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Abstract. When do syzygies depend on the characteristic of the field? Even for well-studied
families of examples, very little is known. For a family of random monomial ideals, namely, the
Stanley—Reisner ideals of random flag complexes, we prove that the Betti numbers asymptotically
almost always depend on the characteristic. Using this result, we also develop a heuristic for char-
acteristic dependence of asymptotic syzygies of algebraic varieties.
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1. Introduction. The minimal free resolution of an ideal can depend on the
characteristic of the ground field. Known examples include certain monomial ideals
[12, 25], Veronese embeddings of P" [2, 22], and determinantal ideals [20]. This paper is
motivated by a desire to understand if dependence on the characteristic is a common
or rare phenomenon. To make such a question precise, we can restrict to specific
families, such as the following.

QUESTION 1.1. For which d > 1 does the minimal free resolution of the d-uple
embedding of P depend on the characteristic? Does it happen for all d > 09 Or does
it happen rarely?

QUESTION 1.2. Let A ~ A(n,p) be a random flag complex (see subsection 2.3).
As n — oo, what is the probability that the minimal free resolution of the Stanley—
Reisner ideal of A depends on the characteristic?

We do not offer new results on Question 1.1, though we discuss in subsection 1.1
how questions like this motivated our work. Our main result is Theorem 1.3, which
answers Question 1.2 and shows that, in this context, dependence on the characteristic
is quite common.

To analyze dependence on the characteristic, we will say that the Betti table of the
Stanley—Reisner ideal of A has ¢-torsion if this Betti table is different when defined
over a field of characteristic £ than it is over Q. See section 2 for further details on
notation. We prove the following.

THEOREM 1.3. Let A ~ A(n,p) be a random flag complex with n~ "% <« p <1—e
for e > 0. If we fir any m > 2, then with high probability as n — oo, the Betti table
of the Stanley—Reisner ideal of A has £-torsion for every prime £ dividing m.
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Assuming the hypotheses of the theorem, this implies that with high probability
as n — oo, the Betti table of the Stanley—Reisner ideal of A depends on the char-
acteristic. The proof of Theorem 1.3 proceeds as follows. By Hochster’s formula [7,
Theorem 5.5.1], it suffices to show that some induced subcomplex of A has m-torsion
in its homology. For each m, we modify Newman’s construction [26, section 3] to build
a flag complex X,,, with a small number of vertices and with m-torsion in Hy(X,,).
We then apply a variant of Bollobds’s theorem on subgraphs of a random graph [5,
Theorem 8] to prove that X, appears as an induced subcomplex of A with high
probability as n — oo, yielding Theorem 1.3.

The most common example of characteristic dependence is Reisner’s example,
coming from a triangulation of RP? [7, section 5.3]. Other previous research on char-
acteristic independence of monomial ideals includes [30, 25, 21] for edge ideals and [12,
Theorem 5.1] for monomial ideals with componentwise linear resolutions.

Theorem 1.3 also fits into an emerging literature on random monomial ideals.
This began with [14], which outlined an array of frameworks for random monomial
ideals, including models related to random simplicial complexes such as [10, 23]. The
average Betti table of a random monomial ideal is analyzed in [13], while [29] examines
threshold phenomena in random models from [14]. Banerjee and Yogeshwaran study
homological properties of the edge ideals of Erdés—Rényi random graphs in [3]. There
is also [18], which uses random monomial methods to demonstrate some asymptotic
syzygy phenomena from [17, 15]. And finally, Theorem 1.3 is thematically connected
with [24], which analyzes torsion homology in random simplicial complexes (whereas
Theorem 1.3 analyzes the simpler question of finding m-torsion in the homology of
some induced subcomplex of A(n,p)).

1.1. Asymptotic syzygies and heuristics. One of our main motivations for
studying Question 1.2 is a belief that this will provide heuristic insights into more
geometric questions like Question 1.1. We now explain this connection in more detail.

The study of asymptotic syzygies, as introduced by Ein and Lazarsfeld in [17],
examines the overarching behavior of syzygies of algebraic varieties under increas-
ingly ample embeddings. Specifically, Ein and Lazarsfeld fixed a smooth variety X
with a very ample line bundle A and considered the syzygies of X embedded by dA
for d > 0. They proved an asymptotic nonvanishing result which showed that the
limiting behavior essentially only depended on dim X. Other researchers then found
comparable limiting behavior for other families from geometry [31, 16] and combina-
torics [9, 18]. In a similar vein, [15] conjectured that the syzygies of smooth varieties
should asymptotically converge to a normal distribution in an appropriate sense; that
conjecture was verified for the combinatorial families in [18].

In short, work on asymptotic syzygies suggests that the overarching behavior will
be similar across many geometric and combinatorial examples. This is the context in
which Questions 1.1 and 1.2 are connected. Whereas Ein and Lazarsfeld identified
behavior in geometric settings which carried over to combinatorial settings, we look in
the opposite direction: Could a combinatorial result shed light on asymptotic syzygies
in geometric examples?!

The study of ¢-torsion is ripe for such a heuristic due to the lack of results and
the difficulty of computing the Betti numbers of higher-dimensional varieties. For
instance, for Veronese embeddings of P", the only results on ¢-torsion are for the 2-uple
embedding (exploiting the combinatorial description of [27]): Andersen’s thesis [2]

LA similar idea appears in [15], where a random model based on Boij-Séderberg theory is used

to generate quantitative conjectures about the entries of Betti tables.
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shows that the Betti table of the 2-uple embedding of P" has 5-torsion for any r > 6,
and Jonsson generalized this to produce ¢-torsion for ¢/ = 3,5,7,11, and 13 and for
various r [22]. See [6, 20] for similar results. But even for d-uple embeddings of P",
there are no examples of torsion when d > 2 and no conjectures for any fixed r > 2.

The random flag complex model used in this paper was previously studied in the
work of Erman and Yang [18, Theorem 1.3], and they showed that if n=%/ ("~ <« p <«
n~1/7, then the Betti table of the Stanley—Reisner ideal of A(n, p) exhibits some of the
asymptotic behavior of r-dimensional varieties from [17]. We view Theorem 1.3, which
holds for n="/("=1) <« p « n=Y" when r > 7, as providing a heuristic for /-torsion
in the asymptotic syzygies of a smooth variety X of dim X > 7. For concreteness, in
the case of P", we conjecture the following.

CONJECTURE 1.4. Let r > 7. For any d > 0, the Betti table of P under the
d-uple embedding depends on the characteristic.

CONJECTURE 1.5. Let r > 7. As d — oo, the number of primes £ such that the
Betti table of P under the d-uple embedding has £-torsion is unbounded.

We will discuss some related conjectures and questions in more detail in section 7.

This paper is organized as follows. In section 2, we review notation and back-
ground, including on Betti numbers, Hochster’s formula, and random flag complexes.
Section 3 contains our main construction in which we construct an explicit flag com-
plex X,, with m-torsion in homology; see Theorem 3.1. In section 4, we apply a
minor variant of Bollobds’s theorem on subgraphs of a random graph to show that,
with high probability, X,, appears as an induced subcomplex of A(n,p) for any
n /% <« p < 1—¢ where € > 0 and m > 2. In section 5, we analyze the case
of 2-torsion more closely, using the techniques from section 4 to expand known results
from [11]. In section 6, we combine results from section 4 with Hochster’s formula
to prove Theorem 1.3. Finally, in section 7, we discuss questions about /-torsion in
asymptotic syzygies.

2. Background and notation.

2.1. Torsion in Betti tables. Throughout this paper, we will analyze graded
algebras, all of which have the following form: There is an ideal J in a polynomial
ring T with coefficients in Z, where T/J is flat over Z, and we are interested in
specializations (T'/J) ®z k to various fields k. Our results focus on graded algebras
that arise as the Stanley—Reisner rings of simplicial complexes. But there are many
other potential examples, such as the coordinate rings of Veronese embeddings of
projective space, Grassmanians, toric varieties, and so on. The central questions of
this paper are concerned with when the Betti numbers of such algebras depend on
the characteristic of k.

