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Given a symmetric social network, we are interested in testing whether
it has only one community or multiple communities. The desired tests should
(a) accommodate severe degree heterogeneity, (b) accommodate mixed-
memberships, (c) have a tractable null distribution, and (d) adapt automat-
ically to different levels of sparsity, and achieve the optimal phase diagram.
How to find such a test is a challenging problem.

We propose the Signed Polygon as a class of new tests. Fixing m > 3, for
each m-gon in the network, define a score using the centered adjacency ma-
trix. The sum of such scores is then the m-th order Signed Polygon statistic.
The Signed Triangle (SgnT) and the Signed Quadrilateral (SgnQ) are special
examples of the Signed Polygon.

We show that both the SgnT and SgnQ tests satisfy (a)-(d), and especially,
they work well for both very sparse and less sparse networks. Our proposed
tests compare favorably with existing tests. For example, the EZ and GC tests
behave unsatisfactorily in the less sparse case and do not achieve the optimal
phase diagram. Also, many existing tests do not allow for severe heterogene-
ity or mixed-memberships, and they behave unsatisfactorily in our settings.

The analysis of the SgnT and SgnQ tests is delicate and extremely te-
dious, and the main reason is that we need a unified proof that covers a wide
range of sparsity levels and a wide range of degree heterogeneity. For lower
bound theory, we use a phase transition framework, which includes the stan-
dard minimax argument, but is more informative. The proof uses classical
theorems on matrix scaling.

1. Introduction. Given a symmetrical social network, we are interested in the global
testing problem where we use the adjacency matrix of the network to test whether it has only
one community or multiple communities. A good understanding of the problem is useful for
discovering non-obvious social groups and patterns [5, 14], measuring diversity of individual
nodes [15], determining stopping time in a recursive community detection scheme [32, 43].
It may also help understand other related problems such as membership estimation [42] and
estimation of the number of communities [39, 41].

Natural networks have several characteristics that are ubiquitously found:

*» Severe degree heterogeneity. The distribution of the node degrees usually has a power-law
tail, implying severe degree heterogeneity.

* Mixed-memberships. Communities are tightly woven clusters of nodes where we have
more edges within than between [17, 38]. Communities are rarely non-overlapping, and
some nodes may belong to more than one community (and thus have mixed-memberships).

* Sparsity. Many networks are sparse. The sparsity levels may range significantly from one
network to another, and may also range significantly from one node to another (due to
severe degree heterogeneity).
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Phase transition is a well-known optimality framework [13, 22, 33, 37]. It is related to the
minimax framework but can be more informative in many cases. Conceptually, for the global
testing problem, in the two-dimensional phase space with the two axes calibrating the “spar-
sity" and “signal strength," respectively, there is a “Region of Possibility" and a “Region
of Impossibility." In “Region of Possibility," any alternative is separable from the null. In
“Region of Impossibility," any alternative is inseparable from the null.

If a test is able to automatically adapt to different levels of sparsity and separate any given
alternative in the “Region of Possibility" from the null, then we call it “optimally adaptive."

We are interested in finding tests that satisfy the following requirements.

(R1) Applicable to networks with severe degree heterogeneity.

(R2) Applicable to networks with mixed-memberships.

(R3) The asymptotic null distribution is easy to track, so the rejection regions are easy to set.

(R4) Optimally adaptive: We desire a single test that is able to adapt to different levels of
sparsity and is optimally adaptive.

1.1. The DCMM model. We adopt the Degree Corrected Mixed Membership (DCMM)
model [42, 24]. Denote the adjacency matrix by A, where

L if node 7 and node j have an edge,
4.0 Aij = {0, otherwise.

Conventionally, self-edges are not allowed so all the diagonal entries of A are 0. In DCMM,
we assume there are K perceivable communities C1,Co, .. .,Cx, and each node is associated
with a mixed-membership weight vector 7; = (m;(1),m;(2),...,m(K)) where for 1 < k <
Kand1<i:<n,

(1.2) 7i(k) = the weight node i puts on community k.

Moreover, for a K x K symmetric nonnegative matrix P which models the community struc-
ture, and positive parameters 61, s, . . ., ,, which model the degree heterogeneity, we assume
the upper triangular entries of A are independent Bernoulli variables satisfying

(13) P(AUZI):QZHJWQPTFJEQ”, 1§z<g§n,

where € denotes the matrix OTIPII'©, with © being the n x n diagonal matrix diag(6, ..., 0,)
and II being the n x K matrix |7, 72, ..., m,) . For identifiability (see [24] for more discus-
sion), we assume

(1.4) all diagonal entries of P are 1.

When K =1, (1.4) implies P =1, and so €;; = 0;0;,1 <1,5 <n.
Write for short diag(Q) = diag(Q11,Q22,...,Quy), and let W be the matrix where for
1<4,5<n, W;; = A;; —j if i # j and W;; = 0 otherwise. In matrix form, we have

(1.5) A=Q—diag(Q)+W,  where Q=OIPII'O.

DCMM includes three models as special cases, each of which is well-known and has been
studied extensively recently.

* Degree Corrected Block Model (DCBM) [28]. If we do not allow mixed-memberships (i.e.,
each weight vector ; is degenerate with one entry being nonzero), then DCMM reduces
to the DCBM.

* Mixed Membership Stochastic Block Model (MMSBM) [1]. DCBM further reduces to
MMSBM if 6; = ... = 0,(= \/ow,). In this special cse, = a, IIPII’, and for identifi-
ability, (1.4) is too strong, so we relax it to that the average of the diagonals of P is 1.
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e Stochastic Block Model (SBM) [20]. MMSBM further reduces to the classical SBM if
additionally we do not allow mixed-memberships.

Under DCMM, the global testing problem is the problem of testing
(1.6) g k=1 vs. H":K>2

The seeming simplicity of the two hypotheses is deceiving, as both of them are highly com-
posite, consisting of many different parameter configurations.

1.2. Phase transition: a preview of our main results. Let A1, Ag,..., Ag be the first K
eigenvalues of €, arranged in the descending order in magnitude. We can view (a) v/A1
both as the sparsity level and the noise level [23] (i.e., spectral norm of the noise matrix
W), (b) |A2| as the signal strength, so that |X2|/+/A1 is the Signal-to-Noise Ratio (SNR),
and (c) |A2|/A1 as a measure of dissimilarity between different communities (Example 1
below illustrates why it measures ‘dissimilarity’). We note that [19, 12] also pointed out that
|A2|/+/A1 is a reasonable metric of SNR.

Now, in the two-dimensional phase space where the z-axis is v/A\; which measures the
sparsity level, and the y-axis is |A2|/A; which measures the community dissimilarity, we
have two regions.

e Region of Possibility (1 < /A1 < /1, |\2|/v/A1 — 00). For any alternative hypothesis in
this region, it is possible to distinguish it from any null hypothesis, by the Signed Polygon
tests to be introduced.

e Region of Impossibility (1 < /A1 < /1, |A2|/v/A1 — 0). In this region, any alternative
hypothesis is inseparable from the null hypothesis, provided with some mild conditions.

See Figure 1 (left panel). Also, see Sections 2 and 3 for our main theorems on Possibility
and Impossibility, respectively. Note that the figure is only for illustration purpose, where the
cases of [Aa| = cov/ A1 for some constant cg > 0 are compressed in the separating boundary of
two regions (red curve). The Signed Polygon test satisfies all requirements (R1)-(R4) above.
Since the test is able to separate all alternatives (ranging from very sparse to less sparse) in
the Region of Possibility from the null, it is optimally adaptive.

Remark 1. A stronger version of the phase transition is that for a constant ¢y > 0,
the Region of Possibility and Region of Impossibility are given by |X2|/v/A1 > ¢o and
|A2|/v/A1 < co, respectively. For the broad setting we consider, this is an open problem,
though for some special cases, there are some interesting works (e.g., [19]); see Remark 11.

It is instructive to consider a special DCMM model, which is a generalization of the sym-
metric SBM [36] to the case with degree heterogeneity.

Example 1 (A special DCMM). Let e1,...,ex be the standard basis of R¥. Fixing a
positive vector # € R™ and a scalar b,, € (0,1), we assume

(1.7) P=(1=by)Ig+ b1, 7; are iid sampled from eq, ..., ex.

In this model, (1 — b,,) measures the “dissimilarity" between different communities (it quan-
tifies how well we can tell whether two nodes 7 and j are from the same community or
not; note that b, = 1 corresponds to the null case where all communities are indistinguish-
able) and ||f|| measures the sparsity level. In this model, A\; ~ (1 + (K — 1)b,)]|#||*> and
e~ (1—=0,)10]1%, 2 < k < K. The sparsity level is V= |||, the community dissimilarity
is characterized by A\a/\; < (1 — by,), and the SNR is |A\2|/v/A1 < ||0]|(1 — by,). The Region
of Possibility and Region of Impossibility are given by {1 < ||6]| < v/n, ||0]|(1 — b,) — o0}
and {1 < ||0]| < /n, ||0]|(1 — by) — 0}, respectively. See Figure 1 (right panel).

Remark 2. As the phase transition is hinged on \2/+/\1, one may think that the statistic
A2 / \/E is optimally adaptive, where A, is the k-th largest (in magnitude) eigenvalue of
A. This is however not true, because the consistency of Ao for estimating A9 can not be
guaranteed in our range of interest, unless with strong conditions on 6,4, [23].
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FIG 1. Left: Phase transition. In Region of Impossibility, any alternative hypothesis is indistinguishable from
a null hypothesis, provided that some mild conditions hold. In Region of Possibility, the Signed Polygon test is
able to separate any alternative hypothesis from a null hypothesis asymptotically. Right: Phase transition for the
special DCMM model in Example 1, where \/A1 < |||, [A2|/A1 =< (1 — bn), and [Ag|//A1 < (1 —bn)|0]|.

