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Abstract—Computing the sum capacity of a multiple access

channel (MAC) is a non-convex optimization problem. It is there-

fore common to compute an upper bound on the sum capacity

using a convex relaxation. We investigate the performance of

such a relaxation by considering a family of MACs obtained

from nonlocal games. First, we derive an analytical upper bound

on the sum capacity of such MACs, while allowing the senders

to share any given set of correlations. Our upper bound depends

only on the properties of the game available in practice, thereby

providing a way to obtain separations between the sum capacity

assisted by different sets of correlations. In particular, we obtain a

bound on the sum capacity of the MAC obtained from the magic

square game that is tighter than the previously known result.

Next, we introduce a game for which the convex relaxation of the

sum capacity can be arbitrarily loose, demonstrating the need to

find other techniques to compute or bound the sum capacity. We

subsequently propose an algorithm that can certifiably compute

the sum capacity of any two-sender MAC to a given precision.

I. INTRODUCTION

A multiple access channel (MAC) is a channel with many
senders and a single receiver. Throughout this study, we will
restrict our attention to discrete memoryless MACs without
feedback. Ahlswede [1] and Liao [2] pioneered the study of
MACs by deriving a single-letter formula for the capacity
region of a two-sender MAC. The capacity region of a MAC
N with N senders can be written as

Cap(N ) (1)

= conv

(
(R1, . . . , RN ) | 0 

X

j2J

Ri  I(BJ ;Z|BJc),

8? 6= J ✓ [N ], (B1, . . . , BN ) ⇠ p
(1) · · · p(N)

)

where for any set J ✓ [N ], we denote BJ = {Bj | j 2 J}
and [N ] = {1, . . . , N} [3]. Here, B1, . . . , BN are random
variables describing the input to the channel, whereas Z is the
random variable describing the output of the channel. Note that
the input probability distribution must be a product distribution
p
(1) · · · p(N) when computing the capacity region of a MAC.

Subsequently, the sum capacity of the MAC N is defined as

S(N ) = sup

(
NX

i=1

Ri | (R1, . . . , RN ) 2 Cap(N )

)

= max
p(1)···p(N)

I(B1, . . . , BN ;Z). (2)

Because the maximization is constrained to be over product
distributions on the input, the resulting optimization problem is
non-convex. This is the main source of difficulty in computing
the sum capacity of a MAC [4], [5]. In fact, it has been
shown that computing the sum capacity to a precision that
scales inversely with the cube of the dimension is an NP-hard
problem [5].

A common method to obtain upper bounds on the sum
capacity is dropping the product distribution constraint, which
results in a convex optimization problem [3]. This relaxation
yields

C(N ) = max
p(b1,...,bN )

I(B1, . . . , BN ;Z), (3)

which we call the relaxed sum capacity. Note that C(N )
corresponds to the capacity of N considered as a single
sender, single receiver channel. This gives the upper bound
S(N )  C(N ). We begin by investigating how good an upper
bound this is on the sum capacity.

Defining a MAC using a nonlocal game [5] provides a con-
venient setting for this purpose as we can deduce separations
between sum rates assisted by different sets of correlations by
choosing an appropriate game. Such separations are also of
independent interest because it aids in distinguishing the com-
munication capability of different sets of correlations, such as
classical, quantum and no-signalling correlations. Therefore,
in Section II, we derive an upper bound on the sum rate of a
MAC obtained from a nonlocal game, where the senders are
allowed to share any given set of correlations. Our bound only
depends on the number of question tuples in the game and the
maximum winning probability of the game using assistance
from the shared correlations when the questions are drawn
uniformly at random. This winning probability is available in
practice for commonly used games and correlations.

In Section III, we define a nonlocal game that gives an
arbitrarily large separation between the relaxed sum capacity
of the corresponding MAC and its actual sum capacity. This
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motivates us to look for other approaches to compute or bound
the sum capacity. To that end, we propose an algorithm in
Section IV that can compute the sum capacity of a two-
sender MAC to any given precision. If instead one provides
a fixed number of iterations, our algorithm gives an upper
bound on the sum capacity. We refer to the full version [6] of
this manuscript for complete details and proofs of the results
presented here.

