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A spatial accelerator’s efficiency depends heavily on both its mapper and cost models to generate optimized

mappings for various operators of DNN models. However, existing cost models lack a formal boundary over

their input programs (operators) for accurate and tractable cost analysis of the mappings, and this results in

adaptability challenges to the cost models for new operators. We consider the recently introduced Maestro

Data-Centric (MDC) notation and its analytical cost model to address this challenge because any mapping

expressed in the notation is precisely analyzable using the MDC’s cost model.
In this article, we characterize the set of input operators and their mappings expressed in theMDC notation

by introducing a set of conformability rules. The outcome of these rules is that any loop nest that is perfectly

nested with affine tensor subscripts and without conditionals is conformable to theMDC notation. Amajority

of the primitive operators in deep learning are such loop nests. In addition, our rules enable us to automatically

translate a mapping expressed in the loop nest form to MDC notation and use the MDC’s cost model to guide

upstream mappers. Our conformability rules over the input operators result in a structured mapping space

of the operators, which enables us to introduce a mapper based on our decoupled off-chip/on-chip approach

to accelerate mapping space exploration. Our mapper decomposes the original higher-dimensional mapping

space of operators into two lower-dimensional off-chip and on-chip subspaces and then optimizes the off-chip

subspace followed by the on-chip subspace. We implemented our overall approach in a tool calledMarvel, and

a benefit of our approach is that it applies to any operator conformable with the MDC notation. We evaluated

Marvel over major DNN operators and compared it with past optimizers.
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1 INTRODUCTION

Deep learning (DL) is a fundamental technology for many emerging applications, such as au-
tonomous driving [4], translation [52], and image classification [42], with accuracy close to, and
even surpassing, that of humans [15, 21, 49]. To significantly improve the performance in terms
of latency and energy, specialized hardware accelerators for DNN inference are being developed
and deployed [1, 10, 11, 33, 53]. Some of the most popular examples are systolic arrays such as
TPU [20], xDNN [53], and RAPID [14], and advanced forms such as NVDLA [33], Eyeriss [7],
ShiDianNao [13], and MAERI [26]. The primary architectural features that distinguish these cus-
tom “spatial” accelerators from CPUs and GPUs are (1) parallelism using hundreds to thousands
of processing elements (PEs), (2) fast network-on-chip (NoC) connecting these, and (3) use of
private/shared scratchpad memories for data reuse. They achieve high throughput by exploiting
parallelism over the PEs and energy efficiency by maximizing data reuse within the PE array via
direct data forwarding between PEs and the use of scratchpad memories [5, 7, 20, 29, 33, 35, 46, 56].

In general, compilers for DL consist of two major components: (1) graph optimizer performing
graph-oriented transformations (e.g., node fusion) over an input model computation graph, and
(2) kernel optimizer loop-oriented transformations (e.g., tiling, reordering) to map and generate
code for each node of the modified graph onto the accelerator’s compute and memory resources.
Mappers belong to the kernel optimizers of DL compilers, and the role of mappers is to find op-
timized schedules. Optimized mappers optimizing various DNN operators are necessary during
compile-time for ML programmers, and design-time for computer architects to understand reuse
and data movement behaviors to design a new accelerator, as shown in Figure 1.
A major difference between the mappers for spatial accelerators and CPUs/GPUs is the need for

an “accurate” analytical cost model that can estimate close to real-world values for a givenmapping
of a kernel (operator) on an accelerator configuration [24, 34]. This is because edge conditions can
lead to a multiplicative slowdown if not accounted for. As a simple example, suppose a convolution
has 17 input channels and 32 output channels, whereas hardware has 16 PEs. Suppose mapping
A parallelizes across the input channels, whereas mapping B parallelizes across output channels.
Mapping A will require two folds (rounds of execution) with 94% under-utilization in the second
fold, whereas mapping B will never have any under-utilization. An approximate analytical model
that ignores the second fold of Mapping A due to rounding will under-estimate the runtime of this
mapping by 2×. Such roundings over multiple iterations can lead to a significant difference from
real values.
Recently, multiple analytical cost models [12, 24, 34, 54] have been proposed to estimate exe-

cution time and energy efficiency of mappings over spatial accelerators close to the real-world
simulation/execution. These mappings are often expressed in the form of loop nests, a syntax that
resembles a simple imperative programming language with explicit parallelism. Many cost models
such as Timeloop [34], DMazeRunner [12], and Interstellar [54] are developed over the loop nest
description of mappings. The loop nest syntax is very generic and can help accelerator architects
or compilers in expressing a wide range of mappings, but the underlying cost models may not be
able to estimate costs for all possible mappings that can be expressible in loop nests.1 For example, a
mapping for the parametric multi-step LSTM operator may include loop skewing transformation
to exploit pipelined (wave-front) parallelism [3], but it is not clear if the cost models mentioned
previously can precisely reason and estimate costs for such mappings. The existing cost models
do not have a formal boundary over operators for precise cost analysis of the operator mappings.

1The generic loop nest forms encompass various control flow structures and data-access patterns that make it harder for

the cost models to precisely reason (more details can be found in Section 7).
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Fig. 1. Overview of the design-time flow for computer architects developing new accelerators, and the com-

pilation flow forML programmers leveraging the accelerators. The scope of this work is themapping explorer

and the loop optimizer in the preceding diagram.

None of the prior work attempts at defining a formal boundary, and having no such boundaries can
bring adaptability challenges to these cost models in the kernel optimizers (challenge 1).
Besides the lack of the existing cost model’s formal boundaries, searching for optimal mappings

is challenging because of the massive space of the operator’s legal mappings on the accelerator
configurations. For example, there are more than 1019 valid mappings for the convolution opera-
tor on average for mapping ResNet50 [17] and MobileNetV2 [43] on a representative DNN edge
accelerator. On one side, much of the prior work targeted hardware with limited capabilities (e.g.,
mRNA [57] for the MAERI accelerator, TVM extensions [30] for the VTA GEMM accelerator, and
DeepTools [51] for the RAPID AI accelerator), which makes them not directly applicable to generic
spatial accelerators. On another side, prior work on generic templated spatial accelerators fixed cer-
tain aspects of themapping space such as choice of parallel loops and loop orders [12, 29, 32, 54, 56],
and such limited exploration can limit the possibilities in achieving the accelerator’s peak perfor-
mance for diverse operators. To the best of our knowledge, Timeloop [34] is the only framework
that considers all aspects of a mapping for generic templated spatial accelerators. However, it em-
ploys either an exhaustive linear search or a random sampling-based heuristic to explore the search
space. Hence, approaches supporting generic templated spatial accelerators and exploring all possible
mappings suffer from a combinatoric explosion in the size of mapping space (challenge 2).
The key contributions of our work addressing the preceding two challenges are described next.
Conformable DNN operators. To address the first challenge, we consider the recently introduced