Let J be a monomial ideal in T' = Z[x1, ..., x,]. For a field k, the algebraic Betti
numbers of (T'/J) ®z k are given by

Bii(T)J) @z k) = dimy, Tor? ®**((T/J) @z k, k);.

The collection of all of these Betti numbers is called the Betti table. Since field ex-
tensions are flat, Betti numbers are invariant under field extensions and will therefore
be the same for any field of the same characteristic. Semicontinuity implies that
Bii(T)JT) @z Q) < B, ;((T/J) @z F;). We say that the Betti table of J has £-torsion
if this inequality is strict for some i, j, and we say that the Betti table of J depends
on the characteristic if it has ¢-torsion for some prime /.
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2 3 2I—Q3
1 4 1

G H

Fic. 2.1. In the graphs shown above, H is a subgraph of G, but it is not the induced subgraph
on the vertex set {1,2,3} since H is missing the diagonal edge connecting vertices 1 and 3.

Remark 2.1. Let J be an ideal in T = Z[z1,...,2,] which is flat over Z. Let
S=T®zF; =Fplxy,...,2,] and I = JS. By a standard argument, it follows that

dimg, Tor} (S/1,F,); = dimp, (Tor; (T/J,Z); @2 F¢) 4 dimg, (Tory(Tor}y,(T/J,Z);,Fe)).

In particular, the Betti table of J has ¢-torsion if and only if one of the TorZ:rl (T/J,Z);
has ¢-torsion as an abelian group.

2.2. Graphs and simplicial complexes. For a simplicial complex X, we write
V(X), E(X), and F(X) for the set of vertices, edges, and (two-dimensional) faces of
X, respectively. We use |*| to denote the number of elements in these sets. The degree
of a vertex v, denoted deg(v), is the number of edges in X containing v. We write
maxdeg(X) for the maximum degree of any vertex of X, and we write avgdeg(X) for
the average degree of a vertex in X.

For a pair of graphs H,G, we write H C G if H is a subgraph of G. We write
H zéd G if H is an induced subgraph of G, that is, if the vertices of H are a subset of
the vertices of G and the edges of H are precisely the edges connecting those vertices
within G (see Figure 2.1). We use similar definitions and notations for a simplicial
complex A’ to be a subcomplex (or an induced subcomplex) of another complex A.
If a C V(A), then we let A|, denote the induced subcomplex of A on «.

The following definitions, adapted from [5] and [8], will be used in sections 4-6.

DEFINITION 2.2. The essential density of a graph G is

m(G) = max { I‘E;EZ;' . HCG, |[V(H) > o} ,

and G is strictly balanced if m(H) < m(G) for all proper subgraphs H C G.

For a field k, a simplicial complex A on n vertices has a corresponding Stanley—
Reisner ideal In C S = k[z1,...,2,]. Since these In are squarefree monomial ideals,
Hochster’s formula [7, Theorem 5.5.1] relates the Betti table of S/Ia to topological
properties of A, providing our key tool for studying this Betti table for various fields
k. An immediate consequence of Hochster’s formula is the following fact, which
characterizes when these Betti tables are different over a field of characteristic £ than
over Q.

FAct 2.3. For a simplicial complex A, the Betti table of the Stanley—Reisner ideal
IA has L-torsion if and only if there exists a subset o C V(A) such that Al, has (-
torsion in one of its homology groups.

2.3. Monomial ideals from random flag complexes. Recall that a flag com-
plex is a simplicial complex obtained from a graph by adjoining a k-simplex to every
(k + 1)-clique in the graph, which is called taking the clique complex. Therefore, a
flag complex is entirely determined by its underlying graph. We write A ~ A(n,p) to
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denote the flag complex which is the clique complex of an Erd6s-Rényi random graph
G(n,p) on n vertices, where each edge is attached with probability p. If a C V(A),
then we note that A, is also flag. The properties of random flag complexes have
been analyzed extensively, with [23] providing an overview. As discussed in the in-
troduction, the syzygies of Stanley—Reisner ideals of random flag complexes were first
studied in [18].

2.4. Probability. We use the notation P[«] for the probability of an event. If
X, is a sequence of random variables, then we say that the event X, = xy occurs
with high probability as n — oo if P[X,, = x9] — 1 as n — oo. For a random variable
X, we use E[X] for the expected value of X and Var(X) for the variance of X.

For functions f(z) and g(x), we write f < g if IILH;O f/g — 0. Weuse f € O(g) if

there is a constant N where |f(z)| < N|g(x)]| for all sufficiently large values of z, and
we use f € Q(g) if there is a constant N’ where |f(z)| > N’|g(x)]| for all sufficiently
large values of .

3. Constructing a flag complex with m-torsion in homology. The goal
of this section is to prove the following result.

THEOREM 3.1. For every m > 2, there exists a two-dimensional flag complex X,,
such that maxdeg(X,,) < 12 and the torsion subgroup of H1(X,,) is isomorphic to
Z/mZ.

This result is the foundation of our proof of Theorem 1.3, as we will show that
this specific complex X, appears as an induced subcomplex of A(n,p) with high
probability as n — oo under the hypotheses of that theorem.

Here is an overview of our proof of Theorem 3.1, which is largely based on ideas
from [26]. Given an integer m > 2, we write its binary expansion as m = 2"+ .. 42"
with 0 < ny < -+ < ny. Note that k is the Hamming weight of m and nj, = |log,(m)|.
With this setup, the “repeated squares presentation” of Z/mZ is given by

Z/mZZ <707’Yla"'a’ynk |2’YO :7172’71 :727"'72’)/%1@—1 = Tngr Vn, ++7nk :O>

We will construct a two-dimensional flag complex X, such that the torsion subgroup
of Hi(X,,) has this presentation. To do so, we follow Newman’s “telescope and
sphere” construction in [26], where Y7 is the telescope satisfying

Hi(Y1) = (70,7155 ¥mi [ 2790 = 715271 =72, -+, 2Ymp—1 = T
Y5 is the sphere satisfying
Hl(Yg)g<T1,...,Tk|7'1+"'+Tk:0>,

and X, is created by gluing Y7 and Y, together (by identifying 7; with -, for
it =1,...,k) to yield a complex with the desired H;-group. Because we want our
construction to be a flag complex with maxdeg(X,,) < 12, we cannot simply quote
Newman’s results. Instead, we must alter the triangulations to ensure that Y7i, Yo,
and X, are flag complexes. Then we must further alter the construction to reduce
maxdeg(X,,). However, each of our constructions is homeomorphic to each of New-
man’s constructions.

Notation 3.2. Throughout the remainder of this section, we assume that m > 2
is given. We write m = 2™ + ... 42" with 0 < mny < --- < ng. To simplify notation,
we also denote X,, by X for the remainder of this section.
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V4 V4i43

’
, Usi+
Vg

/
it+1 Vgite
V4it1 ¢ = V4i+2
Vdita  V4it7

’
Vgit2 V4its5  V4it+6 .
Vait2 SiP0 g vsita
7 vl
Vgi 8i4,
V4i+3 Vai
F1G. 3.1. Buailding block for the telescope construction where i € {0,1,..., (ng —1)}.