II. MACS FROM NONLOCAL GAMES

A promise-free N -player nonlocal game G consists of
question sets X1, . . . ,XN , answer sets Y1, . . . ,YN from which
the players choose the answers, and the winning condition
W ✓ X ⇥ Y that determines which tuples of questions
and answers win the game. In the following, we denote by
X = X1 ⇥ · · · XN and Y = Y1 ⇥ · · ·⇥YN the set of question
and answer tuples, respectively. Any conditional probability
distribution pY |X(y|x) on the answers y 2 Y given the
questions x 2 X is called a strategy for the game. Given
a set of strategies S, the maximum winning probability of the
game G is given by

!
S(G) =

1

d
sup

pY |X2S

X

(x,y)2W

pY |X(y|x), (4)

assuming that the questions are drawn uniformly at random.
Given such a nonlocal game G, we define the MAC NG

as follows [5]. The input alphabets are question-answer sets
X1⇥Y1, . . . ,XN ⇥YN for the N players, the output alphabet
X1⇥ · · ·⇥XN is the set of question tuples, and the probability
transition matrix is given by

NG(bx|xy) =
(
�x̂1,x1 · · · �x̂N ,xN (x,y) 2 W
1/d (x,y) /2 W

(5)

where bx = (bx1, . . . , bxN ) denotes an output question tuple,
xy = (x1, y1, . . . , xN , yN ) denotes input question-answer
pairs, and d = |X | denotes the total number of question tuples.
Intuitively, the MAC NG transmits the question tuple without
any noise if the input question-answer pairs win the game,
else a question tuple chosen uniformly at random is output by
the MAC. Consequently, we can expect the sum capacity of
the MAC NG to increase with the winning probability of the
game [5].

This motivates us to allow the senders to share some given
set of correlations, so as to increase the winning probability of
the game. By a correlation, we mean a conditional probability
distribution P (y0|xy), where xy 2 XY is the input to the
MAC, while y0 2 Y is an answer to the nonlocal game G. We
allow the senders to perform a local post-processing f of the
answers generated by the shared correlation. By this, we mean
fi(yi|xi, yi, y

0
i) is a probability distribution over the answers

yi 2 Yi, given the input question-answer pair (xi, yi) 2 Xi ⇥
Yi, and the answer y0i 2 Yi generated by the correlation P for
each i 2 [N ], so that

f(y|xy,y0) =
NY

i=1

fi(yi|xi, yi, y
0
i). (6)

(X1, Y1)

(X2, Y2)

P

Y
0
1

Y
0
2

f1

f2

(X1, Y 1)

(X2, Y 2)

AP,f

NG ( bX1,
bX2)

Fig. 1. Correlation-assisted MAC NG�AP,f for the case of two senders, ob-
tained from the nonlocal games MAC NG defined in Eq. (5) and correlation-
assistance channel AP,f defined in Eq. (7).

Then, given a correlation P and some local post-processing
f , we can define the channel AP,f having input and output
alphabets XY and the probability transition matrix

AP,f (xy|xy) = �x,x

X

y02Y
f(y|xy,y0)P (y0|xy). (7)

Essentially, the channel AP,f computes an answer to the
input question using the shared correlation P and local post-
processing by the senders. If P is a nonlocal correlation, then
it is possible that the winning probability of the game improves
compared to the classical scenario.

Therefore, we define the correlation-assisted MAC NG �
AP,f corresponding to assistance from the correlation P and
local post-processing f . A schematic of this procedure for the
case of two senders is shown in Fig. 1.

Then, given a set of correlations C, we define the C-assisted
achievable rate region of the MAC NG as

Cap(1)C (NG) =
[

P2C,
f2PP

Cap(NG �AP,f ), (8)

where PP denotes the set of local post-processings. Subse-
quently, the C-assisted achievable sum rate of the MAC NG

is given by

SC(NG) = sup

(
NX

i=1

Ri | (R1, . . . , RN ) 2 Cap(1)
C (NG)

)

= sup
P2C,f2PP

sup
p(1)···p(N)

I(X1, Y1, . . . , XN , YN ;Z).

(9)

Here, p(i) is the probability distribution of the random variable
(Xi, Yi) associated with the input question-answer pair for
i 2 [N ] and Z is the random variable describing the output of
the MAC NG �AP,f . Denoting cl as classical correlations, Q
as quantum correlations, and NS as no-signalling correlations,
we obtain the hierarchy

S(NG)  Scl(NG)  SQ(NG)  SNS(NG)  C(NG) (10)

Note that we call a correlation P (y0|xy) classical if it is
a convex combination of product distributions of the form
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QN
i=1 Pi(y0i|xi, yi) [7]. Because we allow for convex com-

binations of product distributions, the sum capacity S(NG)
might not be equal to Scl(NG). The correlation P is said to
be quantum if the senders share a quantum state ⇢, and given
a question-answer pair (xi, yi), the ith player performs a local
measurement with some POVM {E(xi,yi)

y | y 2 Yi} to obtain
the answer y

0 [7]. Subsequently, the quantum correlation P

can be described as

P (y01, . . . , y
0
N |x1, y1, . . . , xN , yN )

= Tr
h
⇢

⇣
E

(x1,y1)
y0
1

⌦ · · ·⌦ E
(xN ,yN )
y0
N

⌘i
. (11)

Finally, the correlation P is said to be no-signalling if

P (y0i|x1, y1, . . . , xN , yN ) = P (y0i|xi, yi), i 2 [N ], (12)

which amounts to saying that each sender is not aware of the
question-answer pairs held by the other senders [8]. Because
we allow all possible probability distributions while computing
C(NG), it sits at the top of the hierarchy.