Maestro Data-Centric (MDC) notation [24] for expressing mappings onto generic templated
spatial architectures.MDC is promising because anymapping expressed in the notation is precisely
analyzable using the MDC’s cost model [25]. Instead of proposing an approach for validating an
input mapping in the MDC notation, we slightly take a different direction. We introduce a set of
conformability formal rules (Section 3) where if any operator satisfies/conforms to those rules, all
possible mappings of the operator are expressible in the MDC notation. As an example, Table 1
lists the conformability of the popular DNN operators with the MDC notation. Furthermore, all
the primitive operators identified from profiling MLPerf benchmark suite [38], VGG16 [48], and
AlexNet [22] models are MDC conformable, and these operators did not require any rewriting to
make them conformable with the MDC notation.
The MDC notation explicitly requires defining data movement aspects of a mapping, instead

of inferring in loop nest notation, which makes estimating execution time and energy efficiency
relatively faster. However, since MDC notation is relatively new, it can be challenging for
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architect/compiler experts to specify mappings with explicit data movement. Hence, we introduce
a transformation (Section 4) that translates a mapping specified in the loop nest form to the MDC
notation, and this can also be used for mapping space exploration.
Mapping space exploration. Our conformability rules over the input operators result in a struc-

tured mapping space of the operators, and this enables us to introduce a mapper based on our
decoupled off-chip/on-chip approach to accelerate mapping space exploration. Our mapper decom-
poses the original higher-dimensional mapping space of operators into two lower-dimensional
off-chip and on-chip subspaces, and then optimizes the off-chip subspace followed by the on-chip
subspace. This decomposition’s motivation is to dramatically reduce the search space’s size and
prioritize the optimization of off-chip data movement, which requires significantly more energy
and latency than the on-chip data movement [8]. In contrast to prior works [12, 34, 54] that use
a single cost model for mapping space exploration, we use different approaches and different cost
models for these subspaces, such as a classical distinct-block (DB) locality cost model [16, 44] to
explore the off-chip subspace, and the MDC’s cost model [24] for the on-chip subspace. We used a
different cost model for the off-chip subspace exploration because the MDC’s cost model requires
the full specification of a mapping and does not workwith a partial specification (e.g., off-chipmap-
ping part of a full mapping). Even though we restrict our attention to mapping an operator onto a
single accelerator, our decoupled approach can be extended to multiple accelerators within a chip
and then to a distributed setup by prioritizing the optimization based on the data movement costs.
We implemented our overall approach in a tool called Marvel, and a benefit of our approach is

that it applies to any operator conformable with the MDC notation. Marvel can be leveraged for
both training and inference, as long as the required operators are conformable with MDC nota-
tion. Given a conformable DNN operator, workload sizes, and a target accelerator configuration,
Marvel explores the mapping space of the operator using the decoupled approach and then out-
puts the mappings optimized for runtime and energy. Overall, our approach reduced the mapping
space by an O (1010) factor for the convolution operators in four major CNN models (AlexNet,
VGG16, ResNet50, and MobileNetV2) while generating mappings that demonstrate a geometric
mean performance improvement of 10.25× higher throughput and 2.01× lower energy consump-
tion compared with three state-of-the-art mapping styles from past work. We also evaluated our
approach over the other operators (GEMM, LSTM, and MLP) and compared them with past work
optimizers.

2 BACKGROUND

In this section, we provide a brief overview of spatial accelerators and also the MDC notation to
describe computation and mappings onto the spatial accelerators.

2.1 Spatial Accelerators

Spatial DNN accelerators based on ASICs and FPGAs have emerged to address extreme demands
on performance and energy efficiency of CNN layers [5, 7, 20, 33, 35, 46]. Such accelerators are
built using an array of PEs to provide high parallelism and use direct communication instead of
via shared memory for energy efficiency. An abstract model of spatial accelerators is shown in Fig-
ure 2, where each PE of an accelerator consists of a single/multiple ALU(s) dedicated formultiply-

accumulate operations (MACs) and a local scratchpad (L1 buffer). In addition, accelerators em-
ploy various NoCs for direct communication among PEs and between the PE array and the L2
scratchpad buffer. The interconnection network often supports multi-casting data to multiple PEs,
which can reduce the total number of data reads from the L2 buffer to PEs. Unlike GPU cores, PEs
can communicate with adjacent PEs (data forwarding) using a NoC, which can significantly reduce
the number of L2 buffer accesses with high energy overhead. Accelerators also typically employ a
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Fig. 2. The abstract spatial accelerator model, which is pervasive in many state-of-the-art accelerators

[7, 20, 33].

large shared L2 scratchpad buffer to stage data from DRAM and also partial accumulations from
PE arrays. Both L1 and L2 scratchpad buffers are software-controlled memories—for instance, the
programmer/compiler directly controls contents of the buffer, unlike cache memories, which im-
plicitly manage them, and this is because the memory traffic in accelerators is known in advance.
Many spatial accelerators can be further interconnected together to create a scale-out system [11].
Systolic arrays [20, 53] belong to spatial accelerators and entirely rely on the point-to-point

connection among adjacent PEs for input data distribution and partial sum accumulations. Al-
though systolic arrays can provide high throughput and energy efficiency, they lack flexibility in
its dataflow due to their rigid NoC architecture. Such inflexibility allows limited dataflow styles,
which can lead to low compute unit utilization depending on the operator and its dimensions.

2.2 MDC Notation

The MDC notation, for expressing a DNN operator onto a spatial accelerator, consists of two as-
pects: (1) operator computation and tensor sizes, and (2) data mapping directives over tensor di-
mensions. A major novelty of the MDC notation is that the data mappings of tensors across space
(PEs) and time are explicitly specified using a set of data mapping directives. This explicit specifi-
cation enables the underlying cost model to estimate reuse behavior of a mapping precisely and
also faster. We briefly describe the data mapping directives using a sample mapping (shown in in
Figure 3(b)) for the CONV1D operator onto an accelerator having two PEs.

First, TemporalMap (size, offset) d specifies a distribution of the tensor dimension d index values
across timesteps in a PE, and the mapped set of dimension indices is same across PEs. The
size parameter refers to the number of contiguous indices mapped, and the offset parameter
describes the shift in the starting indices of d across consecutive timesteps. For instance, the direc-
tive TemporalMap(2,2) dw in the running example represents the distribution of first dimension
(dw ) indices of the weight tensor, with two indices mapped in each timestep (e.g., dw={0,1} in PE0
and PE1 at t = 0). In addition, the offset of two denotes the increment in the dw index after each
timestep (e.g., dw={0,1} at t = 0 to dw={2,3} at t = 1) until the extent of the dw dimension is explored.

Second, SpatialMap (size, offset) d specifies a distribution of the tensor dimension d index values
across PEs. The size parameter refers to the number of contiguous indices mapped, and the
offset describes the shift in the starting indices of d across adjacent PEs. For instance, the
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Fig. 3. A CONV1D’s mapping in the MDC notation along with a visualization of its data mappings.

directive SpatialMap(1,1) dO in the running example represents the distribution of first dimen-
sion (dO ) indices of the output tensor, with one index mapped to each PE in a given timestep (e.g.,
dO={0} in PE0 and dO={1} in PE1 at t = 0). If the number of PEs is not sufficient to cover all indices
of the dimension mapped, then the mapping is folded over time across the same set of PEs.

Third, we have directive order, in which the sequence of spatial and temporal map directives in a
mapping dictates the change of PE data mappings across time. Similar to a loop order, all the di-
mension index values corresponding to a mapping directive must be explored before its immediate
outer mapping directive exploring its next set of indices. For instance, the sequence of directives
in the running example (i.e., spatial map over dO followed by temporal map over dW ) dictates that
all the dimension index values of the weight tensors must be explored before exploring the next
set of dO indices. The order in this example results in accumulating partial results of the output
before computing another output, popularly referred to as “output stationary” mapping [13]. How-
ever, the sequence notation has a limitation that it cannot capture scenarios where more than one
dimension index value simultaneously changes over time (except at the dimension boundaries).

Fourth, the clusters (size) directive logically groups multiple PEs or sub-clusters, and the size
parameter denotes the group size. For example, the Cluster(2) directive on an accelerator with
four PEs arranges the PEs into two clusters with the cluster size as two, as shown in Figure 4(a). All
the mapping directives above a cluster directive operate over the introduced logical sub-clusters
(viewing each sub-cluster as a PE), whereas those below the cluster directive operate within a
logical sub-cluster. The cluster directive is extremely useful in exploiting spatial distribution of
more than one tensor dimension index value (e.g., row-stationary mapping [7]). In Figure 4(a), the
tensor dimension dw via SpatialMap(2,2) is spatially partitioned across the clusters where as
the do via SpatialMap(1,1) is partitioned across the sub-clusters within a cluster.

