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Obstruction flat rigidity of the CR 3-sphere
By Sean N. Curry at Stillwater and Peter Ebenfelt at La Jolla

Abstract. We consider the obstruction flatness problem for small deformations of the
standard CR 3-sphere. That rigidity holds for the CR sphere was previously known (in all
dimensions) for the case of embeddable CR structures, where it also holds at the infinitesimal
level. In the 3-dimensional case, however, a CR structure need not be embeddable. Unlike in the
embeddable case, it turns out that in the nonembeddable case there is an infinite-dimensional
space of solutions to the linearized obstruction flatness equation on the standard CR 3-sphere
and this space defines a natural complement to the tangent space of the embeddable deforma-
tions. In spite of this, we show that the CR 3-sphere does not admit nontrivial obstruction flat
deformations, embeddable or nonembeddable.

1. Introduction and main results

In this paper we continue our study of compact obstruction flat CR 3-manifolds begun in
[10, 12] by considering the problem via deformation theory of the standard CR 3-sphere in the
space of abstract CR structures. A major tool is the modified version of the Cheng–Lee slice
theorem from the authors’ recent paper [11]. We recall that in [14, 17] Fefferman proposed the
study of the asymptotic expansion of the Bergman kernel of a strictly pseudoconvex domain in
terms of CR invariants of the boundary. In this context obstruction flatness is the same as the
vanishing of the boundary trace of the coefficient of the log term in the Fefferman expansion
of the Bergman kernel along the diagonal.

To be more precise and explain the terminology, let� � Cn, n > 1, be a bounded strictly
pseudoconvex domain with smooth boundary à�. There are several interrelated approaches to
studying the CR geometry of à�, or, equivalently, the biholomorphic geometry of�. In [14,17]
Fefferman suggested as an approach to this the study of the boundary asymptotic expansion for
the solution of the Dirichlet problem

(1.1)
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with u > 0, and the CR boundary invariants which thereby arise; this turned out to be a very
fruitful approach, see, e.g., [1, 24, 25]. The equation (1.1) governs the existence of a unique
complete Kähler-Einstein metric on � with Kähler potential v D � log.u/. Fefferman [17]
showed that there is always a smooth approximate solution � satisfying J.�/ D 1CO.�nC1/,
and that � is unique mod O.�nC2/; we call such a � a Fefferman defining function for �.
Subsequently, Cheng and Yau [9] proved the existence of a unique solution u to Fefferman’s
equation (1.1) which is C1 in � and C nC1 (but not in general C1) up to the boundary. The
precise boundary behavior of u was uncovered by Lee and Melrose [29] who showed that u
has an asymptotic expansion of the form

u � �
�
�0 C �1�

nC1 log �C �2.�
nC1 log �/2 C � � �

�
; �k 2 C

1.�/;

where � is a Fefferman defining function (so that �0 D 1 mod O.�nC1/). The presence of log
terms in the expansion explains the failure of smoothness of u up to the boundary. While the
solution u is only uniquely determined globally, Graham [20, 21] showed that the coefficients
�k mod O.�nC1/ are locally uniquely determined by à� (and independent of the choice of
Fefferman defining function �). Moreover, he showed that if the coefficient �1 of the first log
term vanishes on à� then �k vanishes to infinite order at the boundary for all k � 1. Thus
�1jà� is precisely the obstruction to C1 boundary regularity of the Cheng–Yau solution to
Fefferman’s equation. The local invariant

O WD �1jà�

of the boundary à� is called the obstruction function or obstruction density (since it actually
transforms as a density), and being a CR invariant it can be defined on an abstract strictly
pseudoconvex CR manifold of any dimension; for the remainder of this paper will use the term
CR manifold to mean strictly pseudoconvex CR manifold. If M is a CR manifold for which
the obstruction density vanishes, we say that M is obstruction flat.

In the abstract setting the obstruction density still arises naturally as an obstruction to
smooth boundary regularity as follows. In [17] Fefferman showed that the chains (distinguished
curves in CR geometries introduced by Chern–Moser and E. Cartan) can be obtained by pro-
jecting the null geodesics from a circle bundle over the CR manifold which carries a natural
conformal Lorentzian metric; this circle bundle is known as the Fefferman space of the CR
structure. The Fefferman space is a CR invariant in the sense that any CR diffeomorphism lifts
to a conformal diffeomorphism of the corresponding Fefferman spaces. The Fefferman space
construction generalizes in a natural way to abstract CR manifolds [5,7,13,27,32]. On any con-
formal manifold (of any signature) there is a local conformal invariant, closely related to the
CR obstruction function, known as the Fefferman–Graham obstruction tensor, which obstructs
the formal solvability (and hence smooth boundary regularity) for the Poincaré–Einstein exten-
sion problem and the conformal ambient metric construction of [15, 16]; roughly speaking
these problems are real analogs of (1.1). The notion of ambient metric for a conformal struc-
ture generalizes the notion of ambient metric for a CR manifold introduced by Fefferman (in
the embedded case) in [14, 17]; in particular, the Fefferman–Graham obstruction tensor of a
Fefferman space has only one nonvanishing component (in a natural frame), which is precisely
the pullback of the CR obstruction density of the underlying CR manifold (see, e.g., [22, 32]).

In three dimensions, the CR obstruction function of a CR manifold therefore corresponds
to the Bach tensor of its Fefferman space. In particular, the obstruction flat equation for a CR
3-manifold corresponds to the Bach flat equation of conformal gravity (see, e.g., [30]) for the
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corresponding 4-dimensional Lorentzian Fefferman space; the Bach flat equation is a fourth
order conformally invariant equation whose solutions include Einstein metrics.

If a CR manifold M is locally CR equivalent to the unit sphere, then we say that M
is spherical. For � the unit ball in Cn the solution to Fefferman’s equation is u D 1 � kzk2,
which is smooth up to the boundary, hence the obstruction function vanishes for the unit sphere
S2n�1 � Cn, n > 1. It follows that any spherical CR structure is obstruction flat. On the other
hand, by [20, Proposition 4.14] there are also local non-spherical (real analytic) obstruction
flat strictly pseudoconvex hypersurfaces in Cn, for any n > 1 (see also [31] for an explicit
example of a non-spherical noncompact Bach flat Fefferman space in four dimensions). It is
natural to ask if there are non-spherical solutions of the global obstruction flatness problem for
compact CR manifolds. In the case of embeddable structures, there are no such non-spherical
solutions in an explicit C 1 open neighborhood of the standard CR 3-sphere, see [10]. In this
case, rigidity holds even at the infinitesimal level [12]. On the other hand, in the nonembed-
dable case there are nontrivial solutions to the linearized obstruction flatness equation on the
standard CR sphere:

Theorem 1.1. There is an infinite-dimensional space H 1
O

of nontrivial infinitesimal
deformations solving the linearized obstruction flatness equation on the standard CR 3-sphere.
Moreover, this space is a complement to the tangent space of the embeddable deformations in
the space of all infinitesimal deformations.

In fact, if D Š C1.S3;C/ denotes the space of all C1 deformation tensors on the stan-
dard CR 3-sphere, thenH 1

O
DD?0 , the L2 orthogonal complement of the tangent space D0 to

the embeddable deformations; furthermore, in [11] it is shown that there is a linear subspace
of D which gives a slice for the space of CR structures near the standard CR sphere and such
that H 1

O
is the L2 orthogonal complement of the space of embeddable CR structures in the

slice. Here we are fixing the underlying contact structure on the CR sphere when consider-
ing deformations, which is no loss of generality by Gray’s classical theorem [23]. By [11] the
infinitesimal deformations in H 1

O
, modulo the linearized action of the finite-dimensional CR

automorphism group of the standard CR 3-sphere, are CR inequivalent.
Nevertheless, it turns out that none of these solutions to the linearized problem integrate

to solutions of the nonlinear problem.