Since S(NG)  SC(NG) for any set of correlations C, our
goal is to find an upper bound for SC(NG). We begin with
the inequality

SC(NG)  sup
pY |X2SC

max
⇡

I(X1, Y 1, . . . , XN , Y N ;Z), (13)

where X1, Y 1, . . . , XN , Y N are inputs to NG, while Z de-
scribes its output. Here, SC denotes the set of strategies
induced by the correlations C, defined as

SC =

(
AP,f (pY |X) | pY |X =

NY

i=1

pYi|Xi
, P 2 C, f 2 PP

)

(14)
where

AP,f (pY |X) =
X

y2Y

X

y02Y
f(y|xy,y0)P (y0|xy)pY |X(y|x)

(15)
is the strategy induced by the channel AP,f . Since the opti-
mization in Eq. (13) is non-convex and difficult to solve, we
perform two relaxations:

1) We allow all distribution over questions and solve the
convex optimization problem max⇡ I (in relevant cases),
where I is the mutual information between the inputs and
output of NG.

2) We allow all strategies with winning probability less than
or equal to !

SC (G) when questions are drawn uniformly.
This leads us to the following result.

Theorem 1. Let G be an N -player promise-free nonlocal
game with d question tuples, and let NG be the MAC obtained
from G as defined in Eq. (5). Suppose that the senders share a
set of correlations C. Let SC be the set of strategies induced by
the correlations as defined in Eq. (14). Let !SC (G) denote the
maximum winning probability of the game when the questions
are drawn uniformly and answers are obtained using strategies
in SC . Let SC(NG) denote the C-assisted achievable sum rate
of the MAC NG as defined in Eq. (9). Then, we have

S(NG)  SC(NG)  ln
⇣
d� 1 + d

�(1�!SC (G))d
⌘

(16)

with entropy measured in nats. In particular, we have

S(NG)  ln
⇣
d� 1 + d

�(1�!cl(G))d
⌘
. (17)

Proof strategy. The proof of Theorem 1 is based on the fol-
lowing procedure outlining the main proof ideas. For precise
technical statements, we refer to the full version [6].
1) Given a strategy pY |X 2 SC for playing the game G

induced by the correlations C, we define the winning vector
w = (w1, . . . , wd) 2 [0, 1]d as

wi =
X

y:xiy2W
pY |X(y|xi)

for i 2 [d]. Note that wi gives the probability of winning
the game using the chosen strategy upon receiving question
i 2 [d]. Given a strategy pY |X and a distribution ⇡ 2 �d

over the questions, we show that the mutual information
Iw(⇡) := I(X1, Y 1, . . . , XN , Y N ;Z) between the inputs
and the output of NG can be expressed as

Iw(⇡) = H(W⇡) + h⇡,wi ln(d)� ln(d),

where H is the Shannon entropy and W is a d⇥ d matrix
with elements W ij = wi�ij + (1� wj)/d.

2) Given a winning vector w 2 {0, 1}d with components 0 or
1 (e.g., those vectors given by deterministic strategies) that
can answer 0 < K < d out of the d questions correctly,
we show that

I ⇤
K := max

⇡2�d

Iw(⇡) = ln
⇣
K + (d�K)d�

d
d�K

⌘
.

3) We then show that winning vectors w with at most K < d

non-zero entries (i.e., at most K questions are answered
correctly) satisfy

max
⇡2�d

Iw(⇡)  I ⇤
d�1.

Therefore, we restrict our attention to winning vectors w
with non-zero entries, and show that

I ⇤(w) := max
⇡2�d

Iw(⇡)

= ln

0

@
dX

j=1

exp


dweff ln d

✓
1� 1

wj

◆�1

A ,

where weff = (
Pd

i=1 w
�1
i )�1.

4) Finally, we allow all strategies having winning probability
less than or equal to !

SC (G) when the questions are drawn
uniformly. The corresponding set of winning vectors is

WC =

⇢
w 2 [0, 1]d

���
1

d

Xd

i=1
wi  !