1.3. Literature review, the Signed Polygon, and our contribution. Recently, the global
testing problem has attracted much attention and many interesting approaches have been pro-
posed. To name a few, Mossel et al. [36] and Banerjee and Ma [3] (see also [4]) considered a
special case of the testing problem, where they assume a simple null of Erdos-Renyi random
graph model and a special alternative which is an SBM with two equal-sized communities.
They provided the asymptotic distribution of the log-likelihood ratio within the contiguous
regime. Since the likelihood ratio test statistic is NP-hard to compute, [3] introduced an ap-
proximation by linear spectral statistics. Lei [31] also considered the SBM model and studied
the problem of testing whether K = K or K > K, where K| is a pre-specified integer. His
approach is based on the Tracy-Widom law of extreme eigenvalues and requires delicate ran-
dom matrix theory. Unfortunately, these works have been focused on the SBM (which allows
neither severe degree heterogeneity nor mixed membership). Therefore, despite the elegant
theory in these works, it remains unclear how to extend their ideas to our settings.

Along a different line, graphlet counts (GC) have been frequently used for hypothesis
testing in non-parametric and parametric network models. This includes the EZ test [16] and
GC test [25]. Other interesting works include [6, 7, 35]. In particular, [25] suggested a general
recipe for constructing test statistics and showed that both GC and EZ tests have competitive
power in a broad setting. Unfortunately, it turns out that in the less sparse case, the variance
of the GC test statistic is much larger than expected, which largely hurts the power of the test.
The underlying reason is that GC tests use non-centered cycle counts. If, however, we use
centered cycle counts, we can largely reduce the variances and have a more powerful test. A
similar phenomenon was discovered by Bubeck et al. [10] for the SBM setting.

This motivate a class of new tests which we call Signed Polygon, including the Signed Tri-
angle (SgnT) and the Signed Quadrilateral (SgnQ). The Signed Polygon statistics are related
to the Signed Cycle statistics, first introduced by Bubeck et al. [10] and later generalized
by Banerjee [2]. Both Signed Polygon and Signed Cycle recognize that using centered-cycle
counts may help reduce the variance, but there are some major differences. The study of
the Signed Cycles has been focused on the SBM and similar models, where under the null,
P(A;; = 1)=a, 1 <i#j<n,and «is the only unknown parameter. In this case, a natural
approach to centering the adjacency matrix A is to first estimate « using the whole matrix
A (say, &), and then subtract all off-diagonal entries of A by &. However, under the null of
our setting, P(A;; = 1) = 0;0;, 1 <i# j <n, and there are n different unknown parameters
01,0, ...,0,. In this case, how to center the matrix A is not only unclear but also worrisome,
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especially when the network is very sparse, because we have to use limited data to estimate a
large number of unknown parameters. Also, for any approaches we may have, the analysis is
seen to be much harder than that of the previous case. Note that the ways how two statistics
are defined over the centered adjacency matrix are also different; see Section 1.4 and [10, 2].

In the Signed Polygon, we use a new approach to estimate 61, 6o, . .., 6, under the null, and
use the estimates to center the matrix A. To our surprise, data limitation (though a challenge)
does not ruin the idea: even for very sparse networks, the estimation errors of 81,6, ...,0,
only have a negligible effect. The main contributions of the paper are as follows.

* Discover the phase transition for global testing in the broad DCMM setting by identifying
the Regions of Impossibility and Possibility.

* Propose the Signed Polygon as a class of new tests that are appropriate for networks with
severe degree heterogeneity and mixed-memberships.

* Prove that the Signed Triangle and Signed Quadrilateral tests satisfy all the requirements
(R1)-(R4), and especially that they are optimally adaptive and perform well for all net-
works in the Region of Possibility, ranging from very sparse ones to the least sparse ones.

To show the success of the Signed Polygon test for the whole Region of Possibility is very
subtle and extremely tedious. The main reason is that we hope to cover the whole spectrum
of degree heterogeneity and sparsity levels. Crude bounds may work in one case but not
another, and many seemingly negligible terms turn out to be non-negligible (see Sections 1.4
and 4). The lower bound argument is also very subtle. Compared to work on SBM where
there is only one unknown parameter under the null, our null has n unknown parameters.
The difference provides a lot of freedom in constructing inseparable hypothesis pairs, and so
the Region of Impossibility in our setting is much wider than that for SBM. Our construction
of inseparable hypothesis pairs uses theorems on non-negative matrix scaling, a mathematical
area pioneered by Sinkhorn [40] and Olkin [34] among others (e.g., [9, 27]).

1.4. The Signed Polygon statistic. Recall that A is the adjacency matrix of the network.
Introduce a vector 7 by (1,, denotes the vector of 1’s)

(1.8) fi=(1/VV)Al,,  whereV =1/A1,.

Fixing m > 3, the order-m Signed Polygon statistic is defined by (notation: (dist) is short
for “distinct", which means any two of i1, .. .,%,, are unequal)

(1.9) U™ = > (Auiy = D) (Aigiy, — i) - (Aiiy = 0, 0,)-

il,iz,...,i7,L(d’iSt)
When m = 3, we call it the Signed-Triangle (SgnT) statistic:
(110) T, = Z (Ailiz - ﬁhﬁiz)(Aizis - ﬁizﬁi3)(A’i3i1 - 77137711)
il,ig,ig(dist)
When m = 4, we call it the Signed-Quadrilateral (SgnQ) statistic:
(] 1 ]) Qn = Z (Ailiz - ﬁ’h ﬁ’m)(Alz’Ls - ﬁIQﬁls)(Alsm - ﬁisﬁi4)<‘4’i4i1 - ﬁi4ﬁi1)'
il,ig,ig,i4(dist)

For analysis, we focus on 7, and ),,, but our main results are extendable to general m.
The key to understanding and analyzing the Signed Polygon is the Ideal Signed Polygon.
Introduce a non-stochastic counterpart of 7 by

(1.12) n* = (1/y/vo) 01, where vo = 1/,Q1,,.
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Define the order-m Ideal Signed Polygon statistic by

(1.13) U™ = > (Aii —m5m5) (Aigiy —15m5) - (Aiiy — 07705

i1,02 ;e yim (dist)

We expect to see that 7} ~ E[fj] ~ n*. We can view U™ as the oracle version of U™, with
n* given. We can also view Uém) as the plug-in version of &(Lm)’ where we replace n* by 7.

For implementation, it is desirable to rewrite 7, and (?,, in matrix forms, which allows us
to avoid using an for-loop and compute much faster (say, in MATLAB or R). For any two
matrices M, N € R™", let tr(M) be the trace of M, diag(M) = diag(Mi1, Moz, ..., Myy,),
and M o N be the Hadamard product of M and N (i.e., Mo N € R™", (M oN);; = M;;N;;).

Denote A= A — 77/ . The following theorem is proved in the supplementary material.

THEOREM 1.1. We have T, = tr(A®) — 3tr(A o A2) + 2tr(Ao Ao A) and Q, =
tr(A%) — 4tr(A o A%) + 8tr(Ao Ao A%) — 6tr(Ao Ao Ao A) — 2tr(A2 0 A2) + 2
1/ [diag(A)(A o A)dlag(A)]ln +1/[Ao Ao Ao All,. The complexity of computing both
T, and Q,, is O(n?d), where d is the average degree of the network.

Compared to the EZ and GC tests [16, 25], the computational complexity of SgnT and
SgnQ is of the same order.

Remark 3. The computational complexity of U,Sm) remains as O(n2d) for larger m. Simi-

larly as that in Theorem 1.1, the main complexity of Uy" (m) comes from computing A™. Since
we can compute A™ with A™ = A™~1 4 and recursive matrix multiplications, each time with
a complexity of O(n%d), the overall complexity is O(n?d).

Remark 4 (Connection to the Signed Cycle). In the more idealized SBM or MMSBM
model, we do not have degree heterogeneity, and 2 = «, 1,1/, under the null, where v,
is the only unknown parameter. In this simple setting, it makes sense to estimate «,, by
= d/(n — 1), where d is the average degree. This gives rise to the Signed Cycle statistics

2, 10]:079”):2“#2’ i (aist) (Airis = @) (Aigiy — ) - (44,5, — @). Bubeck et al. [10]

first proposed C’T(L ) for a global testing problem in a model similar to MMSBM. Although
their test statistic is also called the Signed Triangle, it is different from our SgnT statistic
(1.10), because their tests are only applicable to models without degree heterogeneity. The
analysis of the Signed Polygon is also much more delicate than that of the Signed Cycle, as
the error (&, — a,) is much smaller than the errors in (7 — 1*).

It remains to understand (A) how the Signed Polygon manages to reduce variance, and (B)
what are the analytical challenges.

Consider Question (A). We illustrate it with the Ideal Signed Polygon (1.13) and the null
case. In this case, = 0¢’. It is seen n* =0, Aij — n;‘nj’-‘ = Ajj — Q= Wy, for i # j (see

(1.5) for definition of W), and so ﬁém) = Eihi%m’im(dist) Wi isWigia oo - Wi i
term is an m-product of independent centered Bernoulli variables, and W;,;, Wi, ... W; ;.
and Wiy Wi ... Wy i are correlated only when {iy,ia,... 9, } and {i},i5,... 4 } are

1515
the vertices of the same polygon. Such a construction is known to be efficient in variance

reduction (e.g., [10]).
In comparison, for an order-m GC statistic [25], Ném) = Zil,iz _____ i (dist) AiviyAigis - Ai

Z?nil
is the main term. Since here the Bernoulli variables are not centered, we can split N,(Lm) into

two uncorrelated terms: N\ = U™ + (NI™ — U{™). Compared to the Signed Polygon,
the additional variance comes from the second term, which is undesirably large in the less
sparse case [29].

Here, each
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Remark 5. The above also explains why the order-2 Signed Polygon does not work well.

In fact, when m = 2, U™ = D ity W72, under the null, which has an unsatisfactory vari-
ance due to the square of the W -terms.

Consider Question (B). We discuss with the SgnQ statistic. Recall that »* is a non-
stochastic proxy of 7). For any 1 <+, j <n and ¢ # j, we decompose 7;1); — 7if); = 0;; + 145,
where d;; is the main term, which is a linear function of #); and 7);, and r;; is the remainder
term. Introduce

(1.14) Q=Q-n*(n".