Theorem 1.2. The standard CR 3-sphere is rigid as an obstruction flat CR 3-manifold.

In other words, there is an open neighborhood U of the standard CR 3-sphere in the
space of CR structures on S3 such that a CR structure in U is obstruction flat if and only if it
is CR equivalent to the standard CR 3-sphere. Here the topology is the C k topology for any
sufficiently large k (e.g., k D 6 will do). Theorem 1.2 follows immediately from Theorem 5.1
(cf. [11, Theorem 1.2]) and Theorem 9.1 below. This result substantially generalizes the rigid-
ity result for obstruction flat embeddable deformations of the CR 3-sphere that follows from
[10, Corollary 1.4], since near the standard CR sphere the space of embeddable CR structures
is a (Fréchet) submanifold with dense complement in the space of abstract CR structures [11].
Rigidity in this more general situation is perhaps surprising in light of Theorem 1.1. We note
that the method of proof is completely different from [10], which relied on the existence of
holomorphic vector fields in the ambient space.
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Moreover, we have the following formal rigidity result.

Theorem 1.3. Let P' 2 H 1
O
n ¹0º, a nontrivial solution of the linearized obstruction flat-

ness equation on the standard CR sphere. Then there does not exist a deformation tensor R' such
that the family '.t/ D P' t C R' t2=2 satisfies the obstruction flatness equation to second order
at t D 0.

Remark 1.4. If '.t/ D P' t C 1
2
R' t2 is as in Theorem 1.3 then the corresponding family

of CR obstruction functions are of the form O.t/ D 1
2
ROt2 CO.t3/, where RO ¤ 0. The corre-

sponding family of CR curvatures (Cartan umbilical tensors)Q.t/ D PQt CO.t2/ has PQ ¤ 0.
This is in contrast to the case of embeddable deformations of the standard CR sphere, where
the vanishing order of Q.t/ must match that of O.t/ (see [12, Theorem 1.2]). Note that the
'.t/ in Theorem 1.3 are nonembeddable (for small t ) since P' 2 H 1

O
n ¹0º and H 1

O
DD?0 .

We note that the linearized obstruction operator D! C1.S3;R/ is not surjective. We
denote its cokernel by H 2

O
; in terms of spherical harmonics (recalled in Section 5) the space

H 2
O

may be identified with space of f 2 C1.S3;R/ whose spherical harmonic expansion
f D

P
p;q fp;q satisfies fp;q D 0 for p; q � 2. We also denote by DBE the (Burns–Epstein)

space of deformation tensors ' D
P

p;q 'p;q such that 'p;q D 0 unless q � p C 4. Note that
H 1

O
DD?0 is L2 orthogonal to DBE.

Theorem 1.5. There is a neighborhood U of 0 in H 1
O

such that for any '0 2 U there
is a  2DBE such that the deformation tensor ' D '0 C  satisfies O.'/ � 0 mod H 2

O
.

A more precise version of Theorem 1.5 (in which  is uniquely determined) is given in
Theorem 7.1.

Remark 1.6. See Remark 6.9 for an explanation of the notation H 1
O

and H 2
O

. By the
argument leading to Theorem 7.1 we get the existence of a Kuranishi map ‰ W H 1

O
! H 2

O

defined near 0 whose zero set is locally isomorphic with the set of solutions of O � 0; but
Theorem 9.1 (Theorem 1.2) shows that 0 is an isolated point of ‰�1.0/, see Remark 7.5.

The main tools used in this paper are the authors’ modified version of the Cheng–Lee
slice theorem [11] and a careful analysis of the relevant linearized operators on the standard
CR 3-sphere as well as estimates for the nonlinear part of the obstruction flatness equation near
the CR sphere in terms of the spherical harmonic decomposition of a CR deformation tensor in
the slice.

The paper is organized as follows. In Sections 2 and 3 we recall some basic material on
pseudohermitian structures and CR invariants, and the standard pseudohermitian structure on
the CR 3-sphere. In Section 4 we consider deformations of the standard CR 3-sphere with its
standard contact form, and derive certain key formulae for the pseudohermitian connection and
curvature of the deformed CR structure. Section 5 recalls the spherical harmonics and presents
the version of the modified slice theorem that we will be using. In Section 6 we present the
linear theory for the CR curvature and obstruction function operators. We determine the kernel
and cokernel of the linearized obstruction operator on the standard CR 3-sphere; in particular,
we prove Proposition 6.6 which together with the slice theorem implies Theorem 1.1. In Sec-
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tion 7 we establish the partial solvability of the obstruction flatness equation (i.e. solvability
moduloH 2

O
) including Theorem 7.1 from which Theorem 1.5 follows. In Section 8 we discuss

formal rigidity, stating and proving Theorem 8.2 which implies Theorem 1.3. We conclude in
Section 9 with a proof of Theorem 9.1, which together with the slice theorem proves our main
result, Theorem 1.2.

Acknowledgement. The authors would like to thank the anonymous referees for their
careful reading and valuable comments that have helped to improve the presentation in this
paper.

2. Pseudohermitian structures and the Tanaka–Webster connection

In this section we recall some basic material on pseudohermitian structures on a CR
3-manifold; for a more detailed exposition see, e.g., [12,28,34]. Let .�; �1; �

N1/ be an admissible
coframe for .M;H; J /. Then h1 N1 is defined by

d� D ih1 N1�
1
^ �
N1:

The Tanaka–Webster pseudohermitian connection form !1
1 and torsion A N1

1 are defined by

(2.1) d�1
D �1

^ !1
1
C A N1

1 � ^ �
N1

and
!1

1
C ! N1

N1
D h1 N1dh1 N1;

where
! N1
N1
D !1

1 and h1 N1
D .h1 N1/

�1:

We will sometimes refer to the individual components of !1
1, defined by writing

!1
1
D !1

1
0� C !1

1
1�

1
C !1

1
N1�
N1:

The Tanaka–Webster scalar curvature R of .M;H; J / is defined by

(2.2) d!1
1
D Rh1 N1�

1
^ �
N1
C .r1A11/�

1
^ � � .r

N1A N1 N1/�
N1
^ �;

where r denotes the Tanaka–Webster covariant derivative and indices have been raised and
lowered using h1 N1. The Cartan umbilical tensor is then given by

(2.3) Q11 D �
1

6
r1r1R �

i

2
RA11 Cr0A11 C

2i

3
r1r

1A11:

The obstruction function or obstruction density of .M;H; J / is then given by

(2.4) O D r1
r

1Q11 � iA
11Q11:

Note that O is really a weighted CR invariant (a section of a CR density line bundle), see, e.g.,
[12]; throughout this paper we will be working with a fixed contact form � and thus may think
of O as a function, as in (2.4).
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3. The standard pseudohermitian structure on the sphere

Let S3 denote the unit sphere in C2 and .S3;H; J / the corresponding (standard) CR
structure on the S3. Let .z; w/ be the standard coordinates on C2. Define the .1; 0/-vector
field Z1 by