Data blocking/tiling. Blocking is an essentialmechanism to fit the required tensor’s data acrossmul-
tiple levels of memory hierarchy of an accelerator and also exploit locality for better performance
and energy efficiency. The clusters directive of MDC representation helps in realizing the data
movement behavior arising from the blocking mechanism. Consider the example in Figure 4(b),
where the Cluster(2) directive groups both the two PEs into a single cluster, and the sequence and
sizes of temporal directives above the cluster dictate the block sizes and also the inter-block order.
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Fig. 4. Additional mappings built on the example in Figure 3 for describing (a) parallelism across multiple

dimensions and (b) tiling behavior.

As can be observed from the usage of the preceding four directives, the PE data mappings are
explicit in the notation, which enables the underlying cost model to estimate reuse behavior of
a mapping precisely and also faster [24]. In addition, these directives capture a wide range of
mappings/dataflow styles, including sophisticated mapping styles such as row-stationary in Eye-
riss [7], weight-stationary in NVDLA [33], and output-stationary in ShiDianNao [13] accelerators.
The GitHub repository [23] includes different mapping styles applied on several accelerators and
also different DL models using the MDC notation. In addition, an interesting property of the MDC
notation is that any mapping expressed in the notation is precisely analyzable using the MDC’s
cost model. However, finding whether a computation and any of its mappings are expressible in
the MDC notation is still an open question, and we address this in the next section.

3 CONFORMABILITY RULES

In this section, we introduce a set of conformability rules to characterize the set of input opera-
tors and their mappings that can be expressed using the MDC notation. We discuss the rules over
abstract loop nest description of operators that only describe the computation without any trans-
formations for reuse and parallelization (e.g., CONV1D in Figure 5), and these rules are formed
based on the computation and mapping directives of the MDC representation.

Rule 1: A conformable operator in its abstract loop nest description should be perfectly

nested loops without any conditional statements inside the loop body.

The MDC notation restricts its computation to be uniform across all PEs at all timesteps. This
restriction is satisfied only if a perfect loop nest encloses such uniform computation without any
conditional statements. Most of the primitive DNN operators such as CONV2D, GEMM, and MLP
(more in Table 1) can be expressed in the form of perfectly nested loops without any conditionals.
However, there can be the implementation of certain operators, such as the fusion of two con-
volutions, where each PE requires executing the non-uniform computation and describing such
mappings are not possible with the existing MDC notation. In addition, existing popular cost mod-
els for templated spatial architecture such as Timeloop [34] do not support such mappings.
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6:8 P. Chatarasi et al.

Fig. 5. The DDG of simple operators such as CONV1D and stencil satisfying rule R3 and an example violating

rule R3. dO /dI /dW : tensor dimension index variables corresponding to the output, input, and weight tensors.

Rule 2: The loop nest must not have any dependences (flow-, anti-, output-) except reduc-

tion dependences, and thus the loops can be freely reordered.

The MDC notation restricts the input and output tensors of an operator/computation to be differ-
ent, resulting in not having any flow- and anti-dependences between the tensors. However, the
notation can support reductions (e.g., add, max, min) in the computation, leading to supporting
reduction dependences, such as flow-, anti-, output-dependences only on the output tensor. Like
rule 1, most primitive DNN operators have only reduction dependences, except few operators such
as parametric multi-step LSTMs with flow dependences. These multi-step LSTMs are unrolled in
practice, leading to a sequence of loop nests, where each loop nest satisfies all the conformability
rules, thereby enabling the MDC notation to capture each nest as a separate operator.

Rule 3: The dimension dependence graph of the perfectly nested loop must have a topo-

logical ordering, and the subscripts of each dependent dimension index variable of the

DDG should be expressible as affine functions of the loop iterators.

The directive order (i.e., the sequence of mapping directives) of the MDC notation dictates the
data mapping changes to PEs across time. As described in Section 2.2, the directive order has
limitations in capturing more than one tensor dimension index variable changing simultaneously
over time (except at boundaries). We introduce a new directed graph called the dimension de-

pendence graph (DDG) to find possibilities of such data movement behaviors in an input com-
putation/operator.
Nodes of the DDG. Each node of a DDG denotes a tensor dimension index variable along with a

subscript referenced in that dimension. For instance, the node (dI:i0+i1) in Figure 5(a) represents
the subscript i0+i1 used in the input tensor (I) with dimension name dI . All such unique tensor
dimension index variables with their subscripts are part of the DDG as nodes.
Edges of the DDG. The edges of the DDG denote deduction relations (i.e., a destination node’s

subscript) can be completely constructed from the source node’s subscripts of its incoming edges.
These deduction relations are constructed as follows:

(1) An edge is added from a node having a single index variable (SIV)/multiple index vari-

able (MIV) subscript2 to a node having a MIV subscript if there is a common loop iterator

2The SIV subscript involves one loop iterator, whereas MIV subscripts involve more than one loop iterator [2].
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in their subscripts. For example, there is a directed edge from the node (dO:i0) to (dI:i0+i1)
in Figure 5(a) because they have a loop iterator i0 in common.

(2) All the SIV subscripts are grouped based on their loop iterators, and then edges are added
from the SIV subscript of a group having the lowest constant value (randomly choose if there
exists multiple) to other SIV subscripts in the same group. For example, there is a directed
edge from the node (dI:i0) to all the nodes (dI:i0+1), (dI:i0+2), and (dO:i0) in Figure 5(b).

(3) If the loop bound of an iterator (say i) is dependent on other loop iterators (say j), then
construct an edge from a node with subscript having the iterator i to nodes having the
iterator j in their subscripts. This is not common in DNN primitive operators because
the loop bounds in these operators are generally fixed and do not vary with outer loop
iterators.

Now, finding multiple dimension index variables changing simultaneously is reduced to the
problem of finding a topological ordering in the DDG. In essence, the absence of a topological
ordering indicates the presence of mutually dependent dimension index variables (e.g., the exam-
ple in Figure 5(c)). In the presence of a topological ordering, the MDC notation requires only the
data mappings of independent dimension index variables to be specified, and these variables are
identified from the nodes of the DDG having zero in-degree. In the case of CONV1D in Figure 5(a),
only the data mappings of dimension index variables related to output and weight tensors must
be specified. The underlying MDC’s cost model infers the dimension variable related to the input
tensor, and such dimension variables must not be specified. Furthermore, the subscripts of depen-
dent dimension index variables should be affine expressions of loop iterators to be analyzable by
the MDC’s cost model.

Rule 4: After loop nest normalization, the subscripts associated with each independent

dimension index variable of a DDG should be simply loop iterators with positive unit

coefficients and no constants.

Amapping directive (either spatial or temporal) over a dimension index variable restricts the index
values to start from zero and increases with unit stride. These restrictions do not allow the index
variable to have strided increments or negative strides. To characterize the preceding restrictions
implication, we assume the abstract loop nest form of an input computation to be normalized—its
loop iterators start from zero and have unit strides (i.e., the loops themselves need to be of the
form (for i = 0; i < X; i++)).
As described earlier, the MDC notation requires specification of directives over only indepen-

dent dimension index variables of the DDG. Hence, to support the restrictions, each subscript (in
the normalized form) associated with an independent dimension index variable must be simply
loop iterators with positive unit coefficients and no constants (e.g., i0 for dO , i1 for dW in Fig-
ure 5(a)). Despite forcing only unit strides in the loop itself, the dilation and stride parameters of
convolutions operators can be captured by this notation as these parameters are affine and part of
the dependent dimension index variable subscripts (thanks to affine expressions from rule 3).

