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CHARACTERISTIC DEPENDENCE OF SYZYGIES OF RANDOM
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Abstract. When do syzygies depend on the characteristic of the field? Even for well-studied
families of examples, very little is known. For a family of random monomial ideals, namely, the
Stanley--Reisner ideals of random flag complexes, we prove that the Betti numbers asymptotically
almost always depend on the characteristic. Using this result, we also develop a heuristic for char-
acteristic dependence of asymptotic syzygies of algebraic varieties.
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1. Introduction. The minimal free resolution of an ideal can depend on the
characteristic of the ground field. Known examples include certain monomial ideals
[12, 25], Veronese embeddings of Pr [2, 22], and determinantal ideals [20]. This paper is
motivated by a desire to understand if dependence on the characteristic is a common
or rare phenomenon. To make such a question precise, we can restrict to specific
families, such as the following.

Question 1.1. For which d \geq 1 does the minimal free resolution of the d-uple
embedding of Pr depend on the characteristic? Does it happen for all d \gg 0? Or does
it happen rarely?

Question 1.2. Let \Delta \sim \Delta (n, p) be a random flag complex (see subsection 2.3).
As n \rightarrow \infty , what is the probability that the minimal free resolution of the Stanley--
Reisner ideal of \Delta depends on the characteristic?

We do not offer new results on Question 1.1, though we discuss in subsection 1.1
how questions like this motivated our work. Our main result is Theorem 1.3, which
answers Question 1.2 and shows that, in this context, dependence on the characteristic
is quite common.

To analyze dependence on the characteristic, we will say that the Betti table of the
Stanley--Reisner ideal of \Delta has \ell -torsion if this Betti table is different when defined
over a field of characteristic \ell than it is over Q. See section 2 for further details on
notation. We prove the following.

Theorem 1.3. Let \Delta \sim \Delta (n, p) be a random flag complex with n - 1/6 \ll p \leq 1 - \epsilon 
for \epsilon > 0. If we fix any m \geq 2, then with high probability as n \rightarrow \infty , the Betti table
of the Stanley--Reisner ideal of \Delta has \ell -torsion for every prime \ell dividing m.
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Assuming the hypotheses of the theorem, this implies that with high probability
as n \rightarrow \infty , the Betti table of the Stanley--Reisner ideal of \Delta depends on the char-
acteristic. The proof of Theorem 1.3 proceeds as follows. By Hochster's formula [7,
Theorem 5.5.1], it suffices to show that some induced subcomplex of \Delta has m-torsion
in its homology. For each m, we modify Newman's construction [26, section 3] to build
a flag complex Xm with a small number of vertices and with m-torsion in H1(Xm).
We then apply a variant of Bollob\'as's theorem on subgraphs of a random graph [5,
Theorem 8] to prove that Xm appears as an induced subcomplex of \Delta with high
probability as n \rightarrow \infty , yielding Theorem 1.3.

The most common example of characteristic dependence is Reisner's example,
coming from a triangulation of RP2 [7, section 5.3]. Other previous research on char-
acteristic independence of monomial ideals includes [30, 25, 21] for edge ideals and [12,
Theorem 5.1] for monomial ideals with componentwise linear resolutions.

Theorem 1.3 also fits into an emerging literature on random monomial ideals.
This began with [14], which outlined an array of frameworks for random monomial
ideals, including models related to random simplicial complexes such as [10, 23]. The
average Betti table of a random monomial ideal is analyzed in [13], while [29] examines
threshold phenomena in random models from [14]. Banerjee and Yogeshwaran study
homological properties of the edge ideals of Erd\H os--R\'enyi random graphs in [3]. There
is also [18], which uses random monomial methods to demonstrate some asymptotic
syzygy phenomena from [17, 15]. And finally, Theorem 1.3 is thematically connected
with [24], which analyzes torsion homology in random simplicial complexes (whereas
Theorem 1.3 analyzes the simpler question of finding m-torsion in the homology of
some induced subcomplex of \Delta (n, p)).

1.1. Asymptotic syzygies and heuristics. One of our main motivations for
studying Question 1.2 is a belief that this will provide heuristic insights into more
geometric questions like Question 1.1. We now explain this connection in more detail.

The study of asymptotic syzygies, as introduced by Ein and Lazarsfeld in [17],
examines the overarching behavior of syzygies of algebraic varieties under increas-
ingly ample embeddings. Specifically, Ein and Lazarsfeld fixed a smooth variety X
with a very ample line bundle A and considered the syzygies of X embedded by dA
for d \gg 0. They proved an asymptotic nonvanishing result which showed that the
limiting behavior essentially only depended on dimX. Other researchers then found
comparable limiting behavior for other families from geometry [31, 16] and combina-
torics [9, 18]. In a similar vein, [15] conjectured that the syzygies of smooth varieties
should asymptotically converge to a normal distribution in an appropriate sense; that
conjecture was verified for the combinatorial families in [18].

In short, work on asymptotic syzygies suggests that the overarching behavior will
be similar across many geometric and combinatorial examples. This is the context in
which Questions 1.1 and 1.2 are connected. Whereas Ein and Lazarsfeld identified
behavior in geometric settings which carried over to combinatorial settings, we look in
the opposite direction: Could a combinatorial result shed light on asymptotic syzygies
in geometric examples?1

The study of \ell -torsion is ripe for such a heuristic due to the lack of results and
the difficulty of computing the Betti numbers of higher-dimensional varieties. For
instance, for Veronese embeddings of Pr, the only results on \ell -torsion are for the 2-uple
embedding (exploiting the combinatorial description of [27]): Andersen's thesis [2]

1A similar idea appears in [15], where a random model based on Boij--S\"oderberg theory is used
to generate quantitative conjectures about the entries of Betti tables.
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684 CAITLYN BOOMS-PEOT, DANIEL ERMAN, AND JAY YANG

shows that the Betti table of the 2-uple embedding of Pr has 5-torsion for any r \geq 6,
and Jonsson generalized this to produce \ell -torsion for \ell = 3, 5, 7, 11, and 13 and for
various r [22]. See [6, 20] for similar results. But even for d-uple embeddings of Pr,
there are no examples of torsion when d > 2 and no conjectures for any fixed r \geq 2.

The random flag complex model used in this paper was previously studied in the
work of Erman and Yang [18, Theorem 1.3], and they showed that if n - 1/(r - 1) \ll p \ll 
n - 1/r, then the Betti table of the Stanley--Reisner ideal of \Delta (n, p) exhibits some of the
asymptotic behavior of r-dimensional varieties from [17]. We view Theorem 1.3, which
holds for n - 1/(r - 1) \ll p \ll n - 1/r when r \geq 7, as providing a heuristic for \ell -torsion
in the asymptotic syzygies of a smooth variety X of dimX \geq 7. For concreteness, in
the case of Pr, we conjecture the following.

Conjecture 1.4. Let r \geq 7. For any d \gg 0, the Betti table of Pr under the
d-uple embedding depends on the characteristic.

Conjecture 1.5. Let r \geq 7. As d \rightarrow \infty , the number of primes \ell such that the
Betti table of Pr under the d-uple embedding has \ell -torsion is unbounded.

We will discuss some related conjectures and questions in more detail in section 7.
This paper is organized as follows. In section 2, we review notation and back-

ground, including on Betti numbers, Hochster's formula, and random flag complexes.
Section 3 contains our main construction in which we construct an explicit flag com-
plex Xm with m-torsion in homology; see Theorem 3.1. In section 4, we apply a
minor variant of Bollob\'as's theorem on subgraphs of a random graph to show that,
with high probability, Xm appears as an induced subcomplex of \Delta (n, p) for any
n - 1/6 \ll p \leq 1  - \epsilon , where \epsilon > 0 and m \geq 2. In section 5, we analyze the case
of 2-torsion more closely, using the techniques from section 4 to expand known results
from [11]. In section 6, we combine results from section 4 with Hochster's formula
to prove Theorem 1.3. Finally, in section 7, we discuss questions about \ell -torsion in
asymptotic syzygies.

