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Given a symmetric social network, we are interested in testing whether
it has only one community or multiple communities. The desired tests should
(a) accommodate severe degree heterogeneity, (b) accommodate mixed-
memberships, (c) have a tractable null distribution, and (d) adapt automat-
ically to different levels of sparsity, and achieve the optimal phase diagram.
How to find such a test is a challenging problem.

We propose the Signed Polygon as a class of new tests. Fixing m≥ 3, for
each m-gon in the network, define a score using the centered adjacency ma-
trix. The sum of such scores is then the m-th order Signed Polygon statistic.
The Signed Triangle (SgnT) and the Signed Quadrilateral (SgnQ) are special
examples of the Signed Polygon.

We show that both the SgnT and SgnQ tests satisfy (a)-(d), and especially,
they work well for both very sparse and less sparse networks. Our proposed
tests compare favorably with existing tests. For example, the EZ and GC tests
behave unsatisfactorily in the less sparse case and do not achieve the optimal
phase diagram. Also, many existing tests do not allow for severe heterogene-
ity or mixed-memberships, and they behave unsatisfactorily in our settings.

The analysis of the SgnT and SgnQ tests is delicate and extremely te-
dious, and the main reason is that we need a unified proof that covers a wide
range of sparsity levels and a wide range of degree heterogeneity. For lower
bound theory, we use a phase transition framework, which includes the stan-
dard minimax argument, but is more informative. The proof uses classical
theorems on matrix scaling.

1. Introduction. Given a symmetrical social network, we are interested in the global
testing problem where we use the adjacency matrix of the network to test whether it has only
one community or multiple communities. A good understanding of the problem is useful for
discovering non-obvious social groups and patterns [5, 14], measuring diversity of individual
nodes [15], determining stopping time in a recursive community detection scheme [32, 43].
It may also help understand other related problems such as membership estimation [42] and
estimation of the number of communities [39, 41].

Natural networks have several characteristics that are ubiquitously found:

• Severe degree heterogeneity. The distribution of the node degrees usually has a power-law
tail, implying severe degree heterogeneity.

• Mixed-memberships. Communities are tightly woven clusters of nodes where we have
more edges within than between [17, 38]. Communities are rarely non-overlapping, and
some nodes may belong to more than one community (and thus have mixed-memberships).

• Sparsity. Many networks are sparse. The sparsity levels may range significantly from one
network to another, and may also range significantly from one node to another (due to
severe degree heterogeneity).
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Phase transition is a well-known optimality framework [13, 22, 33, 37]. It is related to the
minimax framework but can be more informative in many cases. Conceptually, for the global
testing problem, in the two-dimensional phase space with the two axes calibrating the “spar-
sity" and “signal strength," respectively, there is a “Region of Possibility" and a “Region
of Impossibility." In “Region of Possibility," any alternative is separable from the null. In
“Region of Impossibility," any alternative is inseparable from the null.

If a test is able to automatically adapt to different levels of sparsity and separate any given
alternative in the “Region of Possibility" from the null, then we call it “optimally adaptive."

We are interested in finding tests that satisfy the following requirements.

(R1) Applicable to networks with severe degree heterogeneity.
(R2) Applicable to networks with mixed-memberships.
(R3) The asymptotic null distribution is easy to track, so the rejection regions are easy to set.
(R4) Optimally adaptive: We desire a single test that is able to adapt to different levels of

sparsity and is optimally adaptive.

1.1. The DCMM model. We adopt the Degree Corrected Mixed Membership (DCMM)
model [42, 24]. Denote the adjacency matrix by A, where

(1.1) Aij =

{
1, if node i and node j have an edge,
0, otherwise.

Conventionally, self-edges are not allowed so all the diagonal entries of A are 0. In DCMM,
we assume there are K perceivable communities C1,C2, . . . ,CK , and each node is associated
with a mixed-membership weight vector πi = (πi(1), πi(2), . . . , πi(K))′ where for 1≤ k ≤
K and 1≤ i≤ n,

(1.2) πi(k) = the weight node i puts on community k.

Moreover, for aK×K symmetric nonnegative matrix P which models the community struc-
ture, and positive parameters θ1, θ2, . . . , θn which model the degree heterogeneity, we assume
the upper triangular entries of A are independent Bernoulli variables satisfying

(1.3) P(Aij = 1) = θiθj · π′iPπj ≡Ωij , 1≤ i < j ≤ n,

where Ω denotes the matrix ΘΠPΠ′Θ, with Θ being the n×n diagonal matrix diag(θ1, . . . , θn)
and Π being the n×K matrix [π1, π2, . . . , πn]′. For identifiability (see [24] for more discus-
sion), we assume

(1.4) all diagonal entries of P are 1.