3.1. The telescope construction. The telescope Y; that we construct will be
homeomorphic to the Y7 that Newman constructs in [26, proof of Lemma 3.1] for the
d = 2 case. We start with building blocks which are punctured projective planes; in
contrast with [26], our blocks are triangulated so that each is a flag complex. Explic-
itly, for each ¢ = 0, ..., (ny — 1), we produce a building block which is a triangulated
projective plane with a square face removed, with vertices, edges, and faces as illus-
trated in Figure 3.1. Our building blocks differ from Newman’s in order to ensure
that Y7 and the final simplicial complex X are flag complexes; for instance, we need

to add extra vertices vg;, ..., Vg, 7.
We construct Y7 by identifying edges and vertices of these ny building blocks as la-
beled. The underlying vertex set is V(Y1) = {vo, v1,V2, .+, Van,+3, V05 V15 - - s Vgp, —1}>

so we have |V (Y1)| = 12n; + 4. Since each building block has 44 edges, 4 of
which are identified with edges on the next building block, and 28 faces, we have
|E(Y1)| = 40ng + 4 and |F(Y7)| = 28ng. In addition, observe that the vertices of
highest degree are those in the squares in the “middle” of the telescope, such as ver-
tex vg when ny, > 2. In this case, vy is adjacent to vs,v7,v), v}, vh, v, V15, Vi1, and
vig, so deg(vy) = 9. By the symmetry of Y7, we have that maxdeg(Y;) = 9 when
ng > 2 and maxdeg(Y7) = 6 when ni = 1 (when m =2 or 3).

To compute H;(Y7), we simply apply the identical argument from [26]. We order
the vertices in the natural way, where v; > vy, if j > k, similarly for the vj, and where
v, > v; for all £,j. We let these vertex orderings induce orientations on the edges
and faces of Y7. For each ¢ =0, ..., ng, denote by ~; the 1-cycle of Y; represented by
[’1)42', 1)4i+1] + [U4i+1, 1)4i+2] —+ [1)4i+2, 1)4i+3] — [’042', 1)4i+3]. Then 2’)/1 —Yi+1 isa 1—boundary
of Y7 for each i = 0,...,(nr — 1), and, as in Newman’s construction, we have that
H, (Y1) can be presented as (Y0, Y1;- -+ Vi, | 270 = 71,271 =725+ +» 2Vni—1 = Vny,)-

3.2. The sphere construction. The sphere part Y5 is a flag triangulation of
the sphere S2? that has k square holes such that the squares are all vertex disjoint
and nonadjacent. Our Y5 will be homeomorphic to the Y5 that Newman constructs in
[26] for the d = 2 case, but our construction involves a few different steps. First, we
will show that for any integer k& > 1, there exists a flag triangulation T; of S? (here
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i = [ 571 ]) with at least k faces such that maxdeg(7;) < 6. Then we will insert square
holes on k of the faces of T; while subdividing the edges and call the resulting flag
complex T;. Finally, we describe a process to replace each vertex of degree 14 in T;
with two degree 9 vertices so that the resulting complex, Y3, has maxdeg(Ys) < 12.
Throughout these constructions, we will have four cases corresponding to the value
of £k mod 4, and we carefully keep track of the degrees of each vertex in T;, T;, and

Y5 for each case.

3.2.1. T; and flag bistellar 0-moves. We begin by constructing an infinite
sequence Tp, T}, . .. of flag triangulations of S? such that maxdeg(7;) < 6 for all i. To
do so, we adapt the bistellar 0-moves used in [26, Lemma 5.6]. Let Ty be the 3-simplex
boundary on the vertex set {wg, w1, wa, ws}. Note that each vertex of Ty has degree
3. We will construct the remaining 7; inductively. To build 77, first remove the face
[wy, wa, ws] and edge [w1, ws]. Then, add two new vertices wy and ws as well as new
edges [wo, wy], (w1, wa], [ws, wa], [w1,ws], [we,ws], [ws,ws], and [wg,ws]. Taking the
clique complex will then give T;. See Figure 3.2.

Essentially, this process is the same as making the face w1, ws, ws] into a square
face [wy, wa, w3, wy], removing that square face, taking the cone over it, and then en-
suring that the resulting complex is a flag triangulation of S2. We will call such a move
a flag bistellar 0-move. Each T;41 for ¢« > 0 will be obtained from T; by performing
a flag bistellar 0-move on the face [wa;41, Wait2, wait+s] of T;. Explicitly, to construct
T;+1, remove the face [wa;1,Waita, waitrs] and the edge [wait1,wait3]. Then add
new vertices wa; 4 and wa; 45 and new edges [wa;, Wait4], [W2it1, Woita], [W2its, Waita],s
[Wait1,Wait5], [Wait2, Waits], [Waits, Waits], and [waita, wait5], and take the clique
complex to get T;11. Note that each flag bistellar 0-move adds 2 vertices, 6 edges,
and 4 faces. Since |V (Tp)| = 4,|E(To)| = 6, and |F(Tp)| = 4, this means that
\V(T;)| = 2i+4, |E(T;)| = 6i+ 6, and |F(T;)| = 4i + 4.

Further, Table 3.1 summarizes the degrees of the vertices in each T;.

wa Tl w3 Wsa T2 w3

FIG. 3.2. The first few flag triangulations of S using flag bistellar 0-moves.

TABLE 3.1
Degrees of the vertices in T;.

T; Degree Vertices
To 3 wo, W1, W2, W3
Ty 4 we, W1, W2, W3, Ws, We
T> 4 wo, W1, We, W7
5 wa, W3, W4, W5
T; 4 WO, W1, W2i+2, W2i+3
1>3 5 W2, W3, Wi, W2it1
6 Wy e ve, W2—1
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To compute the degrees of vertices in T; for ¢ > 3, observe that when the new
vertices wo;+2 and wsy; 3 are added, they have degree 4 in T;. For each of the next
two iterations of the flag bistellar 0-move, the degree of these vertices increases by
one, resulting in degree 6 in T;5. In the remaining triangulations T} with j > i + 3,
these vertices are not affected. Therefore, maxdeg(T;) < 6 for each i.

From this infinite sequence of flag triangulations of S? with bounded degree, we
are interested in the particular T; with i = [£72] to use in our construction of Ya,
where k is the Hamming weight of m as in Notation 3.2. Note that this 7; has vertex
set {wo, ..., w243} and has 4| 271 | + 4 faces. Let & be the integer 0 < § < 3, where
0 = —k mod 4. Then T; has exactly k + § faces.

3.2.2. Constructing ﬁ Next, we insert square holes in the first k faces of
T; and subdivide the remaining faces in such a way that the squares will be vertex
disjoint and nonadjacent.

First, we will insert square holes in k of the faces of T;, making sure to triangulate
the resulting faces and take the clique complex so that our simplicial complex remains
flag. Let [w,,ws,w;] with 7 < s < ¢ be the jth of these k faces with respect to
a fixed ordering of the faces (where j ranges from 1 to k). We remove this face
and subdivide the edges by adding new vertices wy. ,,w;.,, and w, and new edges
(W, wy. o] [ws, wy. ], [we, wy ], [we, wy 4], [ws, w) 4], and [wy, wy ,]. Then we add vertices
Ugj—a, Udj—3, U4j;2, and u4;_1 to form a square inside the original face with indices
increasing counterclockwise. Moreover, we add edges

/! /
[wra u4j74]7 [wra u4j*1]7 [u4j*47 wr,s]’ [u4j*37 wr,s]> [w57 u4j*3]’
! / / !
[Uaj—3, W 4], [Uaj—2, W o], [we, uaj—2], [uaj—2,wy 4], [uaj—1, w5 ]
After applying this process, we take the clique complex. The result of this operation
on face [wy, ws, wy] is depicted in Figure 3.3 (left).

The remaining § faces of T; will simply be subdivided and triangulated be-
fore taking the clique complex. Explicitly, this means that after removing the face
[W2i 11, Waiy2, w3 and its edges, we add vertices wh; | 9,9, Wh;\ 1 9543, and

/
Wai 19 9i43 and edges
. ! . / . /
(w241, w2i+l,2i+2]7 [w2i42, w2i+1,2i+2]a [W2iy1, w2i+1,2i+3]»
/ / / !/
[W2i+13, w2i+1,2i+3]7 [w2i+1,2i+2’ w2i+1,2i+3]a [W2i12, w2i+2,2i+3]7

! / A / !
[w2i4 3, w2i+2,2i+3]7 [w2i+1,2¢+27 w2i+2,2i+2]ﬂ [w2i+1,2i+37 w2i+2,2i+3]'

W24i4-1

/ /
W2it1,2i42 Woi+1,2i+3

Wy W244-2 W2;4-3

/
Wai4+2 2i+3

F1G. 3.3. Ezample of square insertion done on k faces of T; (left) and subdivided triangulation
on remaining faces (right).
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TaBLE 3.2
Degrees of the vertices in T; when k=0 mod 4.