2. Background and notation.

2.1. Torsion in Betti tables. Throughout this paper, we will analyze graded
algebras, all of which have the following form: There is an ideal J in a polynomial
ring T with coefficients in Z, where T/J is flat over Z, and we are interested in
specializations (T/J) \otimes Z k to various fields k. Our results focus on graded algebras
that arise as the Stanley--Reisner rings of simplicial complexes. But there are many
other potential examples, such as the coordinate rings of Veronese embeddings of
projective space, Grassmanians, toric varieties, and so on. The central questions of
this paper are concerned with when the Betti numbers of such algebras depend on
the characteristic of k.

Let J be a monomial ideal in T = Z[x1, . . . , xn]. For a field k, the algebraic Betti
numbers of (T/J)\otimes Z k are given by

\beta i,j((T/J)\otimes Z k) := dimk Tor
T\otimes Zk
i ((T/J)\otimes Z k, k)j .

The collection of all of these Betti numbers is called the Betti table. Since field ex-
tensions are flat, Betti numbers are invariant under field extensions and will therefore
be the same for any field of the same characteristic. Semicontinuity implies that
\beta i,j((T/J)\otimes Z Q) \leq \beta i,j((T/J)\otimes Z F\ell ). We say that the Betti table of J has \ell -torsion
if this inequality is strict for some i, j, and we say that the Betti table of J depends
on the characteristic if it has \ell -torsion for some prime \ell .
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G
1

2 3

4
H

1

2 3

Fig. 2.1. In the graphs shown above, H is a subgraph of G, but it is not the induced subgraph
on the vertex set \{ 1, 2, 3\} since H is missing the diagonal edge connecting vertices 1 and 3.

Remark 2.1. Let J be an ideal in T = Z[x1, . . . , xn] which is flat over Z. Let
S = T \otimes Z F\ell = F\ell [x1, . . . , xn] and I = JS. By a standard argument, it follows that

dimF\ell Tor
S
i (S/I,F\ell )j = dimF\ell (Tor

T
i (T/J,Z)j \otimes Z F\ell ) + dimF\ell (Tor

Z
1(Tor

T
i+1(T/J,Z)j ,F\ell )).

In particular, the Betti table of J has \ell -torsion if and only if one of the TorTi+1(T/J,Z)j
has \ell -torsion as an abelian group.

2.2. Graphs and simplicial complexes. For a simplicial complex X, we write
V (X), E(X), and F (X) for the set of vertices, edges, and (two-dimensional) faces of
X, respectively. We use | \ast | to denote the number of elements in these sets. The degree
of a vertex v, denoted deg(v), is the number of edges in X containing v. We write
maxdeg(X) for the maximum degree of any vertex of X, and we write avgdeg(X) for
the average degree of a vertex in X.

For a pair of graphs H,G, we write H \subset G if H is a subgraph of G. We write

H
ind
\subset G if H is an induced subgraph of G, that is, if the vertices of H are a subset of

the vertices of G and the edges of H are precisely the edges connecting those vertices
within G (see Figure 2.1). We use similar definitions and notations for a simplicial
complex \Delta \prime to be a subcomplex (or an induced subcomplex) of another complex \Delta .
If \alpha \subset V (\Delta ), then we let \Delta | \alpha denote the induced subcomplex of \Delta on \alpha .

The following definitions, adapted from [5] and [8], will be used in sections 4--6.

Definition 2.2. The essential density of a graph G is

m(G) := max

\biggl\{ 
| E(H)| 
| V (H)| 

: H \subset G, | V (H)| > 0

\biggr\} 
,

and G is strictly balanced if m(H) < m(G) for all proper subgraphs H \subset G.

For a field k, a simplicial complex \Delta on n vertices has a corresponding Stanley--
Reisner ideal I\Delta \subset S = k[x1, . . . , xn]. Since these I\Delta are squarefree monomial ideals,
Hochster's formula [7, Theorem 5.5.1] relates the Betti table of S/I\Delta to topological
properties of \Delta , providing our key tool for studying this Betti table for various fields
k. An immediate consequence of Hochster's formula is the following fact, which
characterizes when these Betti tables are different over a field of characteristic \ell than
over Q.

Fact 2.3. For a simplicial complex \Delta , the Betti table of the Stanley--Reisner ideal
I\Delta has \ell -torsion if and only if there exists a subset \alpha \subset V (\Delta ) such that \Delta | \alpha has \ell -
torsion in one of its homology groups.

2.3. Monomial ideals from random flag complexes. Recall that a flag com-
plex is a simplicial complex obtained from a graph by adjoining a k-simplex to every
(k + 1)-clique in the graph, which is called taking the clique complex. Therefore, a
flag complex is entirely determined by its underlying graph. We write \Delta \sim \Delta (n, p) to
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denote the flag complex which is the clique complex of an Erd\H os--R\'enyi random graph
G(n, p) on n vertices, where each edge is attached with probability p. If \alpha \subset V (\Delta ),
then we note that \Delta | \alpha is also flag. The properties of random flag complexes have
been analyzed extensively, with [23] providing an overview. As discussed in the in-
troduction, the syzygies of Stanley--Reisner ideals of random flag complexes were first
studied in [18].

2.4. Probability. We use the notation P[\ast ] for the probability of an event. If
Xn is a sequence of random variables, then we say that the event Xn = x0 occurs
with high probability as n \rightarrow \infty if P[Xn = x0] \rightarrow 1 as n \rightarrow \infty . For a random variable
X, we use E[X] for the expected value of X and Var(X) for the variance of X.

For functions f(x) and g(x), we write f \ll g if lim
x\rightarrow \infty 

f/g \rightarrow 0. We use f \in O(g) if

there is a constant N where | f(x)| \leq N | g(x)| for all sufficiently large values of x, and
we use f \in \Omega (g) if there is a constant N \prime where | f(x)| \geq N \prime | g(x)| for all sufficiently
large values of x.

3. Constructing a flag complex with \bfitm -torsion in homology. The goal
of this section is to prove the following result.

Theorem 3.1. For every m \geq 2, there exists a two-dimensional flag complex Xm

such that maxdeg(Xm) \leq 12 and the torsion subgroup of H1(Xm) is isomorphic to
Z/mZ.

This result is the foundation of our proof of Theorem 1.3, as we will show that
this specific complex Xm appears as an induced subcomplex of \Delta (n, p) with high
probability as n \rightarrow \infty under the hypotheses of that theorem.

Here is an overview of our proof of Theorem 3.1, which is largely based on ideas
from [26]. Given an integer m \geq 2, we write its binary expansion as m = 2n1+\cdot \cdot \cdot +2nk

with 0 \leq n1 < \cdot \cdot \cdot < nk. Note that k is the Hamming weight of m and nk = \lfloor log2(m)\rfloor .
With this setup, the ``repeated squares presentation"" of Z/mZ is given by

Z/mZ = \langle \gamma 0, \gamma 1, . . . , \gamma nk
| 2\gamma 0 = \gamma 1, 2\gamma 1 = \gamma 2, . . . , 2\gamma nk - 1 = \gamma nk

, \gamma n1
+ \cdot \cdot \cdot + \gamma nk

= 0\rangle .

