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Abstract—Fisher’s linear discriminant analysis is a classical method for classification, yet it is limited to capturing linear features only. Kernel
discriminant analysis as an extension is known to successfully alleviate the limitation through a nonlinear feature mapping. We study the
geometry of nonlinear embeddings in discriminant analysis with polynomial kernels and Gaussian kernel by identifying the population-level
discriminant function that depends on the data distribution and the kernel. In order to obtain the discriminant function, we solve a generalized
eigenvalue problem with between-class and within-class covariance operators. The polynomial discriminants are shown to capture the class
difference through the population moments explicitly. For approximation of the Gaussian discriminant, we use a particular representation of the
Gaussian kernel by utilizing the exponential generating function for Hermite polynomials. We also show that the Gaussian discriminant can be
approximated using randomized projections of the data. Our results illuminate how the data distribution and the kernel interact in determination of
the nonlinear embedding for discrimination, and provide a guideline for choice of the kernel and its parameters.

Index Terms—Discriminant analysis, feature map, Gaussian kernel, polynomial kernel, Rayleigh quotient, spectral analysis.

1 INTRODUCTION

ERNEL methods have been widely used in statistics and machine

learning for pattern recognition and analysis [1], [2], [3]. They can
be described in a unified framework with a special class of functions
called kernels encoding pairwise similarities between data points. Such
kernels enable nonlinear extensions of linear methods seamlessly and
allow us to deal with general types of data such as vectors, text docu-
ments, graphs, and images. Combined with problem-specific evaluation
criteria typically in the form of a loss function or a spectral norm of
a kernel matrix, this kernel-based framework can produce a variety of
learning algorithms for regression, classification, ranking, clustering,
and dimension reduction. Popular kernel methods include smoothing
splines [4], support vector machines [5], kernel Fisher discriminant
analysis [6], [7], ranking SVM [8], spectral clustering [9], [10], and
kernel principal component analysis [11].

This paper regards the geometry of kernel discriminant analysis
(KDA). KDA is a nonlinear generalization of Fisher’s linear discrim-
inant analysis (LDA), which is a standard multivariate technique for
classification. Intrinsically as a dimension reduction method, KDA
looks for discriminants that embed multivariate data into a real line
so that decisions can be made easily in a low dimensional space. For
simplicity of exposition, we focus on the case of two classes. Fisher’s
linear discriminant projects data along the direction that maximizes
separation between classes. Extending this geometric idea, kernel
discriminant analysis finds a data embedding that maximizes the ratio
of the between-class variation to within-class variation measured in the
feature space specified by a kernel. To determine the embedding as
a discriminant, we solve a generalized eigenvalue problem involving
kernel-dependent covariance matrices.

We examine the kernel discriminant at the population level to illu-
minate the interplay between the kernel and the probability distribution
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for data. Of particular interest is how the kernel discriminant captures
the difference between two classes geometrically, and how the choice
of a kernel and associated kernel parameters affect the discriminant
in connection with salient features of the underlying distribution. As
a continuous analogue of the kernel-dependent covariance matrices,
we define the between-class and within-class covariance operators first
and state the population version of the eigenvalue problem using those
operators which depend on both the data distribution and the kernel.
For some kernels, we can obtain explicit solutions and determine the
corresponding population kernel discriminants.

Similar population-level analyses have been done for kernel PCA
and spectral clustering [12], [13], [14] to gain insights into the interplay
between the kernel and distributional features on low dimensional em-
beddings for data visualization and clustering. The population analyses
of kernel PCA, spectral clustering, and KDA require a spectral analysis
of kernel operators of different forms depending on the method. They
help us examine the dependence of eigenfunctions and eigenvalues
of the kernel operators on the data distribution, which can guide
applications of those methods in practice.

The population discriminants with polynomial kernels admit a
closed-form expression due to their finite dimensional feature map.
Analogous to the geometric interpretation of Fisher’s linear discrim-
inant that it projects data along the mean difference direction after
whitening the within-class covariance, the polynomial discriminants
are characterized by the difference in the population moments between
classes. By contrast, the Gaussian kernel does not allow a simple
closed-form expression for the discriminant because its feature map and
associated function space are infinite-dimensional. We provide approx-
imations to the Gaussian discriminant instead using two representations
of the kernel. These approximations shed some light on the workings
of KDA with the Gaussian kernel. By using a deterministic represen-
tation of the Gaussian kernel with the Hermite polynomial generating
function, we approximate the population Gaussian discriminant with
polynomial discriminants of degree as high as desired for the accuracy
of approximation. This implies that the Gaussian discriminant captures



the difference between classes through the entirety of the moments.
Alternatively, using a stochastic representation of the Gaussian kernel
through Fourier features of random projections [15], we can also view
the Gaussian discriminant as an embedding that combines the expected
differences in sinusoidal features of randomly projected data from two
classes.

How are the forms of these population kernel discriminants related
to the task of minimizing classification error? To attain the least
possible error rate, the optimal decision rule assigns a data point
X € RP to the most probable class by comparing the likelihood of one
class, say p;(x), versus the other, pa(x), given X. In other words, the
ideal data embedding for discrimination of two classes should be based
on the likelihood ratio p1 (x)/p2(x) or log[p1 (x)/p2(x)]. As a simple
example, when the population distribution for each class is multivariate
normal with a common covariance matrix, log[p1 (x)/p2(x)] is linear
in x, and it coincides with the population version of Fisher’s linear
discriminant. Difference in the covariance brings additional quadratic
terms to the log likelihood ratio requiring a quadratic discriminant for
the lowest error. As the distributions further deviate from elliptical
scatter patterns exemplified by normal distributions, the ideal data
embedding according to log[p; (x)/p2(x)] will involve nonlinear terms
beyond quadratic. The basic fact that each distribution can be identified
with its moment-generating function or characteristic function, i.e., its
Fourier transform, implies that any difference between two distribu-
tions can be described in terms of the moments or expected Fourier
features in general. Our population analysis of kernel discriminants
indicates that the Gaussian kernel treats the distributional difference as
a whole, including both global and local (or low and high frequency)
characteristics, while the polynomial kernels focus on differences in
more global characteristics represented by low-order moments. The
ideal choice of a kernel in KDA will inevitably depend on the mode
of class difference mathematically expressed through the log likelihood
ratio, log[p: (x) /pa(x)].

The rest of the paper is organized as follows. Section 2 provides a
brief review of kernel discriminant analysis and describes its population
version by introducing two kernel covariance operators for measuring
the between-class variation and within-class variation in the feature
space. Section 3 presents a population-level discriminant analysis using
two types of polynomial kernels and Gaussian kernel and provides an
explicit form of population kernel discriminants. Numerical examples
are given in Section 4 to illustrate the geometry of kernel discriminants
in relation to the data distribution. Section 5 concludes the paper with
discussions.

2 PRELIMINARIES

This section provides a technical background for kernel discriminant
analysis. After reviewing kernel functions, corresponding function
spaces, and feature mappings in Section 2.1, we briefly describe
Fisher’s linear discriminant analysis and its extension using kernels
in Section 2.2 and further extend the sample-dependent description of
kernel discriminant analysis to its population version in Section 2.3.

2.1 Kernel

Let the input domain for data be denoted by X. A kernel K (-, ) is
defined as a positive semi-definite function from X x X to R. As a
positive semi-definite function, K is symmetric: K (x,u) = K (u, x)
for all x,u € X, and for each n € N and for all choices of

X1,...,X, € X, K, = [K(x;,%;)] as an n X n matrix is positivg
semi-definite.