SC (G)

�
,

and subsequently, we show that

sup
w2WC,w>0

I ⇤(w)  ln
⇣
d� 1 + d

�(1�!SC (G))d
⌘
.

Noting that the above bound is greater than or equal to I ⇤
d�1,

we obtain the desired result.
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Now, if C is any set of correlations such that !C(G) = 1,
then SC(NG) = ln(d). We use this fact to obtain separations
of correlation-assisted achievable sum rates. For the magic
square game GMS, the maximum classical winning probability
is !

cl(GMS) = 8/9, whereas a perfect quantum strategy is
available [9], [10], [11], [12]. From Eq. (17), it follows that

S(NGMS)  3.02 bits, (18)

while we have

SQ(NGMS) = log(9) = 3.17 bits. (19)

Thus, we find a tighter bound on the sum capacity than the
previously reported bound of 3.14 bits [5].

In the same spirit, for obtaining a separation between the
sum capacity and NS-assisted achievable sum rate, we con-
sider the CHSH game GCHSH [13], [14]. For the CHSH game,
a perfect no-signalling strategy is available, but there is no
perfect classical or quantum strategy: !cl(GCHSH) = 3/4 and
!

Q(GCHSH) = (1 + 1/
p
2)/2 [14]. Therefore, using Eq. (17),

we obtain

S(NGCHSH)  1.7 bits (20)
SQ(NGCHSH)  1.78 bits (21)
SNS(NGCHSH) = log(4) = 2 bits. (22)

Such bounds given by our approach help place strict limits on
the sum capacity of discrete MACs assisted by any given set
of correlations.

Since the computation of C(NG) involves the optimiza-
tion over all possible probability distributions, it amounts to
allowing assistance from all possible strategies. It is natural
to ask if one can find a game which can be won with full
communication between the players, but cannot be won by
players using no-signalling strategies. We answer this question
in the affirmative by introducing the signalling game in the
next section.

III. LOOSENESS OF RELAXED SUM CAPACITY

We now introduce a non-local game Gs that we call the ‘sig-
nalling’ game, whose derived MAC NGs exhibits an arbitrarily
large separation between the no-signalling-assisted and the
full-communication-assisted sum capacities. In the signalling
game Gs, the players Alice & Bob are each given a question
from some set of questions X1,X2, and they win the game if
they can correctly guess the question handed over to the other
person. The name of the game stems from the requirement for
Alice & Bob to “signal” their question to the other person in
order to win the game.

It can be shown that

!
cl(Gs) =

1

max(|X1|, |X2|)

using classical strategies. Therefore, !cl(Gs) ! 0 as d ! 1.
Furthermore, we numerically verified that !NS(Gs) = !

cl(Gs)
holds for all pairs (|X1|, |X2|) with 2  |X1|, |X2|  10
(i.e., up to d = 100). This suggests that even no-signalling

strategies are of no assistance for winning the signalling game.
Therefore, as d ! 1, we have S(NGs) ! 0, and we also
expect SQ(NGs) ! 0 and SNS(NGs) ! 0 to be true.

On the other hand, there is always a perfect strategy for win-
ning the signalling game if we allow communication between
Alice & Bob. Subsequently, we have C(NG) = ln(d) ! 1 as
d ! 1. Therefore, we can find an arbitrarily large separation
between the sum capacity and the relaxed sum capacity. A
similar statement is expected to hold for the no-signalling
assisted achievable sum rate and the relaxed sum capacity.

This example demonstrates the need to look for other
techniques to bound the sum capacity. In the next section, we
take a step in that direction by proposing an algorithm that
can compute the sum capacity of a two-sender MAC to any
given precision.

IV. COMPUTING THE SUM CAPACITY OF
TWO-SENDER MACS

Consider a two-sender MAC with input alphabets A1, A2

of size d1, d2 respectively, an output alphabet Z of size
d, and a probability transition matrix N . The sum capacity
of N given by Eq. (2) results in optimization over a non-
convex set due to the product distribution constraint. For
convenience, we rewrite Eq. (2) as an optimization over the
convex set �d1 ⇥ �d2 , effectively folding the non-convexity
into the objective function by taking a product of the distri-
butions in the computation of the mutual information. Here,
�n = {x 2 Rn | x � 0,

Pn
i=1 x = 1} denotes the standard

(n�1)-dimensional simplex. In other words, we write the sum
capacity as

S(N ) = max
p2�d1

max
q2�d2

I(p, q) (23)

where I(p, q) denotes the mutual information between the
inputs and the output of the MAC, given input probability
distributions p and q.