We will construct a two-dimensional flag complex Xm such that the torsion subgroup
of H1(Xm) has this presentation. To do so, we follow Newman's ``telescope and
sphere"" construction in [26], where Y1 is the telescope satisfying

H1(Y1) \sim = \langle \gamma 0, \gamma 1, . . . , \gamma nk
| 2\gamma 0 = \gamma 1, 2\gamma 1 = \gamma 2, . . . , 2\gamma nk - 1 = \gamma nk

\rangle ,

Y2 is the sphere satisfying

H1(Y2) \sim = \langle \tau 1, . . . , \tau k | \tau 1 + \cdot \cdot \cdot + \tau k = 0\rangle ,

and Xm is created by gluing Y1 and Y2 together (by identifying \tau i with \gamma ni for
i = 1, . . . , k) to yield a complex with the desired H1-group. Because we want our
construction to be a flag complex with maxdeg(Xm) \leq 12, we cannot simply quote
Newman's results. Instead, we must alter the triangulations to ensure that Y1, Y2,
and Xm are flag complexes. Then we must further alter the construction to reduce
maxdeg(Xm). However, each of our constructions is homeomorphic to each of New-
man's constructions.

Notation 3.2. Throughout the remainder of this section, we assume that m \geq 2
is given. We write m = 2n1 + \cdot \cdot \cdot +2nk with 0 \leq n1 < \cdot \cdot \cdot < nk. To simplify notation,
we also denote Xm by X for the remainder of this section.
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v4i

v4i

v4i+1

v4i+1v4i+2

v4i+2

v4i+3

v4i+3

v4i+4

v4i+5 v4i+6

v4i+7

v\prime 
8i

v\prime 
8i+1

v\prime 
8i+2

v\prime 
8i+3

v\prime 
8i+4

v\prime 
8i+5

v\prime 
8i+6

v\prime 
8i+7

Fig. 3.1. Building block for the telescope construction where i \in \{ 0, 1, . . . , (nk  - 1)\} .

3.1. The telescope construction. The telescope Y1 that we construct will be
homeomorphic to the Y1 that Newman constructs in [26, proof of Lemma 3.1] for the
d = 2 case. We start with building blocks which are punctured projective planes; in
contrast with [26], our blocks are triangulated so that each is a flag complex. Explic-
itly, for each i = 0, . . . , (nk  - 1), we produce a building block which is a triangulated
projective plane with a square face removed, with vertices, edges, and faces as illus-
trated in Figure 3.1. Our building blocks differ from Newman's in order to ensure
that Y1 and the final simplicial complex X are flag complexes; for instance, we need
to add extra vertices v\prime 8i, . . . , v

\prime 
8i+7.

We construct Y1 by identifying edges and vertices of these nk building blocks as la-
beled. The underlying vertex set is V (Y1) = \{ v0, v1, v2, . . . , v4nk+3, v

\prime 
0, v

\prime 
1, . . . , v

\prime 
8nk - 1\} ,

so we have | V (Y1)| = 12nk + 4. Since each building block has 44 edges, 4 of
which are identified with edges on the next building block, and 28 faces, we have
| E(Y1)| = 40nk + 4 and | F (Y1)| = 28nk. In addition, observe that the vertices of
highest degree are those in the squares in the ``middle"" of the telescope, such as ver-
tex v4 when nk \geq 2. In this case, v4 is adjacent to v5, v7, v

\prime 
0, v

\prime 
1, v

\prime 
7, v

\prime 
8, v

\prime 
15, v

\prime 
11, and

v\prime 12, so deg(v4) = 9. By the symmetry of Y1, we have that maxdeg(Y1) = 9 when
nk \geq 2 and maxdeg(Y1) = 6 when nk = 1 (when m = 2 or 3).

To compute H1(Y1), we simply apply the identical argument from [26]. We order
the vertices in the natural way, where vj > vk if j > k, similarly for the v\prime \ell , and where
v\prime \ell > vj for all \ell , j. We let these vertex orderings induce orientations on the edges
and faces of Y1. For each i = 0, . . . , nk, denote by \gamma i the 1-cycle of Y1 represented by
[v4i, v4i+1]+[v4i+1, v4i+2]+[v4i+2, v4i+3] - [v4i, v4i+3]. Then 2\gamma i - \gamma i+1 is a 1-boundary
of Y1 for each i = 0, . . . , (nk  - 1), and, as in Newman's construction, we have that
H1(Y1) can be presented as \langle \gamma 0, \gamma 1, . . . , \gamma nk

| 2\gamma 0 = \gamma 1, 2\gamma 1 = \gamma 2, . . . , 2\gamma nk - 1 = \gamma nk
\rangle .

3.2. The sphere construction. The sphere part Y2 is a flag triangulation of
the sphere S2 that has k square holes such that the squares are all vertex disjoint
and nonadjacent. Our Y2 will be homeomorphic to the Y2 that Newman constructs in
[26] for the d = 2 case, but our construction involves a few different steps. First, we
will show that for any integer k \geq 1, there exists a flag triangulation Ti of S

2 (here
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i = \lfloor k - 1
4 \rfloor ) with at least k faces such that maxdeg(Ti) \leq 6. Then we will insert square

holes on k of the faces of Ti while subdividing the edges and call the resulting flag
complex \widetilde Ti. Finally, we describe a process to replace each vertex of degree 14 in \widetilde Ti

with two degree 9 vertices so that the resulting complex, Y2, has maxdeg(Y2) \leq 12.
Throughout these constructions, we will have four cases corresponding to the value
of k mod 4, and we carefully keep track of the degrees of each vertex in Ti, \widetilde Ti, and
Y2 for each case.

3.2.1. \bfitT \bfiti and flag bistellar 0-moves. We begin by constructing an infinite
sequence T0, T1, . . . of flag triangulations of S2 such that maxdeg(Ti) \leq 6 for all i. To
do so, we adapt the bistellar 0-moves used in [26, Lemma 5.6]. Let T0 be the 3-simplex
boundary on the vertex set \{ w0, w1, w2, w3\} . Note that each vertex of T0 has degree
3. We will construct the remaining Ti inductively. To build T1, first remove the face
[w1, w2, w3] and edge [w1, w3]. Then, add two new vertices w4 and w5 as well as new
edges [w0, w4], [w1, w4], [w3, w4], [w1, w5], [w2, w5], [w3, w5], and [w4, w5]. Taking the
clique complex will then give T1. See Figure 3.2.

Essentially, this process is the same as making the face [w1, w2, w3] into a square
face [w1, w2, w3, w4], removing that square face, taking the cone over it, and then en-
suring that the resulting complex is a flag triangulation of S2. We will call such a move
a flag bistellar 0-move. Each Ti+1 for i \geq 0 will be obtained from Ti by performing
a flag bistellar 0-move on the face [w2i+1, w2i+2, w2i+3] of Ti. Explicitly, to construct
Ti+1, remove the face [w2i+1, w2i+2, w2i+3] and the edge [w2i+1, w2i+3]. Then add
new vertices w2i+4 and w2i+5 and new edges [w2i, w2i+4], [w2i+1, w2i+4], [w2i+3, w2i+4],
[w2i+1, w2i+5], [w2i+2, w2i+5], [w2i+3, w2i+5], and [w2i+4, w2i+5], and take the clique
complex to get Ti+1. Note that each flag bistellar 0-move adds 2 vertices, 6 edges,
and 4 faces. Since | V (T0)| = 4, | E(T0)| = 6, and | F (T0)| = 4, this means that
| V (Ti)| = 2i+ 4, | E(Ti)| = 6i+ 6, and | F (Ti)| = 4i+ 4.

Further, Table 3.1 summarizes the degrees of the vertices in each Ti.

w1

w2 w3

w0

T0

w1

w2 w3

w0w5

w4

T1

w1

w2 w3

w0w5

w4

w6

w7

T2

Fig. 3.2. The first few flag triangulations of S2 using flag bistellar 0-moves.