Given K, there is a unique function space H x with inner product
(+, )3, corresponding to the kernel such that for every x € X and f €
Hr, () K(x,-) € Hg, and (i) f(x) = (f, K(X,-))2,. The second
property is called the reproducing property of K, and it entails the
following identity: K (x,u) = (K(x,-), K(u,))# - Such a function
space with reproducing kernel is called a reproducing kernel Hilbert
space (RKHS). See [4], [16] and [17] for reference.

Alternatively, kernels can be characterized as those functions that
arise as a result of the dot product of feature vectors. This is a common
viewpoint in machine learning in the use of kernels for nonlinear
generalization of linear methods. To capture nonlinear features often
desired for data analysis, consider a mapping ¢ from the input space
X to a feature space F = RPD, ¢ : X — F, which is called a feature
map. The feature vector ¢(x) = (P1(x),...,odp(x))" consists of
D features, and for expressiveness of the features, the dimension of
the feature space is often much higher than the input dimension, and
possibly infinite. Through the dot product of feature vectors, we can
define a valid kernel K on X x X as K(x,u) = ¢(x)"¢(u).
When D = oo, the dot product is to be interpreted in the sense of /o
inner product. More general treatment of kernels with a general inner
product for the feature space is feasible, but for brevity, we confine
our description to the dot product only. Using a feature map, we can
generalize a linear method by applying it in the feature space, which
amounts to replacing the dot product for the original features, x"u,
in the linear method with a kernel, K (x, u). This substitution is called
the “kernel trick” in machine learning. For general description of kernel
methods, an explicit form of a feature map is not needed nor the feature
map for a given kernel is unique. See [2] for general properties of
kernels.

In this paper, we focus on the following kernels that are commonly
used in practice with X' = RP:

o Homogeneous polynomial kernel of degree d:
Ky(x,u) = (x"u)?
¢ Inhomogeneous polynomial kernel of degree d:
Ka(x,u) = (1 +x"u)?

o Gaussian kernel with bandwidth parameter w:

x — ul|?
K,(x,u) =exp <|2u)2”) .

Consideration of their explicit feature maps will be useful for the anal-
yses presented in Section 3. For instance, the homogeneous polynomial
kernel of degree 2 on X = R2, Ky(x,u) = (z1u; + w2us)?, can
be described with a feature map ¢(x) = (w%, V217, x%)T € R3.
The Gaussian kernel on R with bandwidth parameter 1 admits F =
R°® with o inner product as a feature space and a feature map of

2 2 g8 T
o(x)=e" 2 <1,x, 7o @’) .

2.2 Kernel Discriminant Analysis

Kernel discriminant analysis (KDA) is a nonlinear extension of Fisher’s
linear discriminant analysis using kernels. For description of KDA, we
start with a classification problem. Suppose we have data from two
classes labeled 1 and 2: {(x;,4:) | x; € X andy; € {1,2} fori =



1,...,n}. For simplicity, assume that the data points are ordered so
that the first n; observations are from class 1 and the rest (no = n—nq)
are from class 2.

2.2.1 Fisher’s Linear Discriminant Analysis

As a classical approach to classification, Fisher’s linear discriminant
analysis (LDA) looks for linear combinations of the original variables
called linear discriminants that can separate observations from different
classes effectively. It can be viewed as a dimension reduction technique
for classification.

When X = RP, a linear discriminant is of the form, f(x) =
vTx, with a coefficient vector v € RP. For the discriminant v¥'x as a
univariate measurement, we define the between-class variation as

TS T \2 _ T (v < \(~ < \T
(VX1 = vTXe)" = v (X1 — X2)(X1 — X2)"Vv
and the within-class variation as its pooled sample variance:
ni na ni n2
—vTSiv+ —=viSov =v" (—Sl + 752) v
n n n n

where X; and S; are the sample mean vector and sample covariance
matrix of x for class j. Letting Sp = (X1 — X2)(X1 — X2)”
and Sy = "LS; + “2S; (the pooled covariance matrix), we can
express the two variations succinctly as quadratic forms of v Spv and
vT Sy v, respectively. Note that both forms are shift-invariant.

To find the best direction that gives the maximum separation
between two classes measured relative to the within-class variance
in LDA, we maximize the ratio of the between-class variation to the
within-class variation with respect to v: (v Spv)/(v"Swv). This
ratio is also known as the Rayleigh quotient and taken as a measure
of the signal-to-noise ratio in classification along the direction v. This
maximization problem leads to the following generalized eigenvalue
problem:

Spv = ASwv

and the solution is given by the leading eigenvector. More explicitly,
v = S,;}(X; — X2) defined only up to a normalization constant,
and A\ = (%X — X3)" Sy (X1 — X2) is the corresponding eigen-
value. Since Sp has rank 1, é\ is the only positive eigenvalue. The
resulting linear discriminant, f(x) = v7x, together with an appro-
priately chosen threshold c yields a classification boundary of the
form {x € ]Rp | v'x = ¢}, which is linear in the input space.
When Sy ~ I, vV = X; — Xy (mean difference) provides the best
direction for pl'OJeCthIl Re- expresswn of the linear discriminant as

f(x) = vTx = [S;[; & —%2)]" SW x further reveals that LDA
projects data onto the mean difference direction after whitening the

variables via S;V%. This interpretation also implies the invariance of
£(-) under variable scaling.

Note that when the distribution of X for each class is normal with
a common covariance matrix, maximization of the Rayleigh quotient
with the population mean vectors and covariance matrix leads to the
optimal linear discriminant. As one form of modification of the LDA
approach when the normal distribution assumption does not hold,
[18] and [19] consider alternative class representations different from
mean vectors in the maximization of the ratio for improved class
discrimination.

2.2.2 Nonlinear Generalization

Using the aforementioned kernel trick, [6] proposed a nonlinear ex-
tension of linear discriminant analysis, which can be useful when

the optimal classification boundary is not linear. Conceptually, b}?;
mapping the data into a feature space using a kernel, kernel discriminant
analysis finds the best direction for discrimination and corresponding
linear discriminant in the feature space, which then defines a nonlinear
discriminant function in the input space.

Given kernel K, let ¢ : X — F be a feature map. Then using the
feature vector ¢p(x), we can define the sample means and between-class
and within-class covariance matrices in the feature space analogously.
These matrices are denoted by S ? and St ® KDA aims to find v in the
feature space that maximizes

vTng

—_— (1)
VTS%V

When v is in the span of all training feature vectors ¢(x;), it can be
expressedas v = > . | a;p(x;) forsome ¢ = (avq, ..., )" € R™
When we plug v of the form into the numerator and denominator of
the ratio in (1) and expand both in terms of «; using the kernel identity
K(x,u) = ¢(x)"¢p(u), we have

VTSgV =a”B,a and VTS%)/V =a"W,a,

where B,, and W, are the n xn matrices defined through the kernel that
reflect between-class variation and within-class variation, respectively.
To describe B,, and W,, precisely, start with the kernel matrix K,, =
[K (x;,%;)]. It can be partitioned into [K; K5| with n X ny matrix of
K7 and n X ng matrix of K5, according to the class label y;. Using
this partition of K,,, we can show that B,, = (K1 — K3)(K; — K3)”
with Kj = ;- K1y, and

1 n9 1
ﬁ,}} K{+-= I [;21 -

1
”n:anl [ Inl_
n nq 1

1
% J n2j| K 2T ’
where 1n]. is the n; vector of ones, and .J,, (nj X nj matrix
of ones).
In order to find the best discriminant direction v = >""" | a;¢(x;),
71,a
. .. oa'Wha . . .
is again given by the leading eigenvector of the generalized eigenvalue
problem:

; = Iy 1y

nj

we maximize with respect to ¢ € R" instead. The solution

B,a = AW, . 2)

Further, the estimated direction v = Y " | &;¢(x;) results in the
discriminant function of the form:

Fx) =vp(x) = digp(x:)" ¢ Zaz (xi,x). ()
=1

Obviously f(-) is in the span of K(x;,-), i = 1,...,n, and belongs
to the reproducing kernel Hilbert space H . As with Fisher’s linear
discriminant, the kernel discriminant function is determined only up
to a normalization constant. To specify a decision rule completely, we
need to choose an appropriate threshold for the discriminant function.

