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1 Introduction

Narain theories, two-dimensional conformal theories of free fields compactified on a multi-
dimensional torus, have enjoyed renewed attention recently. Both in the context of holo-
graphic correspondence and the modular bootstrap program, Narain theories play the
Goldilocks role of theories rich enough and simple enough to be studied. Holographically,
the emphasis is on the bulk description of the ensemble of Narain theories [1–8]. As a
parallel development, the spectral gap of Narain theories has being studied numerically
using the modular bootstrap approach [1, 9, 10]. In both cases, the hope is that lessons
learned for Narain theories, which exhibit U(1)n×U(1)n symmetry, will be relevant for the
conventional “Virasoro” CFTs without extended symmetries.

Two years ago spinless bootstrap constraints for theories with U(1)n×U(1)n symmetry
were shown in [9] to reduce to linear programming bounds of Cohen and Elkies on the
density of sphere packings [11]. This remarkable result establishes a connection between 2d
CFTs and a well-known problem in discrete mathematics. More recently, a certain family
of Narain theories was found to be related to quantum stabilizer codes [12, 13]. These
developments are conceptually similar. First, in both cases a subset of modular bootstrap
constraints reduces to a well-known problem, the linear programming bounds of [11] in the
case of sphere packings and those of Calderbank et al. in the case of quantum codes [14].
Second, the problems of maximizing the CFT spectral gap, sphere packing density, and code
Hamming (or other appropriate) distance are qualitatively similar, which can be utilized
e.g. to shed light on holographic properties of Narain theories [14]. We further elucidate
this point below.

In the context of classical codes, a central unsolved problem is of finding codes [n, k, d]
of fixed length n and rank (encoding code capacity) k with the maximal possible Hamming
distance d. Such codes are called optimal. The asymptotic value of maximal d/n for
fixed k/n and n → ∞ are not known. Maximal d is constrained by linear programming
bounds. If a code saturates a linear programming bound it is called extremal [15]. An
extremal code is automatically optimal but not vise versa. Historically in the context of
double-even self-dual binary codes, for which k = n/2, extremal codes were defined as
those saturating a particular analytic linear programming bound d = 4[n/24] + 4. As the
linear programming bounds improved, some authors call the code extremal if it saturates
any subset of necessary constraints — the nomenclature we follow. It is an open question if
the optimal code(s) for n� 1, say optimal double-even self-dual linear binary code(s) with
n = 72, are extremal. A very similar situation and nomenclature applies to quantum codes.

For Narain CFTs, we propose to call a theory optimal if it maximizes the spectral
gap for the given central charge c and extremal if it saturates (any subset) of the modular
bootstrap constraints. A conjectural list of optimal theories for 1 ≤ c ≤ 8 was given in [1],
together with optimal (densest) lattice sphere pickings in 2c dimensions, see table 1. A
brief examination reveals that the picture for maximal spectral gap and sphere pickings is
similar — for certain small dimensions optimal lattices are related to codes. This is most
known for the densest sphere pickings in 8 and 24 dimensions, which are related to E8 and
Leech lattices (Hamming [8, 4, 4] and Golay [24, 12, 8] codes) correspondingly. But in fact
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c ∆1 theory/lattice ∆1 lattice
1 1/2 SU(2)1 WZW

√
1/3 A2

2 2/3 SU(3)1 WZW
√

1/2 D4

3 3/4 SU(4)1 WZW 6
√

1/3 E6

4 1 SO(8)1 WZW 1 E8

5 1 SO(10)1 WZW 10
√

4/3 Λ10

6
√

4/3 Coxeter-Todd
√

4/3 Coxeter-Todd
7

√
4/3 14

√
64/3 Λ14

8
√

2 Barnes-Wall
√

2 Barnes-Wall

Table 1. Table of hypothetical optimal Narain theories [1] (left panel) and densest lattice sphere
pickings in R2c [16] (right panel). Density of sphere packings in measured in ∆1, which is half of
the shortest vector length squared.

for other dimensions optimal lattices are related to codes as well1 [16]. For the Narain case,
conjectural optimal theories with c = 3, 4, 5 from the table 1 are the code CFTs associated
with quantum stabilizer codes of [12, 13]. Up to T-dualities such codes/CFTs can be
parametrized by graphs on c = n nodes. For c = 3, 4, 5 the optimal theories are code CFTs
associated with the fully connected graphs. Among them is the c = 4 theory, associated
with the E8 lattice understood as a Narain lattice, which saturates the numerical Virasoro
bootstrap constraints and hence it is extremal and optimal among all 2d CFTs [1, 9, 17].

All optimal theories from table 1 exhibit “quantized” spectrum, i.e. the conformal
dimensions of U(1)c ×U(1)c primaries are integer in some appropriate units,

∆ = k∆∗, k ∈ Z+,

where ∆∗ may be irrational. This hints optimal theories beyond c = 3, 4, 5 might be related
to codes as well. In this paper we introduce a novel construction, complementary to the
construction of [12, 13] which maps a certain class of isodual codes over F4, which we call
codes of N-type, to a family of Narain CFTs. We will call these theories code CFTs. The
spectrum gap of code CFTs is quantized in the units of ∆∗ = 1/

√
3 which implies that

these are non-rational theories [18]. This is quite remarkable given that code CFT partition
functions exhibit a simple algebraic structure, hinting at a finite number of “characters.”
The spectral gap of a code CFT associated with the code C is given by

∆1 = min{d, 4}
2
√

3
, (1.1)

where d is the Hamming distance of C. Using this construction, we will show optimal
Narain theories from table 1 with c = 6, 7 are code CFTs.

1For example, lattice D4 which is optimal in R4, is the construction A lattice of the linear binary code
consisting of all codewords of even weight; the Coxeter-Todd lattice optimal in R6 is the construction A
lattice of the Hexacode, as is reviewed in section 6.1.
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Similarly to the case of [12, 13] where the CFT torus partition function had a closed-
form expression in terms of the code’s enumerator polynomial, in the present case the
partition function can be expressed in terms of extended enumerator polynomial WS , de-
fined in equation (4.16),

Z = WS({ψx}, {ψxy})
|η|2n

. (1.2)

Here ψx and ψxy are particular Seigel theta functions defined in (4.19) and (4.20). Modular
invariance of Z is guaranteed by the algebraic properties of WS , outlined in (4.26), (4.31).
In fact any polynomial WS satisfying those properties gives rise to a modular invariant Z,
serving as a useful ansatz solving the modular bootstrap constraints.

The paper is organized as follows. In section 2 we remind the reader the basics of codes
and their relation to lattices. In section 3 we define the codes of N-type and construct an
explicit map from these codes to Narain lattices. In section 4 we parametrize all N-type
codes and calculate their Seigel theta series in terms of the extended enumerator polynomial
WS . We also discuss algebraic symmetries of WS and how they are solved by a ring of
invariant polynomials. Section 5 lists explicit examples, and in section 6 we construct the
optimal theories for c = 6, 7 using N-type codes. We conclude in section 7.

2 Background

In this section we review relevant background for codes over F4 and Narain CFTs. For a
more detailed pedagogical introduction see [13].

2.1 Codes and lattices

A linear binary code C is a k-dimensional vector space in Fn2 over the field F2. The field
F2 = {0, 1} consists of two elements with the conventional operations and 1 + 1 = 0. In
other words C is a set of 2k binary vectors, also called codewords. Elements of codewords
c ∈ C are called letters. The vector space Fn2 is equipped with the Hamming norm (weight)
w(c) which evaluates the number of non-zero letters of c ∈ C ⊂ Fn2 . The Hamming distance
of a code is defined as the minimal Hamming weight of all of its non-trivial codewords,

d = min
c∈C, c 6=0n

w(c) . (2.1)

A code C ⊂ Fn2 of size 2k and Hamming distance d is said to be of type [n, k, d].
We define an inner product (·, ·)B for binary codewords in the obvious way:

(c1, c2)B =
n∑
i=1

ci1c
i
2 (mod) 2, c1, c2 ∈ Fn2 . (2.2)

This allows us define a dual code C∗ as the vector subspace in Fn2 orthogonal to C, i.e. con-
sisting of the binary codewords which are orthogonal to every codeword of C. A code is
self-orthogonal if C∗ ⊂ C, and self-dual if C∗ = C. The simplest example of a self-dual code
is the [2, 1, 2] “repetition” code consisting of two codewords, the trivial one c0 = (0, 0) and
c1 = (1, 1).
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A mapping from a code to a lattice is called a Construction. The most basic one is
called Construction A: for additive codes over F2 the lattice Λ(C) associated with the code
C is given by

Λ(C) = {~v/
√

2 |~v ∈ (F2)n, ~v ≡ c (mod) 2, x ∈ C} ⊂ Rn . (2.3)

The normalization by
√

2 is necessary to ensure the lattice of the dual code is just the
dual lattice,

Λ(C∗) = (Λ(C))∗ . (2.4)

Certain properties of the code C translate to the properties of the lattice Λ(C). In particular,
if C is a self-dual code, then Λ(C) is a self-dual lattice. In addition, if C is an even code,
then every vector of Λ(C) has integral norm-squared.

To proceed further we define F4, the field of four elements {0, 1, ω, ω}. It satisfies the
conventional algebra 0x = 0, x + 0 = 0, and 1x = x for any x ∈ F4. In addition, it also
satisfies x+ x = 0; the sum of any two non-zero elements is equal to third one: 1 + ω = ω̄,
1 + ω̄ = ω, ω + ω̄ = 1; and ω ω̄ = 1. F4 admits an external automorphism conjugation
which exchanges ω ↔ ω.