Note that the mutual information can be written as

I(p, q) = H(Aqp)� hbq, pi (24)

where Aq(z, a1) =
P

a22A2
N (z|a1, a2)q(a2) and bq(a1) =

�
P

a22A2
q(a2)

P
z2Z N (z|a1, a2) log(N (z|a1, a2)). It can

be seen that the mutual information is a concave function
of p for a fixed q, but it is not jointly concave in p and q.
Consequently, the function

I
⇤(q) = max

p2�d1

(H(Aqp)� hbq, pi) (25)

can be computed using standard techniques in convex op-
timization, but the sum capacity computation S(N ) =
maxq2�d2

I
⇤(q) is a non-convex problem.

In order to solve this non-convex problem, we show that the
function I

⇤ satisfies the following property. For any q, q
0 2

�d2 , we have

|I⇤(q)� I
⇤(q0)|  �I (kq � q

0k1) (26)
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where k·k1 denotes the l1-norm. The function �I is given by

�I(x) =

✓
1

2
log(d� 1) +H

max
N

◆
x+ h

⇣
x

2

⌘
, (27)

where

H
max
N = max

a12A1,a22A2

�
X

z2Z
N (z|a1, a2) log(N (z|a1, a2)),

and

h(x) =

(
�x log(x)� (1� x) log(1� x) if x  1

2

log(2) if x � 1
2

is a modified binary entropy. Importantly, �I is a non-negative,
monotonically increasing function with �I(0) = 0. Then,
owing to Eq. (26), we refer to I

⇤ as a Lipschitz-like function.
The non-convex problem S(N ) = maxq2�d2

I
⇤(q) can be

numerically solved using a generalization of the Piyavski-
Shubert algorithm. We give a high-level overview of our
algorithm here, and present a complete description of the
algorithm along with convergence analysis in the full ver-
sion [6]. Given any Lipschitz-like function g : [a, b] ! R
satisfying |g(x)� g(y)|  �(|x� y|), the algorithm proceeds
by constructing successively better upper bounds on g using
the Lipschitz-like property. Given a single iterate t 2 [a, b],
the upper-bounding function is G(x) = g(t) + �(|x � t|) for
x 2 [a, b]. As the iterations proceed, this bounding function
can be refined, for example, by taking the minimum of the
bounding function corresponding to adjacent iterates. Then,
at each iteration, the maximum of the bounding function is
computed, which is an easier problem because we only need
to maximize a function depending on � that is known to
be continuous and monotonically increasing. The computed
maximum of the upper-bounding function at each iteration
generates a sequence of points that partitions the interval.
When the distance between any two of these points becomes
sufficiently small, one can show that the maximum of the
upper-bounding function is close to the maximum of g. In
this manner, one can either compute the maximum of g to
a desired precision or one can compute an upper bound on
the maximum by running the algorithm for a fixed number of
iterations.

For optimizing g over the standard simplex in higher di-
mensions, we present an algorithm to construct a Lipschitz-
like dense curve filling the simplex. Using this curve, we
can reduce the multi-dimensional problem of computing the
maximum of g over the simplex to a one-dimensional prob-
lem of optimization over an interval. This one-dimensional
problem can then be solved using the generalized Piyavski-
Shubert algorithm described above. Applying our algorithm
to the function I

⇤ which is Lipschitz-like as per Eq. (26), we
can compute the sum capacity of a two-sender MAC to a fixed
precision, or compute an upper bound on the sum capacity by
fixing the number of iterations.

To test the performance of this algorithm, we construct a bi-
nary MAC whose sum capacity can be computed analytically.
For the binary MAC with transition probability matrix

NF =

✓
1 0.5 0.5 0
0 0.5 0.5 1

◆
,

we show that the sum capacity is equal to S(NF ) =
0.5 ln(2) ⇡ 0.3466 nats. Furthermore, for this channel, we
have C(NF ) = ln(2) ⇡ 0.693 nats. We find that our
algorithm gives a value of ⇡ 0.3459 nats for the sum capacity
corresponding to a precision of ✏ = 0.1, while it gives a value
of ⇡ 0.3466 nats corresponding to ✏ = 0.01. Therefore, we
are able to verify that our algorithm can perform better than
the relaxed sum capacity.

While the algorithm performs efficiently for the case of a
binary MAC, the number of iterations required for convergence
can scale exponentially with the size of the input alphabet
d2 over which we perform the non-convex optimization. It
remains to see whether this is a shortcoming of this algorithm
or whether computing the sum capacity to a fixed precision
is an intrinsically hard problem. Therefore, as of now, our
algorithm is useful for computing the sum capacity when one
of the input alphabets is of small size. For larger problem
sizes, it may be suitable to look for alternate approaches, such
as those which extend [15], [16] to discrete MACs.
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