Table 3.1
Degrees of the vertices in Ti.

Ti Degree Vertices
T0 3 w0, w1, w2, w3

T1 4 w0, w1, w2, w3, w5, w6

T2 4 w0, w1, w6, w7

5 w2, w3, w4, w5

Ti 4 w0, w1, w2i+2, w2i+3

i \geq 3 5 w2, w3, w2i, w2i+1

6 w4, . . . , w2i - 1
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To compute the degrees of vertices in Ti for i \geq 3, observe that when the new
vertices w2i+2 and w2i+3 are added, they have degree 4 in Ti. For each of the next
two iterations of the flag bistellar 0-move, the degree of these vertices increases by
one, resulting in degree 6 in Ti+2. In the remaining triangulations Tj with j \geq i+ 3,
these vertices are not affected. Therefore, maxdeg(Ti) \leq 6 for each i.

From this infinite sequence of flag triangulations of S2 with bounded degree, we
are interested in the particular Ti with i = \lfloor k - 1

4 \rfloor to use in our construction of Y2,
where k is the Hamming weight of m as in Notation 3.2. Note that this Ti has vertex
set \{ w0, . . . , w2i+3\} and has 4\lfloor k - 1

4 \rfloor + 4 faces. Let \delta be the integer 0 \leq \delta \leq 3, where
\delta \equiv  - k mod 4. Then Ti has exactly k + \delta faces.

3.2.2. Constructing \widetilde \bfitT \bfiti . Next, we insert square holes in the first k faces of
Ti and subdivide the remaining faces in such a way that the squares will be vertex
disjoint and nonadjacent.

First, we will insert square holes in k of the faces of Ti, making sure to triangulate
the resulting faces and take the clique complex so that our simplicial complex remains
flag. Let [wr, ws, wt] with r < s < t be the jth of these k faces with respect to
a fixed ordering of the faces (where j ranges from 1 to k). We remove this face
and subdivide the edges by adding new vertices w\prime 

r,s, w
\prime 
r,t, and w\prime 

s,t and new edges
[wr, w

\prime 
r,s], [ws, w

\prime 
r,s], [wr, w

\prime 
r,t], [wt, w

\prime 
r,t], [ws, w

\prime 
s,t], and [wt, w

\prime 
s,t]. Then we add vertices

u4j - 4, u4j - 3, u4j - 2, and u4j - 1 to form a square inside the original face with indices
increasing counterclockwise. Moreover, we add edges

[wr, u4j - 4], [wr, u4j - 1], [u4j - 4, w
\prime 
r,s], [u4j - 3, w

\prime 
r,s], [ws, u4j - 3],

[u4j - 3, w
\prime 
s,t], [u4j - 2, w

\prime 
s,t], [wt, u4j - 2], [u4j - 2, w

\prime 
r,t], [u4j - 1, w

\prime 
r,t].

After applying this process, we take the clique complex. The result of this operation
on face [wr, ws, wt] is depicted in Figure 3.3 (left).

The remaining \delta faces of Ti will simply be subdivided and triangulated be-
fore taking the clique complex. Explicitly, this means that after removing the face
[w2i+1, w2i+2, w2i+3] and its edges, we add vertices w\prime 

2i+1,2i+2, w
\prime 
2i+1,2i+3, and

w\prime 
2i+2,2i+3 and edges

[w2i+1, w
\prime 
2i+1,2i+2], [w2i+2, w

\prime 
2i+1,2i+2], [w2i+1, w

\prime 
2i+1,2i+3],

[w2i+3, w
\prime 
2i+1,2i+3], [w

\prime 
2i+1,2i+2, w

\prime 
2i+1,2i+3], [w2i+2, w

\prime 
2i+2,2i+3],

[w2i+3, w
\prime 
2i+2,2i+3], [w

\prime 
2i+1,2i+2, w

\prime 
2i+2,2i+2], [w

\prime 
2i+1,2i+3, w

\prime 
2i+2,2i+3].

wr

ws wt

w\prime 
r,s

w\prime 
s,t

w\prime 
r,t

u4j - 4

u4j - 3

u4j - 2

u4j - 1

w2i+1

w2i+2 w2i+3

w\prime 
2i+1,2i+2

w\prime 
2i+2,2i+3

w\prime 
2i+1,2i+3

Fig. 3.3. Example of square insertion done on k faces of Ti (left) and subdivided triangulation
on remaining faces (right).
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Table 3.2
Degrees of the vertices in \widetilde Ti when k \equiv 0 mod 4.

\widetilde Ti Degree Vertices
6 w2, w3\widetilde T0 7 w1

(k = 4) 9 w0

8 w4, w5\widetilde T1 9 w2, w3

(k = 8) 10 w1

12 w0

8 w6, w7\widetilde T2 10 w1

(k = 12) 11 w4, w5

12 w0, w2, w3

8 w2i+2, w2i+3\widetilde Ti 10 w1

i \geq 3 11 w2i, w2i+1

(k = 4i+ 4) 12 w0, w2, w3

14 w4, . . . , w2i - 1

This subdivision of face [w2i+1, w2i+2, w2i+3] is shown in Figure 3.3 (right). We do
similarly for the faces [w2i - 1, w2i+2, w2i+3] and [w2i, w2i+1, w2i+3] if necessary. The
clique complex of this construction is a flag complex which is homeomorphic to S2

with k distinct points removed. Call this complex \widetilde Ti.
Let us consider the degrees of the vertices of \widetilde Ti. We have that deg(w\prime 

s,t) = 6
for all s, t and deg(u\ell ) \in \{ 4, 5\} for all \ell , where the ``top"" u\ell have degree 4 and the
``bottom"" u\ell have degree 5. To determine the degrees of the wj vertices, we need to
consider their degrees in Ti and how their degrees increase during the subdivision and
square face removal processes. As we are interested in bounding the maximum degree
of the vertices of \widetilde Ti, we need only consider the case when \delta = 0 and all k faces of Ti

have a square hole.
Table 3.2 gives the degrees of each of the wj vertices in \widetilde Ti when \delta = 0.

To verify the degrees of the wj in \widetilde Ti when i \geq 3, we consider how the degrees of

the vertices change as i increases. Between \widetilde Ti - 1 and \widetilde Ti (with \delta = 0 for both), the
only vertices that change degree are w2i - 2, w2i - 1, w2i, w2i+1, each of which increases
degree by 3. This is because they each get one new edge from the Ti flag bistellar
0-move and two new edges from the square removal triangulation process (since each
vertex is the smallest indexed and hence the ``top"" vertex of one new triangular face).

Further, the new vertices w2i+2, w2i+3 in \widetilde Ti have degree 8, and they increase degree

by 3 in the next two iterations, resulting in degree 14 in \widetilde Ti+2 and all future iterations.

The above argument shows that regardless of m and k, maxdeg( \widetilde Ti) \leq 14, where
i = \lfloor k - 1

4 \rfloor . Furthermore, the only vertices that could have degree 14 are w4, . . . , w2i - 1,
each of which is separated from the others by a w\prime 

s,t vertex, which only has degree 6.