2.3 Population Version of Kernel Discriminant Analysis

To understand the effects of the data distribution, geometrical difference
between two classes, in particular, and the kernel on the resulting
discriminant function, we consider a population version of KDA. For
proper description of the population version, we first assume that
{X1,...,Xn} in the dataset is a random sample of X from a mixture
of two distributions IP; and Py with population proportions of 7 and
ma(= 1 — mq) for two classes, or P = w1 P + moPs.



To illustrate how the sample version of KDA extends to the
population version under this assumption, we begin with the eigenvalue
problem in (2). Suppose A, and & = (aq,...,ap)" are a pair of
eigenvalue and eigenvector satisfying (2). After scaling both sides of
(2) by the sample size n, we have

1 & An —
— E B, (i,j)a; = — E nl, J)ay T
"2 (i,5)a; n 2 W, (i,7)o; for

As a continuous population analogue of B,, and W,,, we can define the
following bivariate functions on X x X

i=1,...,n. 4

Bk (x,u) = {El [K(x,X)] — Eo[ K (x, X)]}
{ElK@X) - Bk ©
Wk(x,u) = mCovi[K(x,X), K(u,X)]

+myCovs K (x,X), K (u, X)], (6)

where E; and Cov; indicate that the expectation and covariance are
taken with respect to IP;. The matrices B,, and W, can be viewed as a

sample version of Bk (-,-) and Wk (-, ) evaluated at all pairs of data
points Xi, ..., Xp,.

Further treating & = («1,...,,)" as a discrete version of a
function «(-) at the data points, ie., @ = (@(xX1),...,a(x,))",

and taking the sample class proportion, (n;/n), as an estimate of the
population proportion, 7;, and A, as a sample version of the population
eigenvalue A, we arrive at the following integral counterpart of (4):

/ B (x, w)a(u) dP(u) = A / Wi (x, w)a(u) dP(u)  (7)
X X

for every x € AX. This eigenvalue problem involves two integral
operators: (i) the between-class covariance operator defined as

/BKxu

and (ii) the within-class covariance operator defined as

/ Wk (x,u)a(u)dP(u).

The form of the sample discriminant function in (3) with scaling of
1/n suggests that using the solution to equation (7), «(-), we define
the population discriminant function as

/Kxu

Clearly, the eigenfunction «(-) depends on the kernel K and prob-
ability distribution IP, and so does the kernel discriminant function with
a(-) as a coefficient function. Hence, identification of the solution to the
generalized eigenvalue problem in (7) will give us better understanding
of kernel discriminants in relation to the data distribution and the
choice of the kernel. The correspondence between the pattern of class
difference and the nature of the resulting discriminant is of particular
interest.

(u)dP(u),

u) dP(u). ®

3 KERNEL DISCRIMINANT ANALYSIS WITH COVARI-
ANCE OPERATORS

In this section, we carry out a population-level discriminant analysis
with two types of polynomial kernels and Gaussian kernel and derive an
explicit form of population discriminant functions. Section 3.1 covers
the case with polynomial kernels in RP. Section 3.2 extends it to the
Gaussian kernel using two types of kernel representations.

3.1 Polynomial Discriminant ¢

Starting with X = R2?, we lay out steps necessary for a population
version of discriminant analysis with homogeneous polynomial kernel
and derive the population kernel discriminant function in Section
3.1.1. We then extend the results to a multi-dimensional setting with
homogeneous polynomial kernel in Section 3.1.2 and inhomogeneous
polynomial in Section 3.1.3.

3.1.1 Homogeneous Polynomial Kernel in Two-Dimensional
Setting

The homogeneous polynomial kernel of degree d in R? is

d d d d—1i i
(£L‘1U1+ICQU2) :Z ; (fl'lul) (1'2'“2)

=0

dd d—i 1 d—i, 1 9
> (1) (ot 8) () g

The simple form of K  allows us to obtain the between-class vari-
ation function Bk (x,u) in (5) and within-class variation function
Wik (x,u) in (6) explicitly in terms of the population parameters.

For Bk (x,u), we begin with

Ei[Kq(x,X)] — Eo[K4(x, X)]

d

3 (1) o) ()
(AN (i i\ (i
3 (1) (et at) ()

=0

o 3 (%) ) (et

=0

Ky(x,u) =

= El

—Es

which depends on the difference in the moments of total degree d
between two classes. Letting A; = E1[X @' X1] — Eo[ X477 X}], the
difference in moments, we can express Bx (X, u) as

BK(X, ll) = {El[Kd(X7 X)] —Eg[Kd(X, X)]}

X {El[Kd(u, X)] — Eo[Kq(u, X)]}
4 (d ; LA\ (g
YT

() (s

d—1
1

d—i 1 d—j, j
(1 352)(“1 “2)

Similarly, for Wi (x, u), using the form of K4, we first derive the
covariance for each class (I = 1, 2)

Cov;[K4(x,X), K4(u, X)]

= o 3 (1) (ot ) (xtx).

=0

x Covi[X¥TiXE, XTI x7).



Letting
Wi = mCovy [X{ X3, X7 XJ] 4 maCovo [ X X, X7 X7,

the within-class covariance of a pair of polynomial features of degree
d, we can express the within-class variation function as

Wk(x,u) = mCovi[K4(x,X), Kq(u,X)]
+m3Cova[Ky(x, X), K4(u, X))

33 (1) ()i ot ()

=0 5=0

Using these two functions for Kj, we obtain the between-class
covariance operator as

/BKxu (1) dP(u)

/ZZ()() i (27ah) (uf 7 ud) a(w) dP(u)
ZOZO< )( ) j (o808) [ () aw) ()

and the within-class covariance operator as

Wk (x,u)a(u) dP(u)
(f) (j)W (m‘li ’xé) (uil jué) a(u) dP(u)
) (j)W] (x‘li ‘xé) /R2 (u(li jué) a(u) dP(u).

u), e ( 4= J) a(u)dP(u) is a constant. Thus, letting

(j) Jrz (ul

eigenvalue problem from (7) for identification of «(+):

33 () (ot at) =333 (i (o845),

=0 j=0 =0 5=0

Il Il

M= 7
IKM 'Ma.
< = IM

a(u)dP(u), we arrive at the following

which should hold for all x = (21, 73)” € R?. Rearranging the terms
in the polynomial equation, we have
i 352)

é ( )A ZA vy ¢ (o8
<?>§Wi,jyj (2171a3)

Matching the coefficients of xil_i:cé on both sides of the equation leads
to the following system of linear equations for v = (v, ...,vq)":

AA"Y = \Wv, (10)

where A = (Ag, A1, ...,Aq)" is a vector of the mean differences of
Xf_ZXé fori=0,...,d,and W = [W, ;] is a weighted average of
their covariance matrices.

When d = 1, K; becomes a linear kernel, and the features are just
X; and Xo. Thus, A = p; — py (population mean difference) and
W = m 31 +m225 (pooled population covariance matrix). Clearly, the

d

A

=0

eigenvalue problem in (10) reduces to that for the population versior?
of Fisher’s LDA when d = 1.

