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Obstruction flat rigidity of the CR 3-sphere

By Sean N. Curry at Stillwater and Peter Ebenfelt at La Jolla

Abstract. We consider the obstruction flatness problem for small deformations of the
standard CR 3-sphere. That rigidity holds for the CR sphere was previously known (in all
dimensions) for the case of embeddable CR structures, where it also holds at the infinitesimal
level. In the 3-dimensional case, however, a CR structure need not be embeddable. Unlike in the
embeddable case, it turns out that in the nonembeddable case there is an infinite-dimensional
space of solutions to the linearized obstruction flatness equation on the standard CR 3-sphere
and this space defines a natural complement to the tangent space of the embeddable deforma-
tions. In spite of this, we show that the CR 3-sphere does not admit nontrivial obstruction flat
deformations, embeddable or nonembeddable.

1. Introduction and main results

In this paper we continue our study of compact obstruction flat CR 3-manifolds begun in
[10, 12] by considering the problem via deformation theory of the standard CR 3-sphere in the
space of abstract CR structures. A major tool is the modified version of the Cheng—Lee slice
theorem from the authors’ recent paper [11]. We recall that in [14, 17] Fefferman proposed the
study of the asymptotic expansion of the Bergman kernel of a strictly pseudoconvex domain in
terms of CR invariants of the boundary. In this context obstruction flatness is the same as the
vanishing of the boundary trace of the coefficient of the log term in the Fefferman expansion
of the Bergman kernel along the diagonal.

To be more precise and explain the terminology, let 2 C C”, n > 1, be a bounded strictly
pseudoconvex domain with smooth boundary 02. There are several interrelated approaches to
studying the CR geometry of 052, or, equivalently, the biholomorphic geometry of 2. In [14,17]
Fefferman suggested as an approach to this the study of the boundary asymptotic expansion for
the solution of the Dirichlet problem

I (u) = (—1)"det< M ) -1 nQ,

Zj uz./’zlg

(1.1)
u=0 onoS2,
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with u > 0, and the CR boundary invariants which thereby arise; this turned out to be a very
fruitful approach, see, e.g., [1,24,25]. The equation (1.1) governs the existence of a unique
complete Kihler-Einstein metric on  with Kihler potential v = —log(u). Fefferman [17]
showed that there is always a smooth approximate solution p satisfying g(p) = 1 + O(p"t1),
and that p is unique mod O(p"*2); we call such a p a Fefferman defining function for .
Subsequently, Cheng and Yau [9] proved the existence of a unique solution u to Fefferman’s
equation (1.1) which is C® in  and C"*! (but not in general C ) up to the boundary. The
precise boundary behavior of u was uncovered by Lee and Melrose [29] who showed that u
has an asymptotic expansion of the form

u~ p(no + nmp"tilogp + (et logp)® +-+-), M € C(Q),

where p is a Fefferman defining function (so that n9 = 1 mod O(p"!)). The presence of log
terms in the expansion explains the failure of smoothness of u up to the boundary. While the
solution u is only uniquely determined globally, Graham [20, 21] showed that the coefficients
nk mod O(p" 1) are locally uniquely determined by 99 (and independent of the choice of
Fefferman defining function p). Moreover, he showed that if the coefficient 7; of the first log
term vanishes on 02 then 71 vanishes to infinite order at the boundary for all k£ > 1. Thus
n1laq is precisely the obstruction to C*° boundary regularity of the Cheng—Yau solution to
Fefferman’s equation. The local invariant

O = nilag

of the boundary 0X2 is called the obstruction function or obstruction density (since it actually
transforms as a density), and being a CR invariant it can be defined on an abstract strictly
pseudoconvex CR manifold of any dimension; for the remainder of this paper will use the term
CR manifold to mean strictly pseudoconvex CR manifold. If M is a CR manifold for which
the obstruction density vanishes, we say that M is obstruction flat.

In the abstract setting the obstruction density still arises naturally as an obstruction to
smooth boundary regularity as follows. In [17] Fefferman showed that the chains (distinguished
curves in CR geometries introduced by Chern—Moser and E. Cartan) can be obtained by pro-
jecting the null geodesics from a circle bundle over the CR manifold which carries a natural
conformal Lorentzian metric; this circle bundle is known as the Fefferman space of the CR
structure. The Fefferman space is a CR invariant in the sense that any CR diffeomorphism lifts
to a conformal diffeomorphism of the corresponding Fefferman spaces. The Fefferman space
construction generalizes in a natural way to abstract CR manifolds [5,7,13,27,32]. On any con-
formal manifold (of any signature) there is a local conformal invariant, closely related to the
CR obstruction function, known as the Fefferman—Graham obstruction tensor, which obstructs
the formal solvability (and hence smooth boundary regularity) for the Poincaré—Einstein exten-
sion problem and the conformal ambient metric construction of [15, 16]; roughly speaking
these problems are real analogs of (1.1). The notion of ambient metric for a conformal struc-
ture generalizes the notion of ambient metric for a CR manifold introduced by Fefferman (in
the embedded case) in [14, 17]; in particular, the Fefferman—Graham obstruction tensor of a
Fefferman space has only one nonvanishing component (in a natural frame), which is precisely
the pullback of the CR obstruction density of the underlying CR manifold (see, e.g., [22,32]).

In three dimensions, the CR obstruction function of a CR manifold therefore corresponds
to the Bach tensor of its Fefferman space. In particular, the obstruction flat equation for a CR
3-manifold corresponds to the Bach flat equation of conformal gravity (see, e.g., [30]) for the
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corresponding 4-dimensional Lorentzian Fefferman space; the Bach flat equation is a fourth
order conformally invariant equation whose solutions include Einstein metrics.

If a CR manifold M is locally CR equivalent to the unit sphere, then we say that M
is spherical. For © the unit ball in C” the solution to Fefferman’s equation is u = 1 — ||z||?,
which is smooth up to the boundary, hence the obstruction function vanishes for the unit sphere
§2n=1  C", n > 1.1t follows that any spherical CR structure is obstruction flat. On the other
hand, by [20, Proposition 4.14] there are also /ocal non-spherical (real analytic) obstruction
flat strictly pseudoconvex hypersurfaces in C”, for any n > 1 (see also [31] for an explicit
example of a non-spherical noncompact Bach flat Fefferman space in four dimensions). It is
natural to ask if there are non-spherical solutions of the global obstruction flatness problem for
compact CR manifolds. In the case of embeddable structures, there are no such non-spherical
solutions in an explicit C! open neighborhood of the standard CR 3-sphere, see [10]. In this
case, rigidity holds even at the infinitesimal level [12]. On the other hand, in the nonembed-
dable case there are nontrivial solutions to the linearized obstruction flatness equation on the
standard CR sphere:

Theorem 1.1. There is an infinite-dimensional space H (19 of nontrivial infinitesimal
deformations solving the linearized obstruction flatness equation on the standard CR 3-sphere.
Moreover, this space is a complement to the tangent space of the embeddable deformations in
the space of all infinitesimal deformations.