An additive code over F4 is defined as a k-dimensional vector subspace C ∈ Fn4 . It
consists of 2k codewords and is denoted [n, k, d], where the Hamming distance d is defined
as in (2.1) with the Hamming weight w(c) counting the total number of non-zero elements
of c ∈ C. There are many different ways to define an inner product on Fn4 . Throught the
paper we will use the Hermitian inner product

(c1, c2) =
n∑
i=1

ci1c
i
2 + ci1c

i
2, c, c′ ∈ C . (2.5)

All algebra is understood in the sense of F4 and therefore (c1, c2) is either zero or one.
As in the case of binary codes, for codes over F4 a dual code C∗ is defined as the vector
subspace in Fn4 orthogonal to C with respect to the inner product (2.5). For a [n, k, d] code
C, the dual code C∗ would be [n, 2n−k, d̃]. The simplest example of a self-dual code would
be the [1, 1, 1] code consisting of a trial codeword C0 = (0) and c1 = (x) where x is either
ω, ω̄ or 1.

The algebraic properties of F4 become apparent if we identify elements x ∈ F4 with
points on the complex plane. Namely 0, 1 ∈ F4 are mapped to 0, 1 ∈ C, while ω, ω̄ are
mapped to e±2πi/3. Upon imposing the equivalence condition 2x = 0 we obtain F4. This
simple observation is the idea behind Construction A, which is a mapping from codes over
F4 to lattices. First, any element x ∈ F4 can be represented as x = aω+b ω where a, b ∈ Z2.
This defines an invertible map, called Gray map, from F4 → F 2

2 and codewords c ∈ C can
be represented as binary vectors in F 2n

2 . The lattice associated with C is defined as

Λ(C) = {~aω+~b ω̄ | (~a,~b) (mod) 2 ≡ c ∈ C} ⊂ Cn = R2n , ω = e2πi/3, ω̄ = e−2πi/3. (2.6)

For a self-dual code C, the corresponding lattice (2.6) is 3-modular [15]. If we further
rescale it by 1/31/4, the resulting lattice

Λ̃(C) = Λ(C)/31/4 (2.7)
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will be iso-dual, in the sense that the dual lattice is related to Λ̃(C) by a π/2 rotation in
each complex plane of Cn [13]. More generally, for an arbitrary code (see appendix 8.1 for
a proof),

Λ̃∗(C) = O
(n)
π/2Λ̃(C∗) . (2.8)

Here O(n)
π/2 acts in each complex plane C = R2 with

Oπ/2 =
(

0 1
−1 0

)
(2.9)

and in (2.8) we abuse the notation by denoting both the lattice and its generating matrix
by Λ(C). It should be noted that lattice generating matrix is not unique, an action by
GL(2n,Z) defines the same lattice. Hence (2.8) could be understood either in the sense
of the equivalence under GL(2n,Z) or that one can find representatives Λ∗(C) and Λ(C∗)
satisfying (2.8) as the matrix identity.

In the rest of the paper we will use somewhat different coordinates to represent Λ̃(C) ⊂
R2n. The first n coordinates will be the x-coordinates of the n complex planes of (2.6),
while the last n coordinates will be the y-coordinates,

Λ̃(C) =
{

(<(~aω +~b ω̄),=(~aω +~b ω̄))
31/4

∣∣∣∣∣ (~a,~b) (mod) 2 ≡ c ∈ C
}
⊂ R2n . (2.10)

2.2 Narain CFTs

Narain CFTs are theories describing compactificsation of n free scalars on a torus
parametrized by a metric G and a B-field. Mathematically, each Narain theory is uniquely
specified by a Narain lattice Λ, which is an even self-dual lattice in Rn,n. With the conven-
tional metric

η =
(

1n

−1n

)
(2.11)

lattice vectors are usually denoted as (pL, pR) ∈ Λ. The partition function of a Narain
CFT on a Euclidean torus τ is given by

Z(τ, τ̄) = 1
|η(τ)|2n

∑
(pL,pR)∈Λ

qp
2
L/2qp

2
R/2 , q = e2πiτ , q = e−2πiτ̄ . (2.12)

Clearly orthogonal transformations O(n) × O(n) ⊂ O(n, n) which individually rotate pL
and pR do not change the theory, although they change the lattice.

It is convenient to introduce coordinates to (α, β) defined by

α = pL + pR√
2

, β = pL − pR√
2

, (2.13)

In these coordinates the metric becomes

g =
(

1n

1n

)
. (2.14)
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It is always possible to apply O(n)×O(n) transformations and choose a lattice generator
matrix in the form (here and below we use Λ to denote both the lattice and its genera-
tor matrix)

Λ =
(
γ∗ Bγ

γ

)
, (2.15)

where γ∗ = (γ−1)T is the dual lattice to γ. The matrix γ generates the lattice which defines
the compactification torus, G = γTγ while B is an antisymmetric B-field. The form of
Λ (2.15) is convenient because it manifests self-duality of Λ; as a matrix Λ ∈ O(n, n)
and obeys

ΛT gΛ = g ∈ GL(2n,Z) , (2.16)

and so the lattice is self-dual with respect to the metric g.
The central question of the modular bootstrap program is to determine the maximal

value of the spectral gap among all theories with a particular value of the central charge c.
For Narain theories, the question is about U(1)n×U(1)n primaries, i.e. the length squared
of the shortest non-trivial lattice vector

∆1 = min
(pL,pR)∈Λ,
p2

L+p2
R 6=0

p2
L + p2

R

2 , (2.17)

which one would like to maximize among all Narain lattices of the same dimension 2n = 2c.

3 Constructing Narain CFTs from codes over F4

In this section we describe construction N, which maps certain codes over F4 to Narain
CFTs. As discussed in the section above, any code C over F4 can be mapped to a lattice
Λ̃(C) via (2.7). We might then expect that provided certain conditions on the code C are
satisfied, the resulting lattice will be a Narain lattice with respect to a properly defined
Lorentizan metric.

3.1 General construction

We start by discussing the most general case. Assume C is an additive code over F4 of
length n, and define its conjugate C to be the code C with each letter ω replaced by ω and
vice-versa. Also define Λ̃(C) ⊂ R2n to be the lattice obtained via construction A from C
and rescaled by 1/31/4 (2.10).

An important element of the construction will be a permutation of the letters of the
code. Define S to be a permutation of the letters which only permutes letters in pairs,
S−1 = S. We can think of S as an n × n orthogonal integral matrix, which then obeys
S = ST = S−1. We denote by S(C) the code C where we have permuted the letters of each
codeword according to S. We now claim the following.

Self-duality. If C∗ = S(C), then Λ̃(C) is self-dual with respect to the metric

gS =
(

1
1

)
⊗ S =

(
S

S

)
. (3.1)

– 6 –
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Evenness. Each letter ci of a codeword c ∈ C can be written as ci = ai ω + bi ω for
ai, bi ∈ Z2. Then if

n∑
i=1

(
bibS(i) − aiaS(i)

)
(mod) 4 = 0 (3.2)

for every c ∈ C, then the lattice Λ̃(C) is even with respect to the metric gS.

To use these claims to construct a Narain CFT from a code over F4 it would be
enough to show that gs is a Lorentizan metric with the signature (n, n) in R2n. Indeed, gS
is related to (2.14) by a similarity transformation, gS = OT gO, with the orthogonal matrix
O =

(
1n

S

)
. The lattice OΛ̃(C) is then even and self-dual with respect to g, and hence

defines a Narain CFT.

Construction N. If C obeys C∗ = S(C) and each codeword c ∈ C obeys (3.2), then Λ̃(C) =
Λ(C)/31/4 is a Narain lattice with respect to gS.

Construction N specifies a certain class of codes over F4 satisfying Self-duality
and Evenness. We will call such codes “N-type codes”, and corresponding CFTs obtained
via this construction “code CFTs”. Since permutation and conjugations are transforma-
tions from the code automorphism group [14], N-type codes are isodual [n, n, d] codes over
F4.

Before we proceed to prove the claims, let us explain why the pairwise permutation S
can not be easily generalized to an arbitrary permutation. The condition S2 = 1 is crucial
for the metric (3.1) to satisfy g2

S = 1, a necessary condition provided gS is related to g by
an orthogonal transformation.

Let us prove the claims. We start with Self-duality. Following (2.8), the dual lattice
Λ̃∗ is related to Λ̃ by

Λ̃∗(C) = O
(n)
π/2Λ̃(C∗) . (3.3)

We will abuse notation and denote by Λ̃ also the generator matrix for the lattice Λ̃, in
which case Λ̃∗ = (Λ̃−1)T . Then we can interpret (3.3) as matrix multiplication.

Since C∗ = S(C), we find that

Λ̃∗(C) = O
(n)
π/2P

(n)σΛ̃(C) , (3.4)

where

P (n) =
(
−1

1

)
⊗ 1n =

(
−1n

1n

)
, σ = 12 ⊗ S =

(
S

S

)
. (3.5)

Specifically, P (n) performs a conjugation in each complex plane, while σ interchanges n
complex planes according to the permutation S. Note that

Onπ/2P
n = g =

(
1n

1n

)
, (3.6)

and that g commutes with S. Then we have found

Λ̃∗(C) = gS Λ̃(C) , (3.7)

where gS = σg =
(

S
S

)
. Equation (3.7) manifests that Λ̃(C) is self-dual with respect to gS .

