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Abstract—As Deep Learning continues to drive a variety of
applications in edge and cloud data centers, there is a growing
trend towards building large accelerators with several sub-
accelerator cores/chiplets. This work looks at the problem of
supporting multi-tenancy on such accelerators. In particular,
we focus on the problem of mapping jobs from several DNNs
simultaneously on an accelerator. Given the extremely large
search space, we formulate the search as an optimization
problem and develop an optimization framework called M3E. In
addition, we develop a specialized optimization algorithm called
MAGMA with custom operators to enable structured sample-
efficient exploration. We quantitatively compare MAGMA
with several state-of-the-art methods, black-box optimization,
and reinforcement learning methods across different accel-
erator settings (large/small accelerators) and different sub-
accelerator configurations (homogeneous/heterogeneous), and
observe MAGMA can consistently find better mappings.

Keywords-Multi-tenancy; Multi-core accelerator; Genetic
Algorithm; Scheduling

I. INTRODUCTION

Accelerators for Deep Neural Network (DNN) models
are commonplace today in both the cloud and edge. As Al
workloads continue to drive up the demand for compute, there
is a trend towards building large accelerators housing several
sub-accelerator/arrays (summarized in Table I). Key examples
include MCM-based SIMBA [82], wafer-scale Cerebras [8]
or scaled-out platforms [3], [26], [40]. Some recent studies
have also explored heterogeneous multi-accelerator designs
enabled via reconfiguration [39] or separate heterogeneous
sub-accelerators [49].

With the emergence of such platforms, enabling multi-
tenancy, i.e., multi-DNN mappings on the an accelerator/
platform, is a natural use-case. Data center workloads often
run three categories of inference tasks: vision, language and
recommendation, and in each task it involves variants of
related DNN models [2], [69]. In this work, we target all
three use cases and focus on batched-job tasks (jobs launched
in bulk without latency constraint but with high-throughput
need [2], [69], [77]), e.g., Google photo auto-editing, image
tagging, video processing, and voice processing.

There have been a few recent works looking into the
problem of mapping multi-DNN workloads on multiple
accelerator cores. PREMA [15] develops a mapper for
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Fig. 1: Multi-tenant multi-core accelerator.

multi-tenant language tasks, however targeting single-core
accelerator. AI-MT [3] successfully designs a mapper for
homogeneous multi-core accelerators and shows performance
improvement over vision and language tasks. Herald [49]
targets heterogeneous multi-core accelerators and systemati-
cally analyzes the benefit of heterogeneity in dataflows across
the accelerator cores for AR/VR workloads (vision tasks).
These works demonstrate the impact of a mapping (of DNNs)
for the new multi-tenant multi-core accelerators, which is
of rising interest, as shown in Table I. However, all these
approaches rely on manually-designed heuristics. This limits
their scalability to diverse accelerator back-ends and emerging
workloads. In this work, we develop an automatic mapping
search process which includes two specific contributions (i)
an optimization framework and (ii) a novel optimization
algorithm.

We propose an optimization framework called Multi-
workload Multi-accelerator Mapping Explorer (M3E). In
the framework, (i) we develop an efficient encoding scheme
to encode the search space of the mapping; (2) we develop
several modules to enable the found mapping to effectively
orchestrate the data movement across sub-accelerator cores;
(3) we enable several commonly used black-box optimization
algorithms and two reinforcement learning methods to
be leveraged as the underlying optimization methods. In
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Fig. 2: The high-level characteristics of different optimization
methods (see Table IV) and their effects on their exploration

steps [41, [9], [19], [55], [90].

T:Population-based methods: stdGA, DE, CMA-ES, TBPSA, and PSO in
Table IV.

*: Crossover-gen (MAGMA’s operator) can perturb Job-Prior genome (X-
axis) while respecting most of the Sub-Accel genome (Y-axis) (step—@).
Likewise, Crossover-gen and Crossover-accel (MAGMA's operators) can
perturb Sub-Accel genome while respecting most of the Job-Prior genome
(step—@,@). Crossover-rg (MAGMA's operator), which respects segments
of both genome simultaneously, becomes useful when a segment of Job-
Prior genome is highly correlated with corresponding Sub-Accel genes. The
designed operators will formulate the exploration in more structured manners,
which follow the observed characteristics in this scheduling problem.

M3E, we break the multi-tenant mapping problem into two
components: sub-accelerator selection and job prioritization.
Sub-accelerator selection is where we assign each job a sub-
accelerator to execute; job prioritization is where we order the
jobs that are assigned to an sub-accelerator. Each component
creates an immense design space by itself. The full design
space is the combinatorial probability of both, which becomes
as large as O(1e81) (Section IV-F). It also motivates us to
design an sample-efficient optimization algorithm.

We propose a custom genetic algorithm-based optimization
method for this mapping problem, termed Multi-Accelerator
Genetic Mapping Algorithm (MAGMA)'. We design custom
genetic operators in MAGMA, which allows it to structurally
explore the design space and largely increase its sample
efficiency.

Compared to prior work on multi-tenant DNN mapping [3],
[15], [49], this work expands the scope of the problem-space
in the following ways:

e We utilized optimization-based mapper to solve the
mapping problem, while prior arts focus on manually
designing a mapper.

e We target both homogeneous and heterogeneous DNN
accelerator platforms.

e We target a diverse spectrum of models across vision,
language and recommendation, which exhibit different
bandwidth requirements.

Our solution, M3E includes the following novel features:
e (1) We frame mapping into an optimization problem and
develop key modules to present a complete optimization

IThis work is available at https://github.com/maestro-project/magma.

Table I: The comparisons of related works on multi-tenancy
and multi-core accelerators.

q Dataflow Multi- Multi-
BEeat WlitGoRe flexibilit; tenanc; tenanc
Accelerators | (Multi-Sub-Accelerators) ¥ Y Y
across cores | support mapper
Homogeneous
BIRMIEAEY (36 on-package chiplets) No No NA
Homogeneous No
TP 42 N i i NA
U211 4 [128x128] TPU cores) ° information
in public
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(Single systolic array)
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Hlana L (reconfigurable systolic array) No Yes Manual
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dataflow sub-accelerators
M3E Homogeneous and Yes Yes MAGMA
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framework (M3E), which provides the infrastructure
for the research community interested in new mapper
design or the test-bed for the developed new optimization
algorithms.

e () A novel optimization algorithm called MAGMA,
which includes several domain-aware operators to en-
able structured exploration of the large mapping space,
as shown in Fig. 2. This makes MAGMA orders of
magnitude faster and more sample-efficient than baseline
optimization methods [28], [32], [33], [45], [73], [76],
baseline genetic algorithm (GA) [33], and Reinforcement-
learning (RLs) [63], [81], as our results demonstrate.

e (3) In our evaluation, we found MAGMA is (geomean)
1.4x and 1.41x better than Herald-like [49] and AI-MT-
like [3] mappers, and 1.6x better than other comparing
optimization methods in homogeneous multi-core accel-
erators. We found MAGMA is (geomean) 1.7-2.3x better
than Herald-like, 39-52x better than AI-MT-like, 10-13x
better than black-box optimizations, and 1.01-1.3x better
than RLs in heterogeneous multi-core accelerators.