Assuming that W ! exists, we can show that the largest eigenvalue
satisfying equation (10) is \* = AW ~1 A with eigenvector of v* =
W~LA. Given the best direction v* = (v, ..., v4)7, the population
discriminant function f(-) in (8) with homogenous polynomial kernel
of degree d is

flx) = L Ka(x,u) a(u) dP(u)
d
= /R2Z (j)xf ]xéuf ju% a(u) dP(u)
o (d d—j, j
= j:Oxl xh (]) /11&2 uy Tud a(u) dP(u)

vj
d
_ P S
= E:ijl
Jj=0

We see that this polynomial discriminant is expressed as a linear com-
bination of the corresponding polynomial features and their coefficients
are determined through the mean differences and variances of the
features.

3.1.2 Homogeneous Polynomial Kernel in Multi-Dimensional
Setting

We extend the result in X = R? to general RP. The homogeneous
polynomial kernel of degree d in RP is given as

(Z) |
) Ce

As a function of X, it involves polynomials in p variables of total degree
d. To facilitate similar derivations as in R2, we will use a multi-index
for the polynomial features.

Kq(x,u) =

>

it tip=d

Let j; denote a p-tuple multi-index with non-negative integer
entries that sum up to d. That is, j¢ € Sq = {(J1,--.,Jp) | Ji €
NU{0},>%_, ji = d} with cardinality of (dﬂ;_l). We will omit the
subscript d from jg for brevity whenever it is clear from the context.
For j = (j1,...,Jp) € Sa, we abbreviate the multinomial coefficient
(led,j ) to (d) and let [j| = j1 + - +Jp and j! = [[}_, ji!. For
x € RP andJ S Sd,letxJ = 351 . 1p,andf0ra € R, o means
a’t ---a’» = abl. For convenience, we will use j € Sy and |j| = d
1nterchangeably.

Using this multi-index, we rewrite the homogeneous polynomial
kernel in R? simply as

Kq(x,u) = Z (?)xjuj,
lil=d

an

which can be viewed as a multi-dimensional extension of the expression
in (9). Further, we can derive the between-class and within-class



variation functions similarly:

Bk (x,u) = Z Z (?) (?)AiAJx‘uJ
|i|=d |j|=d

Wk(x,u) = Z (?) (?)Wi,jxlul
lil=d |jl=d

with A; = E;[X!] — Eo[X!] and W;; = mCovq X!, XI] +
maCova[ X1, XJ] fori, j € S4. As an example, when the degree d is 2 in
R?, Sy = {(2,0,0),(1,1,0), (1,0, 1)7 (0,2,0), (0,1, 1).7 (0,0,2)}.
Fori = (1,1,0) and j = (0,1,1), X' = X1 X5 and XJ = X, X3,
and thus we have A; = Eq[X1Xo] — Eo[X 1 Xp] and Wi; =
m1Cov1 [ X1 X2, XoX3] + maCova[X1 X5, X5 X3]. Due to the same
structure, we can easily extend the between-class and within-class
covariance operators.

To identify the population discriminant function in this setting, we
define A = (Aj){cg,, and W = [Wj;];, jes, analogously. Letting
vy = (31) Je» Wa(u) P(u) given a kernel coefficient function (), we
solve the generalized eigenvalue problem in (10) for v = (v; )jTeSd’
and determine the population-level discriminant function as

fx) =Y ux.
lil=d
Note that the size of A and W is S| = (d"'s_l), and while ordering
of the indices in Sy does not matter, the elements in A and W should
be consistently indexed for specification of the eigenvalue problem. The
following theorem summarizes the results so far.

Theorem 3.1. Suppose that for each class, the distribution of X eRp
has finite moments, E;[X'] and Cov,[ X", XJ] for all i,j € Sq. For the
homogeneous polynomial kernel of degree d, K 4(x,u) = (x"u)?,

(i) The kernel discriminant function maximizing the ratio of
between-class variation relative to within-class variation is of
the form

fa(x) = vx). (12)

lil=d
(i) The coefficients, v = (vi)ics,, for the discriminant function
satisfy the eigen-equation with A > 0:
AA"Y = \Wv, (13)
where A = (Aj)icg, is a vector of moment differences, A; =
Eq [X1) —Eo[X1), and W = [W;5l;. jes, is a matrix of pooled
covariances, W ; = w1 Covy [ X', XJI] 4+ w9 Cova [ X', XJ].

Alternatively, the discriminant function can be derived using an
explicit feature map for the kernel. The expression of Ky in (11)

suggests ¢(x) = <d> 2xj

J

shown that a direct application oerLsﬁA to the between-class and within-
class variance matrices of ¢(X) leads to the same kernel discriminant.
This result indicates that employing homogeneous polynomial kernels
in discriminant analysis has the same effect as using the polynomial
features of given degree in LDA.

as a feature vector, and it can be

3.1.3 6

The inhomogeneous polynomial kernel of degree d in RP can be
expanded as

Inhomogeneous Polynomial Kernel

_ 4 (d
Kiyx,u) = (1+x"u)d= Z (m) (x"u)™
0

m

S () 2 (5

which is a sum of all homogeneous polynomial kernels of degree up to
d. Since (d) = (d) (T) forj € S,,,m =0,...,d, and the term with

N m .
m = 01is 1, we can rewrite the kernel as

_ d d\ . . o (a\ . .
Ki(x,u) =1+ > <j>xJuJ=1+ > <j>x~‘u-‘~
=1

m=1j|=m

Note that Y% _, _jj=m is abbreviated to Z%lzl. This kernel has
the same structure as the homogenous polynomial kernel. Using the
relation, we can find the population kernel discriminant function sim-
ilarly. Recognizing that K involves expanded polynomial features in
p variables of total degree 0 to d: 1,x, (xj)m:Q, cey (xj)m:d, we
define a vector of the mean differences of those features (excluding the
constant 1) and a block matrix of their pooled covariances as follows:

A Wi, Wiaq
., and W= )
Wai Waa

A= :

AV
where Ay, = (Ai)icg,, and W = [Wijlies,, jes, forall m, | =
1,...,d. That is, A contains all the difference of the moments of
degree 1 to d, and W has the covariances between all the monomials of
degree 1 to d. Thus, the size of the eigenvalue problem to solve becomes
ZZ@:l (mtg 71) =(* J(gd) — 1. The following theorem states similar
results for the discriminant function with inhomogeneous polynomial
kernel.

Theorem 3.2. Suppose that for each class, the distribution of X € R?
has finite moments, E; [Xi] and Cov; [Xi, Xj] forallieS,,,j€S;
and m,l = 1,...,d. For the inhomogeneous polynomial kernel of
degree d, Kq(x,u) = (14 x"u)¢,

(i) The kernel discriminant function maximizing the ratio of
between-class variation relative to within-class variation is of
the form

d
de(X) = Z ﬂjX‘j.

lil=1

(14)

(i)

The coefficients, U = (7 ){g\ j|<a- for the discriminant function
satisfy the eigen-equation with A > 0:

AATD = \Wp. (15)

3.2 Gaussian Discriminant

We extend the discriminant analysis with polynomial kernels in the
previous section to the Gaussian kernel. For the extension, we use
two representations for the Gaussian kernel: a deterministic repre-
sentation in Section 3.2.1 and a randomized feature representation in
Section 3.2.2.



3.2.1 Deterministic Representation of Gaussian Kernel

We have seen so far that derivation of the population discriminant
function with polynomial kernels is aided by their expansion, or
equivalently, their explicit feature maps. Taking a similar approach to
the Gaussian kernel, we could use the Maclaurin series of €” to express

it as
lIx —uf* u||
2w

ith ¢;(x) 1XI%Y 1% e the structure of &
W1 iIIX) = eX — —_— 11€ € structure o in
) P 2w? ) \jlwd’ ¢

this representation would permit similar derivations as before for the
discriminant function, the result will depend on the expectations and
covariances of ¢;(X) which may not be easy to obtain analytically in
general.