Z1 D Nw
à
àz
� Nz
à
àw

and let Z N1 D Z1. Note that Z1 and Z N1 are tangent to S3 and therefore span the holomor-
phic and antiholomorphic tangent spaces of S3 respectively at each point. We also endow
S3 with its standard contact form � , given by � D ià�jTS3 where � D 1 � jzj2 � jwj2. Then
� D �i.Nzdz C Nwdw/ and d� D i.dz ^ d Nz C dw ^ d Nw/, where in both formulae the restric-
tion to TS3 is left implicit. Let T denote the Reeb vector field of � , i.e. the unique vector field
on S3 satisfying �.T / D 1 and d�.T; � / D 0. It is easy to see that

(3.1) T D i

�
z
à
àz
C w
à
àw

�
� i

�
Nz
à
à Nz
C Nw
à
à Nw

�
:

The vector fields .T;Z1; ZN1/ define a frame for the complexified tangent space of S3, with
coframe .�; �1; �

N1/. By evaluating �id� D dz ^ d Nz C dw ^ d Nw on .Z1; ZN1/, we see that
h1 N1 D 1, i.e.

d� D i�1
^ �
N1:

From the structure equation (2.1) we also obtain that

(3.2) !1
1
D �2i� and A11 D 0:

From (2.2) we then have
R D 2:

It follows that Q11 D 0 and O D 0 for the standard CR sphere.

4. Deformations of the standard CR sphere

Let .S3;H; J / denote the standard CR sphere, and � and Z1 be as above. We now con-
sider the deformed CR structure on S3 whose underlying holomorphic tangent space is spanned
by

(4.1) QZ1 D Z1 C '1
N1Z N1;

where the deformation tensor ' D '1
N1 is a smooth complex function on S3; note that here

we are keeping the underlying contact distribution H fixed, which is no loss of generality for
deformed structures homotopic to the standard one by Gray’s classical theorem [23]. We keep
the contact form � fixed, and thus obtain a coframe .�; Q�1; Q�

N1/ dual to .T; QZ1; QZ N1/ with

(4.2) Q�1
D

1

1 � j'j2

�
�1
� ' N1

1�
N1
�
;

where ' N1
1 D '1

N1 and j'j2 D '1
N1' N1

1. We then have d� D i Qh1 N1
Q�1 ^ Q�

N1, where

Qh1 N1 D 1 � j'j
2:
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In the following we use Qh1 N1 to raise and lower indices for objects with a tilde and h1 N1 D 1 for
objects without a tilde. Note that we may recover Z1 and �1 from QZ1 and Q�1 by

Z1 D
1

1 � j'j2

�
QZ1 � '1

N1 QZ N1
�

and
�1
D Q�1

C ' N1
1 Q�
N1:

Let Q!1
1 denote the Tanaka–Webster connection form for the modified CR structure in the

admissible coframe .�; Q�1; Q�
N1/, and let QA11 denote the corresponding pseudohermitian torsion.

We decompose Q!1
1 in the frame .�; Q�1; Q�

N1/ as

Q!1
1
D Q!1

1
0� C Q!1

1
1
Q�1
C Q!1

1
N1
Q�
N1:

In order to solve for these components we compute d Q�1 using that d�1 D �iR�1 ^ � , where
R D 2,

d Q�1
D

d j'j2

.1 � j'j2/2
^ .�1

� ' N1
1�
N1/C

1

1 � j'j2

�
d�1
� d' N1

1
^ �
N1
� ' N1

1d�
N1
�

D
d j'j2

1 � j'j2
^ Q�1

C
1

1 � j'j2

�
�2i�1

^ � � ' N1
1

;1�
1
^ �
N1

� .T ' N1
1/� ^ �

N1
� 2i' N1

1�
N1
^ �

�
D

d j'j2

1 � j'j2
^ Q�1

C
1

1 � j'j2

�
�2i�1

^ � � ' N1
1

;1�
1
^ �
N1

� ' N1
1

;0� ^ �
N1
C 2i' N1

1�
N1
^ �

�
D

d j'j2

1 � j'j2
^ Q�1

� 2i Q�1
^ � C

1

1 � j'j2

�
�' N1

1
;1�

1
^ �
N1
� ' N1

1
;0� ^ �

N1
�

D
d j'j2

1 � j'j2
^ Q�1

� 2i Q�1
^ � � ' N1

1
;1
Q�1
^ Q�
N1
�

' N1
1

;0

1 � j'j2
� ^ �

N1

D
d j'j2

1 � j'j2
^ Q�1

� 2i Q�1
^ � � ' N1

1
;1
Q�1
^ Q�
N1

�
' N1

1
;0

1 � j'j2
� ^ Q�

N1
�
'1
N1' N1

1
;0

1 � j'j2
� ^ Q�1;

where we have used that

' N1
1

;0 D T ' N1
1
C 2!1

1
0' N1

1
D T ' N1

1
� 4i' N1

1:

It follows from the structure equation (2.1) that

(4.3) QA N1
1
D �

' N1
1

;0

1 � j'j2
; equivalently QA11 D �'11;0;

and that

Q!1
1
D �2i� � ' N1

1
;1
Q�
N1
C
'1
N1' N1

1
;0

1 � j'j2
� �

d j'j2

1 � j'j2
mod Q�1:
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Combining this last equation with the conjugate equation

Q! N1
N1
D 2i� � '1

N1
; N1
Q�1
C
' N1

1'1
N1
;0

1 � j'j2
� �

d j'j2

1 � j'j2
mod Q� N1;

it follows from the condition Q!1
1 C Q! N1

N1 D Qh1 N1d Qh1 N1 D �
d j'j2

1�j'j2
that

Q!1
1
D �2i� � ' N1

1
;1
Q�
N1
C '1

N1
; N1
Q�1
�
' N1

1'1
N1
;0

1 � j'j2
� �

QZ N1j'j
2

1 � j'j2
Q�
N1:

In particular,

Q!1
1

0 D �2i �
' N1

1'1
N1
;0

1 � j'j2
;(4.4)

Q!1
1

1 D '1
N1
; N1;(4.5)

Q!1
1
N1 D �' N1

1
;1 �

QZ N1j'j
2

1 � j'j2
:(4.6)

Note also that

Q! N1
N1
N1 D Q!1

1
1 D ' N1

1
;1:

We should point out that our conventions (4.1) and (4.2) for the frame and coframe of the
deformed structure differ from [11] since in [11] we normalized the Levi form Qh1 N1 to be 1.

In order to compute the scalar curvature QR of the deformed structure we compute d Q!1
1

mod � :

d Q!1
1
D 2 Qh1 N1

Q�1
^ Q�
N1
� . QZ1' N1

1
;1/ Q�

1
^ Q�
N1
� . QZ N1'1

N1
; N1/
Q�1
^ Q�
N1

�
' N1

1'1
N1
;0

1 � j'j2
i Qh1 N1
Q�1
^ Q�
N1
� QZ1

QZ N1j'j
2

1 � j'j2
Q�1
^ Q�
N1 mod �:

Hence

QR D 2C Qh1 N1

�
�i' N1

1'1
N1
;0 � ' N1

1
;11 � '1

N1' N1
1

;1 N1 � '1
N1
; N1 N1 � ' N1

1'1
N1
; N11(4.7)

�
QZ1j'j

2

1 � j'j2
�
QZ N1j'j

2

1 � j'j2
�
QZ1
QZ N1j'j

2

1 � j'j2

�
:

For later use we record the following observation concerning the form of (4.7):

Lemma 4.1. The scalar curvature QR of the deformed pseudohermitian structure is given
by .1 � j'j2/�3 times a polynomial in '1

N1, ' N1
1 and their Z1 and Z N1 derivatives up to order 2.