In fact, if © = C*°(S3, C) denotes the space of all C > deformation tensors on the stan-
dard CR 3-sphere, then H} = S(J)-, the L2 orthogonal complement of the tangent space D to
the embeddable deformations; furthermore, in [11] it is shown that there is a linear subspace
of © which gives a slice for the space of CR structures near the standard CR sphere and such
that H é is the L2 orthogonal complement of the space of embeddable CR structures in the
slice. Here we are fixing the underlying contact structure on the CR sphere when consider-
ing deformations, which is no loss of generality by Gray’s classical theorem [23]. By [11] the
infinitesimal deformations in H (19, modulo the linearized action of the finite-dimensional CR
automorphism group of the standard CR 3-sphere, are CR inequivalent.

Nevertheless, it turns out that none of these solutions to the linearized problem integrate
to solutions of the nonlinear problem.

Theorem 1.2. The standard CR 3-sphere is rigid as an obstruction flat CR 3-manifold.

In other words, there is an open neighborhood U of the standard CR 3-sphere in the
space of CR structures on S3 such that a CR structure in U is obstruction flat if and only if it
is CR equivalent to the standard CR 3-sphere. Here the topology is the C k topology for any
sufficiently large k (e.g., k = 6 will do). Theorem 1.2 follows immediately from Theorem 5.1
(cf. [11, Theorem 1.2]) and Theorem 9.1 below. This result substantially generalizes the rigid-
ity result for obstruction flat embeddable deformations of the CR 3-sphere that follows from
[10, Corollary 1.4], since near the standard CR sphere the space of embeddable CR structures
is a (Fréchet) submanifold with dense complement in the space of abstract CR structures [11].
Rigidity in this more general situation is perhaps surprising in light of Theorem 1.1. We note
that the method of proof is completely different from [10], which relied on the existence of
holomorphic vector fields in the ambient space.
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Moreover, we have the following formal rigidity result.

Theorem 1.3. Let¢ € H (19 \ {0}, a nontrivial solution of the linearized obstruction flat-
ness equation on the standard CR sphere. Then there does not exist a deformation tensor ¢ such
that the family ¢(t) = ¢ t + ¢ t2/2 satisfies the obstruction flatness equation to second order
att = 0.

Remark 1.4. Ifo(t) = ¢t + %go ¢ is as in Theorem 1.3 then the corresponding family
of CR obstruction functions are of the form @ (¢) = %(btz + O(t3), where O # 0. The corre-
sponding family of CR curvatures (Cartan umbilical tensors) Q(r) = Ot 4+ O(r%) has Q # 0.
This is in contrast to the case of embeddable deformations of the standard CR sphere, where
the vanishing order of Q(¢) must match that of @(¢) (see [12, Theorem 1.2]). Note that the
@(t) in Theorem 1.3 are nonembeddable (for small ¢) since ¢ € H é \{0}and H} = @é‘.

We note that the linearized obstruction operator ® — C*°(S3, R) is not surjective. We
denote its cokernel by H2; in terms of spherical harmonics (recalled in Section 5) the space
H é may be identified with space of f € C®(S3, R) whose spherical harmonic expansion
f= Zp’q Jp,q satisfies fp 4 = 0 for p,q > 2. We also denote by Ogg the (Burns—Epstein)
space of deformation tensors ¢ = Zp’q ¢p,q such that ¢, ; = 0 unless ¢ > p + 4. Note that
Hé = @(J)- is L? orthogonal to Ogg.

Theorem 1.5. There is a neighborhood U of 0 in H é such that for any @9 € U there
is a W € Dpg such that the deformation tensor ¢ = @o + ¥ satisfies O (p) = 0 mod H(%.

A more precise version of Theorem 1.5 (in which ¥ is uniquely determined) is given in
Theorem 7.1.

Remark 1.6. See Remark 6.9 for an explanation of the notation H é and H (%. By the
argument leading to Theorem 7.1 we get the existence of a Kuranishi map W : H (19 - H é
defined near 0 whose zero set is locally isomorphic with the set of solutions of @ = 0; but
Theorem 9.1 (Theorem 1.2) shows that 0 is an isolated point of ¥~1(0), see Remark 7.5.

The main tools used in this paper are the authors’ modified version of the Cheng—Lee
slice theorem [11] and a careful analysis of the relevant linearized operators on the standard
CR 3-sphere as well as estimates for the nonlinear part of the obstruction flatness equation near
the CR sphere in terms of the spherical harmonic decomposition of a CR deformation tensor in
the slice.

The paper is organized as follows. In Sections 2 and 3 we recall some basic material on
pseudohermitian structures and CR invariants, and the standard pseudohermitian structure on
the CR 3-sphere. In Section 4 we consider deformations of the standard CR 3-sphere with its
standard contact form, and derive certain key formulae for the pseudohermitian connection and
curvature of the deformed CR structure. Section 5 recalls the spherical harmonics and presents
the version of the modified slice theorem that we will be using. In Section 6 we present the
linear theory for the CR curvature and obstruction function operators. We determine the kernel
and cokernel of the linearized obstruction operator on the standard CR 3-sphere; in particular,
we prove Proposition 6.6 which together with the slice theorem implies Theorem 1.1. In Sec-
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tion 7 we establish the partial solvability of the obstruction flatness equation (i.e. solvability
modulo H (%) including Theorem 7.1 from which Theorem 1.5 follows. In Section 8 we discuss
formal rigidity, stating and proving Theorem 8.2 which implies Theorem 1.3. We conclude in
Section 9 with a proof of Theorem 9.1, which together with the slice theorem proves our main
result, Theorem 1.2.

Acknowledgement. The authors would like to thank the anonymous referees for their
careful reading and valuable comments that have helped to improve the presentation in this

paper.

2. Pseudohermitian structures and the Tanaka—Webster connection

In this section we recall some basic material on pseudohermitian structures on a CR
3-manifold; for a more detailed exposition see, e.g., [12,28,34]. Let (6, 8, 1) be an admissible
coframe for (M, H, J). Then h,j is defined by

d6 =ih76" A6
The Tanaka—Webster pseudohermitian connection form ;! and torsion A7 ! are defined by
@2.1) do' = 0" Ayt + A1 6 A0

and

o' + o7t = h'ldh ;.

where

a)il =w;! and nl = (hli)_l.
We will sometimes refer to the individual components of w !, defined by writing
o' = w1100 + w1110 + w1110i.
The Tanaka—Webster scalar curvature R of (M, H, J) is defined by
2.2) dor' = Rhyi0" A0 + (VI A1)0" A6 — (V147101 A 0,

where V denotes the Tanaka—Webster covariant derivative and indices have been raised and
lowered using h,7. The Cartan umbilical tensor is then given by

1 i 21
(2.3) O =—gvlv1R—§RAu+voAn+?vlv1Au.