Conformability. Finally, an input computation/operator is said to MDC conformable if the com-
putation in its abstract loop nest form satisfies all the preceding four rules. This also means that
any legal mapping of the computation on a spatial accelerator can be expressed using the MDC
notation. Table 1 lists the set of popular DNN primitive operators and the conformability of these
operators with the MDC notation. Both the training and inference variants of the operators are
conformable. As can be seen, the MDC notation captures most of the DNN operators except
parametric LSTMs, and the mappings of these operators can be analyzable by the MDC’s cost
model.
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Table 1. Conformability of the Popular DNN Operators onto the MDC Notation

(Y/N Refers to YES/NO)

DNN Operator Types Rule 1 Rule 2 Rule 3 Rule 4 Conformable to MDC

CONV1D Regular Y Y Y Y Y

CONV2D

Regular Y Y Y Y Y
Point-wise, Depth-wise Y Y Y Y Y

Strided, Dilated Y Y Y Y Y

MLP Fully connected Y Y Y Y Y

Pooling Max, Avg Y Y Y Y Y

GEMM
Regular Y Y Y Y Y

Triangular Y Y Y Y Y

LSTM
Single cell Y Y Y Y Y

Parametric multi-cell Y N Y Y N

Element
wise

Residual Y Y Y Y Y
ReLU Y Y Y Y Y

Stencils Regular Y Y Y Y Y

4 TRANSFORMING A LOOP NEST MAPPING INTO MDC NOTATION

The MDC notation is powerful in expressing and reasoning complex mappings of DNN operators
onto the diverse spatial accelerators, but explicitly writing and exploring such mappings can be
error-prone and tedious. In addition, computer architects [34] and DNN compiler frameworks [6]
view the computations and their mappings majorly in the loop nest form [29, 34, 56]. This section
introduces an automatic transformation to translate a loop nest mapping of a conformable operator
into its equivalent MDC notation. In this work, we assume the target spatial accelerator having
three levels of the memory hierarchy (private L1 buffer, shared L2 buffer, and DRAM). However,
our transformation can be easily extendable to more levels of hierarchy.
As described in Section 2.2, the MDC notation consists of two components: (1) computation and

tensor sizes, and (2) data mapping directives over independent tensor dimensions. The statements
enclosed in the perfectly nested loop form of an input conformable operator are used as the com-
putation, and the tensor sizes are extracted from the workload configuration. The computation
and tensor sizes of the MDC notation remain the same for all mappings of the operator and its
workload configuration. Then, the DDG is constructed to identify the set of independent tensor
dimension index variables. If there are no such independent dimension index variables, then the
operator is discarded as non-conformable. Otherwise, we will translate the mapping in loop nest
form into data directives of the MDC notation.

4.1 Generation of Data Mapping Directives

From rules 1 and 2 in Section 3, the loops of a conformable operator can be freely reordered,
and hence it is legal to apply multi-level tiling to exploit temporal reuse across each level of
the memory hierarchy and also to exploit parallelism via PEs of the accelerator. Each behavior
arising from tiling, reuse, and parallelizing an operator onto a spatial accelerator is referred to
as a “mapping.” The different aspects of mapping are briefly described in the following with
a running example of CONV1D’s loop nest mapping (shown in Figure 6(c)) over a 3-level
accelerator.

Multi-level tiling tile sizes. A mapping includes tile sizes of all loop iterators for each level of
tiling: (1) level-1 tiling for the private L1 scratchpad buffer inside a PE, (2) level-2 tiling for the
parallelism across PE array, and (3) level-3 tiling for the global L2 scratchpad buffer shared by all
PEs.
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Inter-tile loop orders. Amapping also includes inter-tile loop orders3 to describe the execution order
of tiles exploiting various reuse opportunities. For instance, the level-2 inter-tile loop order (i.e.,
the execution order of level-2 tiles) exploits spatio-temporal reuse via the on-chip interconnect. In
addition, level-3 inter-tile loop order exploits temporal reuse via the on-chip L2 buffer. However,
the level-1 inter-tile loop order does not reflect any reuse because these loops essentially reflect
parallelism. The point loop’s loop order does not provide any reuse opportunities because there is
no more intermediate staging between the PE and its private L1 buffer.
An n-level tiling over an input conformable operator will have n set of tile loops (including

parallel loops) and a set of point loops. Each set of loops can have a different data movement
(reuse) behavior based on its sizes and loop order. We introduce a term called region to denote a
sequence of data mapping directives (e.g., region R1 in Figure 6(d)) without any cluster directives.
Each region captures the data movement behavior present in each set of tile loops. Rules 3 and 4
help in constructing a one-to-one mapping between the tile loop orders and directive order—for
example, if rule 3 (topological) is violated, we cannot findMDC’s directive sequence order to reflect
the required data movement behavior. Given a mapping in multi-level tile sizes and inter-tile loop
orders, our approach transforms the mapping into the MDC notation as described next.

Point loops. As described in rule 4, each subscript associated with an independent dimension
variable is simply a unique loop iterator. Our approach translates each loop of point loops into a
temporal map directive over the corresponding independent tensor dimension index variable with
size and offset parameters of the directive the point loop size. For example, the point loop t1i
with tile size T1i in Figure 6(c) is directly translated into TemporalMap(T1i,T1i) dO in the region
R1 shown in Figure 6(d). Since the loop order among the point loops does not provide any reuse
benefits, the directive order in region R1 does not matter. Lines 2 and 3 in Algorithm 1 are related
to building a sequence of temporal maps in region R1 corresponding to the point loops in the given
mapping.

Parallel loops. Since each independent dimension index variable is uniquely associated with a loop
iterator, parallel execution of each loop iterator introduces a different data movement behavior.
Hence, we introduce a region with a spatial map over the dimension index variable associated

with the parallel loop and the temporal maps for the rest of the dimension variables in that region
for each parallel loop. For example, there are two regions with the names R2 and R3 for the parallel
loops corresponding to t2j and t2i , respectively. In addition, the dimension dW associated with the
iterator t2j and the dimension dO associated with the iterator t2i are translated into spatial maps
in R2 and R3 regions, respectively. The size and offsets of each spatial map over a dimension
variable is derived from the strides of the parallel loop iterators corresponding to the dimension
variable. The order of directives in each region corresponding to parallel loops does not matter
because the number of iterations arising from the rest of the temporal maps is one. Each region
corresponding to a parallel loop (except the innermost) is ended with a cluster directive with size
as the number of iterations in the parallel loop (lines 5–13 in Algorithm 1). For example, the region
R3 is ended with a cluster directive with size as the number of iterations of the loop t2i .

Inter-tile loops. For each set of tile loops excluding parallel loops, our transformation generates a
region by creating a temporal map directive for each loop of the set with the size and offset of
the directive as the loop stride. For example, the inter-tile loop t3j with stride as T2j in Figure 6(c)
is directly translated into TemporalMap(T2j,T2j)dI in the region R4 shown in Figure 6(d). The loop
order governs the order of directives in a region among the corresponding tile loops. For example,

3An n-dimensional loop nest after one level of tiling will have 2n loops. The outer n-loops are referred to as inter-tile loops

and the later n-loops as intra-tile loops. The innermost n-loops after multi-level tiling are called point loops.
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Fig. 6. A brief overview of the CONV1D’s mapping expressed in the loop nest form and its translation into

the MDC notation with data mapping directives.

ALGORITHM 1: Transforming a mapping in loop nest form into MDC mapping directives.