Moreover, for each term in the polynomial the total number of derivatives on the '1
N1, ' N1

1

factors is at most 2.

Proof. The result follows easily by writing the covariant derivatives in (4.7) in terms
of Z1 and Z N1 derivatives using (3.2) (noting that a Reeb derivative may be expressed in
terms of the commutator of Z1 and Z N1 derivatives) and then factoring .1 � j'j2/�3 out of
the expression, noting that Qh1 N1 D .1 � j'j2/�1.
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Let QQ11 denote the Cartan umbilical tensor of the deformed CR structure, with respect
to the admissible coframe .�; Q�1; Q�

N1/. From (4.3), (4.7) and (2.3) one easily computes that the
linearization at '1

N1 D 0 of the operator Q that takes '1
N1 to QQ1

N1 is given by

(4.8) DQ W P'1
N1
7!

1

6
P'1
N1
;
11

11 C
1

6
P' N1

1
;
N1 N1

11 � P'1
N1
;00 �

2i

3
P'1
N1
;0

1
1 C i P'1

N1
;0

with R D 2. Aside from this, all that we need to know about QQ11 is the general form of the
nonlinear terms when QQ11 is expressed in terms of '1

N1, ' N1
1 and their Z1 and Z N1 derivatives

up to order 4. Combining Lemma 4.1 with (2.3), (4.3) and (4.4)–(4.6), by the Leibniz rule it
follows that for the Cartan umbilical tensor we have:

Lemma 4.2. With respect to the admissible coframe .�; Q�1; Q�
N1/, the component QQ11

of the Cartan umbilical tensor of the deformed CR structure is given by .1 � j'j2/�5 times
a polynomial in '1

N1, ' N1
1 and their Z1 and Z N1 derivatives up to order 4. Moreover, for each

term in the polynomial the total number of such derivatives on the '1
N1, ' N1

1 factors is at most 4.

Let Qr denote the Tanaka–Webster connection of the deformed pseudohermitian structure,
which has connection form Q!1

1 with respect to the admissible coframe .�; Q�1; Q�
N1/. As before

we use Qh1 N1 to raise and lower indices for objects with a tilde. Then we have

QO D Qr1 Qr
1 QQ11 � i QA

11 QQ11 D
Qr N1
Qr N1
QQ
N1 N1
� i QA N1 N1

QQ
N1 N1;

where

Qr N1
Qr N1
QQ
N1 N1
D . QZ N1 C Q! N1

N1
N1/.
QZ N1 C 2 Q! N1

N1
N1/
QQ
N1 N1

D . QZ N1 C ' N1
1

;1/. QZ N1 C 2' N1
1

;1/ QQ
N1 N1

D .Z N1 C ' N1
1Z1 C ' N1

1
;1/.Z N1 C ' N1

1Z1 C 2' N1
1

;1/ QQ
N1 N1

and QA N1 N1 D �'N1 N1;0. Noting that QQ N1 N1 D Qh1 N1 QQ1
N1 D .1 � j'j2/ QQ1

N1, it follows immediately that
the linearization at '1

N1 D 0 of the operator that takes '1
N1 to QO is given by

DO D .Z N1/
2DQ:

Besides the linear terms in QO, it will suffice for our purposes to consider only the nonlinear
terms that appear in

R
S3
QO � ^ d� . In particular, note that Qr1 Qr1 QQ11 D

Qr N1
Qr N1
QQ
N1 N1 integrates

to zero with respect to � ^ d� by the divergence formula of [28]. We record this observation in
the following lemma:

Lemma 4.3. For the deformed CR structure we have

(4.9)
Z

S3

QO � ^ d� D �i

Z
S3

QA N1
1 QQ1

N1 � ^ d� D i

Z
S3

' N1
1

;0
QQ1
N1

1 � j'j2
� ^ d�:

Our aim is to show that the quantity on the right-hand side of (4.9) obstructs the solv-
ability of the equation QO D 0 when '1

N1 is sufficiently small in the Folland–Stein space H 3
FS.

(Recall that H s
FS is the anisotropic Sobolev space of functions having s derivatives in L2,

where the derivatives are taken only in Z1 and Z N1 directions [19].) In order to ensure control
of the nonlinear terms in the expression for QO we need the following lemma, which is an easy
consequence of Lemma 4.2 and the formulae derived in this section.
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Lemma 4.4. With respect to the contact form � , the obstruction density QO of the de-
formed CR structure is given by .1 � j'j2/�9 times a polynomial in '1

N1, ' N1
1 and their Z1 and

Z N1 derivatives up to order 6. Moreover, for each term in the polynomial the total number of
such derivatives on the '1

N1, ' N1
1 factors is at most 6.

Applying .Z1/
2 to this expression for QO and using the Leibniz rule we have:

Lemma 4.5. With respect to the contact form � , .Z1/
2 QO is given by .1 � j'j2/�11 times

a polynomial in '1
N1, ' N1

1 and their Z1 and Z N1 derivatives up to order 8. Moreover, for each
term in the polynomial the total number of such derivatives on the '1

N1, ' N1
1 factors is at most 8.

5. Spherical harmonics and the slice theorem

Our study of the obstruction flatness equation will be greatly illuminated by working in
terms of spherical harmonics. We therefore introduce for each p; q � 0 the spherical harmonic
space Hp;q of functions on S3 that are the restrictions of harmonic homogeneous polynomials
of bidegree .p; q/ on C2. Identifying a deformation tensor ' with its component function '1

N1

with respect to the standard frame on the unit sphere S3 � C2, we denote theHp;q component
of ' D '1

N1 by 'p;q D .'1
N1/p;q , so that the L2 orthogonal spherical harmonic decomposition

of ' is given by ' D
P

p;q 'p;q .
Working in spherical harmonics allows us to introduce the following natural spaces of

deformation tensors on S3. Let D0 denote the set of all deformation tensors ' such that
'p;q D 0 if q D 0; 1; D0 is then the space of all infinitesimally embeddable deformations
of the unit sphere S3 � C2, in the sense that P' 2D0 if and only if there is a smooth family
'.t/ of embeddable deformations of S3 � C2 such that '.0/ D 0 and d

dt
jtD0'.t/ D P' (see,

e.g., [11]). Let D?0 denote the set all deformation tensors ' such that 'p;q D 0 unless q D 0; 1;
D?0 then represents directions in which one can deform the sphere for which the deformed
structure is “as far as possible” from being embeddable.

Let DBE�D0 denote the set of all deformation tensors ' such that 'p;q D 0 if q <pC4
(the “BE” here stands for Burns–Epstein [6] who showed that all sufficiently small deforma-
tions ' 2DBE are embeddable in C2; note that our deformation tensor ' is the conjugate of
Burns and Epstein’s). The condition ' 2DBE is natural in that it corresponds to saying that
the tensor ' N1

1�
N1 ˝Z1 has only nonnegative Fourier coefficients with respect to the standard

S1 action on S3 � C2 [4]. It turns out that any sufficiently small embeddable deformation of
the CR sphere can be normalized by a contact diffeomorphism so that its deformation tensor
' lies in DBE (see [4, 11]). Moreover, this deformation tensor ' is unique up to the action of
the group PSU.2; 1/ on .S3;H/ (i.e. up to the group of CR automorphisms of the standard
CR structure on S3) and of the group of S1-equivariant contact diffeomorphisms of .S3;H/.
One can further normalize ' by the action of the S1-equivariant contact diffeomorphisms
to lie in the space D0BE given by those ' 2DBE that additionally satisfy the reality condi-
tion Im ..Z N1/

2'p;pC4/ D 0 along the critical diagonal (note that deformation tensors whose
spherical harmonic decomposition is supported on the critical diagonal q D p C 4 correspond
to the S1-invariant deformations of the standard CR sphere). The representative ' 2D0BE is
unique up to the action of PSU.2; 1/. For the general case (dropping the assumption that the
deformation be embeddable) we have the following.
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Theorem 5.1 ([11]). Any sufficiently small deformation QJ of the standard CR 3-sphere
.S3;H; J / may be normalized by the action of a contact diffeomorphism of .S3;H/ so that it
is represented by a deformation tensor ' 2D0BE ˚D?0 . This deformation tensor is unique up
to the action of PSU.2; 1/.