We want to know exactly which vertices in \widetilde Ti have degree 14, for all possible k with
i \geq 3, because we plan to alter these vertices to decrease maxdeg( \widetilde Ti). Note that as \delta 
increases from 0 to 3, the degree of each wj vertex is nonincreasing. When k = 4i+4
and \delta = 0, Table 3.2 gives that w4, . . . , w2i - 1 have degree 14. When k = 4i + 3 and
\delta = 1, the face [w2i+1, w2i+2, w2i+3] is subdivided instead of having a square removed,
but this does not change the degrees of w4, . . . , w2i - 1, so these all still have degree 14.
When k = 4i + 2 and \delta = 2, the faces [w2i+1, w2i+2, w2i+3] and [w2i - 1, w2i+2, w2i+3]
are subdivided. Therefore, w2i - 1 has two fewer edges than in the previous case since
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w2i - 1 is the smallest indexed vertex in [w2i - 1, w2i+2, w2i+3] and so would have two
``top"" u\ell adjacent to it if this face had a square removed from it. So, in this case,
w4, . . . , w2i - 2 have degree 14, and w0, w2, w3, w2i - 1 have degree 12 in \widetilde Ti. Finally, if
k = 4i + 1 and \delta = 3, then additionally the face [w2i, w2i+1, w2i+3] is subdivided,
which means that the degree 12 and 14 vertices are the same as in the previous
case.

3.2.3. Replacing degree 14 vertices to construct \bfitY \bftwo . Having identified the
vertices of \widetilde Ti of the highest degree, we now describe a process by which we will
replace each vertex of degree 14 by two vertices of degree 9 in order to ensure that
maxdeg( \widetilde Ti) \leq 12 for all k (and i). The resulting flag complex, given by taking the
clique complex of this construction, will be the final Y2, and it will be homeomorphic
to \widetilde Ti. The process is summarized by Figure 3.4 and described in detail in the following
paragraphs.

Suppose wj is a vertex of degree 14 in \widetilde Ti. Locally, on a small neighborhood of

wj , \widetilde Ti is homeomorphic to a 2-manifold. Since deg(wj) = 14, wj is surrounded by
six triangular faces coming from Ti, all of which have had a square removed. By our
construction, two of these squares (which are in adjacent triangular faces) have both
of their ``top"" u\ell vertices connected to wj , but the other four squares just have a single
edge connecting one of their ``bottom"" u\ell vertices to wj . So, wj has six w\prime 

s,t neighbors
and eight u\ell neighbors, which form a 14-sided polygon with wj as its ``star"" point.
Choose two w\prime 

s,t vertices which are across from each other in this 14-sided polygon,
say, w\prime 

a,b and w\prime 
c,d. Next, we will remove wj and all of the 14 faces that it is contained

in. Then we add vertices wj1 and wj2 in place of wj and add edges in such a way that
deg(wj1) = deg(wj2) = 9; there are edges [wj1 , wj2 ], [wj1 , w

\prime 
a,b], [wj1 , w

\prime 
c,d], [wj2 , w

\prime 
a,b],

and [wj2 , w
\prime 
c,d]; and the 14-sided polygon is triangulated with 16 triangles. This

process only changes the degree of w\prime 
a,b and w\prime 

c,d, each of which now has degree 7.
Therefore, the maximum degree of wj1 , wj2 , and the 14 vertices in the polygon is 9
(since deg(u\ell ) \in \{ 4, 5\} and deg(w\prime 

s,t) = 6). To illustrate this construction, we consider

the case when k = 20. Then i = 4, \delta = 0, and deg(w7) = 14 in \widetilde T4. Figure 3.4 depicts
this process when w\prime 

a,b = w\prime 
3,7 and w\prime 

c,d = w\prime 
7,11.

After repeating the above process for each degree 14 vertex in \widetilde Ti, we take the
clique complex and call the resulting flag complex Y2. Observe that this process
increases the number of vertices by 1, the number of edges by 3, and the number of

w7

w8

w11

w6

w10

w4w3

w\prime 
10,11

w\prime 
8,11w\prime 

6,10

w\prime 
3,4

w\prime 
4,8w\prime 

3,6

w71

w72

w8

w11

w6

w10

w4w3

w\prime 
10,11

w\prime 
8,11w\prime 

6,10

w\prime 
3,4

w\prime 
4,8w\prime 

3,6

Fig. 3.4. Replacing a degree 14 vertex in \widetilde T4 when k = 20.
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Table 3.3
Number of vertices, edges, and faces in Y2 when k \geq 13.

k \delta | V (Y2)| | E(Y2)| | F (Y2)| 

4i+ 4 0 13
2
k  - 4 37

2
k  - 18 11k  - 12

4i+ 3 1 13
2
k  - 3

2
37
2
k  - 21

2
11k  - 7

4i+ 2 2 13
2
k 37

2
k  - 6 11k  - 4

4i+ 1 3 13
2
k + 5

2
37
2
k + 3

2
11k + 1

faces by 2 each time a degree 14 vertex in \widetilde Ti is replaced. Also, note that maxdeg(Y2) \leq 
12 for all m.

Now we give the wj , w
\prime 
s,t, and u\ell vertices their natural orderings and say that

w\prime 
s,t > wj and w\prime 

s,t > u\ell for all \ell , s, t, and j and then let these vertex orderings
induce orientations on the edges and faces of Y2 (as shown in Figure 3.2). Counting
the vertices, edges, and faces of Y2, we have that if 0 \leq k \leq 12, then there were
no degree 14 vertices to remove, so | V (Y2)| = 6k + 2\delta + 2, | E(Y2)| = 17k + 6\delta and
| F (Y2)| = 10k + 4\delta . If k \geq 13, then i \geq 3 and at least one degree 14 vertex was

removed to construct Y2 from \widetilde Ti. Table 3.3 gives the number of vertices, edges, and
faces of Y2 for all values of k \geq 13.

3.2.4. Homology of \bfitY \bftwo . Since Y2 is an oriented flag triangulation of S2 with k
square holes, each of which is vertex disjoint and nonadjacent, our Y2 is homeomor-
phic to Newman's Y2 in the d = 2 case of [26, Lemma 5.7], and we can apply the
same argument to compute the homology of Y2. We denote the 1-cycles that are the
boundaries of the k square holes by \tau 1, . . . , \tau k. Explicitly, for j = 1, . . . , k, we define

\tau j := [u4j - 4, u4j - 3] + [u4j - 3, u4j - 2] + [u4j - 2, u4j - 1] - [u4j - 4, u4j - 1].

Then, by our construction, each \tau j is a positively oriented 1-cycle in H1(Y2), and
exactly as in [26, Proof of Lemma 5.7], we have that

H1(Y2) = \langle \tau 1, . . . , \tau k| \tau 1 + \cdot \cdot \cdot + \tau k = 0\rangle .

3.3. Construction of \bfitX and proof of Theorem 3.1. Now we attach Y1

and Y2 together to form the two-dimensional flag complex X such that the torsion
subgroup of H1(X) is isomorphic to Z/mZ. This part essentially follows [26, section
3], though we must confirm that the resulting complex is flag and satisfies the desired
bound of vertex degree.

Proof of Theorem 3.1. For a given m, let Y1 and Y2 be the complexes constructed
in the previous subsections. Let S denote the subcomplex of Y2 induced by the 4k
vertices u0, . . . , u4k - 1. Since the square holes in Y2 are vertex-disjoint and have no
edges between any two of them, S is a disjoint union of k square boundaries. Let
f : S \rightarrow Y1 be the simplicial map defined, for j = 1, . . . , k, by

u4j - 4 \mapsto \rightarrow v4nj
, u4j - 3 \mapsto \rightarrow v4nj+1, u4j - 2 \mapsto \rightarrow v4nj+2, u4j - 1 \mapsto \rightarrow v4nj+3.