Alternatively, we consider a representation of the kernel in the form
that allows a direct use of polynomial features in much the same way
as polynomial kernels. We start with a one-dimensional case and then
extend it to a multi-dimensional case. The one-dimensional Gaussian
kernel with bandwidth w can be written as

N2
exp (—(x%g) )
<o) B () i 0o

He,,(x) are referred to as the probabilist’s Hermite polynomials and
defined as

= > 4

Kxw) = exp (-
li|=0

K,(x,u) =

m

()" (9() (),

where ¢ is the density function of the standard normal distribution.
The representation of K, in (16) comes from the Hermite polynomial
generating function:

1 o0
exp (mu - §u2) = mz::() Hep,(x)

It can be extended to a multivariate case using the vector-valued
Hermite polynomials introduced in [20].

For x € RP and m € N, the p-variate vector-valued Hermite
polynomial of order m is defined as

H,, (x) = (—1)"(2(x)) o™ @(x),

where 8,<(m> = Ox ® Ox ® -+ ® Ox (mM-times) is a Kronecker
product of the differential operator 0y = (8%1, ceey %)T and ¢
is the product of p univariate standard normal densities. Thus the
components of H,,(x) are a product of univariate Hermite poly-
nomials whose total degree is m: Hy,(x) = (Hj(x))jcs,, . Where
Hj(x) = Hej, (x1)--- Hej, (x,,) foreach j € S,

Using this notation, a multivariate version of the generating function
(17) can be written as

1 x -
oxp (X' = jut) = 3 (H G u™)

m=0

He,(z) =

an

where u™ =u@u®---

>

J€Sm

= > (T?)Hj(x)uj'

jes,, \J

® u (m-times) and

m ; ,
< : )Hejl(xl) - Hej, (wp)uy' - - uyy

(Hy (%), u<m>>

7
Using the generating function for H,, and letting x, = (1/w)x
with bandwidth w, we get the following expansion for the multivariate

Gaussian kernel:
op (Il
Qw2

= exp (—”X;”2> exp (quw - %uguw>
ox (_||x;||2> R AR
Further with the definition of

ﬁj(xw) = ﬁexp <_ 2

the kernel is represented as

K,(x,u) =

e ~
Z Hj(x,)u (18)
Although this representation is asymmetric in x and u, it facilitates
similar derivations of the generalized eigenvalue problem and popu-
lation kernel discriminant as with polynomial kernels, but using the
entirety of polynomial features.

With this representation, it is easy to show that

E; [K,(x,X)] — E2[K, (%, X)]

S Ay {E1 X - B[]}

|=0

o=

(o)
Hy(xo)A5 = Y Hj(xw)Ay,
0 il=1

I
WK

\
which involves the moments of the distribution rather than the expec-
tations of Hj(X,,). Note that the last equality is due to Ag = 0 for
X9 = 1. Thus the between-class variation function is given as

o=

o

oo
BK(X, u) = Z Z AiAjf{i(Xw)ﬁj(uw).
lil=11jl=1
Similarly the within-class variation function is given as
o0 oo
WK(X, u) = Z Z Wi,jﬁi(xw)ﬁj (uw).
lil=11jl=1

Therefore, the eigenvalue problem in (7) with the Gaussian kernel is
given by

Z Z AiAjI/j

lil=11jl=1

(x0) = A Z Z Wi jvi Hi
li|=11j|=1
where v = [, H. (u) dP(u).
To find vj satlsfymg (19) for every x,,, the coefficients of Hj (Xw)
on both sides must equal for all i € S,,, m € N. This entails the
following system of an infinite number of linear equations for vj:

i(xw), (19

A Z Ajl/j =A Z Wi’jl/j, i€eS,,, meN, (20)

lil=1 lil=1

and the resulting discriminant function of the form:

e .
X) = Z vyt

lil=1



For a finite dimensional approximation of the population discrimi-
nant function, we may consider truncatlon of the kernel representation
in (18) at |j| = N: Ky(x,u) = Zm _o Hj(x,,)ud. This approx-
imation brings the corresponding truncation of the system of linear
equations for the generalized eigenvalue problem in (20). As a result,
the eigenvalue equation coincides with that for the inhomogeneous
polynomial kernel of degree IV in Theorem 3.2, and so does the trun-
cated discriminant function. As more polynomial features are added or
N increases, the largest eigenvalue satisfying equation (15) increases.
Adding subscript NV to A, A and W to indicate the degree clearly, let

T T

AN = max w

v vTWphv _
the within-class covariance matrix W expand with NN, including
all the elements up to degree N. This nesting structure produces an
increasing sequence of Ay. It is because maximization of the ratio
for degree N amounts to that for degree N + 1 with a limited space
for v. In Section 4.1, we will study the relation between polynomial
and Gaussian discriminants numerically under various scenarios and
discuss the effect of NV on the quality of the discriminant function.

. The moment difference vector A N and

3.2.2 Fourier Feature Representation of Gaussian kernel

In addition to the polynomial approximation presented in the previous
section, a stochastic approximation to the Gaussian kernel can be used
for population analysis. [15] examined approximation of shift-invariant
kernels in general using random Fourier features for fast large-scale
optimization with kernels. They proposed the following representation
for the Gaussian kernel using random features of the form zy (x) =
(cos(w'x),sin(w’x))”:

Koo (1) = By [z (%) 200 ()]
where w is a random vector from a multivariate normal distribution
with mean zero and covariance matrix %I p- This representation comes
from Bochner’s theorem [21], which describes the correspondence be-
tween a positive definite shift-invariant kernel and the Fourier transform
of a nonnegative measure. The feature map zy (-) projects x onto a
random direction w first and then takes sinusoidal transforms. Their
frequency depends on the norm of w. A large bandwidth w for the
Gaussian kernel implies realization of w with a small norm on average,
which generally entails a low frequency for the sinusoids.

2D

The representation in (21) suggests a Monte Carlo approximation
of the kernel. Suppose that w;, ¢ = 1,..., D, are randomly generated
from N, (0, 1, I,,). Defining random Fourler features zyw (x) with w =
W;, We can approx1mate the Gaussian kernel using a sample average as

follows:
x — ul?
be— 'y 1 sz ()

This average can be taken as an unbiased estimate of the kernel,
and its precision is controlled by D. Concatenating these D random
components zyw, (X), we can also see that the stochastic approximation
above amounts to defining

Ko (x,u) = exp (

1 T
ﬁ(zwl(x) ey

as a randomized feature map for the kernel.

Zp(x) = Zwp (x)7)"

. . . 8

Using the random Fourier features, we approximate the between-

class variation function B (x,u) and within-class variation function
Wi (x,u) as follows:

Bi(x,u) = 2222‘”7 TAw, Ay, 2w, (1)
1= 1] 1
Wk(x,u) = D2ZZZWI Ww, w, 2w, (1),
1=1j5=1
where Ay, = Ei[2w,(X)] — E2[2w,(X)] and Wy, w,

m1Cov1 2w, (X)), 2w, (X)] + m2Covs [2w, (X), 2w, (X)]. Then we
can define a randomized version of the eigenvalue problem in (7) with
these approximations. Let &(+) denote the solution to the problem with
A > 0 and define v; = [ zw,(u)@(u)dP(u). Similar arguments
as before lead to the following generalized eigenvalue problem to
determine v = (v])": AA"v = AWy, where A = (A7 )"
and W = (Ww,,w,]| fori,j = 1,...,D. Given v, the approximate
Gaussian discriminant obtained via random Fourier features is

1 D
-7 Zl/fzwi(x)
D i=1

Rather than sine and cosine pairs, we could also use phase-shifted
cosine features only to approximate the Gaussian kernel as suggested
in [15] and [22]. Let 2w p(x) = V2 cos(w”x + b) with an additional
phase parameter b which is independent of w and distributed uniformly
on (0, 27). Then using a trigonometric identity, we can verify that

K,(x,u) = Ewp[2wb(X)2wp(u)]
= Ewp[2cos(wx +b)cos(wiu+b)].