II. BACKGROUND
A. Characteristics of DNN Models

In this paper, we consider three types of tasks/ applica-
tions that are common in inference data centers [2], [69],
[77] or edge multi-tenant systems [3], [49]: vision, deep
recommendation system, and language model.

Vision. Most of vision models [29], [48], [79], [87], [92]
are dominated by convolution layers (2D/depth-wise/point-
wise) (CONV) and many of them have a MultiLayer
Perceptron (MLP) or fully connected layer (FC) at the
end [48], [87].

Recommendation. Recommendation models are either
dominated by MLP, attention, or embedding lookup lay-
ers [13], [27], [30], [65]. With respect to the compute and
HW cost, the MLPs and the attention layers are modeled as



several FCs. We assume the embedding lookups are kept in
the CPU host.

Language. Language models are often dominated by
embedding lookup, MLPs, RNNs, and attention layers [21],
[22], [72], [74]. At long sequence range, attention layers
becomes a heavy job owing to its quadratic complexity for
both compute and memory [95], [96].

B. Multi-core Accelerator

1) Accelerator Architecture: An accelerator houses mul-
tiple cores (termed sub-accelerators in this paper). As
shown in Fig. 1, all sub-accelerators share the “system
BW” via an interconnection network. We define system
BW as the minimum of main memory (e.g., HBM/DRAM)
BW and host-to-accelerator (e.g., PCle) BW. The specific
interconnection network architecture can vary depending on
the target technology (on-chip [3] versus on-package [82]
versus wafer-scale [8]) and the scheduler is agnostic to this. In
this work, we target accelerators with both homogeneous and
heterogeneous sub-accelerators. The motivation for hetero-
geneity among sub-accelerators comes from diverse dataflow
preferences for different kinds of layers. For instance, certain
sub-accelerators could be optimized for convolutions [11],
[66] to service vision models, some for GEMM [41], [67] to
service NLP models, and some for and embeddings to service
recommendation models [36]. Recent work Herald [49] also
shows that heterogeneous accelerators are beneficial for multi-
DNN workloads.

2) Sub-Accelerator Architecture: Each sub-accelerator
in our system is a conventional DNN accelerator that is
comprised of an array of Processing Elements (PE). Each PE
has a MAC to compute partial sums, and local scratchpad
(called SL in this paper) to store weights, activations, and
partial sums. Each sub-accelerator also houses a shared global
scratchpad (SG) to prefetch activations and weights from
HBM/DRAM for the next tile of computation that will be
mapped over the PEs and SLs. Networks-on-Chip (NoCs)
are used to distribute operands from the SG to the SLs and
write the outputs back to the SG.

Dataflow. Given a DNN layer, each sub-accelerator
employs a dataflow (aka local-mapping). The dataflow
determines the loop order, parallelism dimensions, and tile
sizes for running the layer on the sub-accelerator. From the
data movement perspective, a tile is a basic data movement
unit from DRAM/HBM to the SG. The tile sizes are bound
by the size of the SG buffer. The SG is double-buffered [12],
[50] to try and hide the data-fetching latency of the current
tile from DRAM/HBM behind the compute latency. However,
if the bandwidth to main memory is insufficient to hide the
fetch latency (based on the bandwidth allocation determined
by the scheduler), the accelerator will stall. For instance,
the NVDLA [66] dataflow keeps weights in the outermost
loop (i.e., weight-stationary) and schedules the weight tiles

spatially over the array along the input and output channels
for parallelism.

III. PROBLEM FORMULATION

The focus of this paper is designing an automated
mapper for multi-tenant DNN accelerators housing several
homogeneous or heterogeneous cores. The output of our
mapper is a global mapping, i.e., mapping of independent
jobs across the accelerator cores over space and time. We
describe the problem formulation and assumptions in detail
here. In Section IV, we formulate this mapping problem
as an optimization problem and propose an optimization
framework. In Section V, we propose an algorithm targeting
this mapping problem.

Jobs. We focus on systems targeting multi-tenancy and
batched-job tasks [2], [69], [77]. Batched-job tasks are
usually not latency sensitive and targeting high throughput;
in contrast, single-job tasks are often latency-sensitive and
targeting minimum response time. Moreover, multi-tenant
batched-job tasks also has much less layer dependency issue
than single-tenant single-job tasks for following reasons.
i) As shown by the observation in AI-MT [3], multi-
tenancy, running multiple neural networks together, can
largely alleviate the layer dependency problem as layers from
different neural networks can be freely scheduled without
any dependency issue. ii) In batched-job tasks, where often
hundreds to thousands of activations are running by the same
model (e.g., video processing), in practice, the activations will
be broken down to mini-batches because of memory concern.
These mini-batches are independent with each others, which
further alleviate the dependency issue when scheduling these
mini-batches. In this paper, we refer to a “job” as a mini-
batch of a layer — a job is a mini-batch of activations and a
set of weight parameters of a layer, where the layer belongs
to one of the independent models in the multi-tenant system.

Group. At the host, we run a light-weighted control
program to divide a pool of queuing jobs into multiple
”dependency-free [3]” groups (Jobs inside each group have
no dependency). The group size is a hyper-parameter. Larger
group size could increase the search space of the mapper and
increase the expected performance; however, larger group
size also increase the difficulty for the mapper which could
lead to sub-optimal performance. Also, group size should be
larger or equal to number of sub-accelerators to avoid some
sub-accelerators being idle completely.

Mapping. Mapping is the strategy to orchestrate the jobs
assignment and job prioritizing across sub-accelerators over
space and time. It could also be called global mapping (a
global control of the data movement across host and sub-
accelerators), while dataflow (Section II-B2) is called local
mapping (a local control of the data movement inside one
sub-accelerator).

Mapper. The mapper for multi-tenant multi-core accelera-
tors for DNN workload is a comparatively new and rarely
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explored topic. Recent works such as PREMA [15], Al-
MT [3], and Herald [49] have motivated the need of an
effective mapper for new DNN accelerators targeting multi-
tenant DNNs and multiple sub-accelerator cores.

A mapping for such accelerators could be a manually-
designed heuristic or found by a mapping optimizer. The
manual-designed mapping heuristic [3], [49] is often highly
tuned for specific accelerators/ systems or tasks/ workloads.
The challenge with this approach is that whenever the
underlying accelerators or the targeting tasks change, the
mapper need to be re-designed or at least undergo another
lengthy cycle of engineer-intensive tuning process.

In this work, unlike the previously mentioned manual-
designed mappers [3], [49], we explore the potential of
the mapping optimization method. It has the benefit of
”automatics”, i.e., we simply need to re-run the search of
the optimizer whenever the underlying accelerator evolves or
target task changes, which happens more and more frequently
at the era of the fast-paced hardware evolution. We discuss
the proposed mapping optimization framework next.

IV. OPTIMIZATION FRAMEWORK (M3E)

We propose a mapping optimization framework for multi-
tenant heterogeneous accelerator. The structure of our pro-
posed framework called M3E is shown in Fig. 3.