We refer to Theorem 5.1 as the slice theorem since, up to the action of PSU.2; 1/, it gives
a local transverse slice for the space of CR structures on .S3;H/ under the action of the contact
diffeomorphism group; Theorem 5.1 is a modified version of the Cheng–Lee slice theorem [8]
that enables one to easily identify the embeddable and nonembeddable structures [11]. (The
qualification “up to the action of PSU.2; 1/” can be removed if one formulates the result as
a local slice theorem for the marked CR structures on .S3;H/ (see [8, 11]), but this will not
needed here.) Since the obstruction flatness equation QO D 0 is diffeomorphism invariant, there
is no loss of generality in considering the equation only for the CR structures corresponding to
deformation tensors ' 2D0BE ˚D?0 .

6. The linear theory via spherical harmonics

We start by recording some basic properties of the vector fields T , Z1 and Z N1 when
acting on functions. From (3.1) we can easily see that T preserves the spherical harmonic
spaces Hp;q and acts on Hp;q by

T u D i.p � q/u:

It is also straightforward to check that Z1 maps Hp;q to Hp�1;qC1 if p � 1 and acts by zero
onH0;q . Similarly, Z N1 mapsHp;q toHpC1;q�1 if q � 1 and acts by zero onHp;0. Combining
these observations it is then easy to check that Z1 maps Hp;q to Hp�1;qC1 isomorphically
(with inverse 1

p.qC1/
Z N1) when p � 1, and Z N1 maps Hp;q to HpC1;q�1 isomorphically (with

inverse 1
q.pC1/

Z1) when q � 1.

Remark 6.1. From the above it follows that the sublaplacian�b D Z1Z N1 CZ N1Z1 acts
on each Hp;q by 2pq C p C q. Note that the Folland–Stein Sobolev s-norm kuks on H s

FS is
equivalent to the norm

k.1C�b/
s
2ukL2 D

�X
p;q

.1C p C q C 2pq/skup;qk
2
L2

� 1
2

;

where u D
P

p;q up;q (see [19,26]). We will freely make use of this observation in the follow-
ing.

We will be computing with the pseudohermitian calculus connected with the standard
admissible coframe for the standard CR structure on S3, and hence we need to record how r0,
r1, and r N1 act on ' D '1

N1. Since !1
1 D �2i� and ! N1

N1 D 2i� , we have that r1 is always
interchangeable with Z1 and r N1 is always interchangeable with Z N1; on the other hand, r0 acts
by T C 4i on ' D '1

N1 and hence by i.p � q C 4/ on the Hp;q component of ', which we
record as

(6.1) r0'p;q D i.p � q C 4/'p;q:
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From these observations combined with (4.8) it is easy to see that the linearizationDQ of
the Cartan umbilical tensor at ' D 0 maps D0BE into D0, D?0 into D?0 , and is injective when
restricted to the slice D0BE ˚D?0 . To see the first of these claims, note that if '1

N1 2D0BE, then

1

6
'1
N1
;
11

11 � '1
N1
;00 �

2i

3
'1
N1
;0

1
1 C

i

2
R'1

N1
;0 2DBE �D0

and
1

6
' N1

1
;
N1 N1

11 D .Z1/
2

�
1

6
' N1

1
;
N1 N1

�
2D0 D im.Z1/

2:

That DQ maps D?0 into D?0 follows by noting that if '1
N1 2D?0 , then '1

N1
;
11 D 0 (so that

'1
N1
;
11

11 D 0 and ' N1
1

;
N1 N1

11 D 0) and that the operators r0 and r1r
1 preserve the spherical

harmonic spaces Hp;q . The injectivity of DQ when restricted to the slice D0BE ˚D?0 fol-
lows by general properties of the CR deformation complex of the standard CR sphere (see,
e.g., [12]), but since we will need the computations later we prove this directly below. To
establish this, we introduce the L2 orthogonal projection P1 WD!D0BE and show that the
maps P1DQ WD0BE !D0BE and DQ WD?0 !D?0 are both injective. We record how these
maps act in the following two lemmas:

Lemma 6.2. If '1
N1 2D0

?, then DQ acts via multiplication by

.p � q C 4/2 C
2

3
.p C 1/q.p � q C 4/ � .p � q C 4/

D .p � q C 4/

�
p � q C 3C

2

3
q.p C 1/

�
on the Hp;q component of '1

N1 (q D 0; 1). That is, DQ acts on Hp;0 by .p C 4/.p C 3/ and
on Hp;1 by 1

3
.p C 3/.5p C 8/. In particular, DQ WD?0 !D?0 is injective.

Proof. The result follows immediately from (4.8), noting that '1
N1 2D0

? D ker.Z N1/
2

implies '1
N1
;
11 D 0.

Using the fact that .Z1/
2.Z N1/

2 preserves the spherical harmonics and acts by

(6.2) .p C 1/.p C 2/.q � 1/q

on each Hp;q , for P1DQ WD0BE !D0BE, we have:

Lemma 6.3. If '1
N1 2D0BE, then P1DQ acts via multiplication by

(6.3)
1

6
.pC 1/.pC 2/.q � 1/qC .q � p � 4/2 �

2

3
.pC 1/q.q � p � 4/C q � p � 4

on the Hp;q component of '1
N1 when q > p C 4 and by

(6.4)
1

3
.p C 1/.p C 2/.q � 1/q

when q D p C 4.

Proof. If '1
N1 2 Hp;q and q > p C 4, then P1.' N1

1
;
N1 N1

11/ D 0 (since ' N1
1 2 Hq;p). The

expression (6.3) therefore follows immediately from (4.8). It remains to consider the case
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when '1
N1 2D0BE \Hp;pC4. In this case the reality condition Im.'11;

11/ D 0 (imposed along
the critical diagonal) implies that 1

6
'1
N1
;
11

11 C
1
6
' N1

1
;
N1 N1

11 D
1
3
'1
N1
;
11

11. Since the remaining
terms in DQ.'1

N1/ are zero in this case, we obtain (6.4).