(22)

Given w and b, if X is distributed with N, (, X), we can show that
1
Ex [cos(WwTX 4+ b)] = exp(—§wTZw) cos(whp + b).

Thus in the classical LDA setting of P; = N (g, %) for j = 1,2, this
Fourier feature lets us focus on the difference in cos(w™ u; +b) rather
than f¢;.

4 NUMERICAL STUDIES

This section illustrates the relation between the data distribution and
kernel discriminants discussed so far through simulation studies and
applications to real data.

4.1 Simulation Study

We numerically study the population discriminant functions in (12),
(14), and (22) with both polynomial and Gaussian kernels, and ex-
amine their relationship with the underlying data distributions for
two classes. For illustration, we consider two scenarios where each
class follows a bivariate normal distribution. This choice of a class
distribution allows us to obtain the population moments of any order
and expected Fourier features explicitly while the normality assumption
is not necessary for KDA. In Scenario 1, two classes have different
means (; = (0.6,0.9)" and p, = (—1.0,—1.2)") but the same
covariance (X1 = Yo = I5), and in Scenario 2, they have the same
mean (4, = py = 0) but different covariances (X; = diag(2,0.2)
and Yo = diag(0.2, 2)). Figure 1 shows the scatter plots of samples
generated from each scenario with 400 data points in each class (red:
class 1 and blue: class 2) under the assumption that two classes are
equally likely.
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(a) Scenario 1 (b) Scenario 2

Figure 1: Scatterplots of the samples simulated from a mixture of two
normal distributions with contours of the probability densities for each
class overlaid in two settings: (a) Scenario 1 and (b) Scenario 2.

4.1.1 Polynomial Kernel

Under each scenario, we find the population discriminant functions in
(12) and (14) with polynomial kernels of degree 1 to 4 and examine
the effect of the degree on the discriminants. To determine fg(x),
we first obtain the population moment differences A and covariances
‘W explicitly and solve the eigenvalue problem in (13). Similarly we
determine fq(x) with A and W. Tables 1 and 2 present the coefficients
for the polynomial discriminants fy(x) and fgz(X) in each scenario,
which are the solution # or I (eigenvector) normalized to unit length.
Scenario 1: Fisher’s linear discriminant analysis is optimal in this
scenario. Since the common covariance matrix is I, the linear dis-
criminant is simply determined by the direction of the mean difference,
which is g1, —pt, = (1.6,2.1)7. This gives f*(x) = 1.6x;+2.1x5 as
an optimal linear discriminant defined up to a multiplicative constant.
From Table 1, we first notice that the coefficient vector for the
population linear discriminant, f;(x), ¥ = (0.6060,0.7954)", is a
normalized mean difference. Further we observe that the coefficients
for the discriminants with inhomogeneous polynomial kernels, f;(x)
and fz(x), are also proportional to the mean difference.

Figures 2 and 3 display the polynomial discriminants identified in
Table 1. The first row of Figure 2 shows contours of the population
discriminants with homogenous polynomial kernels. High to low dis-
criminant scores correspond to red to blue contours. The black dashed
line is 1.6x1 + 2.1z = 0.635, which is the classification boundary
from Fisher’s linear discriminant analysis. The second row of Figure 2
presents the corresponding sample embeddings obtained by performing
a kernel discriminant analysis to the given samples. Figure 3 shows
contours of both versions with inhomogeneous polynomial kernels of
degree 2 to 4, omitting degree 1 as they are identical to those with the
linear kernel in Figure 2.

The population discriminants and sample versions are similar in
terms of shape and direction of change in contours. With odd-degree
homogeneous polynomial kernels, we observe that the contours change
in the direction of the mean difference, indicating that odd degrees
are effective in this setting. The even-degree discriminants, however,
are of hyperbolic paraboloid shape, varying in a way that masks the
class difference completely. By contrast, the degree doesn’t affect
the major direction of change in the population discriminants with
inhomogeneous polynomial kernels. Their variation seems to occur
only in the direction of the mean difference. Table 1 confirms that
the resulting discriminants fz(x) are identical for degrees d = 2k — 1
and 2k, k =1,2.

Thearetieal

Emjpiical

Figure 2: Contours of the population discriminant functions with
homogeneous polynomial kernels of degree 1 to 4 (upper panels from
left to right) and their corresponding sample counterparts (lower panels)
under Scenario 1. The black dashed lines are the optimal classification
boundary.

Theoretical

Empirical

Figure 3: Contours of the population discriminant functions with
inhomogeneous polynomial kernels of degree 2 to 4 (upper panels from
left to right) and their corresponding sample counterparts (lower panels)
under Scenario 1. The black dashed lines are the optimal classification
boundary.

Scenario 2: In this scenario, using the true densities, the optimal
decision boundary is found to be (x1 + z2)(z1 — z2) = 0, and
the optimal discriminant function is f*(x) = z? — x3, which is a
homogeneous polynomial of degree 2. In contrast with Scenario 1,
even-degree features are discriminative in this setting. Note that the
coefficients of fz(x), f2(x) and f3(x) in Table 2 are proportional
to those of f*(x). Odd-degree homogeneous polynomials produce a
degenerate discriminant in this setting. The quadratic discriminant,
f2(x) = 0.7071x? — 0.7071x3, is a normalized version of f*(x).
With degree 4 homogeneous polynomial kernel, we have fi(X) =
0.7071z} —0.7071z3, which has the optimal discriminant as its factor.
Contours of these polynomial discriminants are displayed in the first
row of Figure 4. The black dashed lines are the optimal decision
boundaries. The second row of Figure 4 presents the corresponding
nonlinear kernel embeddings of degree 1 to 4 induced by the samples.
Figure 5 shows contours of both versions (theoretical in the first row
and empirical in the second row) with inhomogeneous polynomial
kernels of degree 2 to 4, omitting the degenerate linear case in Table 2.

Similar to Scenario 1, we observe that the population discriminant
functions and their sample counterparts in Figures 4 and 5 exhibit
similarity in terms of shape and direction of change in contours.
The contours of the population quadratic and quartic discriminants in



Table 1: Coefficients for the population polynomial discriminants under Scenario 1.

Homogeneous polynomial Inhomogeneous polynomial
Term | fi(x)  fa(x)  fs(x)  fa(x) | f1(x) fo(x)  fs(x)  fa(x)
T 0.6060 - - 0.6060 0.6060 0.6033  0.6033
T2 0.7954 - - 0.7954 0.7954 0.7919  0.7919
] - -0.4461 - - 0.0000 -0.0141 -0.0141
T1T2 - -0.8376 - - 0.0000 -0.0369 -0.0369
T - -0.3154 - - 0.0000 -0.0242 -0.0242
T - - 0.6412 - - -0.0118 -0.0118
z3zy - - 0.3105 - - -0.0465 -0.0465
123 - - -0.22711 - - -0.0610  -0.0610
T - - 0.6637 - - - -0.0267 -0.0267
T - - - -0.2575 - - - 0.0000
mimz - - - -0.6186 - - - 0.0000
L] mé - - - 0.3860 - - - 0.0000
T1TH - - - -0.6146 - - - 0.0000
3 - - - -0.1563 - - - 0.0000

Table 2: Coefficients for the population polynomial discriminants under Scenario 2.