We have A;; — 07, = ﬁij + Wi; + di; + 7i;. After inserting this into @),,, each 4-product
is now the product of 4 bracketed terms, where each bracketed term is the sum of 4 terms.
Expanding the brackets and re-organizing, (), splits into 4 x 4 x 4 x 4 = 256 post-expansion

sums, each having the form Zihim&h(dist) Giyiy0inis Cisi diyiy » Where a is a generic term

which can be equal to either of the four terms €2, W, 4, and r; same for b, c and d. While some
of these terms may be equal to each other, the symmetry we can exploit is limited, due to (a)
degree heterogeneity, (b) mixed-memberships, and (c) the underlying polygon structure. As
a result, we still have more than 50 post-expansion sums to analyze.

The analysis of a post-expansion sum with the presence of one or more r-term is the most
tedious of all, where we need to further decompose each r-term into three different terms.
This requires analysis of more than 100 additional post-expansion sums. We may think most
of the post-expansion sums are easy to control via a crude bound (e.g., by Cauchy-Schwarz
inequality). Unfortunately, this is not the case, and many seemingly negligible terms turn out
to be non-negligible. Here are some of the reasons.

* We wish to cover most interesting cases. A crude bound may be enough for some cases
but not for others.

* We desire to have a single test that achieves the phase transition for the whole range of
interest. Alternatively, we may want to find several tests, each covering a subset of cases
of interest, but this is less appealing.

As a result, we have to analyze a large number of post-expansion sums, where the analysis
is subtle, extremely tedious, and error-prone, involving delicate combinatorics, due to the
underlying polygon structure. See Section 4.

Remark 6. In Signed Polygon (1.9), we estimate Q by 77’ = (1/, A1 n)” 1A1,1] A for
the null. Alternatively, we may use a spectral approach and estlmate Q by /\15151, where \;
and 51 are the first eigenvalue and eigenvector of A, respectively. Unfortunately, even in the
more idealized SBM case, this estimate may be unsatisfactory for sparse networks (e.g., [11
Section 2.2]). In fact, for our main results to hold, we need to have |A; — \1| < C/||0|| with
large probability, but the best concentration inequality we have is \5\1 M| <OV Omaz |01
with large probability [24, Lemma C.1]. In the presence of severe degree heterogeneity, we
often have +/Omaz[|0]]1 > ||0]|. Also, unlike /7’ in our proposal, A1£1&} is not an explicit
function of A, so the alternative version of the Signed Polygon statistic is much harder to
analyze.

1.5. Organization of the paper. Section 2 focuses on the Region of Possibility and con-
tains the upper bound argument. Section 3 focuses on the Region of Impossibility and con-
tains the lower bound argument. Section 4 presents the key proof ideas, with the proof of
secondary lemmas deferred to the supplementary material. Section 5 presents the numerical
study, and Section 6 discusses extensions and connections.

For any ¢ > 0 and 6 € R", [|0]|, denotes the ¢?-norm of § (when ¢ = 2, we drop the
subscript for simplicity). Also, 6, and 0,4, denote min{6s,...,60,} and max{6,...,0,},
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respectively. For any n > 1, 1,, € R” denotes the vector of 1’s. For two positive sequences
{an}o, and {b,}5° |, we write a,, ~ by, if lim,_, an /b, =1, and we write a,, < b, if
for sufficiently large n, there are two constants co > ¢; > 0 such that ¢; < a,, /b, < co. We
use > ; i, i (dist) 10 denote the sum over all (i1, ..., im) such that 1 < i, < n and i, # i
for 1 <k # /¢ <m.Weuse C >0 as a generic constant that may vary from occurrence to
occurrence. For constants that need to be more specific, we use cg, c1, etc.

2. The Signed Polygon test and the upper bound. For reasons aforementioned, we
focus on the SgnT statistic 7}, and SgnQ statistic (), but the ideas are extendable to general
Signed Polygon statistics. In this section, we study the upper bound. In detail, in Section 2.1,
we establish the asymptotic normality of both test statistics. In Sections 2.2-2.3, we discuss
the power of the two tests. We show that if [A2|/y/A1 — oo and some mild regularity con-
ditions hold, then for each of the two tests, the sum of Type I and Type II errors tends to 0
as n — oo. The lower bound is studied in Section 3, where we show that for an alternative
hypothesis setting with |A\2|/+/A; — 0, we can always pair it with a null setting so that two
hypotheses are asymptotically inseparable.

In a DCMM model, Q@ = OIIPII'O, where © = diag(f,...,0,), and II is the n x K
membership matrix |7y, 7o, ..., T,]". We assume as n — oo,

(2.15) 101 = 00, Omaz — 0, and ([|0]%/116]11)v/log([|0]]1) — 0.

The first condition is necessary. In fact, if ||@|] — 0, then the alternative is indistinguish-
able from the null, as suggested by lower bounds in Section 3. The second one is mild
as we usually assume 6,4, < C. This is due to that under DCMM, P has unit diagonal
entries and 6,0;(m,Pm;) is a probability for all ¢ # j. The last one is weaker than that
of Opmazy/log(n) — 0, and is very mild. It is assumed mostly for technical reasons and is
not required in many cases (e.g, the dense case where all §; = O(1)). Moreover, introduce
G = ||0||~2II'©%11 € RE*E  This matrix is properly scaled and it can be shown that |G| < 1
(Appendix E, supplemental material). When the null is true, K = P = G = 1, and we do not
need any additional condition. When the alternative is true, we assume

max1<g<k iy 0imi(k)}
miny <g<r{d i Oimi(k)}
Here, C' > 0 is a generic constant; see Section 1.5. The conditions are mild. Take the first

two for example. When there is no mixed membership, they only require the K classes to be
relatively balanced.

(2.16) <c, |g7Y<o,  |P|<C;

2.1. Asymptotic normality of the null. Theorems 2.1-2.2 are proved in the supplement.

THEOREM 2.1 (Limiting null of the SgnT statistic). Consider the testing problem
(1.6) under the DCMM model (1.1)-(1.4), where the condition (2.15) is satisfied. Sup-
pose the null hypothesis is true. As n — oo, E[T},] = o(||0]|®), Var(T,) ~ 6]|0||°, and

(T, — E[T,])//Var(T,) — N(0,1) in law.

THEOREM 2.2 (Limiting null of the SgnQ statistic). Consider the testing problem
(1.6) under the DCMM model (1.1)-(1.4), where the condition (2.15) is satisfied. Suppose
the null hypothesis is true. As n — oo, E[Q,] = (2 + o(1))||0]|*, Var(Q,) ~ 8||0|]®, and

(Qn — E[Qn])/+/Var(Qn) — N(0,1) in law.

Note that under the null, the limiting distributions of 7;,/+/Var(T;,) and @Q,,/+/ Var(Qy)
are N(0,1) and N (1/v/2,1), respectively. To appreciate the difference, recall that the Signed
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Polygon can be viewed as a plug-in statistic, where we replace n* in the Ideal Signed Polygon
by 7. Under the null, the effect of the plug-in is negligible for SgnT but not for SgnQ, so the
two limiting distributions are different. See Section 4 for details.

2.2. The level-a SgnT and SgnQ tests. By Theorems 2.1 and 2.2, the null variances of
the two statistics depend on ||#||%. To use the two statistics as tests, we need to estimate ||0||%.
For 7 and n* defined in (1.8) and (1.12), respectively, we have 7} = n* and n* = 6 under the
null. A reasonable estimator for ||#]|? under the null is therefore ||7||?. We propose to estimate
10| with (||]|> — 1), which corrects the bias and is slightly more accurate than ||5]|?. The
following lemma is proved in the supplementary material.

LEMMA 2.1 (Estimation of ||0||?). Consider the testing problem (1.6) under the DCMM
model (1.1)-(1.4), where the condition (2.15) holds when either hypothesis is true and con-
dition (2.16) holds when the alternative is true. Then, under both hypotheses, as n — oo
(13117 — 1)/|In*||?> = 1 in probability, where ||n*||* = (1/,Q%1,)/(1/,Q1,,). Furthermore,

1* 1> = 1|6)]2 under H{" and |[1*||? < ||6]|? under H\™

Combining Lemma 2.1 with Theorem 2.1 gives

(2.17) T,/V/6([72 =1 — N(0,1), inlaw.

Fix a € (0, 1). We propose the following SgnT test, which is a two-sided test where we reject
the null hypothesis if and only if

(2.18) Ty > za/g\/é(HﬁHz —1)3/2, Zq /2 upper (av/2)-quantile of N (0,1).

Similarly, combining Theorem 2.2 and Lemma 2.1, we have

(2.19) [Qn — 219112 = D?)/V/8(|7)12 = 1)4 — N(0,1),  inlaw.

With the same «, we propose the following SgnQ test, which is a one-sided test where we
reject the null hypothesis if and only if

(2.20) Qn>(2+ za\/g) (|I9]1> = 1)?, 2a: upper a-quantile of N(0,1).
As aresult, for both tests we just defined, the levels satisfy

P (Reject the null) — «, as n — oo.

Figure 2 shows the histograms of Tj,/+/6(|[7]]2 —1)3 (left) and (Q, — 2(||7]|* —
1)2)/(v/8(]|A]|? — 1)4) (right) under a null and an alternative simulated from DCMM. Recall
that in DCMM, 2 = 06’ under the null and Q2 = OIIPIIO, where © = diag (61, ...,0,). For
the null, we take n = 2000 and draw 6; from Pareto(12,3/8) and scale @ to have an £?-norm
of 8. For the alternative, we let (n, K') = (2000, 2), P be the matrix with 1 on the diagonal
and 0.6 on the off-diagonal, rows of IT equal to {1,0} and {0, 1} half by half, and with the
same 6 as in the null but (to make it harder to separate from the null) rescaled to have an
?%-norm of 9. The results confirm the limiting null of N (0, 1) for both tests.