The obstruction function or obstruction density of (M, H, J) is then given by
(2.4) O=V'V'Q;—id"0n.

Note that O is really a weighted CR invariant (a section of a CR density line bundle), see, e.g.,
[12]; throughout this paper we will be working with a fixed contact form 6 and thus may think
of @ as a function, as in (2.4).



110 Curry and Ebenfelt, Obstruction flat rigidity of the CR 3-sphere

3. The standard pseudohermitian structure on the sphere

Let S3 denote the unit sphere in C? and (S3, H, J) the corresponding (standard) CR
structure on the S3. Let (z,w) be the standard coordinates on C2. Define the (1, 0)-vector
field Z; by
_0
“ow
and let Z7 = Z,. Note that Z; and Z i are tangent to S 3 and therefore span the holomor-
phic and antiholomorphic tangent spaces of S3 respectively at each point. We also endow
S3 with its standard contact form 6, given by 6 = idp|pg3 where p = 1 — |z|?> — |w|?. Then
0 =—i(Zdz + wdw) and d = i(dz A dZ 4+ dw A dw), where in both formulae the restric-
tion to TS is left implicit. Let 7' denote the Reeb vector field of 6, i.e. the unique vector field
on S3 satisfying 8(T) = 1 and d6(T, -) = 0. It is easy to see that

(3.1) T=i 9 + g (22 + w o
. =ilz—4+w— ) —-i|lZz=+w=—=).
oz ow oz ow
The vector fields (7, Z1, Z;) define a frame for the complexified tangent space of S 3, with

coframe (0, 01, 0'). By evaluating —id6 = dz AdZ + dw Adw on (Z1,Z7), we see that
hli = l,i.e.

_0
Z]Z'wa—z—

do =i6' n 6.
From the structure equation (2.1) we also obtain that
(3.2) w1 =—-2i6 and Ay =0.

From (2.2) we then have
R =2.

It follows that Q1; = 0 and @ = 0 for the standard CR sphere.

4. Deformations of the standard CR sphere

Let (S 3 H,J ) denote the standard CR sphere, and 6 and Z; be as above. We now con-
sider the deformed CR structure on S3 whose underlying holomorphic tangent space is spanned
by

4.1) 71 =71+ 01175,

where the deformation tensor ¢ = ¢! is a smooth complex function on S3; note that here
we are keeping the underlying contact distribution H fixed, which is no loss of generality for
deformed structures homotopic to the standard one by Gray’s classical theorem [23]. We keep
the contact form 0 fixed, and thus obtain a coframe (6, él, él) dual to (7, V4 1, V4 1) with

51 1 1 151
= —)F 0 - 71 9 N
e e ?)

where ¢7! = Eand lp|? = (pligoil. We then have df = iﬁliél A 61, where

4.2)

hg=1-lp
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In the following we use /2 11 to raise and lower indices for objects with a tilde and ~;7 = 1 for
objects without a tilde. Note that we may recover Z; and ! from Z; and 6! by

z L (Zi—elzy)
1= 7 o \41—¢1 43
=g !
and B -
0! =0' +¢;'0".
Let @' denote the Tarjakel—_Webster connection form for the modified CR structure in the
admissible coframe (6, 91, 61), and let A1; denote the corresponding pseudohermitian torsion.
We decompose @; ! in the frame (6,01, 61) as

a1t =@1"00 + @110 + @50

In order to solve for these components we compute d 6! using that d0! = —iRO' A 0, where
R =2,
nl _ dl(ﬂ|2 91 _lgi d@l d 1 91 _ldei

- — 212 Rt 12 B 1 Rt

A= ppy N o0 o p 8 —der 06 medd)

dlp| 51 1 0l 1 gl 1
= ANOT 4+ —2i0° N0 —p7 10 A0

L~ of? 1_—I<p|2( ) '

—(Tep")0 A O —2ip;'0" A 0)

dlp| 51 1 01 1 gl 1
= ANOT 4+ —2i0° N0 —p7 10 A0

1= of? _1—|<p|2( ] '

— il 00 A0 +2ip; 0" A )

d 2 _ _ 1 _ _
= l_'T(LP AOY—2i0" A6+ —1_|¢|2(—(p11,191 AOY =gt 00 A6

dlol? » » N - _1 -
_ el AT =28 AO— ;! 0 A 6T — L0 g A

I —1ol I —1ol

d 2 -
= |(T||2/\91—2191/\9—901 AN

— g

1 . 1,.1 B
- A0 g1 _PLILOg , G1
1 =gl 1 =gl

where we have used that
0i'0=Tei' +201'0p;" = To;' —4ig;'.
It follows from the structure equation (2.1) that

1
~ 7 ’0 . ~
4.3) Ail = —l(p_lw, equlvalently A1l = —®11,0,

and that

oi1loito,  dlgP

— mod 6.
1 —|pl? 1 —|pl?

C(N)l1 = -2i0 —(pilgléi +
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Combining this last equation with the conjugate equation
ei'erlo,  dlgl®

>0 — 5 Mo
(4 (4

. .. ~ ~ 1 ~11 97 2
it follows from the condition @1 ! + @7! = h'ldh;; = — 1‘ﬂ(|p¢l|2 that

eileilo Zilp)?
2 6 — 2
1 — o] 1 — o]

@il =2i0— ¢! ;6" +

ol = —2i6 —(pilgléi +<p11,iél -

In particular,

1,1

- . 91910

(4.4) nlo=—2i — L=

) 1—|p|?

(4.5) 1" =1 1,

3 Zilol?
(4.6) @'y =—ppl - s
! ! 1— g2

Note also that

~___~1 _ _1
Wy i=w11=¢1] 1.

We should point out that our conventions (4.1) and (4.2) for the frame and goframe of the
deformed structure differ from [11] since in [11] we normalized the Levi form 4,7 to be 1.

In order to compute the scalar curvature R of the deformed structure we compute d @1 !
mod 6:

di' = 20,760 A 0Y — (Zypi" 1O AT — (Zigr ' )0 A G

1.1
Y1 ¢1,0.7 71 . ;1 =
— = "ih,:0 NGO —Z
-2 M1 TP

Hence
(4.7) R=2+h11(_i¢11¢11,o—¢11,11—¢11¢11,11—¢1 e n

A ZIZI|§0|2)
I—lpl2 1—lp|2 1—]¢|?