It is easy to check that Lemma 6.3 implies that P1DQ WD0BE !D0BE is injective. For
later use we record the following stronger result, which compares the action of P1DQ on D0BE
with the action of the square of the sublaplacian (cf. Remark 6.1):

Lemma 6.4. There exist positive constants C1; C2 such that, for p � 0 and q > p C 4

C1 �

1
6
.pC1/.pC2/.q�1/qC.q�p�4/2� 2

3
.pC1/q.q�p�4/Cq�p�4

.1CpCqC2pq/2
(6.5)

� C2

and for p � 0 and q D p C 4,

(6.6) C1 �

1
3
.p C 1/.p C 2/.q � 1/q

.1C p C q C 2pq/2
� C2:

Proof. This is a basic exercise in multivariable calculus. The existence of C2 follows
from the fact that the denominator in both expressions is larger than p2 C q2, and the numerator
is a degree 2 polynomial in p and q. The existence ofC1 > 0 small enough such that (6.6) holds
is obvious once we set q D p C 4 (one obtains a decreasing function for p � 0 which tends to
1

12
, so any C1 �

1
12

will do). It is also an easy exercise to see that there exists C1 > 0 small
enough such that (6.5) holds. One way to do this is to write S.p; q/ for the numerator and
T .p; q/ D .1C p C q C 2pq/2, and then consider R.p; q/ D S.p; q/ � 1

48
T .p; q/. Writing

R.p; q/ D a.p/q2 C b.p/q C c.p/ for quadratic polynomials a.p/, b.p/, c.p/, we have that
a.p/ > 0 for all p, and it is easy to check that q ! R.p; q/ is a positive quadratic for all
p � 0. In particular, for all p � 0 and q > p C 4 (indeed, for any q) we have R.p; q/ > 0 and
hence S.p;q/

T .p;q/
> 1

48
, as required.

Lemma 6.4 shows that, in a precise sense, P1DQ WD0BE !D0BE behaves like .1C�b/
2.

In particular, as a map from D0BE !D0BE the operator P1DQ is an injective fourth order
operator whose inverse gains four derivatives in Folland–Stein spaces, and preserves eachHp;q

for q � p C 4. We will also later need the corresponding result for .Z1/
2.Z N1/

2, which acts on
each Hp;q by (6.2). It is straightforward to check that:

Lemma 6.5. There exist positive constants C1; C2 such that, for p � 0 and q � p C 4,

C1 �
.p C 1/.p C 2/.q � 1/q

.1C p C q C 2pq/2
� C2:

We are now ready to discuss the linearized obstruction operatorDO D .Z N1/
2DQ. As an

easy consequence of the above discussion we have:

Proposition 6.6. The kernel of the linearized obstruction operatorDO restricted to the
slice D0BE ˚D?0 is given by D?0 .
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Proof. Since DO D .Z N1/
2DQ, this follows immediately from the injectivity of DQ

and the fact that DQ maps D0BE into D0 and maps D?0 into D?0 D ker.Z N1/
2.

Together with Theorem 5.1, this establishes Theorem 1.1 from the introduction.

Remark 6.7. As an aside we note that the space D?0 is also the tangent space (within
the slice) at the standard CR sphere to the space of CR structures on S3 that are fillable by
self-dual asymptotically complex hyperbolic Einstein metrics on the real 4-ball [3].

It is also straightforward to determine the image of the map

DO WD0BE ˚D?0 ! C1.S3;R/

in terms of spherical harmonics.

Proposition 6.8. The image of the map DO WD0BE ˚D?0 ! C1.S3;R/ is the space
of functions f 2 C1.S3;R/ with spherical harmonic decomposition of the form

P
p;q�2 fp;q .

Proof. Noting that DO vanishes on D?0 and that the image of DO consists of real
functions it is enough to consider the Hp;q-components of DO.'/ for ' 2D0BE with q � p.
The result then easily follows from the above discussion by considering how .Z N1/

2P1DQ acts
on D0BE (P1DQ acts injectively and by scalar multiplication on each Hp;q component and
then .Z N1/

2 maps each Hp;q isomorphically to HpC2;q�2).

Note that the cokernel H 2
O

of DO WD0BE ˚D?0 ! C1.S3;R/ is nontrivial, and can
be identified with the space of functions f 2 C1.S3;R/ with spherical harmonic decompo-
sition of the form f D

P
p;q fp;q with fp;q D 0 if p; q � 2. Hence, while on the standard

CR 3-sphere there is an infinite-dimensional family H 1
O
DD?0 of solutions to the linearized

equation corresponding to O � 0, the problem of obtaining solutions to O � 0 via deforma-
tion theory is obstructed by the presence of the (also infinite-dimensional) cokernel H 2

O
of the

linearized operator DO WD0BE ˚D?0 ! C1.S3;R/.

Remark 6.9. The reason we use the notation H 1
O

and H 2
O

is that these spaces may
thought of as the first and second cohomologies of the deformation complex for obstruction
flat CR structures

0! C1.S3;R/!D! C1.S3;R/! 0;

where D Š C1.S3;C/ denotes the space of infinitesimal deformation tensors on the stan-
dard CR sphere, the second arrow is the linearized action of the contact diffeomorphism group
(f 7! iZ1Z1f ) and the third arrow is the linearized obstruction operator DO.

7. Partial solvability

In this section we use results of the previous section combined with a standard deforma-
tion theory argument to show that the linearized solutions to the obstruction flatness equation
on the standard CR sphere integrate to solutions of the nonlinear equation O � 0 mod H 2

O
, i.e.

Op;q D 0 for p; q � 2. More precisely, we shall prove the following theorem.
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Theorem 7.1. There exist neighborhoods U of 0 2D?0 and V of 0 2D0BE in the H 6
FS

topology such that for any '0 2 U there is a unique  2 V such that the deformation tensor
' D  C '0 satisfies O.'/ � 0 mod H 2

O
.

Remark 7.2. We remind the reader that deformations tensors in the spaces D?0 and
D0BE are C1 by definition. Hence Theorem 7.1 claims the existence of C1 solutions  to the
problem O. C '0/ � 0 mod H 2

O
for '0 2D?0 sufficiently small.

Before we prove this theorem we will collect some useful lemmas. In the following we
denote the image of DO WD0BE ˚D?0 ! C1.S3;R/ by Im, so that

C1.S3;R/ D Im˚H 2
O :

We have seen that the linearization DO of the obstruction function at the standard CR sphere
restricts to an invertible linear map from D0BE ! Im whose inverse gains six derivatives in
Folland–Stein spaces. For the proof of Theorem 7.1 we need a slightly more general result
given in the following lemma.

Identifying the space of (marked) CR structures on .S3;H/ with the slice D0BE ˚D?0 ,
we let D'0

O denote the linearization of the CR obstruction function at the CR structure corre-
sponding to '0 2D0BE ˚D?0 . Let PIm denote theL2 orthogonal projection from C1.S3;R/
(D Im˚H 2

O
) to Im.

Lemma 7.3. There is a constant C > 0 such that for all '0 2D?0 sufficiently small one
has for any P' 2D0BE,

(7.1) Ck P'k6 � kPImD'0
O. P'/k0 � C

�1
k P'k6:

Proof. The upper bound in (7.1) follows from the fact that D'0
O can be expressed

as a sixth order operator involving only Z1 and Z N1 derivatives (and depends continuously
on '0). In the case where '0 D 0 the lower bound follows immediately from Lemmas 6.3
and 6.4 and the fact thatDO D .Z N1/

2DQ (note that the image ofDQjD0
BE

is orthogonal to the
kernel of .Z N1/

2). From the general form of the obstruction function (Lemma 4.4), halving C if
necessary, such an estimate will continue to hold so long as '0 is sufficiently small inH 6

FS.