– 7 –



J
H
E
P
1
1
(
2
0
2
1
)
0
1
6

Next we prove Evenness. The norm of a lattice vector ~v ∈ Λ̃(C) is

|~v|2 = vT gSv . (3.8)

Vector v can be also written as an n-dimensional complex vector with the coordinates
vi = ai ω+bi ω

31/4 for ai, bi ∈ Z such that

|~v|2 = 1
2

n∑
i=1

(
bibS(i) − aiaS(i)

)
. (3.9)

It is enough to show that |~v|2 (mod) 2 = 0. First we show that we can restrict to ai, bi ∈
{0, 1}. Indeed, shifting ai → ai + 2 for a particular i we find

|~v|2 → |~v|2 + aS(i) + aS
−1(i) ≡ |~v|2 (mod) 2 , (3.10)

where we used S = S−1. A similar argument works for bi. However, if ai, bi ∈ {0, 1}, then
v is also a codeword of C. It is thus enough to have

n∑
i=1

(
bibS(i) − aiaS(i)

)
≡ 0 (mod) 4 (3.11)

for any codeword c, which is exactly our assumption (3.2).

3.2 Simplified construction for self-dual codes

The general construction simplifies for self-dual codes C = C∗. Then the condition described
above reduces to the following one:

Construction N′. Consider a self-dual code C. For every c ∈ C, define the weight wx(c)
for x ∈ F4 to be the number of letters in c which are equal to x. Then if for all codewords
c ∈ C satisy

wω(c)− wω(c) ≡ 0 (mod) 4 , (3.12)

the lattice Λ̃(C) = Λ(C)/31/4 is a Narain lattice with respect to the Lorentzian metric g.

The construction N′ is equivalent to construction N (with a trivial permutation S = 1)
when it applies. To prove the claim we first show that Λ̃ is even. The condition Evenness
in this case reduces to

n∑
i=1

(
(bi)2 − (ai)2

)
≡ 0 (mod) 4 , (3.13)

for all codewords. Since ai, bi ∈ {0, 1}, we can set (ai)2 = ai and similarly for bi. Also
note, if the letter ci is equal to 1, it has ai = bi and so it does not contribute to this
sum, so that (3.13) can equivalently be reformulated as (3.12). To finish the proof, we
must show the lattice is also self-dual with respect to g. Since C is self-dual, to reduce it
to Self-duality, it would be enough to show that C = C. Indeed it can be shown that any
self-dual code that obeys (3.12) is invariant under conjugation, see appendix 8.2.

Construction N′ can be compared to another construction of Narain CFTs from codes
over F4, called “new construction A” in [13]. While the conditions on the codes are slightly
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different in the two constructions, there are still codes which obey both sets of conditions,
so that one can generate two CFTs from them. In this case, the corresponding Narain
lattices are related by a linear transformation (corresponding to the Gray map on F4)
together with a rescaling.

4 Analyzing code CFTs

4.1 Universal properties of code CFTs

There are universal properties which are common to all N-type codes and code CFTs
obtained via construction N. We describe them below.

4.1.1 The binary subcode

For any code C over F4, we can define its binary subcode CB ⊂ C which consists of only
those codewords whose letters are either 0 or 1, so that

CB = {c | c ∈ C, c ∈ Fn2 } . (4.1)

For N-type codes, this will be some linear [n, k, dB] binary code, for some k, dB ∈ N. This
subcode is usually much easier to study than the full code, and so it is useful to discuss its
properties in some detail.

As a reminder, we use (·, ·) to denote the standard Hermitian inner product over
F4 in equation (2.5) and (·, ·)B to denote the standard binary inner product over F2 in
equation (2.2). In addition, we will define an additional inner product (·, ·)B,S which
denotes the binary inner product combined with the permutation S, i.e. (c1, c2)B,S =
(c1, S(c2))B for binary codewords c1, c2 ⊂ Fn2 .

Now consider some N-type code C ⊂ Fn4 , with CB being its binary subcode. Denote
by C∗B its binary dual with respect to the standard binary inner product (·, ·)B. Then

C∗B = {S(c+ c) | c ∈ C} = {c′ + c′ | c′ ∈ C∗} . (4.2)

we prove this equation in appendix 8.3. It can be also shown C∗B is even with respect to
the inner product (·, ·)B,S , see appendix 8.4.

We can use this result to show that a certain codeword must always be part of C. By
rearranging letters in our code we can always bring the pairwise permutation S to the form

S =

m

︷ ︸︸ ︷
1
. . .

1

n−m︷ ︸︸ ︷

σx
. . .

σx


, (4.3)
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where σx =
( 1

1
)
. S acts trivially on the first m letters and permutes the last n−m letters

in pairs (n −m must be even). Now, consider the codeword β = (1m, 0n−m). Note that
since C∗B is even with respect to the inner product (·, ·)B,S , this implies (β, c)B ≡ 0 (mod) 2
for every c ∈ C∗B. Therefore β ∈ CB ⊂ C, and so β = (1m, 0n−m) must always be a codeword
of our code C.

In the simpler case when we use construction N′, the code C always contains the
codeword b = (1n), so that C∗B is even. In addition, in this case the dual binary subcode is
self-orthogonal with respect to the usual inner product (·, ·)B, so that C∗B ⊂ CB ⊂ C.

4.1.2 Bounds on the spectral gap

There are universal bounds on the spectral gap of any lattice obtained via construction N
from a code C ⊂ Fn4 . Since the Narain lattice is given by a construction A lattice from
some code (up to a rescaling by 31/4), the spectral gap is always given by (1.1):

∆1 = min{d, 4}
2
√

3
. (4.4)

For example, the lattice always includes the vector (2, 0, . . . , 0)/31/4, and so ∆1 ≤ 4
2
√

3 .
For codes with large n, it is hard to find the Hamming distance d. However, there are

simpler bounds on ∆1 which can be obtained. For example, the binary subcode of C is
usually much simpler than C itself, and dB = d(CB) is an upper bound on the hamming dis-
tance

∆1 ≤
d(CB)
2
√

3
. (4.5)

Similarly, we found above that if the permutation S keeps m > 0 letters invariant, the
code includes a codeword with m ones and zeros otherwise. This gives an upper bound
on ∆1 ≤ m

2
√

3 .
When the code is self-dual the bound is stricter. In this case C∗B itself is also a subcode

of C, and therefore its Hamming distance also imposes an upper bound on the spectral gap,
so that in addition to the bounds discussed above, we also have d(CB) ≤ d(C∗B).

4.2 Generator matrices for code CFTs

First we note that the lattice 31/4Λ̃(C) is the construction A lattice obtained from a code
over F4, see (2.10). As a result, each vector (3−1/4~v, 31/4~u) ∈ Λ̃(C) must have the fol-
lowing property: ui, vi for each i are simultaneously integer or half-integer. This fol-
lows from the image of the elements x ∈ F4 via Construction A, which maps 0, 1, ω, ω to
(u, v) = (0, 0), (1, 0), (−1/2, 1/2), (−1/2,−1/2) respectively. Accordingly, the description
of all lattices associated with codes via Construction N is as follows. A Narain lattice with
every vector (3−1/4~v, 31/4~u) satisfying

2ui, 2vi, vi + ui ∈ Z (4.6)

can be unambiguously mapped back to an N-type code. Permutations of letters, at the
level of lattices, are the T-duality transformations permuting coordinates ui and vi. There
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are other T-duality transformations, namely orthogonal transformations OL × OR, which
commute with the metric gS and preserve the condition (4.6). In case of [13] all T-dualities,
at the level of codes were code equivalences. We leave open the question if this is also the
case for the codes/theories of N-type. Furthermore, in the case of binary stabilizer codes,
they and corresponding theories can be parameterized by graphs, with the T-duality induc-
ing equivalence conditions on the latter. It would be interesting to develop an analogous
formalism for the codes of N-type. We take first steps in this direction below.

We show that for N-type codes, the corresponding lattices and hence code theories can
be effectively parametrized by a handful of matrices satisfying simple constraints. This is
essentially a generalization of the “canonical form” applicable both to codes and associated
lattice. To derive it, we start by reminding basic properties of the Narain lattices. Every
Narain lattice Λ which is even and self-dual with respect to the metric g admits a generator
matrix of the form

Λ =
(
γ∗ Bγ

γ

)
(4.7)

where γ∗ = (γ−1)T is the dual lattice to γ and B is an antisymmetric matrix. Now, since

gS =
(

1n

S

)
g

(
1n

S

)
, (4.8)

then if Λ is even and self-dual with respect to g, then Λ′ =
( 1n

S

)
Λ
( 1n

S

)
is even and

self-dual with respect to gS , and vice-versa. Thus we learn for every lattice Λ̃(C) obtained
via construction N, the generator matrix can always be brought to the form

Λ̃(C) =
(
γ∗ BγS

SγS

)
(4.9)

For convenience, we will redefine γ and B such that the generator matrix Λ̃(C) takes
the form

Λ̃(C) =
(
γ∗ BγS
√

3SγS

)
/31/4 . (4.10)

We may now use lattice equivalences to bring Λ̃(C) to the simplest form possible, by
bringing γ∗, γ and B to their “canonical” forms. We perform this analysis in appendix 9.
The result is that the generator matrix Λ for a code theory associated with a given pairwise
permutation S can always be brought to the form (4.10), where γ∗, γ, S and B are given
as follows:

• γ∗ is obtained by taking the generator matrix for the construction A lattice obtained
from the binary subcode CB ⊂ C via (2.3), and further multiplying it by

√
2. The

binary subcode is an [n, k, dB] linear code, and so γ∗ can always be brought to the form

γ∗ =
(

2 1n−k bT

1k

)
(4.11)

– 11 –



J
H
E
P
1
1
(
2
0
2
1
)
0
1
6

for some k × (n − k) matrix b which takes values in {0, 1} and which completely
specifies the binary subcode. This means that

γ = (γ∗−1)T =
(1

21n−k

−1
2b 1k

)
. (4.12)

• After putting γ∗ into this form, S is not necessary in the canonical form (4.3); instead,
it is equivalent to the form (4.3) up to permutations of the rows and columns. Thus,
S is some matrix whose elements are 0, 1 and which obeys S2 = 1 and ST = S. We
can represent S as a block matrix:

S =
(
S11 S12

ST12 S22

)
, (4.13)

where S11 is an (n− k)× (n− k) matrix, and S22 is k × k.