Following [26, section 3], let X = Y1 \sqcup f Y2, and observe that this is a simplicial
complex by the same argument as Newman gives. In addition, X is a flag complex
because Y1 and Y2 are flag, and we subdivided the edges of Y1 and Y2 to avoid the
possibility that X might contain a 3-cycle which does not have a face. Furthermore,
in X, the squares \tau j and \gamma nj

are identified by f for j = 1, . . . , k, and, as in [26],
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Table 3.4
Number of vertices, edges, and faces in X when k \geq 13.

k \delta | V (X)| | E(X)| | F (X)| 

4i+ 4 0 5
2
k + 12nk

29
2
k + 40nk  - 14 11k + 28nk  - 12

4i+ 3 1 5
2
k + 12nk + 5

2
29
2
k + 40nk  - 13

2
11k + 28nk  - 7

4i+ 2 2 5
2
k + 12nk + 4 29

2
k + 40nk  - 2 11k + 28nk  - 4

4i+ 1 3 5
2
k + 12nk + 13

2
29
2
k + 40nk + 11

2
11k + 28nk + 1

H1(X) \sim = Zk - 1 \oplus Z/mZ,

where Z/mZ has the repeated squares representation given by

\langle \gamma 0, \gamma 1, . . . , \gamma nk
| 2\gamma 0 = \gamma 1, 2\gamma 1 = \gamma 2, . . . , 2\gamma nk - 1 = \gamma nk

, \gamma n1
+ \cdot \cdot \cdot + \gamma nk

= 0\rangle .

Finally, using our counts for the number of vertices, edges, and faces of Y1 and Y2

and with \delta defined as above, if 0 \leq k \leq 12, we have | V (X)| = 2k + 12nk + 6 + 2\delta ,
| E(X)| = 13k+40nk+4+6\delta , and | F (X)| = 10k+28nk+4\delta . If k \geq 13, then Table 3.4
gives the number of vertices, edges, and faces in X (where i = \lfloor k - 1

4 \rfloor ).
Additionally, recall that maxdeg(Y1) \leq 9 and maxdeg(Y2) \leq 12. Since in X we

are only identifying the squares of Y2 with k of the squares of Y1, to find the maximum
degree of any vertex of X, we need only check the degrees of the identified vertices. In
Y1, we know that deg(vj) \leq 9 for each j, and in Y2, we know that deg(u\ell ) \in \{ 4, 5\} for
each \ell . Let vj and u\ell be vertices that are identified in X. Since two of their adjacent
edges in the squares are identified as well, in X we see that deg(vj) = deg(u\ell ) \leq 12.
Thus, maxdeg(X) \leq 12.

We also note the following corollary.

Corollary 3.3. For every finite abelian group G, there is a two-dimensional
flag complex X such that the torsion subgroup of H1(X) is isomorphic to G and
maxdeg(X) \leq 12.

Proof. Let G = Z/m1Z \oplus Z/m2Z \oplus \cdot \cdot \cdot \oplus Z/mrZ with m1| m2| \cdot \cdot \cdot | mr be an ar-
bitrary finite abelian group. By Theorem 3.1, there exist two-dimensional flag com-
plexes Xmi such that the torsion subgroup of H1(Xmi) is isomorphic to Z/miZ and
maxdeg(Xmi

) \leq 12. If X is the disjoint union of all the Xmi
, then X satisfies the

hypotheses of the corollary.

4. Appearance of subcomplexes in \Delta (\bfitn , \bfitp ). The goal of this section is to
show that, for attaching probabilities p in an appropriate range, the flag complex
Xm from Theorem 3.1 will appear with high probability as an induced subcomplex of
\Delta (n, p). See section 2 for the relevant definitions and notation used throughout this
section. Our main result follows.

Proposition 4.1. Let m \geq 2, and let Xm be as in Theorem 3.1. If \Delta \sim 
\Delta (n, p) is a random flag complex with n - 1/6 \ll p \leq 1  - \epsilon for some \epsilon > 0, then

P

\biggl[ 
Xm

ind
\subset \Delta (n, p)

\biggr] 
\rightarrow 1 as n \rightarrow \infty .

Our proof of this result will rely on Bollob\'as's theorem on the appearance of
subgraphs of a random graph, which we state here for reference.
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Theorem 4.2 (Bollob\'as [5]). Let G\prime be a fixed graph, let m(G\prime ) be the essential
density of G\prime defined in Definition 2.2, and let G(n, p) be the Erd\H os--R\'enyi random
graph on n vertices with attaching probability p. As n \rightarrow \infty , we have

P [G\prime \subset G(n, p)] \rightarrow 

\Biggl\{ 
0 if p \ll n - 1/m(G\prime ),

1 if p \gg n - 1/m(G\prime ).

Since any flag complex is determined by its underlying graph, we can almost apply
this to prove Proposition 4.1. However, Proposition 4.1 (and our eventual application
of it via Hochster's formula to Theorem 1.3) requires Xm to appear as an induced
subcomplex, whereas Bollob\'as's result is for not necessarily induced subgraphs. The
following proposition, which is likely known to experts, shows that so long as p is
bounded away from 1, this distinction is immaterial in the limit.

Proposition 4.3. Let G\prime be a fixed graph, let m(G\prime ) be the essential density of
G\prime defined in Definition 2.2, and let G(n, p) be the Erd\H os--R\'enyi random graph on n
vertices with attaching probability p. Suppose p = p(n) \leq 1 - \epsilon for some \epsilon > 0. Then
as n \rightarrow \infty , we have

P

\biggl[ 
G\prime ind

\subset G(n, p)

\biggr] 
\rightarrow 

\Biggl\{ 
0 if p \ll n - 1/m(G\prime ),

1 if p \gg n - 1/m(G\prime ).

Proof. Since an induced subgraph is a subgraph, if P[G\prime \subset G(n, p)] \rightarrow 0, then

P

\biggl[ 
G\prime ind

\subset G(n, p)

\biggr] 
\rightarrow 0. Thus, the first half of the threshold is a direct consequence

of Theorem 4.2, and all that needs to be shown is the second half of the threshold.
Suppose that p \gg n - 1/m(G\prime ). We will mirror the proof of Bollob\'as's theorem from

[19, Theorem 5.3] (originally due to [28]), which relies on the second moment method.
Let \Lambda (G\prime , n) be the set containing all of the possible ways that G\prime can appear as a
induced subgraph of G(n, p). Thus, an element H \in \Lambda (G\prime , n) corresponds to a subset
of the n vertices and specified edges among those vertices such that the resulting
graph is a copy of G\prime . We want to count the number of times G\prime appears as an
induced subgraph of G(n, p). For each H \in \Lambda (G\prime , n), we let 1H be the corresponding
indicator random variable, where 1H = 1 occurs in the event that restricting G(n, p)
to the vertices of H is precisely the copy of G\prime indicated by H. Note that the random
variables 1H are not independent, as two distinct elements from \Lambda (G\prime , n) might have
overlapping vertex sets. If we let NG\prime be the random variable for the number of copies

of G\prime appearing as induced subgraphs in G(n, p), then we have NG\prime =
\sum 

H\in \Lambda (G\prime ,n)

1H .

Our goal is to show that P[NG\prime \geq 1] \rightarrow 1 or equivalently that P[NG\prime = 0] \rightarrow 0.
Since NG\prime is nonnegative, the second moment method as seen in [1, Theorem 4.3.1]

states that P[NG\prime = 0] \leq Var(NG\prime )
\bfE [NG\prime ]2

, so it suffices to show that Var(NG\prime )
\bfE [NG\prime ]2

\rightarrow 0. To start,

we will bound the expected value. To simplify notation throughout the following
computation, we let v = | V (G\prime )| and e = | E(G\prime )| denote the number of vertices and
edges of G\prime :

E[NG\prime ] =
\sum 

H\in \Lambda (G\prime ,n)

E[1H ]

=
\sum 

H\in \Lambda (G\prime ,n)

pe(1 - p)(
v
2) - e

= \Omega (nv) \cdot pe(1 - p)(
v
2) - e.
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Now let us repeat this with the variance instead:

Var(NG\prime ) =
\sum 

H,H\prime \in \Lambda (G\prime ,n)

E[1H1H\prime ] - E[1H ]E[1H\prime ]

=
\sum 

H,H\prime \in \Lambda (G\prime ,n)

P[1H = 1 and 1H\prime = 1] - P[1H = 1]P[1H\prime = 1]

=
\sum 

H,H\prime \in \Lambda (G\prime ,n)

P[1H = 1] (P[1H\prime = 1 | 1H = 1] - P[1H\prime = 1])

= pe(1 - p)(
v
2) - e

\sum 
H,H\prime \in \Lambda (G\prime ,n)

P[1H\prime = 1 | 1H = 1] - P[1H\prime = 1].