Setting up for the proof of Theorem 7.1 we let B1 denote the closure of D0BE in the H 6
FS

norm, and B2 the closure of Im in the L2 norm; DO then extends to an isomorphism from
B1 to B2. By a slight abuse of notation we continue to write PIm for the bounded extension
of the projection PIm introduced above (i.e. for the L2 orthogonal projection onto B2). Given
'0 2D?0 , we let F'0

W B1 ! B2 be given by

F'0
. / D PImO. C '0/:

Then the linearization of F'0
at  D 0 is

L'0
D PImD'0

OjB1
W B1 ! B2;

which is an isomorphism for '0 sufficiently small by Lemma 7.3. Write

F'0
. / D F'0

.0/CL'0
. /CN'0

. /:
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Setting f D L'0
. /, the partial obstruction flatness equation F'0

. / D PImO. C '0/ D 0

can be written as
f D �F'0

.0/ �N'0
.L�1

'0
f /:

In order to show that the map f 7! �F'0
.0/ �N'0

.L�1
'0
f / has a fixed point we will

need the following lemma, which follows from Lemma 4.4 and the fact that N'0
. / contains

no constant or linear terms in  .

Lemma 7.4. There exist neighborhoodsU of 0 2D?0 and V of 0 2 in theH 6
FS topology

and a constant C > 0 such that

(7.2) kN'0
. 1/ �N'0

. 2/k0 � C
�
k 1k6 C k 2k6

�
k 1 �  2k6

for all '0 2 U and  1;  2 2 V .

Proof of Theorem 7.1. By Lemma 7.4 we may take open neighborhoods U of 0 2D?0
and OV of 0 2 B1 such that (7.2) holds for all '0 2 U and  1;  2 2 OV . From Lemmas 7.3 and
7.4 it follows that there is C 0 > 0 such that

kN'0
.L�1

'0
f1/ �N'0

.L�1
'0
f2/k0 � C

0
�
kf1k0 C kf2k0

�
kf1 � f2k0

for all '0 2 U and all f1; f2 2 B2 sufficiently small. Hence if F'0
.0/ is sufficiently small

(which can be ensured by taking '0 sufficiently small) there exists r > 0 such that

T'0
W f 7! �F'0

.0/ �N'0
.L�1

'0
f /

preserves the ball BB2
.0; r/ of radius r about 0 in B2 and is a contraction mapping on this

ball. Shrinking U if necessary, we may assume this is the case for all '0 2 U . By the con-
traction mapping theorem it follows that for each '0 2 U the map T'0

has a unique fixed
point f'0

in BB2
.0; r/, which corresponds to a unique solution  D L�1

'0
f'0

of the equation
F'0

. / D PImO. C '0/ D 0 in L�1
'0
.BB2

.0; r//. The uniform bounds on L'0
given by

Lemma 7.3 ensure that after shrinking U and OV if necessary the result holds with the solutions
 D L�1

'0
f'0

in OV � B1, theH 6
FS completion of D0BE. It remains to show that the solutions  

are in fact C1 (given that we take '0 to be C1).
To see that  D L�1

'0
f'0

is C1 for '0 sufficiently small, we rewrite the equation char-
acterizing  as

(7.3)  CL�1
'0

N'0
. / D �L�1

'0
F .0/:

Note that the right-hand side of (7.3) is C1. Moreover, using the general form of the obstruc-
tion function as described in Lemma 4.4, the definition of N'0

, and the fact that L�1
'0

gains
six derivatives in Folland–Stein spaces, the operator IdCL�1

'0
N'0

is seen to be an elliptic
(invertible) zeroth order pseudodifferential operator (for '0 sufficiently small) [2]. The reg-
ularity of  therefore follows from the regularity of L�1

'0
F .0/. This concludes the proof of

the theorem.

Remark 7.5. This argument also provides us with a Kuranishi map (cf., e.g., [33])

‰ W H 1
O ! H 2

O
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defined near 0 by ‰.'0/ D O. C '0/ where  is obtained from '0 as in the proof of Theo-
rem 7.1; the zero set of the Kuranishi map is locally isomorphic with the set of solutions of
O � 0 in a neighborhood of 0, the isomorphism being '0 7!  C '0 with  as constructed
above. We shall see in Section 9, however, that 0 is an isolated point of ‰�1.0/, i.e. there are
no nontrivial solutions of the obstruction flatness equation near the standard CR structure.

8. Second order deformations and formal rigidity

In this section we consider the formal solvability of the obstruction flatness equation
beyond the linearized level, and show that the problem is already not solvable at the second
order; this is Theorem 1.3 in the introduction. Its proof will follow immediately from Theo-
rem 8.2, which is proved below. Before we state and prove Theorem 8.2 we need the following
technical lemma. In the following k � ks denotes the L2 Folland–Stein Sobolev s-norm on the
Folland–Stein space H s

FS of functions with s (Z1 and Z N1) derivatives in L2.

Lemma 8.1. Let � denote the standard contact form on the standard CR sphere. There
is a constant C > 0 such that for any P' 2D?0 ,

Ck P'k23 �

Z
S3

DQ. P'/ � ir0 P' � ^ d� � C
�1
k P'k23:

Proof. This follows immediately from Lemma 6.2 and (6.1), cf. Remark 6.1.

We therefore have:

Theorem 8.2. There exists a constant C > 0 such that for any smooth family '.t/ of
deformations of the standard CR 3-sphere with '.0/ D 0 and d

dt
jtD0'.t/ D P' 2D?0 n ¹0º the

corresponding family of obstruction functions O.t/ (taken with respect to the standard contact
form � on S3) satisfies Z

S3

O.t/ � ^ d� � Ct2k P'k23

in a neighborhood of t D 0.

Proof. Let '.t/ be a family of deformation tensors with

'.0/ D 0 and
d

dt

ˇ̌̌̌
tD0

'.t/ D P' 2D?0 n ¹0º:

Then by Lemma 4.3,Z
S3

O.t/ � ^ d� D t2
Z

S3

.i P' N1
1

;0
PQ1
N1/ � ^ d� CO.t3/;

where
PQ1
N1
D DQ. P'1

N1/ and P' N1
1
D P'1

N1 D P':

The result then follows immediately from Lemma 8.1.
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Remark 8.3. Note that Theorem 8.2 is not claiming that the integral of the obstruction
function becomes positive whenever we slightly deform the CR structure of the standard CR
sphere, but only that it does so when the deformation starts out in an infinitesimally obstruction
flat direction.

9. General rigidity result

In this section we prove our main rigidity result, which implies Theorem 1.2.

Theorem 9.1. There is an open neighborhood U of the origin in the slice D0BE ˚D?0
(in theH 3

FS topology) such that the CR structure corresponding to a deformation tensor ' 2 U
is obstruction flat if and only if ' D 0.

Remark 9.2. A technical difficulty in the proof below is the fact that in order to use
Lemma 8.1 we need to work in the H 3

FS topology, while the nonlinear terms in the obstruction
flatness equation involve six derivatives (in the Z1 and Z N1 directions). In the context and nota-
tion of the proof below we note that one might expect that the nonlinear part F .'.k// in (9.1)
below is O.�2

k
/, from which it would follow that k O'.k/

D0
BE
k6 ! 0. The problem with this is that

we only assume that k'.k/k3 ! 0 while F .'.k// involves derivatives up to order 6. Since the
idea is to use Lemmas 4.3 and 8.1 to show that the integral of the obstruction function must be
nonzero for large k, it is natural to assume k'.k/k3 ! 0 rather than k'.k/k6 ! 0.