• B takes the form

B =
(
B̃ + bTST12 − S12b bTS22 − S12

ST12 − S22b 0

)
, (4.14)

with B̃ an integer (n− k)× (n− k) antisymmetric matrix defined mod 4.

In addition, due to the constraint (4.6), we must have

B̃ + bTST12 − S12b− bTS22b+ S11 = B̃ +
(
1n−k|bT

)
S

(
1n−k
b

)
≡ 0 (mod) 2 . (4.15)

This is a complicated constraint in general. But if we focus on the diagonal, we find that
since B̃ is antisymmetric, this reduces to the constraint that the matrix (1n−k|bT )S

( 1n−k

b

)
has 0’s on the diagonal. This means that the code CB must be even with respect to the
inner product (·, ·)B,S , which was indeed proven to be the case in section 4.1.1.

To summarize, we have found that generating matrices for code CFTs obtained via
construction N are completely fixed in terms of the given permutation S (i.e. a matrix
whose elements are 0, 1 and which obeys S2 = STS = 1), along with a k × (n− k) binary
matrix b and an antisymmetric integral (n − k) × (n − k) matrix B̃ defined mod 4 and
obeying (4.15). In terms of these matrices, the matrix γ∗ is given by (4.11), B is given
by (4.14), and the full generator matrix is given by (4.10).

We thus have a full classification of all possible generator matrices, and so one can find
all code CFTs, up to T-duality, by generating all possible building blocks S, γ∗, B̃ obeying
these constraints. Specifically, the procedure is the following. Start by choosing a k×(n−k)
matrix b which takes the values 0 or 1, which specifies γ∗ using (4.11). Next, choose a
permutation matrix S. This is an n×n symmetric matrix which obeys S2 = STS = 1 and
takes the values 0 or 1, such that in every row and column exactly one element is nonzero.
This defines a permutation of the bits. Finally, we must choose a matrix B̃. This is an
(n−k)× (n−k) integral antisymmetric matrix defined mod 4. This matrix must also obey
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the condition (4.15). Since we have already chosen b and S, this constraint can be easily
solved, and allows for two choices for the value of each element of B̃. Specifically, if the
corresponding element of

(
1n−k|bT

)
S
( 1n−k

b

)
is zero mod 2, then the element of B̃ can be 0

or 2. Otherwise, the element of B̃ can be 1 or 3.
Finally, we discuss the simplifications that occur for the construction N′. In this case,

S = 1n and so in equation (4.13) we find S11 = 1k, S22 = 1n−k and S12 is the zero matrix.
The main simplification is in the constraint (4.15). Using the fact that the dual of the
binary subcode C∗B is self-orthogonal in this case, the constraint reduces simply to the
requirement that the elements of B̃ must be even. Thus to generate all code theories of
this type we choose b as above, and in addition choose an (anti)symmetric (n−k)× (n−k)
matrix B̃ which is defined mod 4 and can take only even values.

4.3 Partition functions

The partition function of a code CFTs is related to enumerator polynomial of the corre-
sponding code C, similarly to the discussions in [13]. However, our construction relates
the partition function to an extended enumerator polynomial WS which depends on the
permutation S. WS is defined for a pair: a code and the pairwise permutation S. It is a
polynomial in 14 variables:

WS
C ({tx}, {txy}) =

∑
c∈C

∏
x∈F4

twx(c)
x

∏′

x,y∈F4

twxy(c)
xy , (4.16)

where ∏′x,y means that only ordered pairs (x, y) are included in the product. We thus
have 4 variables tx and 10 variables txy (because of symmetry txy = tyx). wx(c) counts
how many non-permuted letters x ∈ F4 appear in each codeword c, while wxy(c) counts
how many pairs of letters (x, y) are permuted into each other. In the case of a trivial
permutation S = 1, wxy = 0 for all codewords, and WS

C reduces to the standard full
enumerator polynomial W ({tx}).

The partition function (2.12) of a code CFT can be written in terms of WS ,

ZΛ(C) = 1
|η|2c

WS
C ({ψx}, {ψxy}) , (4.17)

where the ψ’s are defined as follows. We define ~k = (k1, k2) ∈ Z2, and define g(x) for
x ∈ F4 to be the Gray map:

g(0) = (0, 0), g(1) = (1, 1),
g(ω) = (1, 0), g(ω) = (0, 1) .

(4.18)

In the language of the condition (3.2), we have x = axω + bxω̄ and g(x) = (ax, bx). Then

ψx =
∑
k∈Z2

exp[vTΩ2v] , v = 2k + g(x) , (4.19)

ψxy =
∑
k∈Z4

exp[vTΩ4v] , v = 2k + (g(x), g(y)) , (4.20)
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where

Ω2 = iπ

 iτ2√
3 −

τ1
2 − iτ2

2
√

3

− iτ2
2
√

3
τ1
2 + iτ2√

3

 , Ω4 = iπ



iτ2√
3 − iτ2

2
√

3 −
τ1
2 0

− iτ2
2
√

3
iτ2√

3 0 τ1
2

− τ1
2 0 iτ2√

3 − iτ2
2
√

3

0 τ1
2 − iτ2

2
√

3
iτ2√

3


, (4.21)

and we have written τ = τ1 + iτ2 for τ1, τ2 ∈ R.
Now we would like to verify modular invariance of the partition function (4.17). First

we discuss S-transformation τ → −1/τ . We start with Poisson resummation of a general
theta-series of the form∑

~n∈ZN

e(2~n+~c)T Ω(2~n+~c) = 1√
det (−4Ω/π)

∑
~m∈ZN

e
1
4π

2 ~mT Ω−1 ~m+iπ ~mT c . (4.22)

where Ω is an N × N matrix Ω and c is an N -dimensional vector. Using (4.22) and the
fact that both Ω2,Ω4 obey Ω−1(τ) = 4

π2 Ω(−1/τ) up to signs which can be removed by
redefining some of the integers in the sum, we find transformations of the ψ’s. To write
them concisely we introduce auxiliary variables

t′0 = t0 + t1 + tω + tω
2 ,

t′1 = t0 + t1 − tω − tω
2 ,

t′ω = t0 − t1 + tω − tω
2 ,

t′ω = t0 − t1 − tω + tω
2 ,

(4.23)

as well as

t′ω0 = 1
4(t00 − t11 − tωω + tωω + 2tω0 − 2tω1),

t′ω0 = 1
4(t00 − t11 + tωω − tωω + 2tω0 − 2tω1)

t′10 = 1
4(t00 + t11 − tωω − tωω + 2t10 − 2tωω),

t′ωω = 1
4(t00 + t11 − tωω − tωω − 2t10 + 2tωω),

t′1ω = 1
4(t00 − t11 + tωω − tωω − 2tω0 + 2tω1),

t′1ω = 1
4(t00 − t11 − tωω + tωω − 2tω0 + 2tω1),

t′00 = 1
4(t00 + t11 + tωω + tωω + 2tω0 + 2tω0 + 2t10 + 2tω1 + 2tω1 + 2tωω),

t′11 = 1
4(t00 + t11 + tωω + tωω − 2tω0 − 2tω0 + 2t10 − 2tω1 − 2tω1 + 2tωω),

t′ωω = 1
4(t00 + t11 + tωω + tωω + 2tω0 + 2tω0 − 2t10 + 2tω1 − 2tω1 − 2tωω),

t′ωω = 1
4(t00 + t11 + tωω + tωω + 2tω0 + 2tω0 − 2t10 − 2tω1 + 2tω1 − 2tωω).

(4.24)
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In terms of these variables the analog of the MacWilliams identity takes the form

WS
C∗({tx}, {txy}) = WS

C ({t′x}, {t′xy}) . (4.25)

Note that for S = 1 this reduces to the standard MacWilliams identity for codes over
F4 [15]. For the N-type codes satisfying C∗ = S(C̄) this yields

WS
C ({tx}, {txy}) = WS

C ({t′x̄}, {t′x̄ȳ}) . (4.26)

We can now write down the transformation of the ψ’s under τ → −1/τ . Transforma-
tions of ψx are exactly the same as the transformation tx → t′x in (4.23), supplemented by
the conjugation ω ↔ ω̄, i.e. the interchange of tω with tω̄ etc. in the r.h.s. of (4.23), and
also multiplied by

√
τ τ̄ . For example, compare with (4.23),

ψω(−1/τ) =
√
τ τ̄
ψ0(τ)− ψ1(τ)− ψω(τ) + ψω(τ)

2 . (4.27)

Similarly, ψxy transforms just like txy in (4.24), supplemented by the interchange of ω, ω
on the r.h.s. and multiplied by ττ . For example, compare with (4.24),

ψω0 (−1/τ) = ττ

4 (ψ00 − ψ11 − ψωω + ψωω + 2ψω0 − 2ψω1),

ψωω (−1/τ) = ττ

4 (ψ00 + ψ11 + ψωω + ψωω + 2ψω0 + 2ψω0 − 2ψ10 − 2ψω1 + 2ψω1 − 2ψωω).
(4.28)

Due to these transformations, we can immediately check that the partition function is
invariant under S-duality. Using the Macwilliams identity (4.26), we find

WS
C ((τ τ̄)−1/2ψx(−1/τ)}, {(τ τ̄)−1ψxy(−1/τ)}) = WS

C∗({ψx(τ)}, {ψxy(τ)}) . (4.29)

Next, using the fact that WS
C = WS

S(C) (since a permutation does not change any of the
weights wx, wxy), and C∗ = S(C) for N-type codes, we find

WS
C ({ψx(−1/τ)}, {ψxy(−1/τ)}) = (τ τ̄)n/2WS

C ({ψx(τ)}, {ψxy(τ)}) . (4.30)

This ensures invariance of the CFT partition function (4.17) under the S-transformation.
Next we discuss T-transformation τ → τ + 1. Looking at Ω2,Ω4, we find it acts on

ψx by introducing a phase, ψx → exp( iπ2 (b2 − a2))ψx where g(x) = (a, b), and similarly
ψxy → exp(iπ(bxby−axay))ψxy. Thus, the contribution from every codeword c corresponds
to a phase exp( iπ2

∑
i(bS(i)bi − aS(i)ai)). Due to the evenness condition (3.2), this phase

is always 1, and so the partition function is invariant under the T-transformation. This
corresponds to the following symmetry of WS :

WS
C ({tx}, {txy}) = WS

C ({t̃x}, {t̃xy}) , (4.31)

where
t̃ω = −itω, t̃ω = itω

t̃1ω = −t1ω, t̃1ω = −t1ω,
t̃ωω = −tωω, t̃ωω = −tωω .