T; Degree Vertices
6 wa, W3
To 7 w1
(k=4) 9 wo
8 w4, Ws
ﬁ 9 w2, w3
(k=8) 10 w1
12 wo
8 we, W7
T 10 wy
(k=12) 11 w4, Ws
12 wo, W2, W3
8 W24 42, W24i+3
T; 10 wy
123 11 W24, W2i41
(k=4i+4) 12 wo, W2, W3
14 Why oo, W21

This subdivision of face [wa;41, Wait2, We;t3] is shown in Figure 3.3 (right). We do
similarly for the faces [w21_17w21+2,1U2i+3] and [wgi, w2i+1,w2i+3] if necessary. The
clique complex of this construction is a flag complex which is homeomorphic to 5?2
with k distinct points removed. Call this complex T;.

Let us consider the degrees of the vertices of T;. We have that deg(w} ;) = 6
for all s,t and deg(u¢) € {4,5} for all ¢, where the “top” wu, have degree 4 and the
“bottom” u, have degree 5. To determine the degrees of the w; vertices, we need to
consider their degrees in T; and how their degrees increase during the subdivision and
square face removal processes. As we are interested in bounding the maximum degree
of the vertices of T;, we need only consider the case when § = 0 and all k faces of T;
have a square hole. N

Table 3.2 gives the degrees of each of the w; vertices in T; when 6 = 0.

To verify the degrees of the w; in T; when i > 3, we consider how the degrees of
the vertices change as i increases. Between T, and T} (with 6 = 0 for both), the
only vertices that change degree are wo;_2,wa;_1, wa;, wa2;11, each of which increases
degree by 3. This is because they each get one new edge from the T; flag bistellar
0-move and two new edges from the square removal triangulation process (since each
vertex is the smallest indexed and hence the “top” vertex of one new triangular face).
Further, the new vertices wg;49,wa;y3 in i have degree 8, and they increase degree
by 3 in the next two iterations, resulting in degree 14 in ﬁ+2 and all future iterations.

The above argument shows that regardless of m and k, maxdeg(T;) < 14, where
1= L%J Furthermore, the only vertices that could have degree 14 are wy, ..., ws;_1,
each of which is separated from the others by a wgyt vertex, which only has degree 6.

We want to know exactly which vertices in T; have degree 14, for all possible k with
i > 3, because we plan to alter these vertices to decrease maxdeg(T;). Note that as ¢
increases from 0 to 3, the degree of each w; vertex is nonincreasing. When k = 4 + 4
and § = 0, Table 3.2 gives that wy, ..., ws;_1 have degree 14. When k = 47 + 3 and
d =1, the face [wo; 1, Wait2, W3] is subdivided instead of having a square removed,
but this does not change the degrees of wy, ..., ws;_1, so these all still have degree 14.
When k = 4 +2 and § = 2, the faces [w21‘+1,’(U2i+2,w2i+3} and [w%_l, 1U21‘+2,’LU21'+3]
are subdivided. Therefore, wy;_1 has two fewer edges than in the previous case since
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wa;—1 is the smallest indexed vertex in [wa;_1, wa;t2, we;+3] and so would have two
“top” uy adjacent to it if this face had a square removed from it. So, in this case,
Wy, ..., Ws;_o have degree 14, and wg, ws, w3, we; 1 have degree 12 in T;. Finally, if
k = 4i+ 1 and 6 = 3, then additionally the face [wa;, wa;y1, wa;13] is subdivided,
which means that the degree 12 and 14 vertices are the same as in the previous
case.

3.2.3. Replacing degree 14 vertices to construct Y>. Having identified the
vertices of T; of the highest degree, we now describe a process by which we will
replace each vertex of degree 14 by two vertices of degree 9 in order to ensure that
maxdeg(T;) < 12 for all k£ (and ). The resulting flag complex, given by taking the
clique complex of this construction, will be the final Y5, and it will be homeomorphic
to T;. The process is summarized by Figure 3.4 and described in detail in the following
paragraphs. B

Suppose w; is a vertex of degree 14 in T;. Locally, on a small neighborhood of
wj, i is homeomorphic to a 2-manifold. Since deg(w;) = 14, w; is surrounded by
six triangular faces coming from T, all of which have had a square removed. By our
construction, two of these squares (which are in adjacent triangular faces) have both
of their “top” wu, vertices connected to w;, but the other four squares just have a single
edge connecting one of their “bottom” u, vertices to w;. So, w; has six w} ;, neighbors
and eight u, neighbors, which form a 14-sided polygon with w; as its “star” point.
Choose two wgyt vertices which are across from each other in this 14-sided polygon,
say, wfhb and w’q 4- Next, we will remove w; and all of the 14 faces that it is contained
in. Then we add vertices w;, and wj, in place of w; and add edges in such a way that
deg(w;,) = deg(wy,) = 9 there are edges [wy,wy ], fwy,  w) ], w0, g, 0, w0, ),
and [wj,,w, 4; and the 14-sided polygon is triangulated with 16 triangles. This
process only changes the degree of wéhb and w’c 4> €ach of which now has degree 7.
Therefore, the maximum degree of wj,,w;,, and the 14 vertices in the polygon is 9
(since deg(ur) € {4,5} and deg(wy, ;) = 6). To illustrate this construction, we consider

the case when k = 20. Then i =4, § = 0, and deg(wr) = 14 in . Figure 3.4 depicts
this process when wy, , = wj 7 and w;, ; = w7 17
After repeating the above process for each degree 14 vertex in ﬁ, we take the

clique complex and call the resulting flag complex Y3. Observe that this process
increases the number of vertices by 1, the number of edges by 3, and the number of

’
w10 wlO,ll w11

NS\
Y N
VA4

Fic. 3.4. Replacing a degree 14 vertex in ﬁ when k = 20.
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TABLE 3.3
Number of vertices, edges, and faces in Yo when k > 13.

k s V(¥2)| |E(Yz)| |F'(Yz)|
4i+4 | 0 Br—4 3Tk —18 11k — 12
; 13 37 21
4+3 | 1 | Br-3 k-2 1k -7
4i 42 2 Bk k-6 11k —4
; 13 5 37 3
4i+1 | 3 | BE+3 T+ 3 1k +1

faces by 2 each time a degree 14 vertex in ﬁ is replaced. Also, note that maxdeg(Y3) <
12 for all m.

Now we give the w;, wg’t, and uy vertices their natural orderings and say that
wy, > wj and wi, > ug for all £,s,¢, and j and then let these vertex orderings
induce orientations on the edges and faces of Y (as shown in Figure 3.2). Counting
the vertices, edges, and faces of Y5, we have that if 0 < k& < 12, then there were
no degree 14 vertices to remove, so |V (Yz)| = 6k + 2§ + 2, |E(Y2)| = 17k + 66 and
|F'(Yz)| = 10k 4+ 49. If £ > 13, then ¢ > 3 and at least one degree 14 vertex was
removed to construct Ys from ﬁ Table 3.3 gives the number of vertices, edges, and
faces of Y5 for all values of k& > 13.

3.2.4. Homology of Y5. Since Y is an oriented flag triangulation of S? with k
square holes, each of which is vertex disjoint and nonadjacent, our Y5 is homeomor-
phic to Newman’s Y3 in the d = 2 case of [26, Lemma 5.7], and we can apply the
same argument to compute the homology of Y5. We denote the 1-cycles that are the
boundaries of the k square holes by 7, ..., 7x. Explicitly, for j =1,...,k, we define

Tj o= [Ugj—g, Usj—3] + [Ugj—3, Ugj—2] + [Uaj_2, Usj—1] — [Uaj—a, Usj_1].