2.3. Power analysis of the SgnT and SgnQ tests. The matrices (2 and Q play a key role in
power analysis. Recall that €2 is defined in (1.3) where rank(Q) = K, and Q = Q — n* (n*)’
is defined in (1.14) with n* = Q1,,/41/1/,Q1,, as in (1.12). Recall that Aj, Ao,..., A\ are
the K nonzero eigenvalues of ). Let &1,&s,...,&x be the corresponding eigenvectors. The
following theorems are proved in the supplemental material.
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FIG 2. Left: histograms of the SgnT test statistics in (2.17) for the null (blue) and the alternative (yellow). Em-
pirical mean and SD under the null: 0.04 and 0.94. Right: same but for SgnQ test statistic in (2.19). Empirical
mean and SD under the null: —0.02 and 0.92. Repetition: 1000 times. See setting details in the main text.

THEOREM 2.3 (Limiting behavior the SgnT statistic (alternative)). Consider the testing
problem (1.6) under the DCMM model (1.1)-(1.4). Suppose the alternative hypothesis is true,
and the conditions (2.15)-(2.16) hold. As n — oo, E[T},] = tr(Q%) 4 o((|X2|/A1)3]10]|®) +
o([1011%) and Vax(T,) < C([10]|° + (A2/ M) 0] 101]3)-

THEOREM 2.4 (Limiting behavior of the SgnQ statistic (alternative)). Consider the test-
ing problem (1.6) under the DCMM model (1.1)-(1.4). Suppose the alternative hypothesis is
true and the conditions (2.15)-(2.16) hold. As n — oo, E[Q,] = tr(Q%) +o((A2/A1)*|0]1®) +
o([|0]|*) and Var(Qn) < C([|0]° + C(A2/A1)°[10[*]|0]1S).

We conjecture that both 7, and (),, are asymptotically normal under the alternative. In
fact, asymptotic normality is easy to establish for the Ideal SgnT and Ideal SgnQ. To establish
results for the real SgnT and real SgnQ, we need very precise characterization of the plug-in
effect. For reasons of space, we leave them to the future.

Consider the SgnT test (2.18) first. By Theorem 2.3 and Lemma 2.1, under the alternative,

T, tr(Q3)
VoUalE—D® ¢ el e

where o2 denotes the asymptotic variance, which satisfies that

2.22) 52< G if A2/ M| < /101101,
"= OO/ A (10118/10112), i [Aa/M| > /10T /TOIE.

If we fix the degree heterogeneity vector 6 and let (\2/ A1) range, there is a phase change in
the variance. We shall call:

* the case of | A2/ A1| < C+/||0]|/]|0]3 as the weak signal case for SgnT.
o the case of [A2/A1] > /||0]|/]|0]|3 as the strong signal case for SgnT.

(2.21) the mean and variance of and o2, respectively,

It remains to derive a more explicit formula for tr(S~)3). Recall that \;, and &, are the k-th
eigenvalue and eigenvector of 2, 1 < k < K, respectively. Define A € R(K—Dx(K=1) 3pd
h € RE=1 by A =diag(A2,A3,...,A\k) and hy, = (1/,6,11)/(1,61), 1 <k < K — 1. It can
be shown that 1/,&; # 0 and ||h||oo < C' so the vector h is well-defined. In the special case of
|h|loc = 0(1) (this happens when the angle between 1,, and &; is small):

« We can show that tr(€23) ~ ZkK:Q A3
* Motivated by these, we say “signal cancellation" happens when [tr(02?)| < Zszz BYAR
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Therefore, “signal cancellation" may happen if the (K — 1) eigenvalues Ao, A3, ..., Ax have
different signs. In fact, in the extreme case, we can have Zszz A3 =0, though Zszg g3
is very large (e.g., [25, Section 3.3]). Normally, the “signal cancellation" is found for odd-
order moment-based statistics (e.g., 3rd, 5th, ..., moment), but not for even-order moment
methods (in fact, the SgnQ test won’t experience such “signal cancellation").

Fortunately, “signal cancellation” is only possible when A2, A3, ..., Ax have different
signs, and can be avoided in some special cases. We propose the following conditions.

CONDITION 2.1.  (a) A2, A3, ..., Ak have the same signs, (b) K =2, and (c) |A2|/\1 —
0, and |tr(A3) + 3R’ A3h + 3(R'AR) (W' A2h) + (W Ah)3| > C’ZkKZQ A& |3

In (a)-(b), Mg, ..., Ak have the same signs. Condition (c) is based on more delicate analy-
sis; see the proof of Lemma 2.2 for details.

While the above discussion is motivated by the case of ||h||oc = 0(1), the idea continues
to be valid for more general cases. The following is proved in the supplementary material.

LEMMA 2.2 (Analysis of tr((~23)). Suppose conditions of Theorem 2.3 hold. Under the
alternative hypothesis,
o If|A2|/A1 — 0, then tr((~23) =tr(A3) + 3R/ A3h +3(W AR) (W A%R) + (W AR)2 +o(| A2?).
o If Ao, A3, ..., Ak have the same signs, then
’tr(ﬁii)’ > Z§:2|>‘k|3+0(|>‘2’3)7 lf|)‘2/>‘1| — 0,
1 C|x:)?, if [ Mo/ A1 > C.
e In the special case where K = 2, the vector h is a scalar, and

@4 =7+ D o]l if al/A =0,
> Cll’, if Ao/ Ai| = C.

As a result, when either one of (a)-(c) holds, |tr(Q?)] > CZkKZQ | Akl

It can be shown ||n*|| < v/A1 < ||0||. We combine Lemma 2.2 with (2.21)-(2.22). In

K _3
the weak signal case, 1\@/;::(; ) > C(Zﬁgﬁi’\’“m > C()\l 2 2522 \)\k|3). In the strong signal

: - K 3y2 E[T,] O el®)
case, since (Aa/A\1)% < \ 2 " o | Ak|°)3, we have > k=2 >
(Ra/M) 1 (2 ) Var(Ta) ~ AT(SE, [al?) 3 012 10)12
cle|®

_3 1
o (AL > 5, [\k[?), where it should be noted that in our setting, [0 /]|0]|3 — oo. As

a result, in both cases, the power of the SgnT test — 1 as long as )\1_3/2 Z,I::Q |Ax|? — oo.
This is validated in the following theorem, which is proved in the supplemental material.

THEOREM 2.5 (Power of the SgnT test). Under the conditions of Theorem 2.3, for any
fixed a € (0,1), consider the SgnT test in (2.18). Suppose one of the cases in Condition 2.1

holds. As n — oo, ifA;l/Q (ZkK:Q |)\k]3)1/3 — 00, then the Type I error — «, and the Type
1l error — Q.

Next, consider the SgnQ test (2.20). By Theorem 2.4 and Lemma 2.1, under the alternative,

the mean and variance of [Q,, — 2(||7||2—1)2]//8([[4]Z — 1)* are tr(Q*)/+/8[[#*|[ and 62,

respectively, where o2 denotes the asymptotic variance and satisfies

s2< 0 if|)\2/>\1|<<\|9”§17
T OO/ M) NI011S, i Ao/ M| >> 10]]5
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Similar to the SgnT test, if we fix the degree heterogeneity vector 6 and let (A2/)\;) range,
there is a phase change in the variance. We shall call:

« the case of [\y/\| < C|6]|5 " as the weak signal case for SgnQ.
o the case of [A\2/A1| > [|0||5 " as the strong signal case for SgnQ.

We now analyze tr(§4). The following lemma is proved in the supplementary material.

LEMMA 2.3 (Analysis of tr(ﬁ‘l)). Suppose the conditions of Theorem 2.4 hold. Under
the alternative hypothesis,

o« If |Ao| /A1 — 0, then tr(Q%) = tr(A%) j (@'Ag)* + 2(WA2h)? + 4(W Ah)?(h'A%R) +
4h' A*h + 4(h’Ah)(h’A31}v) +0(A3) 2D o A

o If|hal/A1 > C, then tr(2Y) > C S, AL

s In the special case of K =2, h is a scalar and tr(Q*%) = [(h? + 1)* + 0o(1)] - A3

As a result, the SgnQ test has no issue of “signal cancellation", and it always holds that
tr(5~24) > 025:2 )\i. Then, in the weak signal case, we have EQn] > C(z“"gﬁf M) >

VVar(@.) ~ -
COAT2F,AY). In the strong signal case, since (Aa/A1)? < AT3(R_, AL)5, we have
EQu > OO M) s CIOP (\ 2K NS where [10]2/]16]13 — oo. So, in

VVar(@n) AT SIS, an lefliens — 1O
both cases, the power of the SgnQ test goes to 1 if )\1_2 Zszz )\i — o0. This is validated in
Theorem 2.6, which is proved in the supplemental material.

THEOREM 2.6 (Power of the SgnQ test). Under the conditions of Theorem 2.4, for any

fixed a € (0,1), consider the SgnQ test in (2.20). As n — oo, if)\1_1/2 (2522 )\i)l/4 — 00,
then the Type I error — «, and the Type II error — Q.

In summary, Theorem 2.5 and Theorem 2.6 imply that as long as

(2.23) IA2|/v/ A1 — o0,

the levels of SgnT and SgnQ tests tend to o as expected, and their powers tend to 1. The
SgnT test requires mild conditions to avoid “signal cancellation", but the SgnQ test has no
such issue (such an advantage of SgnQ test is confirmed by numerical study in Section 5).

Remark 7. Practically, we prefer to fix a, say, o = 5%. If we allow the level « to change
with n, then when (2.23) holds, there is a sequence of o, that tends to 0 slowly enough such
that [A2|/(2q,, /2 VA1) = 0o. As a result, for either of the two tests, the Type I error — 0 and
the power — 1, so the sum of Type I and Type II errors — 0.

Example 1 (contd). For this example, A\; ~ (1 + (K — 1)b,)|0]|%, and A, ~ (1 —
b)|0|?, k =2,3,...,K. The condition (2.23) of |A2|/v/A\1 — oo translates to (1 —
by)||€]| = oo. See Section 1.2 and also Section 3 for more discussion.