(4.32)

and all other t’s are invariant.
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4.3.1 Classification of enumerator polynomials

We now attempt to classify the extended enumerator polynomials of the codes of N-type.
In fact, our task is broader, it is to classify all homogeneous polynomials of 14 variables
which are invariant under the S-transformation (4.26) and the T-transformation (4.31).
In general, the two transformations generate a group G acting on the polynomials of 14
variables, and so we are looking for the ring of polynomials invariant under G. One can write
down a generating function describing the dimension of the space of invariant homogeneous
polynomials of degree n, called the Molien series

M(r) =
∞∑
n=0

dim(RGn ) rn . (4.33)

Here RGn is the space of all polynomials of degree n invariant under G. Molien’s formula
(see e.g. [19]) gives a simple expression for this generating function:

M(r) = 1
|G|

∑
g∈G

1
det(1− rg) . (4.34)

Here, |G| is the number of elements in G, and g is a 14× 14 matrix acting on the individ-
ual variables.

We start by classifying polynomials associated with codes of the simpler construc-
tion N′. In this case there is no permutation, and so WS reduces to the standard enumer-
ator polynomial of 4 variables,

W (t0, t1, tω, tω) . (4.35)

The symmetry group G is generated by two matrices acting on the vector (t0, t1, tω, tω)
as follows

S = 1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 , T =


1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 −i

 . (4.36)

These matrices obey S2 = 1, T 4 = 1 and (ST )6 = 1, and so the group generated by all
possible products of T, S is finite and consists of 48 elements. The Molien series is

M(r) = 1
(r − 1)4(r + 1)3 (r6 + 2r4 + 2r2 + 1)

= 1 + r + 2r2 + 2r3 + 4r4 + 4r5 + 7r6 + 7r7 + . . . (4.37)

The Molien series gives the total dimension of the space of invariant polynomials of
degree n, yet we are interested in finding the generators of the polynomial ring invariant
under G, i.e. those polynomials which cannot be written as a product of the lower-order
ones. We denote by m′n the dimension of the space of invariant polynomials of degree n
which cannot be written as sums and products of lower-order invariant polynomials. Then
m′n can be obtained using a recursion formula:

m′k = mk −
∑

p∈Pk,p 6=(k)

k−1∏
i=1

(
wi(p) +m′i − 1

wi(p)

)
, mk = dim(RGk ) . (4.38)
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Here Pk denotes all integer partitions of k, and we are summing over all partitions apart
from the trivial partition (k). In addition, wi(p) counts how many times the number i
appears in the partition p.

In the case at hand the nonzero values of m′k are m′1,m′2,m′4,m′6, which are all equal
to 1. This means the ring of invariant polynomials is generated by four polynomials of
dimensions 1, 2, 4, 6. We can find them explicitly,

p1 = t0 + t1 ,

p2 = t20 + t21 + 2tωtω ,
p4 = t40 + 6t20t21 + t41 + t4ω + 6t2ωt2ω + t4ω ,

p6 = t60 + 24t0t1t2ω̄t2ω + 3t40t21 + 8t30t31 + 3t20t41 + 6t20t2ω̄t2ω
+ 3t20t4ω̄ + 3t20t4ω + 6t21t2ω̄t2ω + 3t21t4ω̄ + 3t21t4ω + t61 .

(4.39)

To conclude, any full enumerator polynomial of a code over F4 which obeys the conditions
outlined in construction N′ can be written in terms of the four polynomials above. In
particular, each pi corresponds to a specific N-type code, and we explicitly describe the
codes for i = 1, 2, 4 in section 5. The code for i = 6 is also known, but not discussed in
this paper.

We can now discuss the more general case of isodual N-type codes, for which permuta-
tion S is non-trivial. The symmetry group is again generated by two matrices T, S, which
are now 14 × 14 matrices, and which again obey T 4 = S2 = (ST )6 = 1. The group again
consists of 48 elements, but the Molien series in this case is more complicated:

M(r) = 1
(r − 1)14(r + 1)6 (r2 + 1) (r2 + r + 1)4

(
1 + 3r2 + 12r3 + 26r4 + 30r5 + 56r6

+58r7 + 60r8 + 58r9 + 56r10 + 30r11 + 26r12 + 12r13 + 3r14 + r16
)
. (4.40)

The values of m′k for small k are

m′k = {4, 8, 16, 21,−6, . . .} . (4.41)

We emphasize that k here is not the length of the code, but is the order of the polynomial
in terms of the variables tx, txy. For example, at k = 1 this includes the polynomial t00,
which corresponds to a code with n = 2.

There are two things to note here. First, even at small k there are many generators
of this ring. Second and more surprising, there are now also negative values of m′k. This
means the generators of the ring are not independent, and in fact there are relations
between them. To the extent of our knowledge, this is the first example when the ring of
invariant polynomials associated with the class of codes is not a freely generated one, but
involves non-trivial relations between generators. The first relation occurs at order k = 5
and involves many dozens of polynomials of smaller degree. It is way too cumbersome to
be written down here.

To conclude the discussion, we write all independent enumerator polynomials for n = 2
codes (of course the choice of independent polynomials is ambiguous). Without permuta-
tion, i.e. with S = 1, there is only one such polynomial, which is just p2 defined above.
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Next, we consider the permutation of the two bits. The corresponding polynomial is of de-
gree one, i.e. it has k = 1, and so we must look at m′1 which is equal to 4. This includes all
possible polynomials of degree one, including those without a permutation, and so we must
subtract polynomials without a permutation, of which there is one — p1 defined above.
Thus, there should be three independent invariant polynomials of degree k = 1 involving
a permutation of two letters:

q1 = t00 + t11 + 2t01 ,

q2 = t00 + t11 + 2tωω ,
q3 = t00 + t0ω + t0ω + tωω .

(4.42)

5 Simple examples

In this section we describe a number of examples of using the constructions N and N′,
including an explicit form for the generator matrices for the corresponding Narain CFTs.

5.1 Binary codes over F4

Define the code Bn = Fn2 over F4, i.e. Bn includes all possible codewords whose elements
are either 0 or 1 (in particular, Bn is equal to its own binary subcode). Its enumerator
polynomial is

pn1 = (t0 + t1)n . (5.1)

This code is an N-type code for any choice of permutation S, and so for any S we can
use Construction N to generate a Narain CFT from it. We note that for any n, Bn is the
unique N-type code whose letters are all either 0 or 1.2

The lattice Λ̃(Bn) obtained via construction N includes all n-dimensional vectors of
the form (3−1/4~v, 31/4~u) where vi, ui ∈ Z. We can construct its generator matrix explicitly
following section 4.2. There we demonstrated that the generator matrix can be brought to
the form

Λ̃(Bn) =
(
γ∗ BγS
√

3SγS

)
/31/4 , (5.2)

with γ∗ the generator matrix of the construction A lattice of the binary subcode of Bn
multiplied by an additional factor

√
2. In our case,

γ∗ = γ = 1n, (5.3)

and we can use T-dualities to set B = 0 by adding columns of
(
γ∗

0
)
with γ∗ = 1n to( BγS√

3SγS
)
. The generator matrix is thus especially simple and takes the form

Λ̃(Bn) =
(

1n √
3 1n

)
/31/4 . (5.4)

The spectral gap is always ∆1 = 1
2
√

3 .
2To see this, note that any N-type code must have 2n codewords, and the only way to generate this

number using binary codewords is to include all possible binary codewords.
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5.2 Codes with n = 1

We now describe all N-type codes with n = 1. There is only one such code, which is the
binary code discussed in 5.1:

B1 = {(0), (1)} , (5.5)

with enumerator polynomial p1 = t0 + t1 and the generator matrix, up to T-dualities, is

Λ̃(B1) =
(

31/4

3−1/4

)
. (5.6)

Corresponding theory is a compact boson at radius R =
√

2 31/4, which is a
non-rational theory.

5.3 Codes with n = 2

We now describe all N-type codes with n = 2 up to the automorphisms discussed in
section 4.3. At n = 2, there are two options for pairwise permutations: no permutation
and the permutation interchanging the two letters. We discuss each one separately.