Then, by our construction, each 7; is a positively oriented 1-cycle in Hy(Y3), and
exactly as in [26, Proof of Lemma 5.7], we have that

Hl(YQ) = <T1,...,7'k|’r1+...+7-k :0>

3.3. Construction of X and proof of Theorem 3.1. Now we attach Y;
and Y5 together to form the two-dimensional flag complex X such that the torsion
subgroup of H;(X) is isomorphic to Z/mZ. This part essentially follows [26, section
3], though we must confirm that the resulting complex is flag and satisfies the desired
bound of vertex degree.

Proof of Theorem 3.1. For a given m, let Y7 and Y5 be the complexes constructed
in the previous subsections. Let S denote the subcomplex of Y5 induced by the 4k
vertices ug, ..., Usp_1. Since the square holes in Y5 are vertex-disjoint and have no
edges between any two of them, S is a disjoint union of k square boundaries. Let
f S = Y be the simplicial map defined, for j =1,...,k, by

Ugj—q > Van,, Ugj—3 =7 Vin;+1, Ugj—2 7 Van;+2, Ugj—1 7 Vin;+3-

Following [26, section 3], let X = Y37 Uy Y5, and observe that this is a simplicial
complex by the same argument as Newman gives. In addition, X is a flag complex
because Y7 and Y5 are flag, and we subdivided the edges of Y; and Y5 to avoid the
possibility that X might contain a 3-cycle which does not have a face. Furthermore,
in X, the squares 7; and ,, are identified by f for j =1,...,k, and, as in [26],
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TABLE 3.4

Number of vertices, edges, and faces in X when k > 13.

k s 140:9] IEX)| (X
4i+4 0 Sk +12n 2k + 400, — 14 11k + 28ny, — 12
4i4+3 | 1 Sk+12n,+ 32 D+ 40n;, — 13 11k +28ng — 7
4i+ 2 2 Sk+12n, +4 Dk + 400 — 2 11k + 28ny — 4
4i+1 | 3 | Sk4+12n+ 3 2k + 400, + 11k + 28ny + 1

693

H(X)=ZF'o7Z/mZ,
where Z/mZ has the repeated squares representation given by

(Y0, 715> Y 1 27% = 71,271 =72, -+ 52V =1 = Ynur Yy + 7 F Yy = 0).

Finally, using our counts for the number of vertices, edges, and faces of Y7 and Y3
and with § defined as above, if 0 < k < 12, we have |V(X)| = 2k + 12ny + 6 + 20,
|E(X)| = 13k +40ng +4+ 66, and |F(X)| = 10k +28ny +40. If k > 13, then Table 3.4
gives the number of vertices, edges, and faces in X (where i = [£72]).

Additionally, recall that maxdeg(Y7) < 9 and maxdeg(Y3) < 12. Since in X we
are only identifying the squares of Y5 with k of the squares of Y7, to find the maximum
degree of any vertex of X, we need only check the degrees of the identified vertices. In
Y1, we know that deg(v;) < 9 for each j, and in Y5, we know that deg(u,) € {4,5} for
each £. Let v; and u; be vertices that are identified in X. Since two of their adjacent
edges in the squares are identified as well, in X we see that deg(v;) = deg(u¢) < 12.
Thus, maxdeg(X) < 12. O

We also note the following corollary.

COROLLARY 3.3. For every finite abelian group G, there is a two-dimensional
flag complex X such that the torsion subgroup of Hi(X) is isomorphic to G and
maxdeg(X) < 12.

Proof. Let G = Z/miZ © Z/meZ & - - - ® Z/m,Z with mq|mg|---|m, be an ar-
bitrary finite abelian group. By Theorem 3.1, there exist two-dimensional flag com-
plexes X,,, such that the torsion subgroup of H;(X,,,) is isomorphic to Z/m;Z and
maxdeg(X,,,) < 12. If X is the disjoint union of all the X,,,, then X satisfies the
hypotheses of the corollary. ]

4. Appearance of subcomplexes in A(n,p). The goal of this section is to
show that, for attaching probabilities p in an appropriate range, the flag complex
X, from Theorem 3.1 will appear with high probability as an induced subcomplex of
A(n,p). See section 2 for the relevant definitions and notation used throughout this
section. Our main result follows.

ProPOSITION 4.1. Let m > 2, and let X,, be as in Theorem 3.1. If A ~
A(n,p) is a random flag complex with n='/% <« p < 1 — € for some € > 0, then

P [Xm igd A(n,p)] —1 asn — oo.

Our proof of this result will rely on Bollobas’s theorem on the appearance of
subgraphs of a random graph, which we state here for reference.
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THEOREM 4.2 (Bollobds [5]). Let G’ be a fized graph, let m(G’) be the essential
density of G' defined in Definition 2.2, and let G(n,p) be the Erdés—Rényi random
graph on n vertices with attaching probability p. As n — 0o, we have

0 if p<nt/m@),

PG’ c G(n,p)] — ,
[ (n,p)] {1 if p > n-1/m(G),

Since any flag complex is determined by its underlying graph, we can almost apply
this to prove Proposition 4.1. However, Proposition 4.1 (and our eventual application
of it via Hochster’s formula to Theorem 1.3) requires X,,, to appear as an induced
subcomplex, whereas Bollobas’s result is for not necessarily induced subgraphs. The
following proposition, which is likely known to experts, shows that so long as p is
bounded away from 1, this distinction is immaterial in the limit.

PROPOSITION 4.3. Let G’ be a fized graph, let m(G') be the essential density of
G’ defined in Definition 2.2, and let G(n,p) be the Erdés—Rényi random graph on n
vertices with attaching probability p. Suppose p = p(n) < 1 — € for some € > 0. Then
as n — 00, we have

0 ifp< nt/m@),

ind
P |G C G(n, — ,
{ (n p)] {1 if p > n-1/mE),

Proof. Since an induced subgraph is a subgraph, if P[G' C G(n,p)] — 0, then
ind
P |G' C G(n,p)| — 0. Thus, the first half of the threshold is a direct consequence

of Theorem 4.2, and all that needs to be shown is the second half of the threshold.

Suppose that p > n~1/ m(&") | We will mirror the proof of Bollobas’s theorem from
[19, Theorem 5.3] (originally due to [28]), which relies on the second moment method.
Let A(G’,n) be the set containing all of the possible ways that G’ can appear as a
induced subgraph of G(n,p). Thus, an element H € A(G’,n) corresponds to a subset
of the n vertices and specified edges among those vertices such that the resulting
graph is a copy of G’. We want to count the number of times G’ appears as an
induced subgraph of G(n,p). For each H € A(G',n), we let 15 be the corresponding
indicator random variable, where 1 = 1 occurs in the event that restricting G(n, p)
to the vertices of H is precisely the copy of G’ indicated by H. Note that the random
variables 1 are not independent, as two distinct elements from A(G’, n) might have
overlapping vertex sets. If we let Ng/ be the random variable for the number of copies
of G’ appearing as induced subgraphs in G(n,p), then we have Ng» = Z 1y.