Homogeneous polynomial Inhomogeneous polynomial
Term | f1(x)  fa(x) fa(x) fa(x) | fi(x) f2(x)  fs(x)  fa(x)
] 0.00 - - - 000 0.0000 0.0000 0.0000
T2 0.00 - - - 0.00 0.0000 0.0000  0.0000
] - 0.7071 - - - 07071 07071  0.7063
T1T2 - 0.0000 - - - 0.0000  0.0000  0.0000
x2 - -0.7071 - - - -0.7071  -0.7071  -0.7063
Ty} - - 0.0000 - - - 0.0000  0.0000
z2xo - - 0.0000 - - - 0.0000  0.0000
r173 - - 0.0000 - - - 0.0000  0.0000
x3 - - 0.0000 - - - 0.0000  0.0000
T3 - - - 0.7071 - - - -0.0335
:.,"3 ) - - - 0.0000 - - - 0.0000
rlmé - - - 0.0000 - - - 0.0000
T1T5 - - - 0.0000 - - - 0.0000
x5 - - - -0.7071 - - - 0.0335

Figure 4 show symmetry along each variable axis. Quadratic features
contain all information necessary for discrimination in this scenario.
Even-degree features successfully discriminate the two classes while
odd-degree features completely fail as shown in Figure 4. Nonlinear
inhomogeneous polynomial kernels with even-degree features enable
proper classification as illustrated in Figure 5. Inhomogeneous polyno-
mial kernels of degree 2k + 1 and 2k produce identical discriminants
in this setting.

Theoneted

Empirical

Figure 4: Contours of the population discriminant functions with
homogeneous polynomial kernels of degree 1 to 4 (upper panels) and
their sample counterparts (lower panels) under Scenario 2. The black
dashed lines are the optimal classification boundaries.

Effect of Class Proportions

Theomtcd

Emphicd

Figure 5: Contours of the population discriminant functions with
inhomogeneous polynomial kernels of degree 2 to 4 (upper panels)
and their sample counterparts (lower panels) under Scenario 2. The
black dashed lines are the optimal classification boundaries.

We examine the effect of the class proportions on population-
level discriminant functions under Scenario 2 with different population
covariance matrices. Varying the proportion for class 1, m, from 0.1
to 0.5, we obtain the population kernel discriminant functions with the
inhomogeneous polynomial kernel of degrees 2 and 4 and compare
them to the optimal classifiers that incorporate the class proportion
and population densities. Figure 6 shows contours of the population
quadratic and quartic discriminants with different class proportions and



the optimal classification boundaries (indicated by the black lines).
With equal class proportions, both quadratic and quartic discriminants
can produce classification boundaries that nearly match the optimal
boundaries when the ideal threshold is chosen. As the extent of class
imbalance increases, however, the best level sets from the kernel
discriminants deviate more from the optimal boundaries.
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Figure 6: Contours of the population discriminant functions with
inhomogeneous polynomial kernels of degree 2 (upper panels) and 4
(lower panels) under Scenario 2 with varying class proportions (left
panels: m; = 0.1, middle panels: 7; = 0.3 and right panels: m; = 0.5).
The black lines are the optimal classification boundaries obtained from
the population densities incorporating the class proportions.

4.1.2 Gaussian Kernel

We examine Gaussian discriminant functions under each scenario
using two types of approximation to the Gaussian kernel discussed
earlier.

Deterministic representation: Truncation of the deterministic repre-
sentation of the Gaussian kernel at a certain degree leads to the pop-
ulation polynomial discriminant using the inhomogeneous polynomial
kernel of the same degree. Thus to approximate the population Gaussian
discriminant, we need to choose an appropriate degree for truncation.
As the truncation degree NV increases, the largest (and only nonzero)
eigenvalue Ay as a measure of class separation naturally increases. We
may stop at [NV where the increment in Ay is negligible.

- B LA -

—r

Degree N Degree N

(a) Scenario 1 (b) Scenario 2

Figure 7: The ratio of between-class variation to within-class variation
(An) as a function of the truncation degree N under (a) Scenario 1 and
(b) Scenario 2.

Figure 7 shows how this eigenvalue Ay changes with degree N
for each scenario. In Scenario 1, since a linear component is essential,
there is a sharp increase in Ay at degree 1 followed by a gradual

increase as odd features are added. By contrast, in Scenario 2, )\}\1
steadily increases as even features are added. Overall the magnitude of
the maximum ratio of between-class variation to within-class variation
(An) indicates that Scenario 1 presents an inherently easier problem
than Scenario 2. Figure 8 displays some contours of the approximate
Gaussian discriminants for each scenario using N = 14, which suggest
that the Gaussian kernel can capture the difference between classes
effectively in both scenarios.
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(b) Scenario 2
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Figure 8: Contours of the population Gaussian discriminants approxi-
mated by polynomials truncated at degree 14 under (a) Scenario 1 and
(b) Scenario 2. The black dashed lines are the optimal classification
boundaries.

Random Fourier feature representation: While polynomial features
in the deterministic representation are naturally ordered by degree, there
is no natural order in random Fourier features. As with degree N for
deterministic features, however, the Rayleigh quotient as a measure
of class separation or the corresponding eigenvalue increases as we
add more random features. We numerically examine the effect of the
number of random features I on the eigenvalue Ap and monitor the
increment in Ap.

For both scenarios, we randomly generated 40 w; from N3(0, I3)
and b; from Uniform(0, 27), and defined phase-shifted cosine features,
Zw,,b: (X) = V/2cos(wix + b;). Figure 9 shows how Ap changes
with D for each scenario. Figure 10 shows how the approximate
Gaussian discriminant in (22) changes as the number of random
features increases from 2 to 40 under Scenario 1. Figure 11 shows
a similar change under Scenario 2. Those snapshots in Figures 10
and 11 are chosen by monitoring the increment in the eigenvalue
as more features are added. The number of features used is marked
by the red vertical lines in Figure 9 for reference. As D increases,
the approximate Gaussian discriminants tend to better approximate
the optimal classification boundaries. Compared to the polynomial
approximation, the eigenvalues level off quickly with the number of
random features ), and the maximum values are far less than their
counterparts with polynomial features in both scenarios in part due to
the randomness in the choice of W; and b; and the fact that the nature
of class difference is not harmonic. In summary, Fourier features are
not as effective as polynomial features in these two settings.

4.2 Real Data Examples

In this section, we first carry out a kernel discriminant analysis on
the spam email data set from the UCI Machine Learning Repository
[23]. We examine the geometry of sample kernel discriminants with
various kernels as in the simulation study, and test the performance of
the induced classifiers to see the impact of the kernel choice and kernel
parameters. In addition, we carry out a similar analysis on multiple
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Figure 9: The ratio of between-class variation to within-class variation
(Ap) as a function of the number of random Fourier features ID under
(a) Scenario 1 and (b) Scenario 2. The red vertical lines indicate the
number of random features used in Figures 10 and 11.
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Figure 10: Contours of the approximate discriminant functions using
random Fourier features under Scenario 1. The value of D in each
panel indicates the number of random Fourier features.
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Figure 11: Contours of the approximate discriminant functions using
random Fourier features under Scenario 2. The value of D in each
panel indicates the number of random Fourier features.

data sets from the repository focusing on the effect of the degree of
polynomial discriminant on classification accuracy.

4.2.1 Spam Filtering

The spam data set contains information from 4601 email messages of
which 60.6% are regular email and 39.4% spam. The task is to detect
whether a given email is regular or spam using 57 predictors available
in order to filter out spam. 48 predictors are the percentage of words in
the email that match a given word (e.g., credit, you, free), 6 predictors
are the percentage of punctuation marks in the email that match a given
punctuation mark (e.g., !, $), and additional three predictors are the
longest, average, and total length of strings of capital letters in the
message.