3. Optimal adaptivity, lower bound, and Region of Impossibility. We now focus on
the Region of Impossibility, where |A2|/v/A1 — 0. We first present a standard minimax lower
bound, from which we can conclude that there is a sequence of hypothesis pairs (one alterna-
tive and one null) that are asymptotically indistinguishable. However, this does not answer the
question whether all alternatives in the Region of Impossibility are indistinguishable from
the null. To answer this question, we need much more sophisticated study; see Section 3.2.
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3.1. Minimax lower bound. Given an integer K > 1, a constant ¢y > 0, and two posi-
tive sequences {a, }5° ; and {3,}5° , we define a class of parameters for DCMM (recall
that Q = OIIPIT'O, G = ||0||~2[I'©21I and is properly scaled, and ) is the k-th largest
eigenvalue of {2 in magnitude):

Mo (K. o, 0. ) — (G,TLP):f)rnaxET/I’Bn,QIIGHk‘lSﬁn,||9||2|!<9llf1 log([|0]l1) < Bn,
P 0 P gy < <0G < co el / VAT =

For the null case, X = P = 7; = 1, and the above defines a class of 8, which we write for

short by My, (1, co, aun, Br) = M (Br).

THEOREM 3.1 (Minimax lower bound). Fix K > 2, a constant cy > 0, and any se-
quences {a, }5° | and { B, }°° | such that oy, — 0 and 3, — 0 as n — oco. Then, as n — oo,

inf{ sup P=1)+ sup Py = O)} —1,
¥ YgeM: (Ba) (0,11, P)EM., (K, Co,0n,B)

where the infimum is taken over all possible tests 1.

Theorem 3.1 says that in the Region of Impossibility, there exists a sequence of alternatives
that are inseparable from the null. This does not show what we desire, that is any sequence in
the Region of Impossibility is inseparable from the null. This is discussed in the next section.

3.2. Region of Impossibility. Recall that under DCMM, Q = OIIPII'© and II =
[1,72,...,m,] . Since our model is a mixed-membership latent variable model, in order
to characterize the least favorable configuration, it is conventional to use a random mixed-
membership (RMM) model for the matrix II, while (©, P) are still non-stochastic. In detail,

s LetV ={zcRF z; ZO,Zlexk =1}.
o Let Vp ={ey,eq,...,ex}, where ey is the k-th Euclidean basis vector.

In DCMM-RMM, we fix a distribution F' defined over V and assume 7; ud F where
h = E[m;]. If we further restrict that F' is defined over Vj, then the network has no mixed-
membership, and DCMM-RMM reduces to DCBM-RMM.

The desired result is to show that, for any given P and F', there is a sequence of hypothesis
pairs (a null and an alternative)

(3.24) g": =60, ad H": Q=6IPIIO,

where © = diag(gl, 51, ceey 9~n) and 51 can be different from 6;, such that the two hypotheses
within each pair are asymptotically indistinguishable from each other, provided that under
the alternative |Aa|/v/A1 — 0.

Here, since €) depends on m;, A is random, and it is more convenient to translate the
condition of [A3|/v/A1 — 0 to the condition of

(3.25) 1611 - p2(P)] = 0,

where u(P) is the k-th largest eigenvalue of P in magnitude. The equivalence of two con-
ditions are justified in Appendix F.1 of the supplement. Condition (2.16) can also be ensured
with high probability, by assuming that all entries of E[r;] are at the order of O(1).

Under the DCBM, the desired result can be proved satisfactorily. The key is the following
lemma, which is in the line of Sinkhorn’s beautiful work on scalable matrices [40] (see also
[9, 27, 34]) and is proved in the supplement.
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LEMMA 3.1.  Fix a matrix A € REX with strictly positive diagonal entries and non-
negative off-diagonal entries, and a strictly positive vector h € RE, there exists a diagonal
matrix D = diag(dy,ds, ...,dk) such that DADh =1 and d, >0, 1 <k < K.

In detail, consider a DCBM-RMM setting where 7; % Fand Fis supported over V) (with
possibly unequal probabilities on the K points). Recall h = E[r;]. By Lemma 3.1, there is a
unique diagonal matrix D such that DPDh = 1. Let

(3.26) 0;=dy-0;, ifm=ep, 1<i<n, 1<k<K.

The following theorem is proved in the supplementary material.

THEOREM 3.2 (Region of Impossibility (DCBM)). Fix K > 1 and a distribution F de-
fined over V. Consider a sequence of DCBM model pairs indexed by n:

a7 Q=00 and H™:Q=06IPIIO,

where T; Y Eand © = diag(gl,gg, - ﬁn) with gz defined as in (3.26). If Opae < g for

a constant ¢y < 1, miny<g<g{hi} > C, and ||0]| - |p2(P)| — O, then for each pair of two
hypotheses, the x>-distance between the two joint distributions tends to 0, as n — oco.

To generalize this to RMM-DCMM, we fix a distribution I’ defined over V. Given a set of
(0, P,1I) with © = diag(6,6,...,0,) and 7; ud F, let ?LD =E[D~!7;/|| D~ m;]|1] for any
diagonal matrix D € RE>*K with positive diagonals. We assume that there is a D such that

3.27 DPDhp =1 in {hpt>C.
(3.27) p =1k, éf]lclsnK{ Dk} =>C

When such a D exists, we let
(3.28) 0;=0;/|D w1, 1<i<n.

When the support of F'is restricted to V{, all realizations of m; are degenerate (i.e., one entry
is 1, and other entries are 0), so h p =h, 9 is the same as that in (3.26), and (3.27) holds
by Lemma 3.1. Under DCMM-RMM, 7;’s are not degenerate. We conjecture that (3.27)
continues to hold generally (we can show it for the cases of K = 2, 3; the proof is elementary
so is omitted). The following theorem is proved in the supplementary material.

THEOREM 3.3 (Region of Impossibility (DCMM)). Fix K > 1 and a distribution F
defined over V. Consider a sequence of DCMM model pairs indexed by n:

H™: Q=00 and H™:0Q=0IPIO,

where m; " F and © = diag(0y, 05, ...,0,) with 0; defined as in (3.28). If (3.27) holds,
Omaz < co for a constant co < 1, and ||0|| - |u2(P)| — 0, then for each pair of two hypotheses,
the x?-distance between the two joint distributions tends to 0, as n — co.

One of the main strengths of Theorems 3.2-3.3 is that this lower bound is valid for an
arbitrary choice of 6 € R"}. This is stronger than the standard minimax lower bound.

In Theorem 3.3, we try to be as general as we can so 1I is given (and we are not allowed
to change it in our construction). For any P and F', by Lemma 3.1, there is a unique positive
diagonal matrix D such that DPDh = 1, where h = E[r;]. We now consider a special case
where we allow II to depend on D in our construction. In this case, Condition (3.27) can be

removed. Let [T = [71, T2, .., 7] and 0= diag(gl, Os, ..., gn), with
(3.29) %i=Dmi/|Dmill1,  0; =] Dmil1 - 0;
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THEOREM 3.4 (Region of Impossibility (DCMM with flexible 11)). Fix K > 1 and a
distribution F' defined over V. Consider a sequence of DCMM model pairs indexed by n:
Hén) Q=00 and an) : Q) = OIIPII'O, where I and © are defined as in (3.29). If Oz <
co for a constant cy < 1, minj<i<g{hi} > C, and ||0]| - |p2(P)| — 0, then for each pair of
two hypotheses, the x>-distance between the two joint distributions tends to 0, as n — oo.

Finally, we consider the case where we require that the null and the alternative have per-
fectly matching © matrix (up to an overall scaling). This is especially of interest when we
consider SBM or MMSBM models where we have little freedom in choosing the © matrix.
In this case, in order that the two hypotheses are indistinguishable, the expected node degrees
under the alternative have to match those under the null. For each 1 < ¢ < n, conditional on 7;
and neglecting the effect of no self edges, the expected degree of node i equals to ||0||; - 6; and
1601 - (w;Ph) - 6; under the null and under the alternative, respectively, where {m;} o
and h = E[r;]. For the expected degrees to match under any realized 7;, it is necessary that

(3.30) Ph=q,lg, for some scaling parameter ¢,, > 0.

THEOREM 3.5 (Region of Impossibility (DCMM with matching ©)). Fix K > 1 and
a distribution F' defined over V. Consider a sequence of DCMM model pairs indexed by
n: Hén) :Q=q, 00 and H{n) : QQ = OIIPII'O, where © = diag (61,02, ...,0,), T Y
and (P, h,qy) satisfy (3.30). If O < co for a constant co < 1, miny<g<x{hr} > C, and

10| - |2 (P)| — 0, then for each pair of two hypotheses, the x*-distance between the two
Jjoint distributions tends to 0, as n — oo.

Theorems 3.4-3.5 are proved in the supplementary material.

Example 1 (contd). In Example 1, 7; is drawn from ey, es, ..., ex with equal probabil-
ities, and P = (1 — b,)Ix + byl 1. Therefore, h = E[m;] = (1/K)1k. In this case, all
conditions of Theorem 3.5 hold. Note ¢, = (1/K) + (K — 1)b, /K and us(P) = (1 — by,).

Remark 8 (Least favorable configuration of LDA-DCMM). The Dirichlet model is often

used for mixed-memberships [1]. Consider the model pairs Hén) : Q= q,00 and H fn) :

0 = OIIPIT'O and where 7; Dir(«) (Dir(«): Dirichlet distribution with parameters o =
(a1, ...,ak)"). By Theorem 3.5, as long as Pa o 1, the null and alternative hypotheses are
asymptotically indistinguishable if (1 — g,,)[|0|| — 0. One can easily construct P such that
Poa o 1. For example, P = (1 — g,) MM’ + ¢, 1 1), where M € REX(K-1) s a matrix
whose columns are from Span(«) and satisfy diag(M M') = I.

3.3. Optimal adaptivity. Recall that \/A1, |X2|/A1, and |X2|/v/A; can be viewed as a
measure for the sparsity, community dissimilarity, and SNR, respectively. Combining Theo-
rems 2.1-2.4, Theorems 3.2-3.5, and Remark 7 in Section 2.3, in the two-dimensional phase
space where the z-axis is v/A; and the y-axis is the |A\2|/\1, we have a partition to two
regions, the Region of Possibility and the Region of Impossibility.