1 Level-0-directives, Level-1-directives, Level-2-directives, Level-3-directives = { }

2 for every loop in the operation do

3 Level-0-directives += TemporalMap(level-1-tile-sizes[loop], level-1-tile-sizes[loop])

4 cluster-size = 1, level-1-sizes = level-1-tile-sizes

5 for every parallel-loop in the operation do

6 Level-1-directives += Cluster(cluster-size)

7 for every loop in the operation do

8 if loop == parallel-loop then
9 Level-1-directives += SpatialMap(level-1-sizes[loop], level-1-sizes[loop])

10 level-1-sizes[loop] = level-2-tile-sizes[loop]

11 else

12 Level-1-directives += TemporalMap(level-1-sizes[loop], level-1-sizes[loop])

13 cluster-size = level-2-tile-sizes[loop]/level-1-tile-sizes[loop]

14 for every loop in the level-2-inter-tile-loop-order do
15 Level-2-directives += TemporalMap(level-2-tile-sizes[loop], level-2-tile-sizes[loop])

16 for every loop in the level-3-inter-tile-loop-order do
17 Level-3-directives += TemporalMap(level-3-tile-sizes[loop], level-3-tile-sizes[loop])

18 Directives = Level0-directives + Level1-directives +
∑2
i=1 (Cluster(1) + Level(i)-directives)

the level-3 inter-tile loop order (t3j,t3i ) dictates the temporal map over dW outer compared
to the temporal map over dO in region R5. Furthermore, each region is separated by a cluster
directive to support different data movement behaviors across each set of tile loops (lines 14–18 in
Algorithm 1).
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5 MAPPING SPACE EXPLORATION

In addition to the different aspects of mapping described in Section 4, we also consider a limited
form of data layout choices (i.e., dimension reordering [28]) for operator tensors on the DRAM
because the data movement between DRAM and on-chip global scratchpad buffer happens at the
granularity of DRAM block sizes. Overall, the mapping space of an operator is a Cartesian product
of six dimensions that represent different aspects of a mapping—for instance, (1) level-1 tile sizes,
(2) level-2 tile sizes (parallelism), (3) level-2 inter-tile loop orders, (4) level-3 tile sizes, (5) level-3
inter-tile loop orders, and (6) data layout of tensors. The conformability rules enable to have such a
structured mapping space of the conformable operators. Searching for optimal mapping can be chal-
lenging because of the massive space of the operator’s legal mappings on the accelerator configu-
rations. For example, there are over 1019 valid mappings for the convolution operator on average
for mapping ResNet50 and MobileNetV2 models on a representative DNN edge accelerator. This
search challenge can get exacerbated with the evolution of new computations (e.g., depth-wise)
and diverse hardware accelerator configurations (e.g., tree-based interconnect [26]).
Our approach toward mapping space exploration is motivated by the observation that the off-

chip data movement between DRAM and on-chip global scratchpad requires significantly more
energy and latency than the on-chip data movement [8]. Hence, we propose an approach referred
to as “decoupled off-chip/on-chip” that decomposes the original higher-dimensional mapping space
into two lower-dimensional off-chip and on-chip subspaces, and then optimizes the off-chip subspace
followed by the on-chip subspace, which is constructed with the optimal mappings from the off-chip
subspace. The off-chip subspace consists of three dimensions of the original mapping space—level-
3 tile size, level-3 inter-tile loop order, and data layouts—because they influence the off-chip data
movement. Similarly, the on-chip subspace consists of the remaining three dimensions of the
original space—level-1 tile sizes, level-2 tile sizes, and level-2 inter-tile loop order—because they
contribute to parallelization and on-chip data movement. In contrast to prior work [12, 34, 54], we
use different approaches and cost models for these subspaces—that is, a classical DB locality cost
model [16, 44] to explore the off-chip subspace, and the MDC’s cost model [24] for the on-chip
subspace. We used a different cost model for the off-chip subspace exploration because the
MDC’s cost model requires the full specification of a mapping and does not work with a partial
specification (e.g., off-chip mapping part of a full mapping). The overall approach is implemented
as a stand-alone tool (shown in Figure 7) that takes a conformable operator, workload sizes, and
a target accelerator configuration, then explores the mapping space of the operator using the
decoupled approach, and finally outputs the mappings optimized for runtime and energy.

5.1 Solving Off-Chip Mapping Subspace

The goal of finding an optimal mapping in the off-chip mapping subspace is to minimize off-chip
data movement between DRAM and the L2 buffer of an accelerator. In our work, we assume the
L2 buffer to be a software-managed scratchpad buffer, and reducing the off-chip data movement4 is
equivalent to finding a level-3 tile that has highest arithmetic intensity because the highest arithmetic
intensity results in higher reuse and less data transfer.
In our approach, we consider the classical DB locality cost model [16] to measure the off-chip

data movement cost, which was developed as part of the memory cost analysis to guide the auto-
matic selection of loop transformations and also optimal tile size selections [44, 45, 47] in IBM XL
compilers. The DB model is a good choice for our approach since it only focuses on optimizing for

4In case of non-software-managed scratchpad buffers, reducing data movement between DRAM and the L2 buffer is equiv-

alent to finding a level-3 tile whose memory footprint can fit into the L2 buffer and is maximum.
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Fig. 7. An overview of our approach along with pruning strategies for searching mapping space of convolu-

tions. The pruning strategies in green color preserve optimal mappings, whereas the strategies in red color

may prune optimal.

off-chip data movement. Moreover, it is limited to only perfectly nested loops, and conformable
operators are perfectly nested loops as per the rule R1 in Section 3.
The DB model starts with data layouts of multi-dimensional arrays and a parametric tiled ver-

sion of a perfectly nested loop. The model symbolically estimates the off-chip data movement cost
involved in a tile of computation by measuring the number of the distinct number of DRAM blocks
required for all the references in the tile of computation. For instance, assume that an array I is laid
out in the row-major order layout, then the distinct number of DRAM blocks (with DRAM block
size as B and tile sizes TX , TY ) required for a reference I[y][x+y] enclosed in a triply nested loop
with iterators x, y, z is computed as follows:

DBI (TX ,TY ) ≈ ��
⌈
TX +TY

b

⌉�� × (TY ).

In the preceding formulation, the innermost access of the reference is divided by the block size,5

because the data movement with DRAM happens in multiples of block sizes. The total data move-
ment cost (DMC), a.k.a. memory cost per iteration, involved in a tile is computed as the number
of distinct DRAM blocks required for all references in the tile divided by the total number of iter-
ations in the tile. The optimal level-3 tile sizes and data layouts are computed by minimizing the
data movement cost function for every layout and tile sizes in the off-chip mapping subspace with
the two constraints: for instance, (1) the tile size of a loop should be greater than 0 and should
not exceed its corresponding loop bound, and (2) the total data required (including double buffer-
ing) for a level-3 computation tile should fit into the on-chip L2 buffer. In the past, determining
optimal tiles using the DB model was modeled as a geometric program, transformed then into a
convex optimization problem [39, 40], and further solved using integer geometric programming
frameworks instead of enumeration. Marvel currently has support for doing an exhaustive search

5Setting block size to one ignores the impact of data layouts that we consider in our approach.

ACM Transactions on Architecture and Code Optimization, Vol. 19, No. 1, Article 6. Publication date: December 2021.



Marvel 6:15

(feasible because of only one level of tiling for off-chip data movement) and also using the integer
geometric programming formulation for the tile size calculations.
After computing the optimal level-3 tile sizes and data layouts of tensors, our approach computes

the partial derivatives (slopes) of the data movement cost function, based on the optimal data
layout choice, with respect to parametric level-3 tile sizes, and evaluate the partial derivatives by
substituting optimal level-3 tile sizes. The key insight is that having a higher negative value of a
partial derivative along a loop indicates the lesser distinct number of elements referenced along
the loop (i.e., highest reuse along the loop). It is suggested to keep it in the innermost position to
exploit maximum temporal reuse, and similarly, the rest of the loops are ordered based on their
partial derivative values.

Rationale for using the DB model. The DB model is a good choice for our approach, since the model
only focuses on optimizing for off-chip data movement, and in addition, it focuses only on a per-
fectly nested loop, and conformable DNN operators are perfectly nested loops.