At a high-level, the M3E consists of an optimization phase
and an evaluation phase. At evaluation phase, the candidate
mapping is evaluated by the cost model. At optimization
phase, the optimization algorithm tweak the mapping based
on the feedback from the evaluation phase. The optimization-
evaluation loop happen iteratively until the targeting objective
converges or after a fixed set of time epochs.

The mapping consists of two key components:

e Sub-accelerator selection: the assignment of each job
to a specific sub-accelerator.

e Job prioritization: execution order of jobs on a given
sub-accelerator.

To successfully frame a problem into an optimization
process, there are two critical pillars: encoding (how the
search space is described) and optimization algorithm (how
the search space is explored). We describe them as follows.
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Fig. 4: (a) Mapping description from the decoder. (b) The
example BW and sub-accelerators allocation results.

A. Encoding

An encoded mapping should encode the joint strategy of
job prioritization and sub-accelerator selection. We encode
them into a series of values with two separate sections, as
shown in Fig. 5(a). The sub-accelerator selection section
decides which job goes to which sub-accelerator. The job-
prioritizing section decides the order of the jobs in each
sub-accelerator. The length of the section is equal to group
size. A full mapping consists of two sections with total length
2x group size. We describe the encoding using the example
in Fig. 5(a) assuming two sub-accelerators and a group size
of 5.

Sub-accelerator Selection Section. Each value describes
the sub-accel ID for the corresponding job. For example, jobs
J1 and J4, are assigned to sub-accel 1, and J2, J3, and JS are
assigned to sub-accel 2 as shown in the sub-accel selection
part of the decoded assignment in Fig. 5(a).

Job Prioritizing Section. Each value describes the priority
of the corresponding job. The priority value ranges from 0 to
1, where 0 is the highest priority. We order the job assigned
to a certain sub-accelerator by the order of priority value. For
example, J1 runs before J4 in sub-accel 1 as shown in the
job prioritizing part of the decoded assignment in Fig. 5(a).

B. Optimization Algorithms Supported

With an encoded search space and the support of build-
ing blocks of M3E (described later in Section IV-D), we
support several popular optimization algorithms, as shown
in Table IV. We include multiple black-box optimization
methods such as Differential Evolution [73], Covariance
Matrix Adaptation Evolution Strategy [28], and Particle
Swarm Optimization [45]. In addition, we also include two
widely-used reinforcement learning methods — Advantage
Actor-Critic (A2C) [63] and Proximal Policy Optimization
(PPO2) [81]. Finally, we also support our novel optimization
algorithm called MAGMA (Section V). With the established
framework, M3E can also easily be extended to support other
algorithm proposals.

C. Objective and Constraints

We target throughput as our main objective. However,
other objective can also be set (e.g., latency, energy) or for-
mulated (e.g., energy-delay-product, performance-per-watt).
The objective can simply be specified as an input to the M3E,
as shown in Fig. 3. We consider BW constraint (however



Algorithm 1 BW Allocator

Input: Mapping description
Output: BW,”””C, t=1,2..T
Get Lat;, an array of no-stall latency for the parallel jobs at time t, t=0
Get BW,“, an array of required BW for the parallel jobs at time t, t=0
CurJobs; = Lat, x BW,*!
while CurJobs; is not empty do

if sum(BW,*!) < BW,y, then

B‘,Vtal/ac — B‘/Vrreq

else req
BW(LI/(IC =BWz X BWyys
‘ sum(BW;“7)
end if
runtimes =S4Iobs

Bwalloc
runtime = min(runtimes)

CurJobs, -= runtime x BW o
accelpeyy = argmin(CurJobs;)
t += runtime
Fetch the next Lat and BW™? of sub — accelyey, compute CurJob;
and insert into BW,“?, Lat, and CurJobs;.
end while

similarly, other constraints can also be specified). The BW
constraints include accelerator-to-host BWs (e.g.,PCle, M.2)
and host memory BW (eg., DRAM/HBM BW), which are
common constraints in the practical deployment scenario [49],
[69]. For simplicity of the optimization framework, we take
the minimum of the two (the more stringent BW constraint),
as the BW constraint known by the optimization framework,
and we name this constraint — system BW.

D. Building Blocks of M3E.

1) BW Allocator: However, in a multi-core accelerator,
system BW to the accelerator becomes a global shared
resources between cores (sub-accelerators). To evenly allocate
the same amount of BW to all the sub-accelerators is an often
applied heuristics. However, it will increase the possibility of
compute resource under-utilization. E.g., in a normal single-
accelerator case, depth-wise CONV jobs are often more
memory-intensive than regular 2D CONYV jobs, which can
make the accelerator under-utilized when running depth-
wise CONV while it is fully-utilized when it runs 2D
CONV. In the multi-core accelerator, where the system BW
is a global shared resources [69], it gives us a chance to
reallocate the BW to alleviate the under-utilization problem
by proving more BW to core running memory-intensive jobs
and proving only adequate BW to cores running compute-
intensive jobs, which motivates the BW allocator (Algorithm
1). The BW allocator is reallocating the BW based on the
memory BW intensity of different jobs running on different
sub-accelerators.

In detail, receiving the mapping, the BW allocator lookup
those jobs’ no-stall latency (Section IV-D2) and required BW
from the job analysis table (Section 1V-D2), and allocates
the system BW to each sub-accelerator at each time frame
with the ratio of their required BWs. It outputs the detailed
BW allocation results, as shown in Fig. 4(b).

Fig. 4(b), a BW allocation results, as an example, we
can tell, jobs J1 and J5 will be launched in Sub-accel-1

and Sub-accel-2, concurrently. Sub-accel-2 will be allocated
more BW because it is running a more BW-intensive job.
When Sub-accel-2 finishes J5 and launches J3, the BW will
be re-allocated to reflect the change of live running jobs in
the accelerators, where Sub-accel-1’s BW is reduced and
reallocated to Sub-accel-2 in Fig. 4.

2) Job Analyzer: The job analyzer takes the jobs de-
scription as input and estimates the no-stall latency and its
required BW for each sub-accelerator using a cost model
(described below) to generate a job analysis table as Fig. 3
shows. This table serves as a performance lookup table by
the BW allocator (Section IV-D1) within the optimization
loop.

3) HW cost model for Sub-Accelerators: In M3E, we
leverage MAESTRO [1] as our underlying cost model for
each sub-accelerator because of its ability to support diverse
accelerator dataflows and configurations?. It supports most of
the common DNN layers such as CONYV, depth-wise CONYV,
and fully connected. Given a DNN layer, a HW resource
configuration (PE, SL size, SG size, NoC latency, and BW),
and a mapping/dataflow strategy, MAESTRO estimates the
statistics such as latency, energy, runtime, power, and area.

4) Job Analysis Table: Job Analyzer profiles each job in
the task by the cost model [1] and stores the profiling results
in the Job Analysis Table. In the optimization process, Job
Analysis Table serves as a quick look-up table for fitness
evaluation to avoid frequently querying the cost model. The
profiling has two main information: no-stall latency and
no-stall bandwidth, described next.

No-stall Latency. We define no-stall latency as the latency
for running each job on each sub-accelerator, assuming it
has sufficient memory bandwidth (i.e., not memory-bound).