HeA(G',n)

Our goal is to show that P[Ng: > 1] — 1 or equivalently that P[Ng = 0] — 0.
Since N¢- is nonnegative, the second moment method as seen in [1, Theorem 4.3.1]
states that P[Ng = 0] < %Zf’j;), %ﬁﬁg) — 0. To start,
we will bound the expected value. To simplify notation throughout the following
computation, we let v = |[V(G’)| and e = |E(G’)| denote the number of vertices and
edges of G':

so it suffices to show that

ENe|= Y  E[l4]
HeA(G',n)
= > pra-pb
HeA(G',n)

v

= Q(n*) - p(1 - p) e,
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Now let us repeat this with the variance instead:
Var(Ne') = Y. E[lyly]-E[14]E[ly]
H,H'eA(G',n)
= >  Plly=landly =1]-Plly=1P[ly = 1]
H,H'€A(G' ,n)

= Y Plg=1Ply=1]|1g=1] Pl =1))
H,H'eA(G'n)

=p'(1-pE Y Py =1]1y=1 Py =1).
H,H' €A(G’ n)

If H and H’ do not share at least two vertices, 15 and 1 are independent of each
other. So we can restrict to the case where they share at least two vertices, which
gives

=p"(1-p)&Y" S Plm=1|1g=1-Plly =1].
=2 HH'EA(G )
\V(H)NV(H)|=i

We now come to the key observation, which is also at the heart of the proof in [19,
Theorem 5.3]: P[1y = 1| 1y = 1] is maximized if those edges and nonedges in H are
exactly those that are required by H’. Thus, by applying the fact that any subgraph
of G’ with ¢ vertices has at most i- m(G’) edges and at most (;) nonedges, we get the
following bound for H, H' € A(G’,n) sharing i vertices:

Plly =1]1y =1 <Py =1]-p ™)1 —p)~ (),
From here, it is a standard computation. Substituting this back into the previous

equation and simplifying, we get

Var(Ng) < p°(1 — p)(8)—e 3 3 Pl = 1] (pfi»m(G')(l —p) (@) - 1)
=2 H,H' e€A(G',n)
[V (H)NV (H')|=i

< <pe(1 _p)(;)76>2 z“:O (n20) (p—i-m(G/)(l —p) ) - 1) .
1=2

And since p is bounded away from 1 and 1 — p is bounded away from 0, we get

< <pe(1 - p)(g)_e>2 i 0 (nQU—ip—i~m(G/)) )

Finally, applying the second moment method gives
Z O <n2v—ip—i~m(G/))

Var(Ng') = i —im(@)
r = < = i, —im )
P[NG 0] = E[NG/P Q(nQU) v 0 (TL p )

Since p > n~ /™G we conclude that np™(@) — oo, and therefore P[Ng: = 0] — 0.

ind
It follows that P {G’ C G(n,p)} — 1. |
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We now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1. Recall that X,,, is the complex from Theorem 3.1, and
let H,, be its underlying graph. Moreover, the underlying graph of A(n,p) is the
Erdés—Rényi random graph G(n,p). Since a flag complex is uniquely determined by

ind
its underlying graph, it suffices to show that P {Hm C G(n,p)] — 1.

Since maxdeg(H,,) < 12, every subgraph has average degree at most 12. Thus,
the essential density m(H,,) satisfies m(H,,) < 6. Since p > n~'/® we have

ind

p > n~Y/mHm) - Applying Proposition 4.3 gives P {Hm C G(n,p)] — 1; thus,
ind
P {Xm C A(n,p)] — 1. d

Remark 4.4. Explicitly computing the essential density m(H,,) seems difficult
in general, and our chosen bound m(H,,) < 6, which is determined by the fact that
6= % maxdeg(X,, ), is likely too coarse. It would be interesting to see a sharper result
on m(H,,), as this could potentially provide a heuristic for decreasing the bound on
r in Conjecture 1.4. Might it even be the case that m(H,,) is half the average degree,
£ avgdeg(H,)?

In any case, 5 avgdeg(H,,) at least provides a lower bound on m(H,,). Due to
the detailed nature of the constructions in section 3, we can estimate this value. Let
k > 13 and m > 0 so that nx = |logy(m)] will be much larger than . By Table 3.4,
the number of vertices will be approximately gk + 12ny, and the number of edges
will be approximately 2—2916 + 40ny. The smallest the ratio of edges to vertices can
be is when n; > k, in which case the ratio will be approximately 3%. A similar
computation holds for k£ < 12 and for m > 0. We can conclude that m(H,,) > 3% —€,
where € is a positive constant that goes to 0 as m — co.

5. A detailed analysis of 2-torsion. The goal of this section is to provide
a more detailed analysis of what happens in the case of 2-torsion (when m = 2 in
Proposition 4.1). In [11], Costa, Farber, and Horak analyze the 2-torsion of the
fundamental group of A(n,p). Their results, specifically Theorem 7.2, give that if
n~1/30 « p < n1/37¢ where 0 < € < 35 is fixed, then H;(A(n,p)) has 2-torsion
with high probability as n — oco. Since our aim is to show that there is 2-torsion with
high probability in the homology of an induced subcomplex of A(n,p) rather than in
the global homology, we are able to extend their threshold to n=11/30 « p < 1 —¢,
where € > 0. We use the same techniques as in section 4, but instead of using Xs from
Theorem 3.1, we use a known flag triangulation of RP? that minimizes the number
of vertices and where we can easily compute its essential density. This gives the less
restrictive threshold of p > n~11/30 in the 2-torsion case as opposed to p > n~1/6
in the general case. In [4, Figure 1], the authors found two (nonisomorphic) minimal
flag triangulations of RP?, each of which has 11 vertices and 30 edges and differs by
a single bistellar 0-move; one of these is used in [11], and the other, which we use in
this section, is depicted in Figure 5.1.

For the remainder of this section, let G denote the underlying graph of this flag
triangulation of RP2, which we denote by A(G). To understand the probability that
A(G) appears as an induced subcomplex of A(n,p), we need to compute the essential
density m(G).

LEMMA 5.1. For the graph G underlying the flag triangulation of RP? exhibited
in Figure 5.1, the essential density m(G) is 30/11.
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FiG. 5.1. A minimal flag triangulation of RP?.

TABLE 5.1
With G as the underlying graph of the complex in Figure 5.1, this table computes the maximal
number of edges of subgraphs H C G with varying number of vertices.

|E(H)|
[V(H)| | max{|E(H)[} V(H) maX{IV(H)I}
1 0 {'Ul} 0
2 1 {v1,v2} 1
3 3 {v1,v2,v6} 1
4 5 {v1,v2,v5,v6} s
7
5 7 {v1,v2,v4,v5,v6} z
6 10 {v1,v4,v7,v8,v9,v11} s
7 13 {v1,v2,v4,v7,v8,v9,v11} %
8 17 {v1,v2,v4,v6,v7,v8,v9,v11} i
9 21 {v1,v2,v3,v4,v6, V7,8, V9, V11 } z
10 25 {v1,v2,v3,v4, v5, v6, v7, V8, V9, v11} s
11 30 {vi,...;011} 30

Proof. This amounts to an exhaustive computation, which is summarized in Ta-
ble 5.1. In particular, Table 5.1 identifies the maximal number of edges that a sub-
graph H C G on |V (H)| vertices can have for each |[V(H)| < 11. One can see from the
table that m(G) is maximized by the entire graph, and thus m(G) = |E(G)|/|V(G)| =
30/11. |

Lemma 5.1 shows that the graph G is strongly balanced in the sense of Defini-
tion 2.2. While we expect the essential density of our complexes X,, to be lower than
the coarse bound of £ maxdeg(X,,) (see Remark 4.4), we note that in the case of the
graph G, this difference is not very large. In fact, we have %maxdeg(G) = 3 and
m(G) =30/11 ~ 2.72.

Combining Lemma 5.1 and Theorem 4.2, we obtain an analogue of Proposition 4.1.

PROPOSITION 5.2. If A ~ A(n,p) is a random flag complex with n= /30 < p <

1 — € for some € > 0, then P [A(G) igd A(n,p)] — 1 asn— 0.
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Proof. The proof is nearly identical to that of Proposition 4.1, so we omit the
details. O

QUESTION 5.3. It would be interesting to know whether p > n=Y/30 is a sharp

threshold for the appearance of 2-torsion in the homology of any induced subcomplex
of A(n,p). While [11, Theorem 7.1] shows that the global homology has no torsion
if p < n~ /30 it is possible that some induced subcomplex of A(n,p) has 2-torsion.
A closely related question is whether there exists a flag complex X with 2-torsion
homology and a smaller essential density than 30/11.

6. Torsion in the Betti tables associated to A. We now prove Theorem 1.3.
The hard work was done in the previous sections.