* Region of Impossibility (1 < /A1 < /1, |A2|/v/A1 = o(1)). In this region, any DCBM
alternative is asymptotically inseparable from the null, and up to a mild condition, any
DCMM alternative is also asymptotically inseparable from the null.

¢ Region of Possibility (1 < /A1 < /7, |A2]|/v/A1 — 00). In this region, asymptotically,
any alternative is completely separable form any null.

The SgnQ test is optimally adaptive: for any alternative in the Region of Possibility, the test
is able to separate it from the null with a sum of Type I and Type II errors tending to 0. The
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SgnT test is also optimally adaptive, provided that some mild conditions hold to avoid signal
cancellation. To the best of our knowledge, the Signed Polygon is the only known test that is
both applicable to general DCMM (where we allow severe degree heterogeneity and arbitrary
mixed-memberships) and optimally adaptive. The EZ and GC tests are the only other tests
we know that are applicable to general DCMM, but their variances are unsatisfactorily large
for the less sparse case, so they are not optimally adaptive. See [29] for details.

Remark 9. Most existing lower bound results [36, 2, 16] are within the standard minimax
framework, where they focus on a particular sequence of alternative (e.g., the off-diagonals
of P are equal). In our case, the standard minimax theorem only implies that in the Region
of Impossibility, there is a sequence of alternative that are inseparable from the null. Our
results (Theorems 3.2-3.5) shed new light on the Region of Impossibility, saying that for each
alternative, we can pair it with a null such that two hypotheses are asymptotically inseparable.

Remark 10. Existing minimax lower bounds [36, 4, 2] are largely focused on the SBM.
Though a least favorable scenario for SBM is least favorable for DCMM, the former does
not provide much insight on how the least favorable configurations and the phase transition
depend on the degree heterogeneity and mixed-memberships. Moreover, our results (see also
[19]) suggest that |||, not ||6]|1, determines the separating boundary. In the SBM case, §; =
...=0,and ||0]|1 = /n]|0]|, so it is hard to tell which of the two norms decides the boundary.
In DCMM, there is no simple relationship between ||0||; and ||6||, and we can tell this clearly.

Remark 11. A sharper version of the phase transition is that there exists a constant ¢y > 0
such that the Region of Possibility and Region of Impossibility are given by [X2|/v/A1 > o
and |A\2|/v/A1 < co, respectively. In some special cases, this kind of results exist for com-
munity detection (a related but different problem). For example, [19] considered a setting
where (i) there is no mixed-membership, (ii) for some constants a,b > 0, P(k,l) = a if
k = ¢ and b otherwise, (iii) the communities have equal size, and (iv) for a constant ¢ > 0,
{v/nb;}}, are iid drawn from a fixed distribution supported in [, c0). They showed that,
when (a — b)2E||0||> < K(a + b), it is impossible to reconstruct the community label ma-
trix II. Moreover, in the special case of K = 2, [18] (also, see [12]) showed that when
(a — b)?E||0]|> > 2(a + b), it is possible to construct an estimate of II that is positively
correlated with the true community labels. By connecting (a, b, E||0||?) with eigenvalues, it
is seen that these results give a sharp phase transition at ¢y = 1, in the special case where
K =2 and (i)-(iv) hold. For more general settings, whether such a sharp phase transition
exists is unclear: a slight change in conditions (i)-(iv) may affect the lower bounds, and the
optimal tests (for the sharp phase transition) are hard to find as they usually need to adapt to
specific features of the model. Also, technically, allowing for mixed-memberships makes the
lower bound much harder to study, and allowing for unequal community sizes and unequal
off-diagonal entries in P requires an application of DAD theorem in lower bound construc-
tion (which is not needed in [19]). Moreover, [12, 18, 19] are for community detection and
our paper is on global testing. For general DCMM settings, it is unclear whether the phase
transitions for two problems are the same.

4. The behavior the SgnQ test statistics. In this section, we study the SgnQ test statis-
tic ), and explain how to prove Theorems 2.2, 2.4, and 2.6. We introduce a proxy SgnQ test
statistic 0 and an Ideal SgnQ test statistic Qn. Write Q,, = Qn + (Qr — @n) +(Qn— Q).
We study the three terms on the RHS in Sections 4.1-4.3, respectively. Given these results,
the proofs of Theorems 2.2, 2.4, and 2.6 are straightforward and contained in Appendix B.
The study of the SgnT test statistic 7, is similar and contained in Appendix A, where we also
prove Theorems 2.1, 2.3, and 2.5.

Recall that the SgnQ statistic @, is defined as

QTL = Z (Ailiz - ﬁil ﬁiz)(Aiﬂ?, - ﬁi2ﬁi3)(‘4isi4 - ﬁi;zﬁia;)(AMil - ﬁi4ﬁi1)7

’L’l ,/[:2 ,’L’3,i4 (dzst)
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where /) = A1, /v/V, with V = 1/ A1,,. In Section 1.4, we have introduced the following
non-stochastic proxy of 7: n* = Q1,,/,/vg, where vy = 1,,Q1,,. We now introduce another
(stochastic) proxy 7 by

(4.31) f=Al,/vv,  wherev=E[1,Al,] =1/ (Q — diag(Q))1,.
Denoting the mean of 7 by 7, it is seen that
432) 0= ([Q — diag(Q)]L,)//1,(2 — diag()1,.

Here, n and n* are close to each other but n* has a more explicit form. For example, under
the null hypothesis, 2 = 66’, and it is seen that n* = 6. Recall that A = Q — diag(Q) + W
and Q =Q —n*(n*). Fix 1 <4,j <nand i # j. First, we write

Aij — iy = (Aij —nin;) + (in; — i) = Qi + Wi + (7 nj — i)
Second, we write 770} — 7);7); = 0;; + rij, where
(4.33) Gij = ni(n; — 71;) + n;(mi — i)
is the linear approximation term of (n;n; — ;7)) and r;; = (n;n; — 7i7;) — ;5 is the remain-

der term. By definition and elementary algebra,

* %k ~ ~ v ~ o~
(4.34) rig = (min; —nimg) — (i — 1) (n; — 75) + (1 = V)Wﬂ?j-

It is shown that r;; is of a smaller order than that of ;;. The remainder term can be shown to
have a negligible effect over 7}, and @), in terms of the variances of 7}, and ), respectively;
see Theorem 4.3.

Let X be the symmetric matrix where all diagonal entries are 0 and for 1 <+¢,5 <n but
i # j, Xij = A;j — 0if)j, or equivalently,
(4.35) Xij = Quj + Wij + 83 + 5.
If we omit the remainder term, then we have a proxy of X, denoted by X*, where all diagonal
entries of X* are 0, and for 1 <i,5 <n buti # j,

If we further omit the § term, then we have another proxy of X, denoted by X, where all
diagonal entries of X are 0, and for 1 <i4,j <mnbuti # j,

(4.37) )?ij = ﬁij + Wij.

With the above notations, we can rewrite Qp as Qn =_; ;. i i (ist) Xivia Xizis Xigis Xisii -
We introduce the Proxy SgnQ test statistic and Ideal SgnQ test statistic by

Qn - E : XiliQXizigXi3i4Xi4i17 Qn - § X1122X2213X1314Xz411-
il,iQ,i3,i4(diSt) il,ig,ig,i4(di8t)

The Ideal SgnQ test statistic @n is the same as that defined in (1.13). Using these notations,

we partition Q,, as Q, = Qn + (Q — Qp) + (Qn — Q). In Sections 4.1-4.3, we study the
three terms on the RHS respectively.
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4.1. The behavior of the I1deal SgnQ test statistics. In view of (4.37), the Ideal SgnQ test
statistic (),, is written as

438) Qn= > (Qiis + Wiri) (Qiniy + Wisi) (i, + Wigit) Qi + Wisiy)-

il ,iz ,ig ,i4 (d’LSt)

Under the null, Q = 66 and n* = 6. By definition, @Z-j = 0, and the statistic reduces to @n =
Zil,z'z,ig,u( dist) Wi isWinisWisiu, Wise, - The RHS is the sum of a large number of uncorrelated
terms, with each term being a 4-product of independent centered-Bernoulli variables. It can
be shown that the statistic is asymptotically normal, with E[Q,,] = 0 and Var(Q,,) ~ 8||0||5.

Consider the alternative hypothesis. In the RHS of (4.38), expanding the bracket and
re-arranging, we have 2 X 2 X 2 x 2 = 16 post-expansion sums, each having the form of
22-172-272-371-4( dist) Qiria biyisCisisdigi, » Where a is a generic notation which may either equal to
Q or W same for b, ¢, and (d). For example, Zz‘l,z@,z‘a,u(dz‘st) I/Vm-zﬁ Wisia
the 16 post-expansion sums, corresponding to b = Q,and a =c=d=W. Note that each of
16 post-expansion sums is the sum of many 4-product, where the number of the €2 factors in
each product is the same; denote this number (which can be 0, 1, 2, 3, or 4) by Nﬁ. Similarly,
the number of the W factors in each product are also the same. Denote it by Ny, we have
Ng + Nw = 4. For the example above, (Ng, Niw) = (1,3).

According to (Ng, Nw), we can group the 16 post-expansion sums into 6 different types.
Table 1 presents the mean and variance of each type (Recall that Ay, ..., A\ are the K eigen-
values of (2, arranged in descending order in magnitude. In Table 1, a = |A2|/A;. In the
alternative, we assume |\z|/y/A1 — oo, which translates to «||f|| — oo since /A1 =< ||0])).

iais Wi,i, is one of

TABLE 1
The 6 different types of the 16 post-expansion sums of Qn (||0]|q is the 4-norm of 0 (the subscript is dropped
when q = 2). In our setting, «||0|| — oo, and ||6’||j11 < ||9H§ < 1612 < 16l

Type # (I, o1 Nyy)  Examples Mean Variance
I 1 (0,4) i k(dist) Wis Wik WeeWei 0 = l6|®
04 (3 S dist) i Wik WeeWe 0 < ca?|0]* 10115 = o(l10]I*)
Wa 4 Q2 i eaist) i WieeWe 0 < Ca[0][°)1611§ = o(a®[1611° 16113
b 2 2.2 i ik e(dist) Qi Wik Qe W 0 < cal||oll}® = o(10]%)
v 4 G, >4,k (dist) S}ijizjks?ké‘j/& 0 <abje|® 011§
v 1 @O Yikeist) e~ (@) 0

From the table, among all 16 post-expansion sums, the total mean is ~ tr(ﬁ"‘), and the
total variance < C||0]|® + C(|A2|/A1)%]|0]3]|0]|$, with Type I sum and Type IV sum being
the major contributors. The following theorem is proved in the supplementary material.