No-stall Bandwidth. We define no-stall bandwidth as the
minimum bandwidth requirement from each sub-accelerator
to make it stay compute-bound, not memory-bound.

E. M3E Workflow

Set-up: At the start, the user/host sets up the optimizer by
feeding in the jobs descriptions, configurations (number of
PEs, dataflow) of each sub-accelerators, the system constraint
(system BW), and objective (e.g., throughput).

Pre-process: Job analyzer Job Analyzer prepares the Job
Analysis Table, as shown in Fig. 3.

Optimization Loop: Optimization phase: optimization
algorithm updates the encoding mapping based on the feed-
back from the evaluation block. Evaluation phase: Decoder
decodes encoded mapping into a mapping description, as
shown in Fig. 4(a). BW Allocator takes in the mapping
description and allocates the BW for each sub-accelerator.

%In this paper, we explore heterogeneity with the aspect of different
specialized DNN accelerators configurations (PEs, buffer size, dataflows).
However, M3E is general enough, so that it could also consider generic
architectures such as CPUs/GPUs/TPUs by plugging in their cost models.



Table II: Terminology used in MAGMA Algorithm.

Term Description
Gene An encoded value that represents accel. sel. or job prio. of a job.
A series of genes that represent the entire schedule about accel. sel. or job
Genome

prio. of a batch of jobs.

Individual | A series of genomes that fully represent the schedule of a batch of jobs.

An entire set of individuals forms a generation.
The generation evolves with time by mutation/crossover and selection of
the well-performing individuals to the next generation.

Generation

Crossover

Mutation

Blend two parents” genes to reproduce children’s genes.

Randomly perturb a parent’s genes to reproduce children’s genes.

Fitness function extracts the objective and sets it as fitness
value.

This finishes one loop/ epoch of optimization. The op-
timization loop stops when M3E reaches the set sampling
budget (the number of allowed sampling data points in a
search process).

F. Search Space

The full search space of the proposed framework is the
combinatorial combination of the choices for sub-accelerator
selection and job prioritizing. Assuming the accelerator has 4
sub-accelerator and we use the group size of 60. The size of
the design space is (60!)/(15!)* x (15)* = 60! = O(1e81)
which is extremely massive. Therefore the sample efficiency’
of the optimization methods, which decides the convergent
rate, becomes a key factor. We describe our proposed sample-
efficient optimization method, next.

V. OPTIMIZATION ALGORITHM (MAGMA)

MAGMA is a GA-based search technique. Its key differ-
ence from standard GA is that it customizes the optimization
algorithm’s exploration momentum and mechanism (i.e.,
genetic operators in GA context) for the target search space.

A. Why GA?

Research shows GA reaches competitive performance
with deep reinforcement learning [78], [90], and hyper-
parameter optimization problem. STOKE [80] and Tensor
Comprehensions [99] use GA to search the space of DNN
code optimization. From a search time perspective, GA 1is
light and fast [78], [90] comparing to many optimizations
methods since the optimization mechanism in GA uses
simple operations (e.g., crossover and mutations). A key
challenge with standard GA however is that it is not
sample-efficient. We address this issue using our customized
operators (Section V-B2).

B. MAGMA Algorithm Details

1) Terminology and Basics of GA: We list the common
terminology of GA we use throughout the paper in Table II,
namely gene, genome, individual, generation. The basic
mechanism in GAs is to create a population of individuals
in each generation. All individuals are evaluated and sorted

3Performance improvement over the number of sampling budget.

based on their fitness. The best performing individuals are
used as parents to create a new population of individuals
using genetic operators ( Section V-B2). The goal of GA
is to perturb genes (i.e., components of the schedule) and
retain well-performing ones across generations.

2) Genetic operators: Standard GA Operators. The
standard genetic operators in GA consist of mutation and
crossover. The standard mutation operator randomly mutates
some genes. The standard crossover operator samples a pivot
point and exchanges the genes of parents according to that
pivot point. The sampling efficiency of the GA relies on the
efficiency of the genetic operators to sample high-quality
next generation.

MAGMA Operators. In MAGMA, we inherit the standard
mutation mechanism and design three specialized crossover
genetic operators. Different crossover operators are designed
to preserve different dependency of genes while exploration.
They allow us to explore the scheduling problem in a more
strategical manner. We describe the genetic operators next.

Mutation. During mutation, we randomly select multiple
genes (according to the mutation rate) and mutate them to
random values. Fig. 5(b) shows an example when mutating
at the third and second genes of two genomes respectively.
On the right side of the figure, it shows how the son’s
genes/schedule are generated by the dad’s mutation. J3 is
moved to sub-accel 1 because of the first mutation. J2 is
moved to a higher priority in sub-accel 2 because of the
second mutation. In our experiments, we use a mutation rate
of 0.05.

Crossover-gen. This is a genome-wise crossover. First,
we randomly sample a type of genome to crossover. Next,
we randomly sample a pivot point and exchange the genes
of the genomes. There are two benefits of genome-wise
crossover. First, we keep the perturbation to the level of the
genome, which potentially keeps the good characteristics of
the other un-touched genomes, and therefore is more stable
throughout the evolution. Second, we eliminate the order
dependency of the genomes. The genomes are independently
representing their features, where the order of them provides
no information (, i.e., representing Sub-accel Sel. genome
first and Job Prio. Genome later does not make the J5 of
Sub-accel Sel. and J1 of Job Prio. strongly correlated despite
their being next to each other.). Therefore, a genome-wise
crossover, which operates genomes independently, enables us
to perturb the gene without unnecessary assumptions of the
genome order. Crossover-gen becomes the major crossover
function, which we set the crossover rate as 0.9.

Fig. 5(c) shows an example that we pick the second
genome (Job Prio.) as the crossover region and the third
location of the region as the pivot point. With the respect
of schedule change after crossovering, in the example, the
orders of J4 and J5 in mom’s schedule are passed to son’s
schedule.

Crossover-rg. This is a range crossover mechanism
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Fig. 6: The algorithm flow of MAGMA.

structured to preserve the the dependency of genes across
genomes. For example, in Fig. 5(a), the first and the sixth
genes are dependent, since they are both representing some
features for J1. We randomly pick a range of genome (e.g., the
3rd to the Sth locations of each genome) and simultaneously
crossover all the genes falling into the picked region from
both genomes, and thus the cross-genome dependency is
preserved. With the respect of scheduling change after
crossovering, the order and accel selection of J3, J4, and J5
are exchanged between two individuals, as shown in Fig. 5(d).
Crossover-rg has crossover rate of 0.05.

Crossover-accel. This is a crossover method to preserve
the dependency of job ordering within an sub-accelerator.
We randomly select a sub-accelerator and pass the job
ordering information of this sub-accelerator to the children.
For example, in Fig. 5(e), we select sub-accel 2. Next, we
check the Sub-accel Sel. genome of Mom, copy the genes
related to sub-accel 2 (the first and second genes of both
genomes in (e)), and paste them to son’s genomes.

To increase load balancing, the original jobs assigned to
sub-accel 2 in Son will be randomly mutated. Crossover-accel
has crossover rate of 0.05.