For later use we record the following observation concerning the form of (4.7):

Lemmad4.1. The scalar curvature_l? of the deformed pseudohermitian structure is given
by (1 — |@|?)~3 times a polynomial in @1, (pil and their Zy and Z7 derivatives up to order 2.
Moreover, for each term in the polynomial the total number of derivatives on the @1, (pil
factors is at most 2.

Proof. The result follows easily by writing the covariant derivatives in (4.7) in terms
of Zy and Zj derivatives using (3.2) (noting that a Reeb derivative may be expressed in
terms of the commutator of Z; and Zj derivatives) and then factoring (1 — l¢|?)~3 out of
the expression, noting that = (1-— lp|?)~1. O
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Let Q 11 denote the Cartan umbilical tensor of the deformed CR structure, with respect
to the admissible coframe (6, 51, él). From (4.3), (4.7) and (2.3) one easily computes that the
linearization at 1! = 0 of the operator @ that takes ¢; ! to Ql 1 is given by
é 11—¢11,00—23—l¢11,011+i¢11,0
with R = 2. Aside from this, all that we need to know about Q11 is the general form of the
nonlinear terms when Qll is expressed in terms of ¢ L (pil and their Z and Z;j derivatives
up to order 4. Combining Lemma 4.1 with (2.3), (4.3) and (4.4)—(4.6), by the Leibniz rule it
follows that for the Cartan umbilical tensor we have:

11 1

L1 1.3 )
(4.8) D@1¢11'—>8<ﬂ11,1111+ o1’

Lemma 4.2. With respect to the admissible coframe (6, 6!, él), the component Q11
of the Cartan umbilical tensor of the deformed CR structure is given by (1 — lp|?)™> times
a polynomial in ¢, goil and their Z1 and Zj derivatives up to order 4. Moreover, for each
term in the polynomial the total number of such derivatives on the 1, @1 L factors is at most 4.

Let V denote the Tanaka—Webster connection of the deformed pseudohermitian structure,
which has connection form ;! with respect to the admissible coframe (6, 6!, 01). As before
we use /7 to raise and lower indices for objects with a tilde. Then we have

O =V''0y —id" 0y = V;V;0 —id;;0',
where

Viviol = (Z; + a1 D(Z; + 207 DO
= (Zi + (,011,1)(21 + 2¢11,1)Qi
= (Zi + 01" Z1 + 01" )(Z7 + 971" Z1 + 207 1) O

—

and /Iﬁ = —¢jii,0- Noting that 0 1 ju Q~1i =(1- 1<p|2)~Q~1 i, it follows immediately that
the linearization at ¢; ! = 0 of the operator that takes ¢! to O is given by

DO = (Z7)*Da.

Besides the linear terms in O, it will suffice for our purposes to consider only the nonlinear
terms that appear in [g3 O 6 A df. In particular, note that VIV Q| = 61 ﬁi O integrates
to zero with respect to 8 A d6 by the divergence formula of [28]. We record this observation in
the following lemma:

Lemma 4.3. For the deformed CR structure we have

. - 1.A.1
4.9) (99/\d9=—i/ A11Q119/\d0:i/ 1001 5 g
RE

53 s3 1—|pf?

Our aim is to show that the quantity on the right-hand side of (4.9) obstructs the solv-
ability of the equation O = 0 when ¢1! is sufficiently small in the Folland—Stein space HF3$.
(Recall that Hyg is the anisotropic Sobolev space of functions having s derivatives in L2,
where the derivatives are taken only in Z1 and Zj directions [19].) In order to ensure control
of the nonlinear terms in the expression for O we need the following lemma, which is an easy
consequence of Lemma 4.2 and the formulae derived in this section.
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Lemma 4.4. With respect to the contact form 0, the obstruction density O of the de-
formed CR structure is given by (1 — |@|*)™° times a polynomial in ¢, !, <p11 and their Z1 and
Z i derivatives up to order 6. Moreover, for each term in the polynomial the total number of
such derivatives on the g1, ®1 L factors is at most 6.

Applying (Z1)? to this expression for O and using the Leibniz rule we have:

Lemmad4.5. With respect to the contact form 0, (21)2[9 is given by (1 — |@|*)~!! times
a polynomial in @17, (pil and their Z1 and Z5 derivatives up to order 8. Moreover, for each
term in the polynomial the total number of such derivatives on the @17, o5 1 factors is at most 8.

5. Spherical harmonics and the slice theorem

Our study of the obstruction flatness equation will be greatly illuminated by working in
terms of spherical harmonics. We therefore introduce for each p, g > 0 the spherical harmonic
space H), 4 of functions on § 3 that are the restrictions of harmonic homogeneous polynomials
of bidegree (p, g) on C2. Identifying a deformation tensor ¢ with its component function ¢; !
with respect to the standard frame on the unit sphere S 3 C €2, we denote the H v, component
of ¢ = ¢! by ¢p,g = (91 1)p,q, so that the L2 orthogonal spherical harmonic decomposition
of pisgivenby o =3  ¢pq-

Working in spherical harmonics allows us to introduce the following natural spaces of
deformation tensors on S3. Let Dq denote the set of all deformation tensors ¢ such that
¢p,q = 01if ¢ =0,1; Dy is then the space of all infinitesimally embeddable deformations
of the unit sphere S3 C C?2, in the sense that ¢ € Dy if and only if there is a smooth family
¢(t) of embeddable deformations of S3 C C? such that ¢(0) = 0 and %h:o(p(z‘) = ¢ (see,
e.g., [11]). Let TS)(J)- denote the set all deformation tensors ¢ such that ¢ ; = Ounlessg = 0, 1;
5)3- then represents directions in which one can deform the sphere for which the deformed
structure is “as far as possible” from being embeddable.

Let ©pg C Dy denote the set of all deformation tensors ¢ such that ¢, , = 0ifg < p +4
(the “BE” here stands for Burns—Epstein [6] who showed that all sufficiently small deforma-
tions ¢ € Dpg are embeddable in C2; note that our deformation tensor ¢ is the conjugate of
Burns and Epstein’s). The condition ¢ € Ogg is natural in that it corresponds to saying that
the tensor ¢ 19! ® Z, has only nonnegative Fourier coefficients with respect to the standard
S1 action on S3 C C2 [4]. It turns out that any sufficiently small embeddable deformation of
the CR sphere can be normalized by a contact diffeomorphism so that its deformation tensor
¢ lies in Opg (see [4, 11]). Moreover, this deformation tensor ¢ is unique up to the action of
the group PSU(2, 1) on (S3, H) (i.e. up to the group of CR automorphisms of the standard
CR structure on S3) and of the group of S!-equivariant contact diffeomorphisms of (S3, H).
One can further normalize ¢ by the action of the S!-equivariant contact diffeomorphisms
to lie in the space Djp given by those ¢ € Opg that additionally satisfy the reality condi-
tion Im ((Z i)zgop, p+4) = 0 along the critical diagonal (note that deformation tensors whose
spherical harmonic decomposition is supported on the critical diagonal ¢ = p + 4 correspond
to the S!-invariant deformations of the standard CR sphere). The representative ¢ € D 1s
unique up to the action of PSU(2, 1). For the general case (dropping the assumption that the
deformation be embeddable) we have the following.
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Theorem 5.1 ([111). Any sufficiently small deformation J of the standard CR 3-sphere
(S3, H, J) may be normalized by the action of a contact diffeomorphism of (S3, H) so that it
is represented by a deformation tensor ¢ € Dy & @é‘. This deformation tensor is unique up
to the action of PSU(2, 1).