Proof of Theorem 1.3. Assume n~ '/ <« p < 1 —¢, and let A ~ A(n,p). Let
X, be as constructed in the proof of Theorem 3.1. By Proposition 4.1, A contains
X, as an induced subcomplex with high probability as n — co. Since H;(X,,) has
m-torsion, Hochster’s formula (see Fact 2.3) gives that the Betti table of the Stanley—
Reisner ideal of A has ¢-torsion for every prime ¢ dividing m. 0

We can also apply the more detailed study of 2-torsion from section 5 to obtain
a result on the appearance of 2-torsion in the Betti tables of random flag complexes.

PROPOSITION 6.1. Let A ~ A(n,p) be a random flag complex with n='1/30 <«
p < 1—¢€ for some ¢ > 0. With high probability as n — oo, the Betti table of the
Stanley—Reisner ideal of A has 2-torsion.

Proof. The proof is the same as the proof of Theorem 1.3 but utilizing Proposi-
tion 5.2 in place of Proposition 4.1. 0

As a generalization of Question 5.3, it would be interesting to understand a precise
threshold on the attaching probability p such that the Betti table of the Stanley—
Reisner ideal of A does not depend on the characteristic. A related question is posed
in Question 7.3.

Remark 6.2. Our constructions are based entirely on torsion in the Hi-groups,
and thus we obtain Betti tables where the entries in the second row of the Betti
table (the row of entries of the form f;;+2) depend on the characteristic. Since
Newman’s work also produces small simplicial complexes where the H;-groups have
torsion for any ¢ > 1 [26, Theorem 1], one could likely apply the methods of section 3
to produce thresholds for where the other rows of the Betti table would depend on
the characteristic, and it might be interesting to explore the resulting thresholds.

7. Further questions. In this final section, we discuss some further questions
about torsion for flag complexes and for the asymptotic syzygies of geometric exam-
ples.

QUESTION 7.1. Can one find new examples of Veronese embeddings of P" or of
any other reasonably simple variety (Grassmanian, toric variety, etc.) whose Betti
tables depend on the characteristic? For a given £, can one produce a specific example
of a variety whose Betti table has £-torsion?

We find it especially surprising that there are no known examples of 2-torsion
for d-uple embeddings of P". Focusing on the case of projective space, the following
question is open.

QUESTION 7.2. What is the minimal value of v such that the Betti table of the
d-uple embedding of P" depends on the characteristic for some d? (It is known that
2<r<6.)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/12/22 to 128.104.46.196 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CHARACTERISTIC DEPENDENCE OF RANDOM SYZYGIES 699

An analogous question, in the context of random monomial ideals, would be as
follows.

QUESTION 7.3. Let m > 2. For a random flag complex A ~ A(n,p), what is
the threshold on p such that the Betti table of the Stanley—Reisner ideal of A has
m-torsion with high probability as n — 0o ?

A closely related result is [11, Theorem 8.1], which implies that for any given odd
prime ¢, the Betti table of the Stanley—Reisner ideal of A (with high probability as
n — oo) has no /-torsion when p < n~1/37¢ where ¢ > 0 is fixed.

Remark 7.4. We know of two natural ways that one could improve the threshold
for p in Theorem 1.3. First, one could perform a more detailed study of the essential
density m(H,,), as that value is surely lower than our chosen bound % maxdeg(X,).
Second, one could aim to produce flag complexes X/, with torsion homology (not
necessarily in H;) whose underlying graphs have a lower essential density than H,,.
Of course, following the heuristic discussed in the introduction, any such improvement
of the threshold for p in Theorem 1.3 would suggest a corresponding improvement of
the bound on 7 in Conjectures 1.4 and 1.5.

In a different direction, one might ask about how large n needs to be before we
expect to see that the Betti table associated to A has ¢-torsion.

QUESTION 7.5. Fiz a prime ¢ and ¢ > 0. Let A ~ A(n,p) be a random flag
complex with n=/% < p <« 1 —e. For a constant 0 < § < 1, approzimately how large
does n need to be to guarantee that

P [ Betti table associated to A has £-torsion | > 1 — 67

It would be interesting to even answer this question for 2-torsion, where the
thresholds from [11, Theorems 7.1 and 7.2] make the question seemingly quite tractable.
An analogous question for Veronese embeddings of projective space would be the fol-
lowing.

QUESTION 7.6. Fiz a prime £ and integer r > 2. Can one provide lower/upper
bounds on the minimal value of d such that the Betti table of the d-uple embedding of
P" has £-torsion?

Of course, one could ask similar questions, replacing P by other varieties. We
could also turn to even more quantitative questions related to Conjecture 1.5 as well.

QUESTION 7.7. Fiz a prime { and an integer v > 2. Can one describe the set of
d € 7 such that the Betti table of the d-uple embedding of P" has (-torsion? Can one
bound or estimate the density of this set?

Acknowledgments. We thank Christine Berkesch, Kevin Kristensen, Andrew
Newman, Rob Lazarsfeld, Victor Reiner, Gregory G. Smith, and Melanie Matchett
Wood for helpful conversations. We thank Claudiu Raicu and Steven Sam for thought-
ful comments on an early draft. Finally, we thank the anonymous referees for many
helpful suggestions.

REFERENCES

[1] N. ALoN AND J. H. SPENCER, The Probabilistic Method, 4th ed., Wiley Series in Discrete
Mathematics and Optimization, John Wiley & Sons, Hoboken, NJ, 2016, https://doi.org/
10.1002/9780470277331.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1002/9780470277331
https://doi.org/10.1002/9780470277331

Downloaded 08/12/22 to 128.104.46.196 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

700

CAITLYN BOOMS-PEOT, DANIEL ERMAN, AND JAY YANG

J. L. ANDERSEN, Determinantal Rings Associated with Symmetric Matrices: A Coun-
terezample, Ph.D. thesis, University of Minnesota, 1992, https://ezproxy.library.
wisc.edu/login?url=https://www.proquest.com/dissertations-theses/determinantal-rings-
associated-with-symmetric/docview/303977553 /se-2?accountid=465.

A. BANERJEE AND D. YOGESHWARAN, Edge Ideals of Erdds-Rényi Random Graphs: Linear
Resolution, Unmizedness and Regularity, preprint, arXiv:2007.08869, 2020.

C. BiBBY, A. ODESKY, M. WANG, S. WANG, Z. ZHANG, AND H. ZHENG, Minimal Flag Trian-
gulations of Lower-dimensional Manifolds, preprint, arXiv:1909.03303, 2019.

B. BoLLOBAS, Threshold functions for small subgraphs, Math. Proc. Cambridge Philos. Soc.,
90 (1981), pp. 197206, https://doi.org/10.1017/S0305004100058655.

S. Bouc, Homologie de certains ensembles de 2-sous-groupes des groupes symétriques, J. Al-

gebra, 150 (1992), pp. 158-186, https://doi.org/10.1016/5S0021-8693(05)80054-7.

W. BrRUNS AND J. HERzOG, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathe-
matics 39, Cambridge University Press, Cambridge, 1993.

G. COLLET, ELIE DE PANAFIEU, D. GARDY, B. GITTENBERGER, AND V. RAVELOMANANA,
Threshold functions for small subgraphs: An analytic approach, Electron. Notes Discrete
Math., 61 (2017), pp. 271-277, https://doi.org/10.1016/j.endm.2017.06.048.

A. ConcA, M. JUHNKE-KUBITZKE, AND V. WELKER, Asymptotic syzygies of Stanley-Reisner
rings of iterated subdivisions, Trans. Amer. Math. Soc., 370 (2018), pp. 1661-1691, https:
//doi.org/10.1090/tran/7149.

A. CosTA AND M. FARBER, Random Simplicial Complezes, in Configuration Spaces, Springer
INdAM Ser. 14, Springer-Verlag, Berlin, 2016, pp. 129-153, https://doi.org/10.1007/
978-3-319-31580-5_6.

A. CostAa, M. FARBER, AND D. HORAK, Fundamental groups of clique complexes of ran-
dom graphs, Trans. London Math. Soc., 2 (2015), pp. 1-32, https://doi.org/10.1112/tlms/
tlv001.