3) Hyper-parameter Tuning: The above mentioned mu-
tation, crossover rates, populations sizes, and elite ratios are
hyper-parameters in MAGMA. We applied a hyper-parameter
search via a Bayesian optimization framework [7] to select
a set of hyper-parameters that makes MAGMA achieve the
highest performance across multiple workloads.

Table III: Accelerators configurations/ settings of the experi-
ments.

Setting Description # of sub-accels | (height of PE array, dataflow style, buffer)
S1 Small Homog 4 4x( 32, HB, 146KB)
S2 Small Hetero 4 3x( 32, HB, 146KB), 1x( 32, LB, 110KB)
S3 Large Homog 8 8x(128, HB, 580KB)
S4 Large Hetero 8 7x(128, HB, 580KB), 1x(128, LB, 434KB)
- Large Hetero g 3x(128, HB, 580KB), 1x(128, LB, 434KB)
BigLittle 3x( 64, HB, 291KB), 1x( 64, LB, 218KB)
o |mesiew | 10 | pOmmsme o oun
2D PE array: h (height) X w (width) (PEs), w=64, in the experiments

C. Warm-Start of MAGMA

In this section, we present the techniques we implement to
enable the warm-start of the algorithm. Warm-start is a well-
known technique in black-box optimizations to enable faster
convergence or reaching better objective value. Warm-start
works as follows. There are series of tasks to be solved by
the optimization algorithms. If the current task is the same or
similar to the previous solved tasks, we can take the previous
solution to initialize the algorithms. We also implement an
warm-start engine, which recognize if the current task fall
within the same types of tasks (Vision, Recommendation, or
Language), i.e., whether it is similar to the previous solved
task. If tasks are within the same type of task, the warm-
start engine will take over the initialization job from Init
engine (initializing algorithm randomly). In our experiment
(Section VI-G), we found warm-start is a useful add-on
technique in MAGMA.

VI. EVALUATIONS
A. Methodology

1) Target DNN Models: We consider three different
types of tasks/ applications with their corresponding models
collected from PyTorch: Vision ( [29], [37], [79], [87], [93],
[94], [107]), Language ( [17], [18], [21], [22], [46], [47], [52],
[53], [541, [57], [61], [74], [75], [103]), and recommendations
( [13], [27], [65], [109], [110]). The models are the ones
used for the batched high-throughput applications (e.g., photo
auto-editing, image tagging, and video / voice processing)
that we are targeting.



Table IV: Supported optimization algorithms in M3E.

Alg. Description

AI-MT- | A manual-tuned mapper for multi-core accelerator targeting vision and

like language workloads.

Herald- | A manual-tuned mapper for multi-core heterogenous accelerator targeting
like vision workloads.

stdGA | Genetic Algorithm. We use mutation rate: 0.1, crossover rate: 0.1.

Differential Evolution. We use weighting for local DV: 0.8, weighting for

DH global DV: 0.8, in the experiment.
Covariance Matrix Adaptation-ES. We use 1/2 of the best performing
CMA-ES | " . . .
individuals as an elite group in the experiment.
TBPSA Test-based Population-Size Adaptation.
We set the initial population size as 50 and let it evolve in the experiment.
PSO Particle Swarm Optimization. We use weighting for global best: 0.8, weighting

for parent best: 0.8, with momentum w: 1.6.

Advantage Actor-Critic. We use policy and critic networks composed by 3
RLA2C | MLP layers with 128 nodes, discount factor: 0.99, learning rate: 0.0007,
RMSProp optimizer.

Proximal Policy Optimization. We use policy and critic networks composed by
RL PPO2 | 3 MLP layers with 128 nodes, discount factor: 0.99, clipping range: 0.2,
learning rate: 0.00025, Adam optimizer.

A GA-based optimization algorithm that houses domain-specific genetic
operators for multi-core heterogenous accelerator mapping problem.

2) Task and Benchmark: We categorize the jobs into Vi-
sion, Language (Lang), Recommendation (Recom), and Mix
(a complex tasks with vision, language, and recommendation
model involved simultaneously), four different types of tasks.
We build a benchmark including different tasks motivated by
the Facebook’s inference accelerator jobs [2], [69], edge data
centers for Al applications [77], Herald [49]. AI-MT [3], and
others [83]. In the benchmark, we collect models from the
four different types of tasks and create several workloads.
Each workload contains hundreds to thousands of jobs (one
job include a batch of activations and weight parameters
of a layer). We chopped them into several “dependency-
free” group similar to prior works [3]. The objective of the
optimization algorithm is to execute these group with the
highest possible throughput. We set the default group size to
be 100 but also study the effect of group size in Section VI-G.

3) Accelerators: We consider two classes of accelerator:
Small and Large. For each class, we consider multi-core
homogeneous and heterogeneous accelerator settings with
different PEs, dataflow, and on-chip buffer. We construct
six different multi-core accelerators, motivated by [3],
[41], [49], [82], as our test-bed in Table III. S1 and S3
represent homogeneous accelerators. S2, S4-6 represent
heterogeneous accelerators. The accelerators are modeled
with MAESTRO [1]. We uniformly set one dimension of
the 2D PEs array to 64* and scale the PEs array size by
increasing the other dimension. We consider three kinds
of PEs configuration: 32 x 64 for Small accelerator [23],
[25], [56], [64], [111], 64 x 64 and 128 x 64 for Large
accelerator. The dataflow style (discussed next) and target
tile sizes determine the buffer sizes for both SL and SG [50].

4Based on our observation, most of the popular models that we collected,
especially language and recommendation ones, are manually designed to
have the tensor shape formed by the multiples of 64. Setting one dimension
to 64, which aligns with the tensor shape, ensures higher utilization rate.

Sub-Accelerator Dataflow Styles. For our evaluations,
we pick two distinct dataflow styles for the heterogeneous
sub-accelerators: High Bandwidth usage dataflow style (HB)
(inspired by NVDLA) [66]) and relatively Low Bandwidth
usage dataflow style (LB) (inspired by Eyeriss [11]). The
HB-style parallelizes across channel dimensions, and shows
high-efficiency on late layers for CNN-based (vision) models,
while the LB-style parallelize across activations dimensions
and excels on the early layers of CNN-based models [50].
For Language and Recommendation, we found the HW-style
is more compute efficient but BW intensive, while LB-style is
less compute efficient but also less BW demanding (Fig. 7).
Therefore we house both these sub-accelerators in a BW
constrained accelerator platform to act as a good test for
our optimizer to learn and exploit their difference. M3E is
general enough to run with any heterogeneous combination
of two or more accelerator styles.

System BW. The accelerators are executing under fre-
quency 200MHz and bit-width of 1 Byte. For the system
BW, at the Small accelerator, we consider the BW to be
range from 1GB/s to 16GB/s, which is the range of DDRI-
DDR4 BW [98] and PClel.0 - PClIe3.0 [70] BW; at the
Large accelerator, we consider the BW to be range from
1GB/s to 256GB/s, which is the range of DDR4-DDRS5 [62]
and HBM BW [42] and PCle3.0 - PCIe5.0 and upcoming
PClIe6.0 BW [70].