We refer to Theorem 5.1 as the slice theorem since, up to the action of PSU(2, 1), it gives
alocal transverse slice for the space of CR structures on (S, H) under the action of the contact
diffeomorphism group; Theorem 5.1 is a modified version of the Cheng—Lee slice theorem [8]
that enables one to easily identify the embeddable and nonembeddable structures [11]. (The
qualification “up to the action of PSU(2, 1)” can be removed if one formulates the result as
a local slice theorem for the marked CR structures on (S 3 H ) (see [8, 11]), but this will not
needed here.) Since the obstruction flatness equation O=0is diffeomorphism invariant, there
is no loss of generality in considering the equation only for the CR structures corresponding to
deformation tensors ¢ € Dy B @é‘.

6. The linear theory via spherical harmonics

We start by recording some basic properties of the vector fields 7', Z; and Z; when
acting on functions. From (3.1) we can easily see that 7" preserves the spherical harmonic
spaces H) 4 and acts on H), 4 by

Tu=1i(p—qu.

It is also straightforward to check that Z; maps Hp 4 to Hp—1,4+1 if p > 1 and acts by zero
on Hy 4. Similarly, Z; maps Hp 4 to Hy4+1,4—1if ¢ > 1 and acts by zero on Hj o. Combining
these observations it is then easy to check that Z; maps Hp 4 to Hp—1 441 isomorphically
(with inverse ——L—Z i) when p > 1, and Z; maps Hp 4 to Hp41,4—1 isomorphically (with

) p(g+1)
inverse ——<7Z1) wheng > 1.

q(p+1)
Remark 6.1. From the above it follows that the sublaplacian A, = Z1Z5 + Z7Z; acts
on each Hy 4 by 2pq + p + gq. Note that the Folland—Stein Sobolev s-norm |[u||s on H{g is
equivalent to the norm

s 2
11+ Ap)2ullp2 = (Z(l +p+q+ 2pq)s”u,,,q||;2) :
p.q

where u = Zp, q Up.a (see [19,26]). We will freely make use of this observation in the follow-
ing.

We will be computing with the pseudohermitian calculus connected with the standard
admissible coframe for the standard CR structure on § 3, and hence we need to record how Vj,
Vi, and Vi act on ¢ = ¢1'. Since w;! = —2i6 and a)il = 2i6, we have that V is always
interchangeable with Z; and V7 is always interchangeable with Z7; on the other hand, V acts
by T + 4i on ¢ = ¢! and hence by i(p — g + 4) on the H, , component of @, which we
record as

(6.1) Vovp,g =i(p—q +Hppgq.
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From these observations combined with (4.8) it is easy to see that the linearization D @ of
the Cartan umbilical tensor at ¢ = 0 maps Dy, into Do, S)(J; into S)(J)-, and is injective when
restricted to the slice ®£3E ) S(J)-. To see the first of these claims, note that if ¢ 1 e ®£3E’ then

1 1, 7 2i i

A4 Y=ot 00 — ?9011,011 + §R</)11,o € O C Do

and X |
69011,1111 — (21)2(89011’11) = S)O — lm(Zl)2
That D@ maps S)(J)- into 5)3- follows by noting that if (pli € SD(J)-, then (pli,” = 0 (so that

1 1,11 11 = 0 and wil,ll 11 = 0) and that the operators V¢ and A preserve the spherical

harmonic spaces H, 4. The injectivity of D@ when restricted to the slice Dy & S)OL fol-
lows by general properties of the CR deformation complex of the standard CR sphere (see,
e.g., [12]), but since we will need the computations later we prove this directly below. To
establish this, we introduce the L? orthogonal projection #; : ® — Dfg and show that the
maps P1DQ : Dpp — D and DA : 3)6- — 5)3- are both injective. We record how these
maps act in the following two lemmas:

Lemma 6.2. If(,oli € Do, then D@ acts via multiplication by
2
(P=g+4°+3(+Da(p—q+4H—(p—-q+4
2
= (p—q+4)(p—q+3+§q(p+ 1))

on the Hy, 4 component of(,oli (q =0,1). That is, DQ acts on Hp o by (p + 4)(p + 3) and
on Hp 1 by %(p + 3)(5p + 8). In particular, D@ @é‘ — 93‘ is injective.

Proof. The result follows immediately from (4.8), noting that ¢! € Do = ker(Z )?

implies ¢! 11 = 0. O

Using the fact that (Z1)?(Z7)? preserves the spherical harmonics and acts by

(6.2) (p+D(p+2)(q—1g

on each Hy, 4, for P1DQ : Dfp — Dy, we have:
Lemma 6.3. If (,01i € O, then $P1DQ acts via multiplication by

6.3) é(er1)(p+2)(q—1)q+(q—p—4)2—§(p+l)q(q—p—4)+q—p—4
on the Hp 4 component of(,oli when g > p + 4 and by

(6.4) %(p + D(p +2)(g —1)q
when q = p + 4.

Proof. 1f @' € Hygyandq > p + 4, then Py (7! 1111) = 0 (since ¢;! € H, ). The
expression (6.3) therefore follows immediately from (4.8). It remains to consider the case
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when (,01i € Dy N Hp, pta. In this case the reality condition Im(g;1,'!) = 0 (imposed along
the critical diagonal) implies that é(pll,“ 11+ étpil,” 11 = %(pl 1,11 11- Since the remaining

terms in D@ (p1!) are zero in this case, we obtain (6.4). ]

It is easy to check that Lemma 6.3 implies that P1 D@ : D — Dpp; is injective. For
later use we record the following stronger result, which compares the action of $; D@ on Dy
with the action of the square of the sublaplacian (cf. Remark 6.1):

Lemma 6.4. There exist positive constants Cy1, Cy such that, for p > 0and g > p + 4

Lp+D(P+2)(g—Dg+(q—p—H>-3(p+1)glg—p—4H+q—p—4

6.5) Cy <
(03) €= (14+p+q+2pg)?

=G
and for p > 0andq = p + 4,

3P+ D +2)(q—1q _

6.6 Cy <
(6:0) ! 14+ p+q+2pg)?

2.