If H and H \prime do not share at least two vertices, 1H and 1H\prime are independent of each
other. So we can restrict to the case where they share at least two vertices, which
gives

= pe(1 - p)(
v
2) - e

v\sum 
i=2

\sum 
H,H\prime \in \Lambda (G\prime ,n)

| V (H)\cap V (H\prime )| =i

P[1H\prime = 1 | 1H = 1] - P[1H\prime = 1].

We now come to the key observation, which is also at the heart of the proof in [19,
Theorem 5.3]: P[1H\prime = 1 | 1H = 1] is maximized if those edges and nonedges in H are
exactly those that are required by H \prime . Thus, by applying the fact that any subgraph
of G\prime with i vertices has at most i \cdot m(G\prime ) edges and at most

\bigl( 
i
2

\bigr) 
nonedges, we get the

following bound for H,H \prime \in \Lambda (G\prime , n) sharing i vertices:

P[1H\prime = 1 | 1H = 1] \leq P[1H\prime = 1] \cdot p - i\cdot m(G\prime )(1 - p) - (
i
2).

From here, it is a standard computation. Substituting this back into the previous
equation and simplifying, we get

Var(NG\prime ) \leq pe(1 - p)(
v
2) - e

v\sum 
i=2

\sum 
H,H\prime \in \Lambda (G\prime ,n)

| V (H)\cap V (H\prime )| =i

P[1H\prime = 1]
\Bigl( 
p - i\cdot m(G\prime )(1 - p) - (

i
2)  - 1

\Bigr) 

\leq 
\Bigl( 
pe(1 - p)(

v
2) - e

\Bigr) 2 v\sum 
i=2

O
\bigl( 
n2v - i

\bigr) \Bigl( 
p - i\cdot m(G\prime )(1 - p) - (

i
2)  - 1

\Bigr) 
.

And since p is bounded away from 1 and 1 - p is bounded away from 0, we get

\leq 
\Bigl( 
pe(1 - p)(

v
2) - e

\Bigr) 2 v\sum 
i=2

O
\Bigl( 
n2v - ip - i\cdot m(G\prime )

\Bigr) 
.

Finally, applying the second moment method gives

P[NG\prime = 0] \leq Var(NG\prime )

E[NG\prime ]2
=

v\sum 
i=2

O
\Bigl( 
n2v - ip - i\cdot m(G\prime )

\Bigr) 
\Omega (n2v)

=
v\sum 

i=2

O
\Bigl( 
n - ip - i\cdot m(G\prime )

\Bigr) 
.

Since p \gg n - 1/m(G\prime ), we conclude that npm(G\prime ) \rightarrow \infty , and therefore P[NG\prime = 0] \rightarrow 0.

It follows that P

\biggl[ 
G\prime ind

\subset G(n, p)

\biggr] 
\rightarrow 1.
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We now turn to the proof of Proposition 4.1.

Proof of Proposition 4.1. Recall that Xm is the complex from Theorem 3.1, and
let Hm be its underlying graph. Moreover, the underlying graph of \Delta (n, p) is the
Erd\H os--R\'enyi random graph G(n, p). Since a flag complex is uniquely determined by

its underlying graph, it suffices to show that P

\biggl[ 
Hm

ind
\subset G(n, p)

\biggr] 
\rightarrow 1.

Since maxdeg(Hm) \leq 12, every subgraph has average degree at most 12. Thus,
the essential density m(Hm) satisfies m(Hm) \leq 6. Since p \gg n - 1/6, we have

p \gg n - 1/m(Hm). Applying Proposition 4.3 gives P

\biggl[ 
Hm

ind
\subset G(n, p)

\biggr] 
\rightarrow 1; thus,

P

\biggl[ 
Xm

ind
\subset \Delta (n, p)

\biggr] 
\rightarrow 1.

Remark 4.4. Explicitly computing the essential density m(Hm) seems difficult
in general, and our chosen bound m(Hm) \leq 6, which is determined by the fact that
6 = 1

2 maxdeg(Xm), is likely too coarse. It would be interesting to see a sharper result
on m(Hm), as this could potentially provide a heuristic for decreasing the bound on
r in Conjecture 1.4. Might it even be the case that m(Hm) is half the average degree,
1
2 avgdeg(Hm)?

In any case, 1
2 avgdeg(Hm) at least provides a lower bound on m(Hm). Due to

the detailed nature of the constructions in section 3, we can estimate this value. Let
k \geq 13 and m \gg 0 so that nk = \lfloor log2(m)\rfloor will be much larger than \delta . By Table 3.4,
the number of vertices will be approximately 5

2k + 12nk, and the number of edges
will be approximately 29

2 k + 40nk. The smallest the ratio of edges to vertices can
be is when nk \gg k, in which case the ratio will be approximately 3 1

3 . A similar
computation holds for k \leq 12 and for m \gg 0. We can conclude that m(Hm) \geq 3 1

3  - \epsilon ,
where \epsilon is a positive constant that goes to 0 as m \rightarrow \infty .

5. A detailed analysis of 2-torsion. The goal of this section is to provide
a more detailed analysis of what happens in the case of 2-torsion (when m = 2 in
Proposition 4.1). In [11], Costa, Farber, and Horak analyze the 2-torsion of the
fundamental group of \Delta (n, p). Their results, specifically Theorem 7.2, give that if
n - 11/30 \ll p \ll n - 1/3 - \epsilon , where 0 < \epsilon < 1

30 is fixed, then H1(\Delta (n, p)) has 2-torsion
with high probability as n \rightarrow \infty . Since our aim is to show that there is 2-torsion with
high probability in the homology of an induced subcomplex of \Delta (n, p) rather than in
the global homology, we are able to extend their threshold to n - 11/30 \ll p \leq 1  - \epsilon ,
where \epsilon > 0. We use the same techniques as in section 4, but instead of using X2 from
Theorem 3.1, we use a known flag triangulation of RP 2 that minimizes the number
of vertices and where we can easily compute its essential density. This gives the less
restrictive threshold of p \gg n - 11/30 in the 2-torsion case as opposed to p \gg n - 1/6

in the general case. In [4, Figure 1], the authors found two (nonisomorphic) minimal
flag triangulations of RP 2, each of which has 11 vertices and 30 edges and differs by
a single bistellar 0-move; one of these is used in [11], and the other, which we use in
this section, is depicted in Figure 5.1.

For the remainder of this section, let G denote the underlying graph of this flag
triangulation of RP 2, which we denote by \Delta (G). To understand the probability that
\Delta (G) appears as an induced subcomplex of \Delta (n, p), we need to compute the essential
density m(G).

Lemma 5.1. For the graph G underlying the flag triangulation of RP 2 exhibited
in Figure 5.1, the essential density m(G) is 30/11.
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Fig. 5.1. A minimal flag triangulation of RP 2.