THEOREM 4.1 (Ideal SgnQ test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)-(1.4), where the condition (2.16) is satisfied under the alternative hy-
pothesis. Suppose Omax — 0 and ||6]| — oo as n — oo, and suppose |X2|//A\1 — 0o un-

der the alternative hypothesis. Then, under the null hypothesis, as n — 00, E[@n] =0,
Var(Qn) = 8|0]® - [1 4 o(1)], and (Qn — E[Qn])/1/ Var(Qn) — N(0,1) in law. Fur-
thermore, under the alternative hypothesis, as n — oo, E[Qn] = tr(Q*) + o(||0||*) and
Var(T,) < C[0]1° + (A2l /208101 10115].
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4.2. The behavior of (Q} — @n) The Proxy SgnQ test statistic is defined as Q) =
Zihiz’i&u(dm) X7, X X X T, - Inserting XZ-*j = + W + 6;; and expanding every

bracket, we similarly obtain 3 x 3 x 3 x 3 = 81 different post-expansion sums, where 15 of
them do not involve any d term. The sum of the remaining 65 terms is (Q}, — @n) For each
of these 65 post-expansion sums, we are summing over many 4-products, where each of them
has the same number of § factors, W factors, and § factors, which we denote by Ng, Nw,
and Nj, respectively. According to (Ng, Ny, Ns), we divide the 65 post-expansion sums
into 10 different types. See Table 2, where we recall that oo = |A2|/\1.

TABLE 2
The 10 types of the post-expansion sums for (Qy, — Qn). Notations: same as in Table 1.
Type # (N(;,Nﬁ,NW) Examples Abs. Mean Variance
la 4 (1,0,3) ke S Wik WieWei 0 < Cllo7 (1615 = o(ll6]®)
(dist) —_—
b8 (L2 Y5k 05Wke W 0 <ca?|0]* 11§ = o(ll6]®)
(dist)
4 ikt i Wik Qe Wei 0 <ca?|0]* 611§ = o(ll6]1®)
(dist) P
- C 0 0
o8 2D Tineby W < Ca?lolP=oto)®) < SR — oS0 o))
(dist) .
= = C 9)1%|6
4 S k313 g Wie S 0 U
(dist) 612
- C (% 0
M4 W30 Tkl 0 < SO — o(aS P 1)
(dist)
Ma 4 202 Yike050uWeeWeu <Ol =o(a]0]®) <clol*[61§ = o(l161I®)
(dist)
C 0 0
2 ikt b WikdeWer < Cl6]*=o(a6]%) < CIAL IO — o)
(dist) _ X
m 38 21D > ik, 0050k eWes 0 <ca®|o)*01§ = o(ll6]®)
(dist) )
= 0 0 0
4 Skt 050k < Call0]*=o(a0]1®) < oo — o jo)®)
(dist) .
G 0 < Ca*llo
Ilc 4 2,2,0) Zi,j,k,[éijéjkﬂkfgfi SCO(QH@HG=O(O(4H0H8) > OLHQHHJ - (O‘6H0H8H0Hg)
(dist)
Ca?|6]] Co?||0]18)10]8
2 <t SO0 o) < SOOI _ o)1)
, el llofz
(dist)
C 9)|°|6
Ma 4 GO0 TigkedihpouWa < Clol*=oa’|0]®) < IO — o( o))
(dist) )
Pt Ca C I
Wb 4 GO <Siebytututn < SHE=olatol®) < STV — o)
(dist)
Clle 10
Vo @00 Sieditudidn < Olo) =0l o)) < Sl = o1y

(dist)

We now analyze Q)

— @n Consider the null hypothesis first. Under the null, Q is a zero

matrix, so the nonzero post-expansion sums only include Type la, Type Ila, Type Illa, and
Type IV. Itis seen that [E[Q* — Q]| < C||0]|4, and Var(Q* — Q,,) = o(||6]|®). Note that ||0|®
is the order of Var(@n) under the null. The difference between the variance of ()}, and the
variance of @n is negligible, but the difference between the mean of @)}, and the mean of @n
is non-negligible. With lengthy calculations (see the supplementary material), we can show
that E[Q* — Qn] ~ 2|0||*. Therefore, (Q* — 2||6]|*) and Q,, have a negligible difference
under the null. N

E[Q; — Qull < C(1hal/A0)?
where the major contribution is from Type Ic and Type Ilc post-expansion sums. Un-
der our assumptions for the alternative, = ||9||4 It is easy to see
that |E[Q¥ — Qn]| = 0o(A\3), where A} is the order of tr(Q*) and E[Q,]; see Lemma 2.3
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and Theorem 4.1. Additionally, ||0]* = O(A\2) = o()\3), Which is also of a smaller or-

der of E[Q,]. We conclude that IE[Q; — Qn — 2]10[1*]| = of E[Qn]). From the table,
Var(Q* — Qy) < C(IA2l/X)81011211013/16111 + o([|0]|®), with the major contribution from
Type Id. Here, the second term is smaller than Var(@n), and the first term is upper bounded
by C(|A2|/X1)8]10]®|€]lS (using the universal inequality of ||0]|* < [|0]|1]|0]|3), which has a
comparable order as Var(Q,,). It follows that Var(Q* — Q,, — 2[|0||*) = Var(Q* — Q) <
C'Var(Qy). Combining the above, we obtain that the SNR of (Q* — 2||0||*) and Q,, are at
the same order.
These results are summarized in Theorem 4.2, which is proved in the supplement.

THEOREM 4.2 (Proxy SgnQ test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)-(1.4), where the condition (2.16) is satisfied under the alternative hypoth-
esis. Suppose Omax — 0 and ||0|| — oo as n — oo, and suppose |\a|//A1 — oo under the
alternative hypothesis. Then, under the null hypothesis, as n — 0o, E[(Q% — 2|0]|4) — Qn] =
o(||0]|*) and Var(Q;, — Qn) = o(||0||®). Furthermore, under the alternative hypothesis,
E([ﬁg?’;is)— 2[1011*) — Qul = o((|X2] /A1) *1601°) and Var(Qy; — Qu) < C(|A2|/A)°|0]*[1011S +
0 )

4.3. The behavior of (Qn — Q7). Recallthat Qpn =3, . (aist)

where X;; = Qij + Wij 4 d;; + r;; for any 7 # j. Similar to Sections 4.1-4.2, we first expand
every bracket in the definitions and obtain 4 x 4 x 4 x 4 = 256. Out of the 256 post-expansion
sums in @, 3 X 3 X 3 x 3 = 81 of them do not involve any r term and are contained in Q)},;
this leaves a total of 256 — 81 = 175 different post-expansion sums in (Q,, — @Q},). In the sup-
plementary material, we investigate the order of mean and variance of each of the 175 post-
expansion sums in (@, — Q}). The calculations are very tedious: although we expect these
post-expansion sums to be of a smaller order than the post-expansion sums in Sections 4.1-
4.2, it is impossible to prove this argument rigorously using only some crude bounds (such as
Cauchy-Schwarz inequality). Instead, we still need to do calculations for each post-expansion
sum; details are in the supplementary material.

X1122X X X’l4219

i3 <2 1314

THEOREM 4.3 (Real SgnQ test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)-(1.4), where the condition (2.16) is satisfied under the alternative hypoth-
esis. Suppose Omax — 0 and ||0|| — oo as n — oo, and suppose |\a|//A1 — oo under the
E[Qn — Q;]l = o(||0]*)
ElQn— Q)=

and Var(Qy, — Q%) = o(|6][%). : ,
o((| X2l /A1) 1011%) and Var(Qn — Q;) = o((|IX2] /A1) [1011%1011$) + o(1|0]|®).

5. Simulations. We investigate the numerical performance of two Signed Polygon tests,
the SgnT test (2.18) and the SgnQ test (2.20). We also include the EZ test [16] and the GC
test [25] for comparison. For reasons mentioned in [25], we use a two-sided rejection region
for EZ and a one-sided rejection region for GC.

Given (n, K), a scalar 3, > 0 that controls ||f||, a symmetric nonnegative matrix P €
REXK 3 distribution f(6) on R, and a distribution g() on the standard simplex of R,
we generate two network adjacency matrices A" and A**, under the null and the alterna-
tive, respectively, as follows: (i) Generate 01,0y, ... ,0, iid from f(0). Let 0; = 3, - 6;/]|0],
1 < < n. (ii) Generate 71, mo,..., T, tid from g( ). (iii) Let Q4 = OIIPII'®’, where
O = diag(0y,---,0,) and Il = [7r17 T2, ...,mn) . Generate A% from Q* according to Model
(1.1). (iv) Let Q" = (a’ Pa) - 00, where a = E,m € RE is the mean vector of g(7). Gener-
ate A" from Q™ according to Model (1.1). The pair (Q™*!, Q%) is constructed in a way
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such that the corresponding networks have approximately the same expected average degree.
This is the most subtle case for distinguishing two hypotheses (see Section 3).

It is of interest to explore different sparsity levels and also focus on the parameter settings
where the SNR is neither too large nor too small. Therefore, for most experiments, we let
B, = ||0]| range but fix the SNR at more or less the same level. See details below. For each
parameter setting, we generate 200 networks under the null hypothesis and 200 networks
under the alternative hypothesis, run all the four tests with a target level o = 5%, and then
record the sum of percent of type I errors and percent of type Il errors. For space limit, we
do not report separately the percent of each type of errors but relegate these results to the
supplementary material.