Proof. This is a basic exercise in multivariable calculus. The existence of Cy follows
from the fact that the denominator in both expressions is larger than p? + ¢2, and the numerator
is adegree 2 polynomial in p and g. The existence of C; > 0 small enough such that (6.6) holds
is obvious once we set ¢ = p + 4 (one obtains a decreasing function for p > 0 which tends to
%, so any C; < 1—12 will do). It is also an easy exercise to see that there exists C; > 0 small
enough such that (6.5) holds. One way to do this is to write S(p,q) for the numerator and
T(p.q) = (1 + p + g + 2pq)?, and then consider R(p.q) = S(p.q) — 41—8T(p,q). Writing
R(p.q) = a(p)q? + b(p)q + c(p) for quadratic polynomials a(p), b(p), c(p), we have that
a(p) > 0 for all p, and it is easy to check that ¢ — R(p,q) is a positive quadratic for all
p > 0. In particular, for all p > 0 and ¢ > p + 4 (indeed, for any ¢) we have R(p,q) > 0 and

hence S0 5 L 5 required. ]

T(p.q) 48>

Lemma 6.4 shows that, in a precise sense, 1 D@ : Dp — g behaves like (1+ Ap)?.
In particular, as a map from Dpp — D the operator P D@ is an injective fourth order
operator whose inverse gains four derivatives in Folland—Stein spaces, and preserves each H), 4
for ¢ > p + 4. We will also later need the corresponding result for (Z1)%(Z 1)2, which acts on
each Hy 4 by (6.2). It is straightforward to check that:

Lemma 6.5. There exist positive constants Cy1, Cy such that, for p > 0and g > p + 4,

Lt D +2@-Dg _ .

C
'S T+ p+q+2p9)2

We are now ready to discuss the linearized obstruction operator DO = (Z7)>D@. As an
easy consequence of the above discussion we have:

Proposition 6.6. The kernel of the linearized obstruction operator DO restricted to the
slice Dy, ® Dy is given by Di-.



118 Curry and Ebenfelt, Obstruction flat rigidity of the CR 3-sphere

Proof. Since DO = (Z7)> D@, this follows immediately from the injectivity of D@
and the fact that D@ maps Dj into D¢ and maps 3)3- into SS')(J)- = ker(Z 1)2. m]

Together with Theorem 5.1, this establishes Theorem 1.1 from the introduction.

Remark 6.7. As an aside we note that the space fi)oL is also the tangent space (within
the slice) at the standard CR sphere to the space of CR structures on S that are fillable by
self-dual asymptotically complex hyperbolic Einstein metrics on the real 4-ball [3].

It is also straightforward to determine the image of the map
DO : D & DF — C®(S3.R)

in terms of spherical harmonics.

Proposition 6.8. The image of the map DO : D & SD(J)‘ — C®(S3,R) is the space
of functions f € C®(S3, R) with spherical harmonic decomposition of the form Zp,qZZ Ip.a-

Proof. Noting that D@ vanishes on 593- and that the image of D consists of real
functions it is enough to consider the H, 4-components of D@ (g) for ¢ € Dy with g > p.
The result then easily follows from the above discussion by considering how (Z 1)2!/’1 D@ acts
on Dgp (P1 D@ acts injectively and by scalar multiplication on each Hj , component and
then (Z7)? maps each H,, 4 isomorphically to Hp42,4-2). m]

Note that the cokernel H é of DO : D @ ,’S)(J)- — C*°(S3,R) is nontrivial, and can
be identified with the space of functions f € C°(S3,R) with spherical harmonic decompo-
sition of the form f =3,  fpq with fp4 =0 if p,q > 2. Hence, while on the standard
CR 3-sphere there is an infinite-dimensional family H} = SD(J)- of solutions to the linearized
equation corresponding to (9 = 0, the problem of obtaining solutions to () = 0 via deforma-
tion theory is obstructed by the presence of the (also infinite-dimensional) cokernel H é of the
linearized operator DO : Dy ® @3‘ — C*®(S3,R).

Remark 6.9. The reason we use the notation H é and H é is that these spaces may
thought of as the first and second cohomologies of the deformation complex for obstruction
flat CR structures

0—> C®(S3 R) > D — C®(S3,R) - 0,

where ® = C*°(S§3,C) denotes the space of infinitesimal deformation tensors on the stan-
dard CR sphere, the second arrow is the linearized action of the contact diffeomorphism group
(f — iZ1Z1 f) and the third arrow is the linearized obstruction operator D@.

7. Partial solvability

In this section we use results of the previous section combined with a standard deforma-
tion theory argument to show that the linearized solutions to the obstruction flatness equation
on the standard CR sphere integrate to solutions of the nonlinear equation @ = 0 mod H é ie.
Op,q = 0 for p,q > 2. More precisely, we shall prove the following theorem.
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Theorem 7.1. There exist neighborhoods U of 0 € fi)é‘ and V of 0 € D in the HF65
topology such that for any @g € U there is a unique v € V such that the deformation tensor
@ = ¥ + @o satisfies O(¢) = 0 mod Hé.

Remark 7.2. We remind the reader that deformations tensors in the spaces @é‘ and
Dj are C* by definition. Hence Theorem 7.1 claims the existence of C *° solutions V¥ to the
problem O (¥ + ¢9) = 0 mod H (% for ¢g € S)(J)- sufficiently small.

Before we prove this theorem we will collect some useful lemmas. In the following we
denote the image of DO : Dy & DOL — C%(S3,R) by Sm, so that

3 & 2
C®(S°,R) =3m @ Hg.

We have seen that the linearization D of the obstruction function at the standard CR sphere
restricts to an invertible linear map from Df; — Jm whose inverse gains six derivatives in
Folland—Stein spaces. For the proof of Theorem 7.1 we need a slightly more general result
given in the following lemma.

Identifying the space of (marked) CR structures on (S3, H) with the slice D} @ D,
we let Dy, O denote the linearization of the CR obstruction function at the CR structure corre-
sponding to g € D B S)é-. Let Py denote the L2 orthogonal projection from C*°(S3, R)
(=3 @ H(%) to Jm.