Evaluation Metric In all experiments, we use throughput
as the optimization objective.

B. Mapper Settings.

Baseline Manual-tuned Mapper. We use the mapper from
Herald [49] and AI-MT [3] as the baseline methods (Herald-
like and AI-MT-like). Note that the mapper in Herald [49] is
manual-designed targeting multi-core heterogeneous system
with Vision tasks, and the mapper in AI-MT is manual-
designed targeting multi-core homogeneous system with
Vision and Language tasks. In our evaluation, we also tested
their performance in Recommendation and Mix tasks and on
both homogeneous and heterogeneous accelerators.

Optimization methods. We enable many commonly-used
optimization methods in M3E. The specific hyper-parameters
settings are listed in Table IV. For fair comparisons, all
optimization methods are given the same sampling budget,
10K data points. Note that batched-job tasks are not latency
sensitive, where the jobs and optimization process are
executed off-line. Therefore the search time of different
methods is not our main concern; instead, the objective of
these tasks are to utilize the underlying hardware as efficient
as possible, i.e, maximizing the throughput of the underlying
hardware.

MAGMA. MAGMA is also one of the optimization
methods. We set the number of individuals in a generation,
to be as large as group size. We also constraint MAGMA
to have the same 10K sampling budget, and use population
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Fig. 7: (a) The average per-job no-stall latency and required
BW for no-stall across different models on high (HW) and
low (LB) bandwidth mapping style. (b) Average no-stall
latency and (c) average BW required for no-stalls across all
involved jobs.

size of 100, and thus have 100 epochs for optimizing. As
for search time, we run the experiments on a desktop with
Intel 19-9820 CPU. MAGMA takes about 0.25 seconds per
epoch, and 25 seconds for a full optimization process.

C. Latency-BW Characteristics of DNNs

We start by showing the latency characteristics and
bandwidth requirements of the DNN models from the three
types of tasks when running by itself on two separate dataflow
styles (HB and LB). We show three of the models from each
type of tasks and the average across all the models in that
type of tasks in Fig. 7(a). The average values across all
model across both accelerators are plotted in Fig. 7(b-c).
From Fig. 7, in general, we can see that the per-job latency
of the Vision models is higher because more compute is
needed in the CONV dominant models. However, CONV is
generally less memory-bound than FC. The data also shows
that usually Vision has the lowest BW requirement, and
Recommendation has the largest.

D. Homogeneous Accelerators

We examined the Small homogeneous accelerator (S1)
with system BW=16 GB/s across different tasks. As shown
in Fig. 8, Herald-like and AI-MT-like mapper works rather
well across four different tasks. The result form AT-MT-
like shows that even though it is designed considering
vision and language tasks, it also work adequately well in
recommendation and even mix task. Likewise, Herald-like
is designed for vision task and work well when applying to
others. For optimization methods, they can reach similar
performance as Herald-like and AI-MT-like. Note that,
these optimization methods are not originally designed for
this specific mapping task. However, they work adequately
well working in the M3E framework. Overall, MAGMA
outperforms others. MAGMA reach performance (geomean)
1.4x and 1.41x better than Herald and AI-MT, and (geomean)
1.6x better than other optimization methods.

E. Heterogeneous Accelerators

We examined the Small (S2) and Large (S4) heterogeneous
accelerators across different tasks in Fig. 9. In the following
results, we will focus on presenting the result of Mix task,
since it is a more complex task and is a fair realistic use-
case in nowadays’ inference data centers [2], [69]. In Fig. 9,
we also present Vision task result as baselines, since both
Herald-like and AI-MT-like has Vision task as target.

Small Heterogeneous Accelerators (S2). As shown in
Fig. 9(a), Herald-like performs well, while AI-MT-like has
comparatively lower performance. It shows the different
characteristic of two algorithms. Herald-like is designed
for heterogeneous accelerator while AI-MT-like is targeting
homogeneous accelerator, which explains the performance
difference. For optimization methods, many of them reach
comparable performance to Herald-like, while PSO and
CMA have lower performance (comparable to AI-MT-like).
For a more complex Mix task (Fig. 9(b)), AI-MT-like
has comparatively worse performance. Many optimization
methods undergo lower performance, too. However, the two
RLs methods stands out. Overall, MAGMA outperforms
others in both tasks. By geomean, MAGMA is 2.3x better
than Herald, 39.5x better than AI-MT, 13.4X better than
optimization methods excluding RLs. RLs and MAGMA
have compatible performance and MAGMA achieve slightly
better result 1.01x better.

Large Heterogeneous Accelerators (S4). In large accel-
erator, the mapping task becomes more complex since the
design space of the mapping grows. As shown in Fig. 9(c)(d),
Herald-like perform rather well in Vision task. However, at a
more complex Mix task and a more complex large accelerator
case, Herald-like starts to undergo lower performance. Many
more basic optimization process cannot tackle the large
and complex design space as well (Fig. 9(d)). However,
RLs starts to shine and reach good performance. Overall,
MAGMA outperforms others in both tasks. By geomean,
MAGMA is 1.7x better than Herald, 52x better than Al-
MT, 10x better than optimization methods excluding RLs,
and 1.3x better than RLs. Note that the contribution of this
work is both the framework M3E (which enables the other
optimization methods) and algorithm MAGMA. Before this
work, the best performing mapper in Large heterogeneous
accelerator setting is Herald-like, which harvests only 20%
of maximum throughput enabled by M3E in Mix task, as
shown in Fig. 9(d).

Fig. 10 sketches how different methods explore and exploit,
leading to their performance difference. For ablation study
of sampling budget in different methods, we add a set of
experiments, where we let all methods run until they converge,
as shown in Fig. 11.

BW-limited Environment. We examine the performance
of Small accelerator at BW=16GB/s and Large accelerator
at BW=256GB/s. However, in a heavy-loaded inference data
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Fig. 8: The experiment results on multi-core homogeneous small accelerator (S1) with BW=16 across four tasks. Throughput
values are normalized by the value of MAGMA. The absolute throughput values of MAGMA in (a-d) are: 249, 397, 194,
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Norm. Throughput Norm. Throughput

1.00 1.00

0.80 0.80

0.60 0.60

0.40 0.40

0.20 0.20 I I

0.00 T 000 & - -
22258385853 22235838583
=2€3 38380 se&8 3ES80
g2 2 s g2 mrTeEgs
< T < .

(a) Vision (Small Accel) (b) Mix (Small Accel)

Norm. Throughput Norm. Throughput

1.00 ehp 1.00 enp

0.80 0.80

0.60 0.60

0.40 0.40

0.20 020 g

000y = 2 - oax Mg T O
=2238353905S =233855909s
28 &HEE2I&C >3 §E2I&C
= ] < - = 9 x <
e 2 FrEzs £ 2 g =
= 2=

(c) Vision (Large Accel) (d) Mix (Large Accel)

Fig. 9: The experiment results on multi-core heterogeneous (a)(b) small (S2, BW=16) and (c)(d) large (S4, BW=256)
accelerator on Vision and Mix tasks. Throughput values are normalized by the value of MAGMA. The absolute throughput
values of MAGMA in (a-d) are: 254, 271, 254, and 383 GFLOPs.