5.3.1 No permutation

If there is no permutation, then there are two N-type codes (and for both we can apply
the simple construction N′ instead of the general one). One is the binary code B2 defined
in 5.1, with enumerator polynomial p2

1 = (t0 + t1)2. The other code is

C2 = {(0, 0), (1, 1), (ω, ω), (ω, ω)} . (5.7)

It has enumerator polynomial

p2 = t20 + t21 + 2tωtω . (5.8)

This code is self-dual and has wω(c) = wω(c) for every codeword c, and so we can apply
construction N′ to construct a Narain lattice Λ̃(C2) from it. The generator matrix takes
the form

Λ̃(C2) =
(
γ∗ Bγ
√

3γ

)
/31/4 , (5.9)

where γ∗ is the generator matrix of the construction A lattice of the binary subcode of C2
times

√
2, γ is given by γ = (γ∗−1)T , and B takes the form outlined in the equation (4.14)

with S = 1. We now construct this generator matrix explicitly.
First we find γ∗. The binary subcode of C2 is {(0, 0), (1, 1)}, and so γ∗ can be brought

to the form

γ∗ =
(

2 1
1

)
. (5.10)

In particular, comparing γ∗ to the canonical form (4.11), we find that b = 1. Next we
study the matrix B. Following equation (4.14), it must take the form

B =
(
B̃ bT

−b

)
, (5.11)
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with B̃ being an antisymmetric 1× 1 matrix. This means B̃ = 0, and so the final form of
the generator matrix is

Λ̃(C2) =


2 1 −1

2 1
0 1 −1

2 0
0 0

√
3

2 0
0 0 −

√
3

2
√

3

 /31/4 . (5.12)

The spectral gap of this CFT is ∆1 = 1√
3 .

5.3.2 With a permutation

If we include a permutation of the two letters, there are four N-type codes up to automor-
phisms:

B2 = {(0, 0), (0, 1), (1, 0), (1, 1)} ,
C2 = {(0, 0), (1, 1), (ω, ω), (ω, ω)} ,
C̃2 = {(0, 0), (0, ω), (ω, 0), (ω, ω)} ,
C′2 = {(0, 0), (0, 1), (0, ω), (0, ω)} ,

(5.13)

Their extended enumerator polynomials are

WS(B2) = q1 = t00 + 2t01 + t11 ,

WS(C2) = q2 = t00 + t11 + 2tωω ,

WS(C̃2) = q3 = t00 + t0ω + t0ω + tωω ,

WS(C′2) = 1
2q1 −

1
2q2 + q3 = t00 + t01 + t0ω + t0ω .

(5.14)

We can find the generator matrices of the corresponding Narain lattices:

Λ(B2) =


1

1
√

3
√

3

 /31/4, Λ(C2) =


2 1 1 −1

2

1 −1
2√

3 −
√

3
2√
3

2

 /31/4

Λ(C̃2) =


2 1

2

2 −1
2√

3
2 √

3
2

 /31/4, Λ(C′2) =


2 1

1 −1
2√

3
√

3
2

 /31/4 .

(5.15)

The spectral gaps of these CFTs are respectively

∆1(B2) = 1
2
√

3
, ∆1(C2) = 1√

3
, ∆1(C̃2) = 1

2
√

3
, ∆1(C′2) = 1

2
√

3
. (5.16)

We would like to note that B2 in (5.13) is exactly the same as in the section 5.3.1, but
its extended enumerator polynomial is different: p2

1 and q1. This is because this code is
invariant under permutations and, ammended with different S, gives rise to different CFTs.
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5.4 An n = 4 code

We now describe an N-type code with n = 4 for which the simple construction N′ applies.
The code is

C4 =



(0, 0, 0, 0) (1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1)
(0, 1, 0, 1) (0, 1, 1, 0) (0, 0, 1, 1) (1, 1, 1, 1)

(ω, ω, ω, ω) (ω, ω, ω, ω) (ω, ω, ω, ω) (ω, ω, ω, ω)
(ω, ω, ω, ω) (ω, ω, ω, ω) (ω, ω, ω, ω) (ω, ω, ω, ω)


. (5.17)

Its enumerator polynomial is p4 from (4.39). This code is self-dual and has wω(c) = wω(c)
for every codeword c. Applying construction N′, we get a Narain lattice Λ̃(C4). Its generator
matrix takes the form

Λ̃(C4) =
(
γ∗ Bγ
√

3γ

)
/31/4 , (5.18)

where

γ∗ =


2 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 , B =


0 1 1 1
−1 0 0 0
−1 0 0 0
−1 0 0 0

 . (5.19)

The spectral gap is ∆1 = 1√
3 .

6 Constructing optimal CFTs

In this section we construct the hypothetical optimal Narain CFTs with the central charges
c = 6 and c = 7. Both of these were found in [1]. For c = 6, there is an obvious guess for
the code associated with it. The corresponding Narain lattice is the Coxeter-Todd lattice
understood as a Lorentizan lattice; the latter is known to be related to the hexacode —
the unique self-dual [n, k, d] = [6, 3, 4] code over F4. For c = 7 the code we find is less
well-known, and we dub it the “septacode.” Finally, we discuss optimal CFTs at other
values of central charge and their possible relations to codes.

6.1 c = 6 and the hexacode

Consider the hexacode H, which is a linear3 [6, 3, 4] code over F4. We can choose the
generating matrix to be [16]

G =



0 0 1
0 1 0
1 0 0
1 1 1
1 ω ω

1 ω ω


. (6.1)

3Linear means code generator matrix is multiplied by the elements of F4. For an additive code over F4

it is F2.
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The hexacode is even and self-dual. Its Hamming distance is d(H) = 4, and its binary
subcode is

HB = {(06), (12, 02, 12), (02, 14), (14, 02)} . (6.2)

The corresponding construction A lattice Λ(H) is the Coxeter-Todd lattice K12 [16].
We now show that we can apply construction N to the hexacode with a permutation S

that permutes the last two letters, so that the lattice Λ̃(H) = K12/31/4 is a Narain lattice.
The extended enumerator polynomial of the hexacode with respect to this permutation is

WS
H = t40t00 + t00t

4
ω + t00t

4
ω + t41t00 + 8t1t0t01tωtω + 8t1t0t0ωtωtω + 8t1t0t0ωtωtω

+ 2t11t
2
ωt

2
ω + 2t21t20t11 + 4t21t1ωt2ω + 4t20t1ωt2ω + 4t20t1ωt2ω + 4t21t1ωt2ω

+ 4t2ωt2ωtωω + 2t21t2ωtωω + 2t20t2ωtωω + 2t20t2ωtωω + 2t21t2ωtωω + 4t21t20tωω .
(6.3)

The hexacode obtained using the generating matrix (6.1) obeys H = S(H), where S
interchanges the last two letters, and so using Self-duality we find that Λ̃(H) is self-dual with
respect to the metric gS (3.1). One can check explicitly that the hexacode obeys Evenness
conditions with the same permutation S, and so Λ̃(H) is also even with respect to the
metric gS . H is thus an N-type code, and so using construction N we find that Λ̃(H) is
a Narain lattice. The corresponding spectral gap is ∆1 =

√
4/3, which was conjectured

in [1] to be the maximal value for Narain CFTs with c = 6. Indeed, the Narain lattice
discussed there is just the Coxeter-Todd lattice rescaled by 31/4. We thus have reproduced
the optimal Narain CFT at c = 6 using construction N.

Explicitly, the generator matrix of the Narain lattice can be brought to the form (4.10)
with

γ∗ =
(

2 14 b
T

12

)
, B =

(
B̃ bT

−b 0

)
, (6.4)

where

b =
(

1 1 0 1
1 1 1 0

)
, B̃ =


0 −1 1 −1
1 0 −1 1
−1 1 0 2
1 −1 −2 0

 , (6.5)

and where the permutation matrix S is different now, and is given by

S =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1


, (6.6)

i.e. it interchanges the fourth and fifth letters.
We note that representation of the lattice above is different from that one in [1], but

must be related to it by a O(6)×O(6) transformation.
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6.2 c = 7 and the septacode

The conjectured optimal Narain CFT with c = 7 has spectral gap ∆1 =
√

4/3 [1]. We note
there are no n = 7 self-dual codes over F4 with d = 4, and that the maximal Hamming
distance in this case is d = 3 [14]. Should we want to use our construction to obtain optimal
c = 7 CFT from a code, we must therefore consider isodual codes, with C∗ = S(C). It
turns out this only requires C∗ = C, i.e. one can take S = 1.

Consider the n = 7 code C7 generated over F2 by the matrix

G =



1 ω 0 0 0 1 0
1 1 ω 0 1 0 0
1 0 0 ω 1 1 1
1 1 0 1 ω 0 1
1 0 1 1 1 ω 0
1 1 1 1 0 1 ω

1 ω ω ω ω ω ω


(6.7)

We will call this code the “Septacode”. The septacode is additive but not linear, it has 27

elements and its Hamming distance is d = 4. Its enumerator polynomial is

WC7 = t70 + 21t21t30tωtω + 21t1t20t2ωt2ω + 21t31t20tωtω + 7t0t3ωt3ω
+ 21t21t0t2ωt2ω + 7t1t3ωt3ω + 7t30t4ω + 7t31t4ω + 7t30t4ω + 7t31t4ω + t71 .

(6.8)

Its binary subcode is
CB = {(07), (17)} ⊂ C7 , (6.9)

so CB is just the n = 7 binary repetition code. In addition, the septacode obeys

C∗7 = C7 . (6.10)

and so in particular it obeys Self-duality with a trivial permutation S = 1. It is also simple
to check it obeys the Evenness conditions. It is thus an N-type code, and we can use
construction N to obtain a Narain lattice Λ̃(C7) from it.