5.2 Solving On-Chip Mapping Subspace

The on-chip mapping subspace is constructed based on the optimal values of level-3 tile sizes. Our
approach explores the constructed subspace to find optimal mappings for each of the three optimal
goals: lower runtime (higher throughput), lower energy consumption, and lower energy delay
product. For each mapping of the constructed subspace, our approach transforms the mapping in
its loop nest form into its equivalent MDC notation (described in Section 4). Then, our approach
uses the MDC’s cost model [24] to estimate various metrics such as latency and energy of each
mapping in the on-chip subspace. The MDC’s cost model precisely computes performance and
energy, accounting for under-utilization, edge conditions, and data reuse or movement across time
(via L1/L2 buffers [7]), space (via broadcast links [26]), and space-time (via neighboring links [9, 20])
without requiring explicit RTL/cycle-level simulations or access to real hardware.

ALGORITHM 2: Our approach to explore on-chip mapping subspace.

1 for every level-2 inter-tile loop order do

2 for every level-2 tile size do

3 Hardware pruning: PE utilization bound

4 Hardware pruning: No prologues/epilogues

5 for every level-1 tile size do

6 Hardware pruning: Finite L1 size buffer

7 Hardware pruning: No prologue/epilogue

8 // Translate mapping into MDC form

9 Invoke the MDC’s cost model→ (runtime, energy, and other metrics)

Algorithm 2 shows an overview of our approach in exploring the on-chip mapping subspace
along with pruning strategies. We introduce a parameter referred to as “PE utilization bound (p)”
to prune search space of level-2 tile sizes by bounding the overall PE array utilization to be at least
the parameter p. The preceding technique is beneficial in finding optimal on-chip mappings with
the optimization goal being throughput because the highest throughput is typically obtained at
higher PE utilization rates [10]. Our approach also includes a pruning strategy to choose level-1
and level-2 tile sizes such that they do not result in any prologues or epilogues (i.e., the tile sizes are
factors of loop bounds). The preceding strategy is used in all the prior mapping space explorers [12,
29, 34, 54, 56]. This strategy helps simplify the design of a PE and control signal generation inside
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Table 2. Operators, Occurrences, and MDC Conformability in DNN Models

of MLPerf [38], VGG16, and AlexNet

DNN Operator
MLPerf Suite

VGG16 AlexNet
MDC

Conformable?MobileNetV1 ResNet50 SSD-MobileNet SSD-ResNet34 GNMT

Regular CONV2D 15 54 34 51 0 16 9

Depth-wise CONV2D 13 0 13 0 0 0 0

Bias Add 1 1 12 12 0 1 1

Batch Normalization 13 20 13 15 0 0 0

ReLU 27 49 35 37 0 15 8

Softmax 1 0 0 1 0 1 1

Avg pooling 1 0 0 0 0 0 0

Max Pooling 0 1 0 1 0 5 3

GEMM 0 0 0 0 9 0 0

Fig. 8. Accelerator setups in our evaluation.

the accelerator. All of the pruning strategies mentioned previously can be enabled/disabled in
Marvel by passing them as input parameters.

6 EXPERIMENTAL EVALUATION

In this section, we begin with coverage of MDC conformable operators in the existing popular
DNN models. Then, we preset an overview of the experimental setup used in the evaluation of
our decoupled off-chip/on-chip approach. We also present the evaluation of mappings generated
by Marvel for a wide variety of DNN operators (CONV2D, GEMM, MLP, and LSTM) and discuss
insights from the mappings while comparing them with previous work.

6.1 Coverage of MDC Conformable Operators

We have used the TensorFlow profiler to identify the operators in the DNN models of MLPerf
suite (i.e., MobileNet V1, ResNet50, SSD-MobileNet, SSD-ResNet34, and GNMT). We also included
VGG16 and AlexNet models in our evaluation. Table 2 lists those primitive operators and their
occurrences in each DNN model. All the identified primitive operators are conformable with the
MDC notation, and also we did not have to rewrite any of those operators to make it MDC con-
formable. Both the training and inference variants of those primitive operators are conformable.

6.2 Evaluation of Decoupled Off-Chip/On-Chip Approac

Target accelerators. Marvel is applicable to any spatial accelerator since it abstracts accelerator
details as #PEs, L1/L2 buffer sizes, NoC bandwidth, reduction/multi-cast support, and so on, which
can be used to model a wide variety of accelerators including Eyeriss [7], NVDLA [33], TPU, and
xDNN.

Due to space limitations, we present our evaluation for only two accelerator platforms (shown
in Figure 8): an accelerator (Eyeriss-like [7]) having 168 PEs and 2.4 GB/s NoC bandwidth, and
another accelerator having 1,024 PEs and 25.6 GB/s. We inherit the L1 buffer, L2 buffer, and clock
frequency for both platforms from Eyeriss [7] (i.e., 512B L1 buffer, 108-KB L2 buffer, and 200-MHz
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Fig. 9. Performance comparison of Marvel generated mappings with the mappings of the dMazeRunner-like

optimizer [12] and Interstellar-like optimizer [54] relative to the roof-line peaks of the AlexNet and VGG16

models on both platforms (P1 and P2).

clock frequency). The bidirectional NoC used in our evaluation is a two-level hierarchical bus,
which has support for multi-casting similar to Eyeriss.

Experimental variants. We have implemented few of the exploration strategies of recent optimizers
such as Interstellar [54] and dMazeRunner [12] in our framework. For instance, the Interstellar
optimizer focuses on parallelizing input and output channels of CONV2D operators, whereas the
dMazeRunner optimizer focuses on parallelizing only output channels and a limited set of loop
orders. We compare Marvel generated mappings for each workload and accelerator platform with
three variants: (1) Marvel implemented Interstellar-like [54] optimizer generated mappings, (2)
Marvel implemented dMazeRunner-like [12] optimizer generated mappings, and (3) roof-line peak
based on the workload arithmetic intensities and accelerator configurations.

Methodology. We have evaluated all the mappings generated by the experimental variants using
the MAESTRO cost model [24]. Moreover, the analytical cost model within the MAESTRO frame-
work is validated against the RTL implementations of Eyeriss [7] and MAERI [26] on VGG16
and AlexNet models. We passed a pruning option to the Marvel to choose tile sizes that divide
loop bounds evenly without any remainder, and this has been the consideration in the other ap-
proaches [12, 29, 34, 54, 56]. We also set the minimum PE array utilization bound as 0.1 (i.e., at-least
10% of the PE array should be mapped with computation). We apply 8-bit fixed point precision for
all the tensors used in our evaluation.

6.2.1 Evaluation on CONV2D Variants. In our evaluation, we considered CONV2D (including
depth-wise) operators of popular DNN models, such as AlexNet [22], VGG16 [48], ResNet50 [17],
and MobileNetV2 [43]. We assumed a batch size of one because this assumption captures a low
latency requirement use case and also represents a more challenging setup for energy efficiency
and throughput [10], especially for edge-/mobile-class accelerators. In addition, these models en-
compass a broad spectrum of CONV2D operators such as regular, point-wise, depth-wise, strided
variants with different filter shapes.

