Williams & Lombrozo,
2010, 2013), this might have been due to learners selectively generating
these hypotheses, evaluating them differently, or both. Here, we show
that explanation's primary function is to intervene on the process of
hypothesis generation. This is consistent with prior literature on hy-
pothesis testing, which has found that the set of hypotheses people
entertain may be heavily dependent on contextual factors such as the
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framing of the task (Cheng & Holyoak, 1985) or the physical affordances
of the problem (Walker et al., 2020). Prompting participants to explain
can be viewed as a modification of the learning context which narrows
the space of candidate solutions to the most broad and generalizable ones
(see, e.g., Ullman, Siegel, Tenenbaum, & Gershman, 2016). This may
provide additional insight into developmental results in which
explaining has a dramatic and immediate effect on reasoning (Brock-
bank, Lombrozo, Gopnik, & Walker, 2022; Walker et al., 2017; Walker
et al., 2014 Experiment 1) and belief revision (Macris & Sobel, 2017).
Further, this account may open the door to computational models of
explanation, as well as hypothesis generation more broadly (e.g.,
Thomas, Dougherty, Sprenger, & Harbison, 2008).

More generally, the current work sheds light on some of the larger
questions that lie at the heart of human learning and problem solving.
First, our findings provide additional support for prior claims that hy-
pothesis generation and evaluation are separable processes, and that
different cognitive scaffolds may target learning in unique ways
(Bonawitz & Griffiths, 2010). Second, these results add to a growing
body of work examining the effects of learning context and goals in
learners' ability to generate the right type of solution (Lake et al., 2017;
Schulz, 2012; Walker et al., 2020). Despite the potentially infinite
number of possible solutions to everyday problems, people are
remarkably adept at selecting solutions that “make sense” (Phillips,
Morris, & Cushman, 2019; Ullman et al., 2016). Constraining the hy-
pothesis space in this way remains a challenge for computational models
of human inductive reasoning in many domains (Bonawitz & Griffiths,
2010; Lake et al., 2017). The current findings refine our understanding
of how human learners accomplish this; the goal of producing good ex-
planations constrains which hypotheses are initially generated when the
learner is confronted with a novel problem.
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