Let us construct the generator matrix for the Narain lattice explicitly, following sec-
tion 4.2. The generator matrix is given by the general form (4.10) with S = 1. γ∗ is the
generator matrix for the construction A lattice of the binary subcode CB ⊂ C (times

√
2),

so in the case at hand it is

γ∗ = 2Z7 ∪
(
2Z7 + (1, . . . , 1)

)
= 2D∗7 . (6.11)

We can bring this to the standard form of

γ∗ = Λ(CB) =
(

2 16 b
T

1

)
, b = (16) . (6.12)

As discussed above, B can be brought to the form

B =
(
B̃ bT

−b 0

)
, (6.13)
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with B̃ being some integral antisymmetric matrix. In the case at hand we find

B̃ =



0 1 −1 1 −1 1
−1 0 −1 −1 1 1
1 1 0 −1 −1 −1
−1 1 1 0 1 −1
1 −1 1 −1 0 1
−1 −1 1 1 −1 0


. (6.14)

This is the same lattice as was found in [1], the generator matrices are identical. So we
have found that the conjectural optimal Narain CFT with c = 7 and ∆1 =

√
4/3. can be

obtained from an N-type code using construction N. We have checked, there are no other
[7, 7, 4] N-type codes besides this one.

6.3 Other central charges

Having found that the optimal Narain CFTs for c = 6, 7 are code CFTs, we move on to the
case c 6= 6, 7. As we now explain, we do not expect to be able to obtain an optimal Narain
CFTs using construction N for any other values of c.

First we discuss c < 6. The corresponding optimal Narain CFTs were oullined in [1]
(see table 1). These CFTs cannot be reproduced from a code using construction N, since
the spectral gap for any lattice obtained via construction N must take the form ∆1 = n

2
√

3
for some n ∈ N, and this is not the case for any of the optimal CFTs for c < 8, c 6= 6, 7.
For c > 7, we again do not expect to be able to obtain optimal CFTs due to the bound
∆1 ≤ 2/

√
3. This bound is saturated for c = 6, 7, while for c = 8 the optimal CFT has

∆1 > 2/
√

3. Since we expect ∆1 to be an increasing function of c, we conclude it would
be impossible to construct any optimal c > 7 CFT using the construction developed in
this paper.

However, it is possible that other constructions can reproduce optimal CFTs at other
values of c; indeed, the optimal CFTs with c = 3, 4, 5 are related to codes and follow
from the construction of [13]. That construction maps codes over F4 to Narain CFTs,
and for c = 3, 4, 5 the optimal Narain lattices have the generator matrix (2.15), with

1√
2γ
∗ =
√

2γ = I and with the B matrix corresponding to a fully connected graph on c

nodes, Bij = 1 for i > j. In general, we expect that all CFTs from the table 1 can be
reproduced using codes; for example, the c = 8 lattice is the Barnes-Wall lattice, which
can be related to a code over F9 [16].

An important step would be to develop a sequence of constructions which would yield
optimal theories for larger values of c. On this path, the first step may not even be the
explicit relation to codes, but a new algebraic ansatz for the partition function along the
lines of (4.17), amended with the analogs of the algebraic conditions (4.31), (4.26), which
would ensure modular invariance.

7 Conclusions

In this paper we constructed a mapping from the family of codes over F4 which satisfy the
conditions of Evenness and Self-duality to the space of Narain theories. We call codes satis-

– 24 –



J
H
E
P
1
1
(
2
0
2
1
)
0
1
6

fying these conditions N-type and the corresponding CFTs code theories. Starting from an
N-type code we explicitly construct the Narain lattice and evaluate its theta-series, i.e. the
corresponding CFT torus partition function, in terms of the code’s extended enumerator
polynomial, see (4.16) and (4.17). Modular invariance of the partition function reduces to
the algebraic identities (4.26) and (4.31), which can be solved in terms of invariant poly-
nomials, as discussed in section 4.3.1. Quite interestingly, the associated ring of invariant
polynomials is not freely generated, in contrast to other known examples [15]. All N-type
codes can be parametrized by a binary classical code, specified by matrix b, a pairwise per-
mutation matrix S and an antisymmetric matrix B̃ obeying (4.15). As a result we could
construct all codes of small length n and found many interesting examples. In particular,
we found that the conjecturally optimal Narain theory with c = 6, based on the rescaled
Coxeter-Todd lattice, also known as K12, understood as a Narain lattice [1] is associated
with the Hexacode, the unique [6, 6, 4] self-dual code over F4. Furthermore, the conjec-
turally optimal Narain theory with c = 7 is associated with the “septacode” introduced in
section 6.2, the unique [7, 7, 4] N-type code.

Our construction is similar in spirit to previous works relating classical codes and chiral
theories [20–22] as well as those relating quantum codes to Narain CFTs [12, 13]. At the
same time there are important novelties which we would like to emphasize. This is the
first construction, to our knowledge, that maps codes to non-chiral non-rational theories.
A natural question to ask is how general the relation between codes and CFTs could be.
In all known examples of code theories the partition function is a sum of a handful of
“characters” suggesting the theories in question are rational. Now we clearly see this is not
necessarily the case. It thus remains an open question to chart the space of theories with
the code counterparts, see [23], and investigate if this relation can be extended beyond
Narain theories.

Among the code theories constructed in this paper are the conjecturally optimal Narain
CFTs, i.e. those with the largest value of spectral gap, for c = 6, 7. Together with the con-
struction of [13] we find that the optimal theories for 3 ≤ c ≤ 7 are related to codes. This
is likely to be true for c = 1, 2 and c = 8 as well: in the former cases the partition function
is a sum of “characters” and in the latter case the lattice is the Barnes-Wall lattice, which
can be constructed using a code over F9. More generally, any rational Narain CFT can
be related to codes [23], and this likely extends to any finite CFT [24]. This observation
prompts the question if the optimal theories for larger c could also be related to codes
and if perhaps there are appropriate series of constructions which could describe optimal
theories with an arbitrarily large central charge. This question can be reformulated in
terms of the modular bootstrap program. The present construction, as well as that one
of [12, 13], reduce the modular bootstrap constraints to algebraic constraints at the space of
polynomials. While the present construction is somewhat nontrivial and involves polyno-
mials of 14 variables, the core idea remains the same. The modular bootstrap becomes the
question of identifying invariant polynomials and applying straightforward linear algebra.
The question we would like to pose is to formulate a continuous or large discrete family of
the appropriate Ansätze which would reduce the question of maximizing the spectral gap
to the question of identifying the optimal algebraic identity and the “characters” such that
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the optimal partition functions for various c would be given by some appropriate general-
ization of (4.17). We hope to address the question of formulating such a meta-bootstrap
approach in the future.
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8 Proofs

8.1 Isoduality of construction A lattice of codes over F4

We prove that
Λ̃∗(C) = O

(n)
π/2Λ̃(C∗) (8.1)

for a construction A lattice Λ(C) where C is a code over F4 of length n.
For convenience, we define λ(x) = (Re(x), Im(x))/31/4 ∈ R2n for any x ∈ Fn4 . Then

for example a vector α ∈ Λ(C) takes the form α = λ(c + 2n · x) for x ∈ Fn4 , n ∈ Zn and
c ∈ C. An important identity is that for x ∈ Fn4 ,

λ(x)O(n)
π/2λ(y) ≡ 1

2(x, y) (mod) 1 . (8.2)

First we prove
O

(n)
π/2Λ(C∗) ⊂ Λ∗(C) . (8.3)

Take α ∈ Λ(C∗) of the form α = λ(c∗ + 2n · x) for c∗ ∈ C∗. Now take β ∈ Λ(C) of the form
β = λ(c+ 2m · y) for c ∈ C. We must show that (O(n)

π/2α) · β ∈ Z. Using (8.2), we find

(O(n)
π/2α) · β ≡ 1

2(c∗, c) (mod) 1 . (8.4)

Since c∗ ∈ C∗, we must have (c, c∗) ≡ 0 (mod)2, and so (O(n)
π/2α) · β ∈ Z as required.

Next we show
Λ∗(C) ⊂ O(n)

π/2Λ(C∗) . (8.5)

Take α ∈ Λ∗(C). Then since λ(2x) ∈ Λ(C) for any x ∈ Fn4 , we learn that α · λ(2x) ≡
0 (mod)1. Considering x such that all elements are zero apart from one, we learn that α
must take the form λ(c′ + 2n · y) for c′, y ∈ Fn4 . Now take c ∈ C, then λ(c) ∈ Λ(C) and so

λ(c)O(n)
π/2α ≡ 0 (mod) 1 , (8.6)
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but on the other hand due to (8.2) we find

1
2(c, c′) ≡ λ(c)O(n)

π/2α (mod) 1 , (8.7)

and so (c, c′) ≡ 0 (mod) 2 , so c′ ∈ C∗. As a result, α ∈ O
(n)
π/2Λ(C∗). Combining (8.3)

and (8.5) we learn that
Λ∗(C) = O

(n)
π/2Λ(C∗) (8.8)

as required.

8.2 Proof that a self-dual code with wω(c) − wω(c) = 0 (mod) 4 is invariant
under conjugation

We want to prove the following: assume C is a self-dual code over F4 and ∀c ∈ C,

m(c) = wω(c)− wω(c) = 0 (mod) 4 . (8.9)

Here wx(c) is the number of letters in c which are equal to x ∈ F4. We want to prove that
P(C) = C.