Table 5.1
With G as the underlying graph of the complex in Figure 5.1, this table computes the maximal

number of edges of subgraphs H \subset G with varying number of vertices.

| V (H)| max\{ | E(H)| \} V (H) max
\Bigl\{ 

| E(H)| 
| V (H)| 

\Bigr\} 
1 0 \{ v1\} 0

2 1 \{ v1, v2\} 1
2

3 3 \{ v1, v2, v6\} 1

4 5 \{ v1, v2, v5, v6\} 5
4

5 7 \{ v1, v2, v4, v5, v6\} 7
5

6 10 \{ v1, v4, v7, v8, v9, v11\} 5
3

7 13 \{ v1, v2, v4, v7, v8, v9, v11\} 13
7

8 17 \{ v1, v2, v4, v6, v7, v8, v9, v11\} 17
8

9 21 \{ v1, v2, v3, v4, v6, v7, v8, v9, v11\} 7
3

10 25 \{ v1, v2, v3, v4, v5, v6, v7, v8, v9, v11\} 5
2

11 30 \{ v1, . . . , v11\} 30
11

Proof. This amounts to an exhaustive computation, which is summarized in Ta-
ble 5.1. In particular, Table 5.1 identifies the maximal number of edges that a sub-
graph H \subset G on | V (H)| vertices can have for each | V (H)| \leq 11. One can see from the
table that m(G) is maximized by the entire graph, and thus m(G) = | E(G)| /| V (G)| =
30/11.

Lemma 5.1 shows that the graph G is strongly balanced in the sense of Defini-
tion 2.2. While we expect the essential density of our complexes Xm to be lower than
the coarse bound of 1

2 maxdeg(Xm) (see Remark 4.4), we note that in the case of the
graph G, this difference is not very large. In fact, we have 1

2 maxdeg(G) = 3 and
m(G) = 30/11 \approx 2.72.

Combining Lemma 5.1 and Theorem 4.2, we obtain an analogue of Proposition 4.1.

Proposition 5.2. If \Delta \sim \Delta (n, p) is a random flag complex with n - 11/30 \ll p \leq 

1 - \epsilon for some \epsilon > 0, then P

\biggl[ 
\Delta (G)

ind
\subset \Delta (n, p)

\biggr] 
\rightarrow 1 as n \rightarrow \infty .
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Proof. The proof is nearly identical to that of Proposition 4.1, so we omit the
details.

Question 5.3. It would be interesting to know whether p \gg n - 11/30 is a sharp
threshold for the appearance of 2-torsion in the homology of any induced subcomplex
of \Delta (n, p). While [11, Theorem 7.1] shows that the global homology has no torsion
if p \ll n - 11/30, it is possible that some induced subcomplex of \Delta (n, p) has 2-torsion.
A closely related question is whether there exists a flag complex X with 2-torsion
homology and a smaller essential density than 30/11.

6. Torsion in the Betti tables associated to \Delta . We now prove Theorem 1.3.
The hard work was done in the previous sections.

Proof of Theorem 1.3. Assume n - 1/6 \ll p \leq 1  - \epsilon , and let \Delta \sim \Delta (n, p). Let
Xm be as constructed in the proof of Theorem 3.1. By Proposition 4.1, \Delta contains
Xm as an induced subcomplex with high probability as n \rightarrow \infty . Since H1(Xm) has
m-torsion, Hochster's formula (see Fact 2.3) gives that the Betti table of the Stanley--
Reisner ideal of \Delta has \ell -torsion for every prime \ell dividing m.

We can also apply the more detailed study of 2-torsion from section 5 to obtain
a result on the appearance of 2-torsion in the Betti tables of random flag complexes.

Proposition 6.1. Let \Delta \sim \Delta (n, p) be a random flag complex with n - 11/30 \ll 
p \leq 1  - \epsilon for some \epsilon > 0. With high probability as n \rightarrow \infty , the Betti table of the
Stanley--Reisner ideal of \Delta has 2-torsion.

Proof. The proof is the same as the proof of Theorem 1.3 but utilizing Proposi-
tion 5.2 in place of Proposition 4.1.

As a generalization of Question 5.3, it would be interesting to understand a precise
threshold on the attaching probability p such that the Betti table of the Stanley--
Reisner ideal of \Delta does not depend on the characteristic. A related question is posed
in Question 7.3.

Remark 6.2. Our constructions are based entirely on torsion in the H1-groups,
and thus we obtain Betti tables where the entries in the second row of the Betti
table (the row of entries of the form \beta i,i+2) depend on the characteristic. Since
Newman's work also produces small simplicial complexes where the Hi-groups have
torsion for any i \geq 1 [26, Theorem 1], one could likely apply the methods of section 3
to produce thresholds for where the other rows of the Betti table would depend on
the characteristic, and it might be interesting to explore the resulting thresholds.

7. Further questions. In this final section, we discuss some further questions
about torsion for flag complexes and for the asymptotic syzygies of geometric exam-
ples.

Question 7.1. Can one find new examples of Veronese embeddings of Pr or of
any other reasonably simple variety (Grassmanian, toric variety, etc.) whose Betti
tables depend on the characteristic? For a given \ell , can one produce a specific example
of a variety whose Betti table has \ell -torsion?

We find it especially surprising that there are no known examples of 2-torsion
for d-uple embeddings of Pr. Focusing on the case of projective space, the following
question is open.

Question 7.2. What is the minimal value of r such that the Betti table of the
d-uple embedding of Pr depends on the characteristic for some d? (It is known that
2 \leq r \leq 6.)
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An analogous question, in the context of random monomial ideals, would be as
follows.

Question 7.3. Let m \geq 2. For a random flag complex \Delta \sim \Delta (n, p), what is
the threshold on p such that the Betti table of the Stanley--Reisner ideal of \Delta has
m-torsion with high probability as n \rightarrow \infty ?

A closely related result is [11, Theorem 8.1], which implies that for any given odd
prime \ell , the Betti table of the Stanley--Reisner ideal of \Delta (with high probability as
n \rightarrow \infty ) has no \ell -torsion when p \ll n - 1/3 - \epsilon , where \epsilon > 0 is fixed.

Remark 7.4. We know of two natural ways that one could improve the threshold
for p in Theorem 1.3. First, one could perform a more detailed study of the essential
density m(Hm), as that value is surely lower than our chosen bound 1

2 maxdeg(Xm).
Second, one could aim to produce flag complexes X \prime 

m with torsion homology (not
necessarily in H1) whose underlying graphs have a lower essential density than Hm.
Of course, following the heuristic discussed in the introduction, any such improvement
of the threshold for p in Theorem 1.3 would suggest a corresponding improvement of
the bound on r in Conjectures 1.4 and 1.5.

In a different direction, one might ask about how large n needs to be before we
expect to see that the Betti table associated to \Delta has \ell -torsion.

Question 7.5. Fix a prime \ell and \epsilon > 0. Let \Delta \sim \Delta (n, p) be a random flag
complex with n - 1/6 \ll p \ll 1 - \epsilon . For a constant 0 < \delta < 1, approximately how large
does n need to be to guarantee that

P [ Betti table associated to \Delta has \ell -torsion ] \geq 1 - \delta ?

It would be interesting to even answer this question for 2-torsion, where the
thresholds from [11, Theorems 7.1 and 7.2] make the question seemingly quite tractable.
An analogous question for Veronese embeddings of projective space would be the fol-
lowing.

Question 7.6. Fix a prime \ell and integer r \geq 2. Can one provide lower/upper
bounds on the minimal value of d such that the Betti table of the d-uple embedding of
Pr has \ell -torsion?

Of course, one could ask similar questions, replacing Pr by other varieties. We
could also turn to even more quantitative questions related to Conjecture 1.5 as well.

Question 7.7. Fix a prime \ell and an integer r \geq 2. Can one describe the set of
d \in Z such that the Betti table of the d-uple embedding of Pr has \ell -torsion? Can one
bound or estimate the density of this set?
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