5.1. Experiment 1. We study the role of degree heterogeneity. Fix (n, K) = (2000, 2).
Let P be a 2 x 2 matrix with unit diagonal entries and all off-diagonal entries equal to b,,.
Let g(7) be the uniform distribution on {(0,1),(1,0)}. We consider three sub-experiments,
Exp la-1c, where respectively we take f(6) to be the following: (a) Uniform(2,3), (b) two-
point distribution 0.957 + 0.0503, where d, is a point mass at a, and (¢) Pareto(10,0.375),
where 10 is the shape parameter and 0.375 is the scale parameter. The degree heterogeneity
is moderate in Exp 1a-1b, but more severe in Exp 1c. In such a setting, SNR is at the order of
|0]|(1 — by,). Therefore, for each sub-experiment, we let 3,, = |0 vary while fixing the SNR
to be [|0]|(1 — b,,) = 3.2. The sum of Type I and Type II errors are displayed in Figure 3.

First, both the SgnQ test and the GC test are based on the counts of 4-cycles, but the GC
test counts non-centered cycles and the SgnQ test counts centered cycles. As we pointed out
in Section 1, counting centered cycles may have much smaller variances than counting non-
centered cycles, especially in the less sparse case, and thus improves the testing power. This
is confirmed by numerical results here, where the SgnQ test is consistently better than the
GC test, significantly so in the less sparse case. Similarly, both the SgnT test and the EZ test
are based on the counts of 3-cycles, but the EZ test counts non-centered cycles and the SgnT
test counts centered cycles, and we expect that SgnT significantly improves EZ, especially in
the less sparse case. This is also confirmed in the experiment.

Second, SgnQ and GC are order-4 graphlet counting statistics, and SgnT and EZ are order-
3 graphlet counting statistics. In comparison, SgnQ significantly outperforms SgnT, and GC
significantly outperforms EZ (in the more sparse case; see discussion below for the less
sparse case). A possible explanation is that higher-order graphlet counting statistics have
larger SNR. Investigation towards this direction is interesting, and we leave it to future study.
Note that SgnQ is the best among all four tests.

Last, GC outperforms EZ in the more sparse case but underperforms EZ in the less sparse
case. The reason for the latter is as follows. The biases of both tests are negligible in the more
sparse case, but are non-negligible in the less sparse case, with that of GC much larger. In
[29], we propose a bias correction method, where the performance of GC is significantly im-
proved. However, GC continues to underperform SgnQ, because even with the bias corrected,
it still has a variance that is unsatisfactorily large.

5.2. Experiment 2. We study the cases with larger K and a more complicated matrix
of P. For some b, € (0,1), let €, = +min(1 — by, b,,), and let P be the matrix with 1 on
the diagonal and the off-diagonal entries iid drawn from Unif (b,, — €, by, + €,,); once the P
matrix is drawn, it is fixed throughout different repetitions. We consider two sub-experiments,
Exp 2a and 2b. In Exp 2a, we take (n, K) = (1000,5), f(#) to be Pareto(10,0.375), and
g(7) to be the uniform distribution on {ey,---,ex} (the standard basis vectors of R¥).
We let (3, range but fix ||6]|(1 — by,) at 4.5, so the SNR will not change drastically. In Exp

2b, we take (n, K) = (3000, 10), f(0) to be 0.950; 4 0.0503, and g(7) = 0.13;_, de, +
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FIG 3. From left to right: Experiment la, 1b, and Ic. The y-axis are the sum of Type I and Type Il errors (testing

level is fixed at 5%). The x-axis are ||0)| or sparsity levels. Results are based on 200 repetitions.
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FIG 4. From left to right: Experiment 2a and 2b. The y-axis are the sum of Type I and Type Il errors (testing level
is fixed at 5%). The x-axis are ||0|| or sparsity levels. Results are based on 200 repetitions.
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FIG 5. From left to right: Experiment 3a, 3b, and 3c. The y-axis are the sum of Type I and Type 11 errors (testing

level is fixed at 5%). The x-axis are ||| or sparsity levels. Results are based on 200 repetitions.

0.15 22:3 e, +0.05 Z,lgoﬂ Je¢, (so to have unbalanced community sizes). Similarly, we let
By, range but fix ||0]|(1 — by,) = 5.2. The sum of Type I & II errors are shown in Figure 4.

In these examples, EZ and GC underperform SgnT and SgnQ, especially in the less sparse

case, and the performances of SgnT and SgnQ are more similar to each other, compared
to those in Experiment 1. In these examples, we have larger K, more complicated P, and
unbalanced community sizes, and the performance of SgnT and SgnQ test statistics suggest
that they are relatively robust.

5.3. Experiment 3. We investigate the role of mixed-membership. We have three sub-

experiments, Exp 3a-3c. where the memberships are not-mixed, lightly mixed, and signifi-
cantly mixed, respectively. For all sub-experiments, we take (n, K') = (2000, 3) and f () to
be Unif(2, 3). For Exp 3a, we let g; (7) = 0.46¢, +0.36,, +0.36,,. In Exp 3b, we let ga(7) =
0.3 Zz:1 de, +0.1-Dirichlet, and in Exp 3c, we let g3(7) = 0.25 Zi:l d¢, +0.25 - Dirichlet,
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where Dirichlet represents the symmetric K -dimensional Dirichlet distribution. In Exp 3a-
3b, we let 3, range while (1 — by,)||0|| is fixed at 4.2 so the SNR’s are roughly the same. In
Exp 3c, we also let 3,, range but (1 — b,,)||0|| = 4.5 (the SNR’s need to be slightly larger to
counter the effect of mixed-membership, which makes the testing problem harder).

The sum of Type I and Type 1I errors are presented in Figure 5. First, the results confirm
(1-
b,) in Exp 3c is higher than that of Exp 3a-3b, but the testing errors are higher, due to
that the memberships in Exp 3c are more mixed. Second, SgnQ consistently outperforms
EZ and SgnT. Third, GC is comparable with SgnQ in the more sparse case, but performs
unsatisfactorily in the less sparse case, for reasons explained before. Last, in these settings,
SgnT is uniformly better than EZ, and more so when the memberships become more mixed.

5.4. Experiment 4. We vary the size of network and study its impact on testing errors.
We fix K =2 and let P be a 2 x 2 matrix with unit diagonals and off-diagonals equal to b,,.
Let g() be the uniform distribution on {(0,1),(1,0)} and let f(#) be Pareto(8,0.375). We
let n ranges from {100, 300, 1000, 3000}. Note that in our data generating process, 3, = ||0]]
controls the sparsity level and (1 —b,,)||#]| is the SNR. As n varies, we fix (3,, = 4 and change
by, accordingly so that the SNR is fixed at 3. The results are in Table 3. This is a sparse setting,
therefore, the biases in EZ and GC are negligible and they both control the Type I error well.
The SgnT and SgnQ tests also control the Type I error well. In terms of the Type II errors,
GC and SgnQ are better than EZ and SgnT. The results are relatively stable as n varies.

TABLE 3
Experiment 4. Numbers in each cell are Type I error, Type Il error, and their sum.
n 100 300 1000 3000

EZ (.025, .22, .245)  (.055, .26, .315) (.05, .27, .32) (.06, .275, .335)

GC (.02, .02, .04) (.06, .02, .08) (.04, .005, .045) (.04, .005, .045)
SgnT (.01, .15, .16) (.04, .14, .18) (.065, .175, .24) (.06, .14, .2)
SgnQ  (.05,.015,.02) (.04, .005,.045) (.04, 0, .04) (.02, .005, .025)

6. Discussions. A closely related idea is to use ||A — 77| as the test statistics. To see
why this is a reasonable choice, consider the proxy test statlstlc |A —n*(n*)||, where we
recall that n* = @ under the null; see (1.12). Therefore, A — n*(n*) is equal to W and
(Q = (n*(n*)") + W, under the null and the alternative, respectively. The test has reason-
able power, as ||[A — n*(n*)’|| is expected to be bigger in the alternative than in the null. An-
other related idea is to extend the Signed Polygon to address the problem of testing whether
K = kg vs. K > kg, where kg > 1 is a prescribed integer. Let 0= Ek 1 /\kgkgk, where
A, are the k-th eigenvalue of A, arranged in the descending order in magnitude, and 5k is
the corresponding eigenvector. The Signed Polygon test statistic can then be extended to
USZZ = 2217127 i (dist) (A0, — QMZ)(AW3 — ng) oo (A — Ql i, )- See [26] for more
discussion. It remains unclear whether these test statistics are optimally adaptive, and we
leave the study to the future.

Another testing idea would be using the first eigenvalue of A=0"146"1—b1, 1), fora
reasonable estimate 6 for § and a proper b. Unfortunately, even if 6 =0, the dlStrlbuthIl of
the test is unknown for general cases. In fact, this is essentially the approaches proposed in
[8, 31]). Both papers showed that in the dense case of 6; =0y = ... =6, = O(1), the largest
eigenvalue of A (when standardized) converges to the Tracy-Widom law. Unfortunately, the
approaches have been focused on the more idealized SBM model and the less sparse case



24

where 01 =0y = ... =0, = \/a,, > O(n_l/ 6), and the limiting distribution remains un-
known for other cases.

The testing problem is also closely related to the problem of estimating K. In fact, we can
cast the estimation problem as a sequential testing problem where we test K = kg vs. K > kg
for kg =1,2,3,..., and estimate K to be the smallest k3 where we accept the null.

Note also the lower bound argument for the global testing problem sheds useful insight
for many other problems (e.g., estimating K, community detection, mixed-membership).
Take the problem of estimating K for example. Given an alternative setting, if we can not
distinguish it from some null setting, then the underlying parameter K is not estimable.

In a high level, these ideas, together with the Signed Polygon, are related to the ideas in
[21] on testing K = kg vs. K > kg, in [31] on goodness of fit, and in [30] on estimating K.
However, the focus of these works are on the more idealized model where we don’t have
degree heterogeneity, and how to extend their ideas to the current setting remains unclear.

SUPPLEMENTARY MATERIAL

Additional Results and Technical Proofs. The supplemental material contains the results
not reported in the main article due to space limit and the proofs of all theorems and lemmas.

0.
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