Lemma 7.3. There is a constant C > 0 such that for all ¢g € 3)3‘ sufficiently small one
has for any ¢ € Dy,

(7.1) Cll¢lle < Psm DO @)llo < C Mg |6

Proof. The upper bound in (7.1) follows from the fact that D,,@ can be expressed
as a sixth order operator involving only Z; and Zj derivatives (and depends continuously
on ¢g). In the case where g9 = 0 the lower bound follows immediately from Lemmas 6.3
and 6.4 and the fact that DO = (Z7)?> D@ (note that the image of D@| o, is orthogonal to the
kernel of (Z 1)2). From the general form of the obstruction function (Lemma 4.4), halving C if
necessary, such an estimate will continue to hold so long as ¢ is sufficiently small in HSS. |

Setting up for the proof of Theorem 7.1 we let B; denote the closure of D}y, in the HF6S
norm, and B, the closure of 3 in the L? norm; D@ then extends to an isomorphism from
B to B,. By a slight abuse of notation we continue to write sy, for the bounded extension
of the projection Pz, introduced above (i.e. for the L2 orthogonal projection onto B, ). Given
@Yo € S)OL, we let Fy, : B1 — By be given by

Foo(¥) = PamO(¥ + ¢o).
Then the linearization of ¥, at = 0is
Loy = PsmDegyOlss, : B1 — B2,
which is an isomorphism for ¢g sufficiently small by Lemma 7.3. Write

‘(FWO(W) = ﬁwo(o) + iwo(W) + ‘Mﬂo(W)'
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Setting f = &Ly, (¥), the partial obstruction flatness equation F 4, () = Psm O (¥ + ¢o) =0
can be written as

f==Fp,(0) — ‘Nwo(ff;olf)-

In order to show that the map f > —F4,(0) — Ny, (i;ol f) has a fixed point we will
need the following lemma, which follows from Lemma 4.4 and the fact that N, (¥) contains
no constant or linear terms in .

Lemma 7.4. There exist neighborhoods U of 0 € ﬁ)(J)‘ andV of 0 € in the HF6S topology
and a constant C > 0 such that

(7.2) [ Ngo (V1) — Ngo (W2)lo < C (V1 ll6 + 1¥2ll6) Y1 — V216

forall oo € U and 1, y2 € V.

Proof of Theorem 7.1. By Lemma 7.4 we may take open neighborhoods U of 0 € S)(}
and V of 0 € B such that (7.2) holds for all g9 € U and 1, ¥» € V. From Lemmas 7.3 and
7.4 it follows that there is C’ > 0 such that

Vo (L0 J1) = Noo (L f2) 0 < C'(Il fillo + 1| L2ll0) L f1 = S2llo

for all o € U and all fi, f> € B, sufficiently small. Hence if Fy,(0) is sufficiently small
(which can be ensured by taking ¢¢ sufficiently small) there exists » > 0 such that

Ty : f > —Fp,(0) — ‘N(Po(i;olf)

preserves the ball Bgg, (0, 7) of radius r about 0 in B> and is a contraction mapping on this
ball. Shrinking U if necessary, we may assume this is the case for all g9 € U. By the con-
traction mapping theorem it follows that for each @9 € U the map Ty, has a unique fixed
point fy, in Bs, (0, 7), which corresponds to a unique solution y = 33(;01 Joo of the equation
Foo(¥) = PamOY + o) =0 in 4“3;01 (B%ZA(O, r)). The uniform bounds on &£, given by
Lemma 7.3 ensure that after shrinking U and V' if necessary the result holds with the solutions
Y= 5‘8(;01 Joo In V C By, the HF6S completion of Dj. It remains to show that the solutions ¥
are in fact C*° (given that we take ¢ to be C*°).

To see that Y = :8(;01 Jao 18 C for ¢g sufficiently small, we rewrite the equation char-
acterizing ¥ as

(7.3) Y+ Lo Noo (W) = =250 F(0).

Note that the right-hand side of (7.3) is C°°. Moreover, using the general form of the obstruc-
tion function as described in Lemma 4.4, the definition of N, and the fact that éﬁ;ol gains
six derivatives in Folland—Stein spaces, the operator Id + éﬁ;ol Ny, 18 seen to be an elliptic
(invertible) zeroth order pseudodifferential operator (for ¢o sufficiently small) [2]. The reg-
ularity of i therefore follows from the regularity of i;ol? (0). This concludes the proof of
the theorem. m)

Remark 7.5. This argument also provides us with a Kuranishi map (cf., e.g., [33])

. 1 2
W HY) > H}
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defined near 0 by W(pg) = O (¥ + ¢¢) where ¥ is obtained from ¢q as in the proof of Theo-
rem 7.1; the zero set of the Kuranishi map is locally isomorphic with the set of solutions of
O = 0 in a neighborhood of 0, the isomorphism being ¢o — ¥ + ¢ with ¥ as constructed
above. We shall see in Section 9, however, that 0 is an isolated point of W~1(0), i.e. there are
no nontrivial solutions of the obstruction flatness equation near the standard CR structure.

8. Second order deformations and formal rigidity

In this section we consider the formal solvability of the obstruction flatness equation
beyond the linearized level, and show that the problem is already not solvable at the second
order; this is Theorem 1.3 in the introduction. Its proof will follow immediately from Theo-
rem 8.2, which is proved below. Before we state and prove Theorem 8.2 we need the following
technical lemma. In the following || - || denotes the L? Folland—Stein Sobolev s-norm on the
Folland—Stein space H} of functions with s (Z and Z7) derivatives in L2,

Lemma 8.1. Let 6 denote the standard contact form on the standard CR sphere. There
is a constant C > 0 such that for any ¢ € D,

CIo1B = [ Dew)-i¥o7 0 A6 < 15

Proof. This follows immediately from Lemma 6.2 and (6.1), cf. Remark 6.1. O

We therefore have:

Theorem 8.2. There exists a constant C > 0 such that for any smooth family ¢(t) of
deformations of the standard CR 3-sphere with ¢(0) = 0 and %h:ogo(t) =g € SD(J)' \ {0} the

corresponding family of obstruction functions O(t) (taken with respect to the standard contact
form 0 on S3) satisfies

[ owonds=cegp;
S3
in a neighborhood of t = 0.

Proof. Let ¢(t) be a family of deformation tensors with

d
pO) =0 and —| () =¢ €Dy \{0}.

t=0

Then by Lemma 4.3,

fS% O@)0 AdO = zZ/S3(z’<pil,0Q’11)9 AdO + O().

where ) . -
01' =DQ(¢1") and ¢;' =gl =¢.

The result then follows immediately from Lemma 8.1. o
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Remark 8.3. Note that Theorem 8.2 is not claiming that the integral of the obstruction
function becomes positive whenever we slightly deform the CR structure of the standard CR
sphere, but only that it does so when the deformation starts out in an infinitesimally obstruction
flat direction.

9. General rigidity result
In this section we prove our main rigidity result, which implies Theorem 1.2.

Theorem 9.1.  There is an open neighborhood U of the origin in the slice Dy & @é‘
(in the HS’S topology) such that the CR structure corresponding to a deformation tensor ¢ € U
is obstruction flat if and only if ¢ = 0.