. GFLOPs
le2
¢ . oap . 3.0
. . . v o, 25
. : 3 TEI A 2.0
: | # :
. @ 15
. 2 1.0
. - f 05
(a) = (b) 7 % Ul 0.0
hod haustively Sampled* | MAGMA | PPO2 | stdGA | PSO | CMA
(c)| GFLOPs 254 254 101 16 68 19

Fig. 10: (a) The full map space, and (b) the explored map
space and (c) the reached performance of different methods
in problem (Mix, S2, BW=16). The axes of (a-b) are 2-
dimensional projection by PCA [71]. From (b)(c), we can
observe CMA, PSO, stdGA, and PPO2 converge to different
local optima. MAGMA globally samples a wide region at
the start (characteristics as a GA-based algorithm [4]) and
quickly converges to an optimum with better performance
than other methods (sample efficiency provided by the the

designed operators).

Exhaustively sampled*: Running random sampling for around 2 days and
more than 1 million samples collected. It represents the best-effort optimum
point. (Note that all other methods are run with the set 10K sampling
budget.)

center, the BW is a precious resource, where a big portion
of it could also be occupied by other applications and leads
to a more BW-limited environment. At a more BW-limited
environment, mappers become crucial for smartly ordering
the jobs to exploit the limited BW. We examine the effect of
BW by a BW sweep in Fig. 12. For both Small and Large
accelerators, with the decrease of BWs, MAGMA stands out
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Fig. 11: The convergence curve of different methods across
100K samples on (a) (Vision, S2, BW=16) and (b) (Mix,
S3, BW=16). Most of the methods converge before the set
10K sampling budget in (a)(b) (and all experiments in this
paper). For few cases, some algorithms require more sampling
budget to converge, and we show one of them in (a): TBPSA
requires around 20K samples. However, in the end, they all
converge to some lower performance points than the points
found by MAGMA.

250 [
h—/: = f'
| IO s aneutithddn il

200

GFLOPs

Norm. Throughput M Herald-like @ RLA2C I RLPPO2 B MAGMA
1

1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2 I I I I
0 0
Ww: 1 8 16 w: 1 16 64 256

4
(a) Mix (Small Accel) (b) Mix (Large Accel)

Fig. 12: Performance comparisons on multi-core heteroge-
neous (a) small (S2) and (b) large (S4) accelerator on Mix
tasks, given different BWs. Throughput values are normalized
by the value of MAGMA.

more obviously by reaching better relative performance. For
example, in Fig. 12(a), MAGMA is (geomean) 1.2x better
than others when BW=16GB/s, but MAGMA is 1.6x better
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required BWs) into a stacked bar and show the total values. In (c), throughput values are normalized by the value of S5.

than other when BW=1GB/s. Similar observation can be
made in Fig. 12(b).

1) Sub-accelerator Combinations: In this experiment, we
examine the performance change in different settings, S3
(Large Homogeneous), S4 (Large Heterogeneous), S5 (Large
Heterogeneous, BigLittle) of the Large accelerator.

Homogeneous versus Heterogeneous. In the following
experiment, we discuss the performance implication of
a homogeneous versus heterogeneous accelerator using
MAGMA algorithm. The LB-style sub-accelerators usually
take larger runtime but lower BW requirements than HB-
style in language and recommendation tasks, as shown in
Fig. 7(a). The jobs analysis in Fig. 13(a-b) reflect the fact
that S4, in general, induces more no-stall latency but requires
less BW than S3. Therefore, when BW is limited (BW=1),
the heterogeneous setting enables accelerator to leverage
the difference of BW requirement among sub-accelerators to
relax the BW contention. Thus S4 reaches better performance
than S3 at BW=1 in Fig. 13(c). However, when the BW
is mostly sufficient (BW=256GB/S), the performance will
reflect more of the behavior of the no-stall latency. Thus S3
reaches better performance.

Bigs versus BigLittle. We consider an accelerator with a
smaller setting, BigLittle (S5), comparing to Bigs (S3, S4). It
is obvious when the BW budget is sufficient (BW=256GB/S),
BigLittle will perform worse than both of the Bigs (S3, S4) as
shown in Fig. 13(c), and can be verified by the jobs analysis in
Fig. 13(a). However, BigLittle has smaller BW requirement
because of its smaller sub-accelerator size, as shown in
Fig. 13(b). Therefore, as shown in Fig. 13(c), when the BW
is limited (BW=1), BigLittle (S5) with the least amount of
resources reaches the best performance. This observation
shows that in a multi-core heterogeneous system, in addition
to making the compute cores more powerful (adding more
compute resources to them), striking the balance between
each cores is another key consideration for boosting the
performance.

E. Flexible Accelerator

In this experiment, we consider accelerators where the
PE array dimensions are configurable, such as FPGAs [16],
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Fig. 14: Jobs analysis of the averaged (a) per-job no-stall
latency and (b) required BW of fixed and flexible PEs arrays.
Performance evaluation of MAGMA with fixed or flexible
PEs array on (c) Vision and (d) Mix. Throughput values are
normalized by the value of flexible accelerator.
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Fig. 15: The visualization of found solution by Herald-like
and MAGMA. (a)(c) shows the respective sub-accelerator
allocations, and (b)(d) shows the respective BW allocations.
(Mix task, S5, BW=1).

CGRA [51], or programmable accelerators [5], [104], [108],
and demonstrate their performance by applying mapping
found by MAGMA.

Accelerator Configuration. We extend the setting of
S1 (Small, fixed) and S3 (Large, fixed) to have flexible
accelerators. The number of PEs in the sub-accelerator are
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operator in MAGMA. However, when MAGMA is restricted
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seriously. We can see that adding Crossover-gen is essential
for algorithm to find good solution within limited samples,
and finally, Crossover-rg and Crossover-accel further help
approach an optimum faster.

+ 2.00

5 1.16
€2, 50 100101475 084 077 057 081 0.68
Il N E NN AN
Z 20.00 u

2o.

= 1000 500 200 100 50 40 20 10 4

Group Size

Fig. 17: The reached performance of MAGMA given the
same task and setting (Mix, S2, BW=16) with different group
sizes. Throughput values are normalized by the value of group
size=1000,

fixed (the same as in Table III). However, the shape of 2D PE
arrays is flexible, that is we can configure the routing among
the PEs. This enables the sub-accelerator to run various
dataflows or mappings [51]. The maximum size of SLs are
fixed as 1KB in each PE, and SGs are fixed as 2MB in each
sub-accelerator.

Dataflow Strategy. We pick the dataflow strategy of the
sub-accelerator to maximize the utilization of the PEs array.
In order to maximize the utilization, we will align the PEs
array dimension to be the factor of the the parallelizing
dimension of the tile as much as possible. For example if
the parallelizing dimension of the tile is (2, 15), which is
going to map over the y and x dimension of the PEs array
with 16 PEs. The potential PE array shape could be 2x8
while aligning to the factor of y dimension, or 3x5, 5x3,
and 1x15 while aligning to the factor of x dimension. We
examine these combinations, evaluate their expected latency
by the HW cost model, and pick the lowest latency one as
our PE array configurations.