For ease of illustration, we start with a low dimensional repre-
sentation of the data using principal components and construct kernel
discriminants with those components rather than the individual predic-
tors. We split the data into training and test sets of about 60% and 40%
each and defined principal components using the training data. We
observed that the predictors measuring relative frequencies of words
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exhibit strong skewness in distribution. To alleviate the skewness, we

considered a logit transformation before defining principal components.
We also observed a large number of zeros on many predictors as some
words do not necessarily appear in every e-mail message. To handle
this issue, we replaced zeros with a half of the least nonzero value in
each predictor in the training data before taking a logit transformation
and carried out a principal component analysis on the transformed data
using their correlation matrix. To evaluate the performance of trained
classifiers over the test set, we applied the same transformation to the
test set first and calculated principal component scores.

Figure 12 shows the scores on the first two principal components
for the training data. The two principal components explain 26.32% of
variation in the original data. The score distributions for two types of
email are skewed and substantially overlap with very different covari-
ances, suggesting that a nonlinear boundary is needed for classification.

Figure 12: A scatterplot of the first two principal components scores on
the email messages in the training data (blue: regular and red: spam).

We performed a kernel discriminant analysis on the training data
using the inhomogeneous polynomial kernels of degree 1 to 6, and
obtained the corresponding polynomial discriminants. For computa-
tional efficiency, we estimated the moment difference A and covariance
matrix W directly using the training data and solved a sample version
of (15) instead of (2). Figure 13 shows the estimated coefficients for
the discriminants that are normalized to unit length using a color
map. The rows are for the degree of the polynomial discriminants,
and the columns are for the terms in the discriminants. High order
terms, especially beyond the cubic terms, have negligible coefficients
as indicated by the color map. We need to decide on a threshold for
discriminant scores to make a decision for spam filtering. We chose the
threshold value by minimizing the training error. Figure 14 displays the
decision boundaries of the final discriminant functions using the chosen
threshold. All nonlinear polynomial discriminants in the figure seem to
have similar boundaries at least in the region where data density is high.
Table 3 presents their test error rates for comparison along with the
rates for misclassifying spam as regular and vice versa. The quadratic
discriminant has the lowest error rate in this case. The test error rate
increases substantially after the third order, which we may expect from
diminishing returns in the ratio from degree as shown in Table 3 and
the result in Figure 13.

4.2.2 Additional Data Analysis

We further examine the effect of the degree of polynomial kernels on
classification accuracy using multiple data sets from the UCI Machine
Learning Repository [23]. The data sets include Sonar Data (SN), Cer-
vical Cancer Behavior Risk Data (CCBR), Wisconsin Diagnostic Breast
Cancer Data (WDBC), Iris Data (IR) and Banknote Authentication Data
(BN).
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Figure 13: A color map of the estimated coefficients for the polynomial
discriminants of degree 1 to 6 using two principal components from
the spam email data displayed rowwise in the lower triangular array.
The column label in the gray band (e.g., 1 = PC4 and x5 = PCs)
indicates the term corresponding to each coefficient.

Figure 14: Decision boundaries of the polynomial discriminants with
the inhomogeneous polynomial kernels of degree 1 to 6 obtained from
the spam email data. The black dashed lines are the boundaries with
minimum training error for each kernel.

Table 3: Test error rates of kernel discriminant analysis on the spam
email data set with the inhomogeneous polynomial kernels of varying
degrees. The training error rates and between-class to within-class
variation ratio are provided for comparison.

Degree Ratio Training Test error
error Misclassified ~ Misclassified ~ Overall
spam regular

1 4.3633 0.1374 0.3209 0.0403 0.1509
2 6.4206 0.1163 0.1791 0.0896 0.1249
3 7.3066 0.1113 0.1377 0.1246 0.1298
4 7.7156 0.1091 0.0909 0.2061 0.1607
5 8.1013 0.1062 0.1763 0.1944 0.1873
6 8.3386 0.1037 0.1556 0.2554 0.2161

For each data set, we randomly partitioned the full data into a
training set and a test set of about 50% each. Then we performed kernel
discriminant analyses on the training data set using the inhomogeneous
polynomial kernel of degree 1 to 6 and obtained the corresponding
discriminant functions. The threshold for discriminant scores was
chosen by minimizing the training error. We evaluated the performance
of the trained classifiers over the test set. We repeated this process over
100 random partitions of the data. Figure 15 shows the average of these
overall test error rates for each data set as a function of the degree. We
observe that the minimum test error rate for each data set (marked by an
enlarged plotting symbol) tends to occur with a low-degree polynomial
discriminant. On average, the lowest test error rate was achieved with
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a linear kernel for Breast cancer data and Iris data and with a quadratic
or cubic kernel for the rest.

Average test error rates
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!
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Figure 15: Average test error rates of kernel discriminant analysis on
five data sets with the inhomogeneous polynomial kernels of varying
degrees over 100 random partitions of data into training and test sets.

5 DiscussION

We have examined the population version of kernel discriminant anal-
ysis and the generalized eigenvalue problem with between-class and
within-class kernel covariance operators to shed light on the relation
between the data distribution and resulting kernel discriminant. Our
analysis shows that polynomial discriminants capture the difference
between two distributions through their moments of a certain order
specified by the polynomial kernel. Depending on the representation of
the Gaussian kernel, on the other hand, Gaussian discriminants encode
the class difference using all polynomial features or Fourier features of
random projections.

Whenever we have some discriminative predictors in the data by
design as is typically the case, kernels of a simple form aligned with
those predictors will work well. For instance, if we use polynomial ker-
nels in such a setting, we expect the Rayleigh quotient as a measure of
class separation to become saturated quickly with degree and low-order
polynomial features to prevail. The geometric perspective of kernel dis-
criminant analysis presented in this paper suggests that the ideal kernel
for discrimination retains only those features necessary for describing
the difference in two distributions. This promotes a compositional
view of kernels (e.g., Kg(x,u) = anzo (i)Km (x,u)) and further
points to the potential benefits of selecting kernel components relevant
to discrimination similar to the way feature selection is incorporated
into linear discriminant analysis using sparsity inducing penalties [24],
[25]. For instance, [26] formulated a convex optimization problem for
kernel selection in KDA. It is also of interest to compare this kernel
selection approach with other approaches for numerical approximation
of kernel matrices themselves through Nystrém approximation [27],
[28] or random projections [29].

As a related issue, it has not been formally examined how the
Rayleigh quotient maximized in kernel discriminant analysis is related
to the error rate of the induced classifier except for some special cases
only. It is of particular interest how the relation changes with the form
of a kernel and associated features given the difference between two
distributions.



While our analysis has focused on the case of two classes, we
can generalize it to the case of multiple classes where more than one
kernel discriminants need to be considered and properly combined
to make a decision. The generalization entails maximization of the
Rayleigh quotient in (1) with extended between-class and within-
class covariance matrices. This generalized eigenvalue problem can
be solved sequentially to define multiple uncorrelated discriminants
corresponding to nonzero eigenvalues. This approach can be also
viewed as a computational relaxation for solving the more general trace
ratio problem [30] with alternative maximization criteria. While the two
problems (trace-ratio problem and generalized eigenvalue problem) are
equivalent and can be solved explicitly in the two-class setting, it is not
the case for the multiclass setting. The trace ratio problem in general
does not have a closed-form solution, but it can be formulated as an
equivalent trace difference problem and solved via an iterative scheme
as in [30]. We leave this extension of KDA analysis for multiple classes
as future research.
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