Comparison with the existing optimizers. Figure 9 presents the runtimes of mappings generated by
Marvel, the dMazeRunner-like optimizer, and the Interstellar-like optimizer normalized to the roof-
line peaks of the AlexNet and VGG16 models on both accelerator platforms (P1 and P2). Since each
model hasmultiple CONV2D operations, we have added the runtimes of all the CONV2D operators
in a model to present our evaluation at the level of DNN models. The Interstellar-like optimizer is
almost equivalent to the brute-force exploration except that it allows exploiting parallelism along
only input and output channels. As a result, the evaluation using the Interstellar-like optimizer is
very time consuming (multiple days for MobileNetV2 and ResNet50), and hence we restricted the
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Fig. 10. The statistics (min/avg/max) of the CONV2D mapping space in our evaluation and the resultant

mapping subspaces after decoupling and pruning strategies.

comparison to only AlexNet and VGG16 models. Since we are comparing with the roof-line peak,
we ignored comparing with TimeLoop [34]’s time-taking brute-force exploration to identify the
best mappings.
As can be observed from Figure 9,Marvel generatedmappings are geometrically 2.35× and 1.15×

faster compared to the mappings obtained by the dMazeRunner-like optimizer and the Interstellar-
like optimizer, respectively. The dMazeRunner-like optimizer focuses on exploiting parallelism
along only output channels (in presence of unit batch size) to avoid inter-PE communication, and
this results in under-utilization of the PE array for both models.
The Interstellar-like optimizer is able to perform close to Marvel, because the number of input

and output channels in these models are larger (except at the initial layers). But, it can under-
perform for DNN models such as UNet [41], where input and output channels are smaller and out-
put width and height are larger. Furthermore, our approach is able to identify mappings in seconds
to fewminutes for each operator on a local machine, unlike the Interstellar-like, dMazeRunner-like
optimizer, which takes almost 1 to 5 hours for each operator. Figure 10 shows the impact of our de-
coupling and pruning strategies on the original search space of mappings of the four DNN models
with an average reduction of O (1010) in the mapping space.

Comparison with the popular mapping styles. The state-of-the-art mapping styles encoded in the
hardware as dataflows are row-stationary from Eyeriss [7], weight-stationary from DLA [33], and
output-stationary from ShiDianNao [13]. In our evaluation, we encoded the preceding mapping
styles in the form of parallelization and loop order constraints on the on-chip mapping space
in our decoupled approach. For instance, DLA-like mappings [33] exploit parallelization across
input and output channels, Eyeriss-like mappings [7] exploit parallelism along output width and
filter width, and ShiDianNao-like mappings [13] exploit along output width and height. To briefly
explain the mappings generated by our approach and its difference with respect to the state-of-
the-art mapping styles, we consider two convolutions—a regular CONV2D from VGG16 and a
depth-wise CONV2D from MobileNetV2—whose details are shown in Figure 11.

Impact of level-3 tile sizes. The CONV2D operator in VGG16 layer 1 has higher output width and
height (P, Q) compared to the output and input channels (K, C). However, the level-3 tile size corre-
sponding to output height is shrinked to fit into the on-chip buffer with maximum temporal reuse.
As a result, our approach exploited parallelism along output width (P) and filters (K) to utilize the
PE array maximum. However, none of the state-of-the-art mapping styles and also dMazeRunner-
like/Interstellar-like optimizers exploit parallelism along P and K dimensions in their mapping.

Impact of modern operators. ThemodernDNNmodels such asMobileNetV2 have introduced depth-
wise CONV2D operators, and these operators reduce the total number of MAC operations by not
performing reduction across input channels, thereby sacrificing arithmetic intensity. As a result,
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Fig. 11. Two layers from VGG16 and MobileNetV2 for brief discussion on our approach generated mappings.

Level-3 tile sizes and degree of parallelism are part of the mappings identified by our approach on platform

P2.

Fig. 12. Runtime and energy of Marvel generated mappings with popular mapping styles such as row-

stationary from Eyeriss [7], weight-stationary from DLA [33], and output-stationary from ShiDianNao [13]

for the AlexNet [22], VGG16 [48], ResNet-50 [17], MobileNet-V2 [43] models on platforms P1 and P2.

these operators have less parallelization opportunities and are often bounded by NoC bandwidth.
For example, the depth-wise CONV2D operator in Figure 11 has the value of K set to one and also
the level-3 tile size of C is shrinked to a smaller value to fit into the on-chip buffer with maximum
temporal reuse. To fully leverage the PE array, our approach generated mapping exploited paral-
lelism along three dimensions—input channels (C), output width (P), and output height (Q), where
none of the prior state-of-the-art mapping styles and dMazeRunner-like/Interstellar-like optimiz-
ers exploited more than two levels of parallelism. Furthermore, the performance of the generated
mapping was close to the roof-line peak, which is dominated by NoC bandwidth. The overall per-
formance (runtime) and energy comparison of Marvel generated mappings with respect to the
prior state-of-the-art mapping strategies is shown in Figure 12.

6.2.2 Evaluation on GEMM. We considered GEMM workloads from recent work [37]. An in-
teresting aspect of these workloads is that they are irregular in their shapes, making the rigid
accelerators (e.g., TPUs) hard to reach their peak utilization [37]. A summary of these workloads
are shown in Figure 13, where M, N, and K refer to the number of rows, columns of first matrix
followed by the columns of second matrix. As can be seen from Figure 14, the runtimes of Marvel
generated mappings are only 1.24× and 1.10× higher relative to the roof-line peaks of accelerator
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Fig. 13. GEMM workloads taken from [37].

Fig. 14. Comparison of Marvel generated mappings with the mappings of dMazeRunner-like [12] and

Interstellar-like optimizers [54] normalized to the roof-line peaks of the GEMM, LSTM, and MLP workloads.

Fig. 15. MLP and LSTM workloads taken from Interstellar [54].

platforms P1 and P2, respectively, thereby demonstrating the closeness of mappings obtained us-
ing our approach to the peak. Furthermore, we observed that maximum reuse (spatial, temporal,
spatio-temporal) is exploited only when all the dimensions of the GEMM operator are parallelized.
Hence, Marvel generated mappings included parallelization of the three dimensions to make the
PE array occupied along with exploiting maximum reuse. This is in contrast to other approaches—
that is, the Interstellar-like optimizer focusing on the parallelizing only (N, K) dimensions and the
dMazeRunner-like optimizer focusing on the parallelizing only (K) dimension.

6.2.3 Evaluation on MLP and LSTM. In this evaluation, we have considered the MLP and
LSTM workloads from the work of Yang et al. [54], and a summary of these workloads is shown
in Figure 15. Figure 14 presents the runtime of optimized mappings generated by Marvel, the
dMazeRunner-like optimizer, and the Interstellar-like optimizer normalized to the roof-line peak of
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each workload. Marvel generated mappings are 4.46× and 1.22× faster compared to the mappings
obtained by the dMazeRunner-like optimizer and Interstellar-like optimizer for all the workloads
on both accelerator platforms. The benefits of our approach compared to the dMazeRunner-like
optimizer is higher because of its parallelization across only a single dimension (embedding size in
case of LSTM and output channels in MLP) and also exploring only limited loop orders for reuse.
Marvel is able to do better compared to the Interstellar-like optimizer by exploring more levels of
parallelism to make the PE array occupied (e.g., only 1.04× higher relative to the roof-line peak
on P2).
Summarizing, our decoupled off-chip/on-chip approach is applicable to any MDC conformable op-

erator, and we have demonstrated our approach over multiple CONV2D variants, GEMM, MLP, and
LSTM workloads that are popular in DNN models.

7 RELATEDWORK

We categorize our discussion on prior work along the two directions: (1) expressiveness, formal
boundary, and cost models, and (2) mapping exploration strategies.

7.1 Expressiveness, Formal Boundary, and Cost Models

A major difference between the mappers for spatial accelerators and CPUs/GPUs is the need for
“accurate” cost models that can estimate close to real-world values for a given mapping of a ker-
nel (operator) for finding efficient mappings [24, 34]. This is because the spatial accelerator’s per-
formance is sensitive to the mapping parameters—for example, a small change in the tile size
or degree of parallelism would drastically change the latency or energy-efficiency numbers. Re-
cently, multiple analytical cost models [12, 24, 34, 54] have been developed to estimate execution
time and energy efficiency of mappings over spatial accelerators close to the real-world simu-
lation/execution. These mappings are often expressed in the form of loop nests, and many cost
models such as Timeloop [34], DMazeRunner [12], and Interstellar [54] are developed over the
loop nest description of mappings. The loop nest syntax is very generic and can help accelerator
architects or compilers express a wide range of mappings, but the underlying cost models may not
be able to estimate costs for all possible mappings that can be expressible in loop nests. For example,
a mapping for parametric multi-step LSTM operator may include loop skewing transformation
to exploit pipelined (wave-front) parallelism [3], but it is not clear if the cost models mentioned
previously can precisely estimate costs for such mappings.