K. DaALiLT AND M. KUMMINI, Dependence of Betti numbers on characteristic, Comm. Algebra,
42 (2014), pp. 563-570, https://doi.org/10.1080/00927872.2012.718821.

J. A. DE LOERA, S. HOSTEN, R. KRONE, AND L. SILVERSTEIN, Average behavior of minimal
free resolutions of monomial ideals, Proc. Amer. Math. Soc., 147 (2019), pp. 3239-3257,
https://doi.org/10.1090/proc/14403.

J. A. DE LOERA, S. PETROVIC, L. SILVERSTEIN, D. STASI, AND D. WILBURNE, Random mono-
maal ideals, J. Algebra, 519 (2019), pp. 440-473, https://doi.org/10.1016/j.jalgebra.2018.
05.041.

L. EIN, D. ERMAN, AND R. LAZARSFELD, Asymptotics of random Betti tables, J. Reine Angew.
Math., 702 (2015), pp. 55—75, https://doi.org/10.1515/crelle-2013-0032.

L. EiN, D. ERMAN, AND R. LAZARSFELD, A quick proof of nonvanishing for asymptotic syzygies,
Algebr. Geom., 3 (2016), pp. 211-222, https://doi.org/10.14231/AG-2016-010.

L. EIN AND R. LAZARSFELD, Asymptotic syzygies of algebraic varieties, Invent. Math., 190

(2012), pp. 603-646, https://doi.org/10.1007/s00222-012-0384-5.
. ERMAN AND J. YANG, Random flag complexes and asymptotic syzygies, Algebra Number
Theory, 12 (2018), pp. 2151-2166, https://doi.org/10.2140/ant.2018.12.2151.

A. FrRIEZE AND M. KARONSKI, Introduction to Random Graphs, Cambridge University Press,
Cambridge, 2016, https://doi.org/10.1017/CB0O9781316339831.

M. HASHIMOTO, Determinantal ideals without minimal free resolutions, Nagoya Math. J., 118
(1990), pp. 203-216, https://doi.org/10.1017/S0027763000003081.

T. HiB1, K. KIMURA, AND S. MURAI, Betti numbers of chordal graphs and f-vectors of simpli-
cial complezxes, J. Algebra, 323 (2010), pp. 1678-1689, https://doi.org/https://doi.org/10.
1016/j.jalgebra.2009.12.029.

J. JONSSON, More torsion in the homology of the matching complex, Exp. Math., 19 (2010),
pp. 363-383, https://doi.org/10.1080/10586458.2010.10390629.

M. KAHLE, Topology of random simplicial complexes: A survey, in Algebraic Topology: Ap-
plications and New Directions, Contemporary Mathematics 620, American Mathematical
Society, Providence, RI, 2014, pp. 201-221, https://doi.org/10.1090/conm/620/12367.

M. KaHLE, F. H. LuTz, A. NEWMAN, AND K. PARSONS, Cohen—Lenstra heuristics for torsion
in homology of random complezes, Exp. Math., 29 (2020), pp. 347-359, https://doi.org/
10.1080/10586458.2018.1473821.

M. KATzMAN, Characteristic-independence of Betti numbers of graph ideals, J. Combin. Theory
Ser. A, 113 (2006), pp. 435—454, https://doi.org/https://doi.org/10.1016/j.jcta.2005.04.
005.

A. NEWMAN, Small simplicial complezes with prescribed torsion in homology, Discrete Comput.
Geom., (2018), pp. 1-28, https://doi.org/10.1007/s00454-018-9987-y.

o

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://ezproxy.library.wisc.edu/login?url=https://www.proquest.com/dissertations-theses/determinantal-rings-associated-with-symmetric/docview/303977553/se-2?accountid=465
https://ezproxy.library.wisc.edu/login?url=https://www.proquest.com/dissertations-theses/determinantal-rings-associated-with-symmetric/docview/303977553/se-2?accountid=465
https://ezproxy.library.wisc.edu/login?url=https://www.proquest.com/dissertations-theses/determinantal-rings-associated-with-symmetric/docview/303977553/se-2?accountid=465
https://doi.org/10.1017/S0305004100058655
https://doi.org/10.1016/S0021-8693(05)80054-7
https://doi.org/10.1016/j.endm.2017.06.048
https://doi.org/10.1090/tran/7149
https://doi.org/10.1090/tran/7149
https://doi.org/10.1007/978-3-319-31580-5_6
https://doi.org/10.1007/978-3-319-31580-5_6
https://doi.org/10.1112/tlms/tlv001
https://doi.org/10.1112/tlms/tlv001
https://doi.org/10.1080/00927872.2012.718821
https://doi.org/10.1090/proc/14403
https://doi.org/10.1016/j.jalgebra.2018.05.041
https://doi.org/10.1016/j.jalgebra.2018.05.041
https://doi.org/10.1515/crelle-2013-0032
https://doi.org/10.14231/AG-2016-010
https://doi.org/10.1007/s00222-012-0384-5
https://doi.org/10.2140/ant.2018.12.2151
https://doi.org/10.1017/CBO9781316339831
https://doi.org/10.1017/S0027763000003081
https://doi.org/https://doi.org/10.1016/j.jalgebra.2009.12.029
https://doi.org/https://doi.org/10.1016/j.jalgebra.2009.12.029
https://doi.org/10.1080/10586458.2010.10390629
https://doi.org/10.1090/conm/620/12367
https://doi.org/10.1080/10586458.2018.1473821
https://doi.org/10.1080/10586458.2018.1473821
https://doi.org/https://doi.org/10.1016/j.jcta.2005.04.005
https://doi.org/https://doi.org/10.1016/j.jcta.2005.04.005
https://doi.org/10.1007/s00454-018-9987-y

Downloaded 08/12/22 to 128.104.46.196 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CHARACTERISTIC DEPENDENCE OF RANDOM SYZYGIES 701

V. REINER AND J. ROBERTS, Minimal resolutions and the homology of matching and chess-
board complezxes, J. Algebraic Combin., 11 (2000), pp. 135-154, https://doi.org/10.1023/A:
1008728115910.

A. RUCINSKI AND A. VINCE, Strongly balanced graphs and random graphs, J. Graph Theory, 10
(1986), pp. 251-264, https://doi.org/10.1002/jgt.3190100214.

L. SILVERSTEIN, D. WILBURNE, AND J. YANG, Asymptotic Degrees of Random Monomial Ideals,
preprint, arXiv: 2009.05174, 2020.

N. TeErAI AND T. HiBI, Some results on Betti numbers of Stanley-Reisner rings, Discrete
Math., 157 (1996), pp. 311-320, https://doi.org/10.1016/S0012-365X(96)83021-4, http:
//www.sciencedirect.com/science/article/pii/S0012365X96830214.

X. ZHou, Effective non-vanishing of asymptotic adjoint syzygies, Proc. Amer. Math. Soc., 142
(2014), pp. 2255-2264, https://doi.org/10.1090/S0002-9939-2014-11947-2.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


https://doi.org/10.1023/A:1008728115910
https://doi.org/10.1023/A:1008728115910
https://doi.org/10.1002/jgt.3190100214
https://doi.org/10.1016/S0012-365X(96)83021-4
http://www.sciencedirect.com/science/article/pii/S0012365X96830214
http://www.sciencedirect.com/science/article/pii/S0012365X96830214
https://doi.org/10.1090/S0002-9939-2014-11947-2

	Introduction
	Asymptotic syzygies and heuristics

	Background and notation
	Torsion in Betti tables
	Graphs and simplicial complexes
	Monomial ideals from random flag complexes
	Probability

	Constructing a flag complex with m-torsion in homology
	The telescope construction
	The sphere construction
	Ti and flag bistellar 0-moves
	Constructing Ti"0365Ti
	Replacing degree 14 vertices to construct Y2
	Homology of Y2

	Construction of X and proof of thm:Xm

	Appearance of subcomplexes in (n,p)
	A detailed analysis of 2-torsion
	Torsion in the Betti tables associated to 
	Further questions
	References