Proof. With a view to obtaining a contradiction we suppose that there exists a sequence
'.k/ of nonzero obstruction flat deformation tensors such that '.k/ ! 0 in H 3

FS. Set

'.k/
D �k O'

.k/;

where k O'.k/k3 D 1. Then �k ! 0. Let P1 WD
0
BE˚D?0 !D0BE and P2 WD

0
BE˚D?0 !D?0

denote the L2 orthogonal projections, and write

O'.k/
D O'

.k/

D0
BE
C O'

.k/

D?
0

;

where
O'

.k/

D0
BE
D P1 O'

.k/ and O'
.k/

D?
0

D P2 O'
.k/:

Our first goal is to show that k O'.k/
D0

BE
k3 ! 0 (and hence k O'.k/

D?
0

k3 ! 1) as k !1, meaning
that '.k/ is approximately a solution of the linearized equation for large k.

As above we fix � , the standard contact form on the 3-sphere, and for each '.k/ we
compute with respect to the frame given by (4.1) and the corresponding admissible coframe.
We let Q.k/

11 denote the Cartan umbilical tensor of the CR structure with deformation tensor
'.k/,r.k/ the Tanaka–Webster connection of the corresponding pseudohermitian structure, and
A11

.k/
its pseudohermitian torsion. Since each '.k/ is assumed to be obstruction flat, we have

(9.1) r
1
.k/r

1
.k/Q

.k/
11 D iA

11
.k/Q

.k/
11

for each k. Note that the part of r1
.k/
r1

.k/
Q

.k/
11 that is linear in '.k/ is

DO.'.k// D .Z N1/
2DQ.'.k//;

which equals �k.Z N1/
2DQ. O'.k/

D0
BE
/ since O'.k/

D?
0

solves the linearized equation. Moving all non-
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linear terms in (9.1) to the right-hand side, we may rewrite the equation as

(9.2) �k.Z N1/
2DQ. O'

.k/

D0
BE
/ D F .'.k//;

where F .'/ is given by .1 � j'j2/�9 times a polynomial in ', ' and their Z1 and Z N1 deriva-
tives up to order 6 having no linear term, see Lemma 4.4.

By Lemmas 6.3–6.5 (cf. Remark 6.1) there exists a constantC > 0 such that for ' 2D0BE,

Ck'k23 �

Z
S3

' � .1C�b/
�1.Z1/

2.Z N1/
2DQ.'/ � ^ d�:

Applying .1C�b/
�1.Z1/

2 to both sides of (9.2) and then integrating the resulting expression
against the conjugate of O'.k/

D0
BE

, one therefore obtains that

(9.3) �kCk O'
.k/

D0
BE
k

2
3 �

Z
S3

O'
.k/

D0
BE
� .1C�b/

�1.Z1/
2F .'.k// � ^ d�:

Let W s;p
FS denote the Folland–Stein space of functions with s derivatives in Lp (where the

derivatives areZ1 andZ N1 derivatives). By using integration by parts to balance the numbers of
derivatives on the factors, applying the generalized Hölder inequality, then using the Sobolev
embedding theorem for Folland–Stein spaces [18, Theorem 4.17] (in particular that, since the
homogeneous dimension of the CR 3-sphere is 4, the H 3

FS norm controls the W 2;4
FS norm, the

W
1;q

FS norm for 2 � q <1, and the L1 norm) and using Lemma 4.5 one can show that

(9.4)
Z

S3

O'
.k/

D0
BE
� .1C�b/

�1.Z1/
2F .'.k// � ^ d� D O.�2

k/

as k !1 (since F .'/ has no linear terms). We illustrate this by showing how to estimate
the term in the left-hand side of (9.4) that arises from the term 1

6
.1 � j'j2/�9' N1

1'1
N1
;
1 N1

11 N1
1

in F .'/: To show that

(9.5)
Z

S3

O'
.k/

D0
BE
�.1C�b/

�1.Z1/
2
�
.1�j'.k/

j
2/�9'.k/

N1
1'.k/

1
N1
;
1 N1

11 N1
1
�
�^d� DO.�2

k/

we first write

'.k/
N1
1 '.k/

1
N1
;
1 N1

11 N1
1
D �2

k O'
.k/
N1
1
O'.k/

1
N1
;
1 N1

11 N1
1

and integrate .1C�b/
�1.Z1/

2 by parts so that the left-hand side of (9.5) becomes �2
k

times

(9.6)
Z

S3

�
.Z1/

2.1C�b/
�1
O'

.k/

D0
BE

�
� .1 � j'.k/

j
2/�9

O'.k/
N1
1
O'.k/

1
N1
;
1 N1

11 N1
1� ^ d�:

We then show that (9.6) is bounded. To see this we first integrate by parts to remove three of the
derivatives from the O'1

N1
;
1 N1

11 N1
1 factor. In this way, by the Leibniz rule, we obtain the integral

of .1 � j'j2/�9 times a polynomial in

O'.k/; O'.k/; .Z1/
2.1C�b/

�1
O'

.k/

D0
BE

and their Z1 and Z N1 derivatives up to order at most 3 (we note that the Folland–Stein 3-norm
of .Z1/

2.1C�b/
�1 O'.k/

D0
BE

is uniformly bounded since .1C�b/
�1 gains two derivatives in
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Folland–Stein spaces), where the total number of Z1 and Z N1 derivatives on the factors in
any term of the polynomial is 6. Since the Folland–Stein 3-norm controls the L1 norm we
need only concern ourselves with the factors in each term of the polynomial which have at
least one Z1 or Z N1 derivative. Since the total number of derivatives in each term is 6 and one
term has three derivatives, the (nonzero) numbers of derivatives must be 3C 3, 3C 2C 1 or
3C1C1C1; in each case, by the generalized Hölder inequality (with the partitions 1 D 1

2
C

1
2

,
1 D 1

2
C

1
4
C

1
4

, 1 D 1
2
C

1
6
C

1
6
C

1
6

for the three respective cases) we can estimate the term
arising in the integral in terms of the H 3

FS norm, the W 2;4
FS norm, the W 1;6

FS norm, and the L1

norm of '.k/. As commented above, these norms are all uniformly bounded since theH 3
FS norm

is uniformly bounded. This shows that (9.6) is uniformly bounded in k, giving (9.5). Arguing
similarly for the other terms in F .'/, of which there are finitely many, one obtains (9.4). Hence,
by (9.3) we have

(9.7) k O'
.k/

D0
BE
k3 D O.�

1
2

k
/:

It follows that

k O'
.k/

D?
0

k3 ! 1:

Now since we have assumed

O.k/
D r

1
.k/r

1
.k/Q

.k/
11 � iA

11
.k/Q

.k/
11 D 0 for each k,

by Lemma 4.3 followed by Lemma 4.2 and (9.7) we have (after integrating by parts as in
the proof of (9.7) above to ensure that the remainder terms involve at most three Z1 and Z N1
derivatives):

0 D

Z
S3

O.k/ � ^ d�

D i

Z
S3

'.k/
N1
1

;0Q
.k/

1
N1

1 � j'.k/j2
� ^ d�

D �2
k

Z
S3

DQ. O'
.k/

D?
0

/ � ir0 O'
.k/

D?
0

� ^ d� CO.�
5
2

k
/:

It follows that

(9.8) lim
k!1

Z
S3

DQ. O'
.k/

D?
0

/ � ir0 O'
.k/

D?
0

� ^ d� D 0:

On the other hand Lemma 8.1 and the fact that

k O'
.k/

D?
0

k3 ! 1

imply that

lim
k!1

Z
S3

DQ. O'
.k/

D?
0

/ � ir0 O'
.k/

D?
0

� ^ d� � lim
k!1

Ck O'
.k/

D?
0

k3

D C > 0;

contradicting (9.8). We conclude that there is no such sequence '.k/ of nonzero obstruction flat
deformation tensors.
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