Challenges with generic loop nest representation for cost models. The generic loop nest forms en-
compasses various control flow structures and data-access patterns that make it harder for the
cost models to precisely reason. For instance, most of the cost models based on the loop nest form
assumes the loops to have constant bounds, and this makes the analysis simpler by estimating var-
ious forms of reuse in a particular iteration and extrapolating with the total number of iterations
in the loop. However, such analyses can break in presence of if conditionals in the loop body
and also with variable loop bounds such as in non-rectilinear and sparse iteration spaces.
TVM compiler infrastructure [6] offers anML-based cost model to find optimal implementations

of convolutions on a variety of platforms including accelerators. However, we believe that such
ML-based cost models are challenging for spatial accelerators for two reasons: (1) the statistical
ML-based cost models are generally not accurate to precisely estimate performance and energy,
and not accounting PE under-utilization, edge conditions can lead to significant imprecision, and
(2) it requires training the ML-based cost models even for a slight change in number of PEs in the
accelerator configuration, which makes it challenging to use for the design space exploration.
In this work, we have considered the recently introducedMDC notation [24] for expressingmap-

pings onto generic templated spatial architectures because any mapping expressed in the notation
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Table 3. Comparison of the MDC Notation with Prior Compilers in Terms of Expressiveness, Mapping

Notation, and the Presence of Accurate Cost Models

Notation

Operator Expressiveness
Mapping

Representation

Accurate Cost

Models for Spatial

Accelerators

Loop Nest

Structure

Array

Subscripts

Iteration

Domain

MDC Perfect Affine Affine Data-centric YES

TVM, TC, PlaidML, Stripe, ISAMIR Perfect/Imperfect Affine Rectangular Loop-centric
NO (YES for

limited scenarios [54])

Polyhedral (e.g., Tiramisu) Perfect/Imperfect Affine Affine Loop-centric NO

Generic loop nests (e.g., MLIR) Perfect/Imperfect Any Any Loop-centric
NO (YES only for

limited scenarios [34])

is precisely analyzable using the MDC’s cost model [25]. We introduced a set of conformability
rules as a way to define a formal boundary over operators for precise and tractable cost analysis
of the operator mappings using the MDC notation and its cost model.

Expressiveness. On the other side, even though high-level frameworks such as TVM [6], TC [50],
PlaidML [36], Stripe [55], Polyhedral (Tiramisu [3]), and MLIR [27] have richer expressibility than
the MDC notation, none of these frameworks yet have accurate cost models targeting flexible
spatial accelerators. In addition, it is not clear if accurate cost models can exist for any operator
expressed in their notations. An overview of the comparison of the MDC notation with prior
notations in terms of expressiveness, mapping notation, and the presence of accurate cost models
for spatial accelerators is shown in Table 3. Our approach, including mapping space exploration,
can be plugged into popular frameworks such as TVM and MLIR for wide applicability.
In addition toMarvel supporting all the primitive operators supported by other frameworks (Fig-

ure 16), Marvel can also support operators having non-rectilinear iteration spaces (e.g., Symmetric
GEMM [18]), which none of the other frameworks in Figure 16 support. Furthermore, a strong
guarantee of our approach is that any operator conformable to the MDC notation can leverage our
compiler along with the underlying accurate cost model. This is in contrast to other frameworks
for spatial accelerators such as Timeloop and Interstellar, where there are no such guarantees.

MDC limitations. Currently, the MDC representation restricts the input computation to be a per-
fectly affine loops nest without any conditionals statements. Hence, our representation cannot sup-
port computations such as parametric LSTM operators and fusion of multiple convolution layers.
However, such computations can be transformed into a sequence of MDC conformable operations
by performing the transformations such as unrolling of parametric LSTM operations and loop dis-
tribution of imperfectly nested loops into perfectly nested loops. The polyhedral model is capable
of covering the MDC limitations, but there does not exist any cost model based on the polyhedral
model to accurately estimate performance aspects of a mapping on spatial accelerators, and this
is a good line of research work for the future.

7.2 Mapping Exploration Strategies

Prior work [7, 57] focused on developing mappers specific to their architectures—for example,
mRNA mapper [57] for the MAERI accelerator [26] and Auto-TVM [6] for the GEMM core of the
VTA architecture [31] limiting their applicability to generic spatial accelerators. Prior work such
as Zhang et al. [56] and Ma et al. [29] focused on spatial accelerators without L1 buffers inside
a PE, again limiting their mapping space formulation. Furthermore, they do not employ accurate
cost models and focus only on optimizing for runtime.
In addition, other prior works such as Interstellar and dMazeRunner fixed certain aspects of

mapping space such as choice of parallel loops and loop orders, and these choices may not reflect
the efficientmappings for awide variety of DNNoperators. To the best of our knowledge, Timeloop
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Fig. 16. Comparison of Marvel with prior mappers for spatial accelerators (mRNA [57], Zhang et al. [56],

Ma et al. [29], Auto-TVM [6], dMazeRunner [12], Interstellar [54], and Timeloop [34]) for the mapping space

exploration of operators. Our approach (Marvel) supports any operator conformable with theMDC notation.

is the only framework that considers all aspects of a mapping for a fully flexible spatial accelerator.
However, it employs either an exhaustive linear search or a random sampling-based heuristic to
explore the search space. In contrast to all preceding works, our approach considers all the aspects
of mapping space and uses the decoupled strategy to navigate the mapping space efficiently.
Our work’s key novelty is the formalization of MDC conformable operators using the four rules

defined in Section 3, and with the conformability, our approach always generates a correct set of
MDC directives corresponding to a loop nest mapping of the operator. The prior work introducing
MDC directives [24] does not have any formalization and also any correctness checker over the
usage of MDC directives. Further, the prior work is limited to hardware DSE and does not have
any mapping explorer, unlike our approach.

8 CONCLUSION AND FUTURE WORK

In this article, we characterize the set of input operators and their mappings expressed in the
MDC notation by introducing a set of conformability rules. The outcome of these rules is that
any loop nest which is perfectly nested with affine tensor subscripts and without conditionals is
conformable to the MDC notation, and a majority of the primitive operators in DL are such loop
nests. In addition, our rules enable us to automatically translate a mapping expressed in the loop
nest form to MDC notation and use the MDC’s cost model to guide upstream mappers. Our con-
formability rules over the input operators result in a structured mapping space of the operators,
and this enables us to introduce a mapper based on our decoupled off-chip/on-chip approach to
accelerate mapping space exploration. We implemented our decoupled approach in a tool called
Marvel,6 and a major benefit of our approach is that it applies to any DNN operator conformable
with the MDC notation. Our approach reduced the search space of CONV2D operators from four
major DNN models from 9.4× 1018 to 1.5× 108 + 5.9× 108 � 2.1× 108, which is a reduction factor
of 10 billion (Figure 10), while generating mappings that demonstrate a geometric mean perfor-
mance improvement of 10.25× higher throughput and 2.01× lower energy consumption compared
with three state-of-the-art mapping styles from past work. In the future, we envision (1) Marvel
integration with the MLIR compiler infrastructure for wide usability, and (2) extending the MDC
notation and its cost model to support non-conformable operators.

6Recently, we incorporated a variant of our decoupled off-chip/on-chip approach in the UNION framework [19].
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