It is enough to show that if c ∈ C then for all c0 ∈ C, we have (c, c0) = 0 where c is the
conjugate of c. We denote by wyx the number of positions where c has the letter x and c0
has the letter y. Then for example ∑

y∈F4

wyω = wω(c) . (8.10)

So for example we have

(c, c0) = w1
ω + w1

ω + wω1 + wω1 + wωω + wωω ≡ 0 (mod) 2 (8.11)

and we want to show that

(c, c0) = w1
ω + w1

ω + wω1 + wω1 + wωω + wωω ≡ 0 (mod) 2 . (8.12)

The important point is that since c+ c0 ∈ C, we must have

m (c0 + c) = wω (c+ c0)− wω (c+ c0) ≡ 0 (mod) 4 . (8.13)

Explicitly this means that(
wω0 + w0

ω + w1
ω + wω1

)
−
(
w1
ω + wω1 + w0

ω + wω0

)
≡ 0 (mod) 4 . (8.14)

Using the contraints of the form (8.10), we can write

w0
ω = wω(c)− w1

ω − wωω − wωω
w0
ω = wω(c)− w1

ω − wωω − wωω
wω0 = wω(c0)− wω1 − wωω − wωω
wω0 = wω(c0)− wω1 − wωω − wωω
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plugging this in we find

m(c0 + c) =
(
wω(c0)− wω1 − wωω − wωω + wω(c)− w1

ω − wωω − wωω + w1
ω + wω1

)
−
(
w1
ω + wω1 + wω(c)− w1

ω − wωω − wωω + wω(c0)− wω1 − wωω − wωω
)

≡ 0 (mod) 4 .

Using m(c) = wω(c)− wω(c) = 0 (mod)4 and similarly for m(c0), this can be simplified to

m(c0 + c) = −2wω1 − 2wωω − 2w1
ω + 2w1

ω + 2wω1 + 2wωω ≡ 0 (mod) 4 , (8.15)

which we rewrite as

m(c0 + c)/2 = wω1 + w1
ω + w1

ω + wω1 + wωω + wωω ≡ 0 (mod) 2 . (8.16)

but comparing to (8.12) we find thatm(c0+c)/2 ≡ (c, c0) (mod)2, and so (c, c0) ≡ 0 (mod)2
as required.

8.3 Proof of the expression for the dual binary subcode

Consider an N-type code C with a binary subcode CB. Define

T = {S(c+ c) | c ∈ C} = {c∗ + c∗ | c∗ ∈ C∗} , (8.17)

where we used the fact that C∗ = S(C̄). Then we would like to show that T = C∗B, where
C∗B is the dual of CB with respect to the conventional binary inner product ( , )B. To show
this, we will prove T ∗ = CB.

First show T ∗ ⊂ C. Take b ∈ T ∗ ∈ Fn2 , c
∗ ∈ C∗, then it is enough to show that

(b, c∗) = 0. Calculate:

(b, c∗) = (b, c∗)B + (b, c∗)B = (b, c∗ + c∗) = 0 (8.18)

where we used b = b and the fact that c∗+c∗ ∈ T . So T ∗ ⊂ C. Next we show that all binary
codewords in C are also in T ∗. take binary c ∈ C, and take c∗ + c∗ ∈ T for c∗ ∈ C∗. Then

(c, c∗ + c∗)B = (c, c∗)B + (c, c∗)B = (c, c∗) = 0 (8.19)

since c∗ ∈ C∗. So any binary c ∈ C is also in T ∗. So we have proven that T ∗ = CB.

8.4 Proof that C∗B is even

We now show that C∗B is even with respect to the inner product (·, ·)B,S for an N-type code
C. Take b ∈ CB, then b = S(c+ c) for c ∈ C. Then

(b, b)B,S = (c+ c, c+ c)B,S = (c, S(c)) + (c, S(c)) . (8.20)

since C⊥ = S(C) due to Self-duality, the term (c, S(c)) vanishes. We are left with showing
that (c, S(c)) is 0 mod 2. Note that (using the notation around (3.2)),

(c, S(c)) ≡
∑
i

bibS(i) − aiaS(i) (mod)2 (8.21)

which vanishes due to (3.2), as required.
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9 The generator matrix

The generator matrix for the Narain lattice is given by

Λ′ =
(
γ∗
√

3BγS
√

3SγS

)
/31/4 . (9.1)

This Λ′ is self-dual with respect to g′. Note that we can also write this as

Λ′ =
(

1n

S

)(
γ∗
√

3Bγ
√

3γ

)(
1n

S

)
/31/4 . (9.2)

Now we can try to find the minimal form for γ∗, B. Note that in (9.2), we can ignore
the matrix on the r.h.s. since it is in GL(2n,Z). We will now simplify the matrix by adding
certain columns of the matrix to other columns, which amounts to multiplying on the right
by elements of GL(2n,Z).

First, since the columns involving γ∗ correspond to elements of Z[ω] which are only
elements of Z, we find that the columns of γ∗ (mod) 2 correspond to binary codewords.
In addition, no other column can correspond to a binary codeword, and so all binary
codewords can be generated by the columns of γ∗. We thus learn that γ∗ must be the
generator matrix of the construction A lattice of the binary subcode CB ⊂ C. As a result,
γ∗ can be brought to the form

γ∗ = Λ(C⊥B ) =
(

21n−k bT

1k

)
, (9.3)

where bT is an (n− k)× k matrix. We immediately find (by definition)

γ = (γ∗−1)T = 1
2

(
1n−k

−b 21k

)
. (9.4)

Next, since B is antisymmetric we write it as

B =
(
B11 B12

−BT
12 B22

)
. (9.5)

Finally, S can be written as

S = ST = S−1 =
(
S11 S12

ST12 S22

)
. (9.6)

So the explicit form for the generator matrix Λ̃ is

Λ′ =
(
γ∗ Bγ√

3Sγ

)
=


21n−k bT

1
2 (B11 −B12b) B12

1k −1
2

(
BT

12 +B22b
)

B22
√

3
2 (S11 − S12b)

√
3S12

√
3

2

(
ST12 − S22b

) √
3S22

 . (9.7)
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Consider some column on the far right hand side in terms of elements of Z[ω]. Since the
elements of S are integers, each element of the column must take the form c+ 2ω for some
c ∈ CB. But then we can add the columns of γ∗ to this vector to being every element to
the form 2ω. This amounts to setting B12 = S12 and B22 = S22. Next, since B22 is now an
integer matrix, we use the colums of γ∗ to set B22 to zero by adding

(
−bTS22
−S22

)
to
(
B12
B22

)
,4

so we get

Λ′ =
(
γ∗ Bγ√

3Sγ

)
=


21n−k bT

1
2 (B11 −B12b) S12 − bTS22

1k −1
2

(
BT

12 +B22b
)

0
√

3
2 (S11 − S12b)

√
3S12

√
3

2

(
ST12 − S22b

) √
3S22

 . (9.8)

Before moving on we will use the columns
(

21n−k

0

)
to flip the sign of the final colums, so

we have

Λ′ =
(
γ∗ Bγ√

3Sγ

)
=


21n−k bT

1
2 (B11 −B12b) bTS22 − S12

1k −1
2

(
BT

12 +B22b
)

0
√

3
2 (S11 − S12b)

√
3S12

√
3

2

(
ST12 − S22b

) √
3S22

 . (9.9)

Next, consider the columns of 

1
2 (B11 −B12b)
−1

2

(
BT

12 +B22b
)

√
3

2 (S11 − S12b)
√

3
2

(
ST12 − S22b

)

 . (9.10)

Due to the general constraints on the column vectors (4.6), this row obeys
1
2 (B11 −B12b) = 1

2 (S11 − S12b) + Y1 , (9.11)

−1
2
(
BT

12 +B22b
)

= 1
2
(
ST12 − S22b

)
+ Y2 . (9.12)

We once again use the columns of γ∗ to simplify this by adding
(
−bTY2
−Y2

)
to( 1

2 (B11−B12b)
− 1

2 (BT
12+B22b)

)
,5 and we get

Λ′ =



21n−k bT
1
2 (B11 −B12b)− bTY2 b

TS22 − S12

1k
1
2

(
ST12 − S22b

)
0

√
3

2 (S11 − S12b)
√

3S12
√

3
2

(
ST12 − S22b

) √
3S22


. (9.13)

4It is crucial that S22 is an integer matrix, since as a result this amounts to multiplying on the right by
an element of GL(2n, Z).

5again, it is crucial that Y2 is an integer matrix so that this amounts to multiplying on the right by an
element of GL(2n, Z).
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We have thus effectively set B22 = 0, and we are close to setting B12 = bTS22 − S12. To
finish, write 1

2 (B11 −B12b)− bTY2 explicitly:

1
2 (B11 −B12b)− bTY2 = 1

2 (B11 −B12b)− bT
(
−1

2
(
BT

12 +B22b
)
−
(1

2
(
ST12 − S22b

)))
= 1

2
[
B11 −B12b+ bTBT

12 + bTB22b+ bTST12 − bTS22b
]
. (9.14)

Define the antisymmetric matrix

B̃ = B11 −B12b+ bTBT
12 + bTB22b , (9.15)

then we find
1
2 (B11 −B12b)− bTY2 = 1

2
(
B̃ + bTST12 − S12b+ S12b− bTS22b

)
. (9.16)

This finally allows us to set B12 = bTS22 − S12, in which case

1
2 (B11 −B12b)− bTY2 = 1

2
(
B̃ + bTST12 − S12b−B12b

)
(9.17)

To summarize, our final result is

Λ′ =
(
γ∗ Bγ√

3Sγ

)
=



21n−k bT
1
2(B̃ + bTST12 − S12b−B12b) B12

1k −1
2B

T
12 0

√
3

2 (S11 − S12b)
√

3S12
√

3
2

(
ST12 − S22b

) √
3S22


(9.18)

where B12 = bTS22 − S12 . Comparing to the general form we started with, we find that
we can always bring B to the form

B = 1√
3

(
B̃ + bTST12 − S12b b

TS22 − S12

ST12 − S22b 0

)
. (9.19)

with B̃ an integral antisymmetric matrix.
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