Evaluations. From the performance analysis in Fig. 14(a-
b), we can observe that for both Vision and Mix tasks, flexible
outperforms fixed in ave. per-job no-stall latency, owing to
its ability to maximizing the utilization rate of the PEs array.
However, it would also incur higher BW requirement. It is
because the flexible mapping we found is to maximize the
PE utilization rate, which also increases the number of data
to fetch per tile to keep PEs busy.

From all scenario in Fig. 14(c-d), flexible outperforms fixed.

Table V: The performance of warm-start on (a) Mix, S4,
BW=1. (b) The averaged performance across different tasks
and different accelerator (S1-S6) under BW=1. All the values
are normalized by the values of Trf-100-ep of each columns.
Raw (highlighted in orange) is the throughput without warm-
start. Trf-0-ep (highlighted in green) is warm-start and
before further optimization. Trf-1-ep is warm-start with one
epoch of optimization, and likewise for Trf-30-ep. Trf-100-ep
(highlighted in blue) represents a full optimization process.

Insts0 | [nsts1|Insts2|Insts3|Insts4| Ave. AvciagedlocrosTRSIESG
(Optim | (Warm | (Warm | (Warm | (Warm [ (Warm - 5
Sized) | -start) | -start) | start) | -start) | -start) Bl || s

Raw 0.02 | 0.04 | 0.02 [ 0.09 [ 0.05 | 0.03 Raw 0.02 | 0.04 [0.014 ] 0.004
Trf-0-ep 1.00 ] 0.32 | 0.60 | 0.78 | 0.58 | 0.51 Trf-0-ep | 048 | 0.28 | 0.52 | 0.88
Trf-1-ep 1.00 | 0.43 ] 0.73 [ 0.96 | 0.88 | 0.68 Trf-1-ep | 0.67 | 0.40 [ 0.79 | 0.95
Trf-30-ep 1.00 ] 0.99 | 0.98 [ 0.99 | 0.99 | 0.99 Trf-30-ep | 0.97 [ 0.93 | 0.97 | 0.99
Trf-100-ep | 1.00 [ 1.00 | 1.00 | 1.00 | 1.00 | 1.00 Trf-100-ep [ 1.00 | 1.00 | 1.00 | 1.00

(a) Perf. on Mix, S4, BW=1 (b) Ave. perf, across S1-S6

Mix-S4

BW=1 Vision| Lang | Rec

The results conclude that with flexible accelerators (ASIC of
FPGA), we could further increase the accelerator performance
without providing additional compute HW resources (PEs) if
the accelerators (or sub-accelerators) have configurable PEs
array shape.

G. More about MAGMA Algorithm

Analysis of found solutions. To understand the effect
of different mapping, we show the detailed sub-accelerator
selection and the corresponding BW allocation results of
mapping found by two of the mappers, Herald-like and
MAGMA. We showcase what is actually happening on
the accelerator in an execution duration of one group of
jobs in Fig. 15. We found that MAGMA can distribute the
BWe-intensive jobs (Recommendation, Language) across the
runtime to balance the BW requirement (Fig. 15(c-d)). In
contrast, Herald-like (Fig. 15(a-b)) tries to use BW intensively
at the beginning, which causes BW competition. Finally, it
causes longer finish time of a group of jobs comparing to
MAGMA.

Warm-start of MAGMA. In the following, we show
the usefulness of warm-start technique in MAGMA. In the
experiments, we use MAGMA to optimize on a group of
jobs, InstsO. Then, we test, and optimize on the other four
different group of jobs. Table V(a) shows that by directly
applying previous knowledge (Trf-0O-ep), we could achieve
16x better performance than the usual starting points,
randomly initialization (Raw). By warm-start followed by
one epoch/ step of optimization (Trf-1-ep), we could already
receive 93% of the expected performance gain of a full
optimization (Trf-100-ep). We execute the same experiment
for different types of tasks and for different setting (S1-
S6) (Table V(b)). We can observe for BW-intensive tasks,
Language and Recommendation, the previous knowledge
become more important, and therefore the performance
gain from the warm-start become significant. Overall, by
warm-start and before further optimization is run (Trf-0-ep),



MAGMA can achieve 7.4x to 152x better performance than
the the usual starting points (Raws).

Ablation Study of Operators. Fig. 16 shows the impor-
tance of the four designed operators. We can see that we
could achieve the best sampling efficiency when all four
operators are included.

Ablation Study of Group Size. Throughout the evaluation,
we use the benchmark with a set group size of 100. It
establishes a fair comparisons of the performance of different
mappers. Also, in practice, group size is often a pre-defined
system parameter as the formulated benchmark. However,
a larger (or smaller) group size is also valid. We execute a
group size sweep in Fig. 17 using MAGMA algorithm. It
tells that increasing or decreasing the group size does not
affect the overall performance drastically. However, a too
small group size (e.g., 4) will lead to lower performance.

VII. RELATED WORKS

Mapping DNN Jobs on Single Accelerator. Several
mappers have been proposed for the problem of mapping a
single DNN layer efficiently on an accelerator. These include
manual-designed mapping search [58], [84], heuristic-based
mapping search [68], [89], [101], [106] and optimization/ML
methods [31], [35], [43], [44], [91]. These works fall within
the local mapping phase within individual accelerator cores.

Multi-tenant Mapping for DNN Accelerators.
Prophet [10] builds a runtime prediction model for
multi-tenancy on GPU. AI-MT [3] develops a heuristic
for DNN job mapping for multi-PE arrays. Prema [15]
explores preemptive multi-tenancy on a NPU. Herald [49]
and Planaria [39] use manual-designed mapping for
assigning jobs to sub-accelerators or reconfigurable
PEs array. SCARL [14] utilizes RL for the mapping
problem. In this work, we target multi-DNNs mapping and
compared MAGMA against prior arts [3], [49], black-box
optimizations [28], [32], [33], [45], [73], and RLs [63], [81].

Multi-tenant Scheduling for CPUs and GPUs. Multi-
tenancy has been investigated for decades for multi-tasking
on a single CPU and job ordering in CPU clusters [85],
[105] or in GPUs [6], [38]. GAs [20], [34], [86], [88], [100],
PSO [102], CMA-ES [24], and other optimizations have also
been used. Some works leverage RL for jobs ordering over
clusters such as DeepRM [59], Decima [60] and Thamsen
et al. [97]. However, they presume a unified abstraction of
the underlying cluster, where heterogeneity of the system is
not considered.

VIII. CONCLUSIONS

This work presents a mapping optimizer for multi-tenant
DNN accelerators. The key takeaways are as follows. (i)
Heuristic and optimization methods have been used success-
fully for the design space of local-mapping (i.e., dataflow
design). However, global-mapping forms a new drastically
different search space. A new mapper for global mapping

is needed for upcoming platforms (Table I). (ii) The search
space for this (global-) mapping is extremely enormous. The
search sample-efficiency of baseline optimization methods is
not sufficient to find optimized solutions. (iii) We develop
an optimization algorithm called MAGMA that customizes
its exploration momentum and mechanism (genetic operators
in this work) for the target search space and outperform the
existing related works and other well-known optimization
methods.
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