Remark 9.2. A technical difficulty in the proof below is the fact that in order to use
Lemma 8.1 we need to work in the HF35 topology, while the nonlinear terms in the obstruction
flatness equation involve six derivatives (in the Z; and Zj directions). In the context and nota-
tion of the proof below we note that one might expect that the nonlinear part ¥ (0% ) in (9.1)
below is O(e,%), from which it would follow that ||g6g§,) lle = 0. The problem with this is that
we only assume that ¢ ®||3 — 0 while F (¢®)) involves derivatives up to order 6. Since the
idea is to use Lemmas 4.3 and 8.1 to show that the integral of the obstruction function must be
nonzero for large k, it is natural to assume ||¢®)||3 — 0 rather than [|¢‘®||¢ — 0.

Proof.  With a view to obtaining a contradiction we suppose that there exists a sequence
(p(k) of nonzero obstruction flat deformation tensors such that (p(k) — 0in HF3$. Set

(p(k) — 6kg5(k),
where [¢®)|3 = 1. Then e — 0. Let P; : D ® D — Dy and P2 : Dy, @ D — Dy
denote the L2 orthogonal projections, and write
Ak) _ (k) A (k)

vT= 0o T ey
where © ©
; — o, 50 SK) _ p_ oK)
gogéE—Jlgo and gos)é—elyp .

Our first goal is to show that ||<ZJ%‘,) I3 — 0 (and hence ||<,5g)L I3 = 1) as k — oo, meaning
that go(k) is approximately a solution of the linearized equationofor large k.

As above we fix 6, the standard contact form on the 3-sphere, and for each go(k) we
compute with respect to the frame given by (4.1) and the corresponding admissible coframe.
We let QY? denote the Cartan umbilical tensor of the CR structure with deformation tensor
&), V (k) the Tanaka—Webster connection of the corresponding pseudohermitian structure, and

A%kl) its pseudohermitian torsion. Since each ¢*) is assumed to be obstruction flat, we have

1 gl k) _ .11 k)

for each k. Note that the part of V(lk) V(lk) Qﬁ) that is linear in ¢(k) is

DO(p®) = (27)*DA(®),

which equals € (Z i)zD(Q(@g)‘) ) since (,?)g)‘l solves the linearized equation. Moving all non-
BE 0
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linear terms in (9.1) to the right-hand side, we may rewrite the equation as
k
92) (21’ DY) ) = Fp™),

where F (¢) is given by (1 — |¢|?)~® times a polynomial in ¢, g and their Z; and Zj deriva-
tives up to order 6 having no linear term, see Lemma 4.4.
By Lemmas 6.3-6.5 (cf. Remark 6.1) there exists a constant C > 0 such that for ¢ € Dy,

Clel3 < /Sj' (1+Ap)"H(Z1)*(Z7)*DQ(p) 6 A dF.

Applying (1 + Ap)~'(Z1)? to both sides of (9.2) and then integrating the resulting expression
against the conjugate of (/39, , one therefore obtains that
BE

©.3) aClol) 13 < /S oD (14 8p) 7 (2025 () 6 1 do,

Let WFSS’p denote the Folland—Stein space of functions with s derivatives in L? (where the
derivatives are Z1 and Zj derivatives). By using integration by parts to balance the numbers of
derivatives on the factors, applying the generalized Holder inequality, then using the Sobolev
embedding theorem for Folland—Stein spaces [18, Theorem 4.17] (in particular that, since the
homogeneous dimension of the CR 3-sphere is 4, the HSS norm controls the WFZS’4 norm, the
Wpls’q norm for 2 < g < oo, and the L°° norm) and using Lemma 4.5 one can show that

©0.4) / 08 (14 )20 F (D) 6 1 db = 0(&D)
S3

as k — oo (since F (¢) has no linear terms). We illustrate this by showing how to estimate
the term in the left-hand side of (9.4) that arises from the term %(1 — |<p|2)_9<p119011,“ it
in ¥ (¢): To show that

~(k — — 111
9.5) / go;)? (1+8p) N Z D ((1=[e® D) 2@ 1p® T Do AdO = O(e})

we first write

k_1 (k) 111 1 2 ~(k)_1 ~(k) 111 1
g0()1 g0()1, . =€k¢()i g0()1, i

and integrate (1 + Az)~1(Z1)? by parts so that the left-hand side of (9.5) becomes 613 times
. ol P
9.6) /S (@020 + 8)716%) ) - (1= [p®P)2p W10, T 1 110 5 dp,

We then show that (9.6) is bounded. To see this we first integrate by parts to remove three of the
derivatives from the ¢; 1 11 1111 factor. In this way, by the Leibniz rule, we obtain the integral

of (1 —|¢|?)~° times a polynomial in

~ ~ k
0 60 (Z)2(1 + Ap)” lwg)?

and their Zy and Z7 derivatives up to order at most 3 (we note that the Folland-Stein 3-norm
of (Z1)*(1 + Ab)_lég)‘) is uniformly bounded since (1 + Ap)~! gains two derivatives in
BE
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Folland—Stein spaces), where the total number of Z; and Zj derivatives on the factors in
any term of the polynomial is 6. Since the Folland-Stein 3-norm controls the L°° norm we
need only concern ourselves with the factors in each term of the polynomial which have at
least one Z1 or Zj derivative. Since the total number of derivatives in each term is 6 and one
term has three derivatives, the (nonzero) numbers of derivatives must be 3 + 3, 3 + 2 + 1 or
3+1 + 1 + 1; in each case by the generalized Holder inequality (with the partitions 1 = > 141 3
1= 2 + + 4, 1= 2 + + 2 + L for the three respectlve cases) we can estimate the term
arising in the integral in terms of the HFS norm, the WFS norm, the WFS norm, and the L*°
norm of (p(k) As commented above, these norms are all uniformly bounded since the HF35 norm
is uniformly bounded. This shows that (9.6) is uniformly bounded in k, giving (9.5). Arguing
similarly for the other terms in ¥ (¢), of which there are finitely many, one obtains (9.4). Hence,
by (9.3) we have

©.7) 16%) 113 = 0(e}).
It follows that
16GLls = 1.
Now since we have assumed

0® = vl vi, 08 —iall o) =0 foreachk,

by Lemma 4.3 followed by Lemma 4.2 and (9.7) we have (after integrating by parts as in
the proof of (9.7) above to ensure that the remainder terms involve at most three Z; and Z3
derivatives):

o=/ 0® 9 Ado
S3

(k)_1 (k) 1
:i/ e WA WP
53 1—p®)2

/ D(Q((p(k) ) - zv0¢<k) O Ado + 0(6,3).
It follows that

(9.8) lim D(Q((p(k) )- lVo(p(k) O AdO = 0.

k—o00 J§3

On the other hand Lemma 8.1 and the fact that

k
l9glls =1
imply that

lim D(fZ((p(k)) iVoo® 6 A db > Jim. C||(p(k) I3
k—o0 J§3 Dy

=C>O,

contradicting (9.8). We conclude that there is no such sequence (p(k) of nonzero obstruction flat
deformation tensors. ]
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