When K = 1, (1.4) implies P = 1, and so Ωij = θiθj , 1≤ i, j ≤ n.
Write for short diag(Ω) = diag(Ω11,Ω22, . . . ,Ωnn), and let W be the matrix where for

1≤ i, j ≤ n, Wij =Aij −Ωij if i 6= j and Wij = 0 otherwise. In matrix form, we have

(1.5) A= Ω− diag(Ω) +W, where Ω = ΘΠPΠ′Θ.

DCMM includes three models as special cases, each of which is well-known and has been
studied extensively recently.

• Degree Corrected Block Model (DCBM) [28]. If we do not allow mixed-memberships (i.e.,
each weight vector πi is degenerate with one entry being nonzero), then DCMM reduces
to the DCBM.

• Mixed Membership Stochastic Block Model (MMSBM) [1]. DCBM further reduces to
MMSBM if θ1 = . . . = θn(=

√
αn). In this special cse, Ω = αnΠPΠ′, and for identifi-

ability, (1.4) is too strong, so we relax it to that the average of the diagonals of P is 1.
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• Stochastic Block Model (SBM) [20]. MMSBM further reduces to the classical SBM if
additionally we do not allow mixed-memberships.

Under DCMM, the global testing problem is the problem of testing

(1.6) H
(n)
0 :K = 1 vs. H

(n)
1 :K ≥ 2.

The seeming simplicity of the two hypotheses is deceiving, as both of them are highly com-
posite, consisting of many different parameter configurations.

1.2. Phase transition: a preview of our main results. Let λ1, λ2, . . . , λK be the first K
eigenvalues of Ω, arranged in the descending order in magnitude. We can view (a)

√
λ1

both as the sparsity level and the noise level [23] (i.e., spectral norm of the noise matrix
W ), (b) |λ2| as the signal strength, so that |λ2|/

√
λ1 is the Signal-to-Noise Ratio (SNR),

and (c) |λ2|/λ1 as a measure of dissimilarity between different communities (Example 1
below illustrates why it measures ‘dissimilarity’). We note that [19, 12] also pointed out that
|λ2|/

√
λ1 is a reasonable metric of SNR.

Now, in the two-dimensional phase space where the x-axis is
√
λ1 which measures the

sparsity level, and the y-axis is |λ2|/λ1 which measures the community dissimilarity, we
have two regions.

• Region of Possibility (1�
√
λ1�

√
n, |λ2|/

√
λ1→∞). For any alternative hypothesis in

this region, it is possible to distinguish it from any null hypothesis, by the Signed Polygon
tests to be introduced.

• Region of Impossibility (1�
√
λ1�

√
n, |λ2|/

√
λ1→ 0). In this region, any alternative

hypothesis is inseparable from the null hypothesis, provided with some mild conditions.

See Figure 1 (left panel). Also, see Sections 2 and 3 for our main theorems on Possibility
and Impossibility, respectively. Note that the figure is only for illustration purpose, where the
cases of |λ2|= c0

√
λ1 for some constant c0 > 0 are compressed in the separating boundary of

two regions (red curve). The Signed Polygon test satisfies all requirements (R1)-(R4) above.
Since the test is able to separate all alternatives (ranging from very sparse to less sparse) in
the Region of Possibility from the null, it is optimally adaptive.

Remark 1. A stronger version of the phase transition is that for a constant c0 > 0,
the Region of Possibility and Region of Impossibility are given by |λ2|/

√
λ1 > c0 and

|λ2|/
√
λ1 < c0, respectively. For the broad setting we consider, this is an open problem,

though for some special cases, there are some interesting works (e.g., [19]); see Remark 11.
It is instructive to consider a special DCMM model, which is a generalization of the sym-

metric SBM [36] to the case with degree heterogeneity.
Example 1 (A special DCMM). Let e1, . . . , eK be the standard basis of RK . Fixing a

positive vector θ ∈Rn and a scalar bn ∈ (0,1), we assume
(1.7) P = (1− bn)IK + bn1K1′K , πi are iid sampled from e1, . . . , eK .

In this model, (1− bn) measures the “dissimilarity" between different communities (it quan-
tifies how well we can tell whether two nodes i and j are from the same community or
not; note that bn = 1 corresponds to the null case where all communities are indistinguish-
able) and ‖θ‖ measures the sparsity level. In this model, λ1 ∼ (1 + (K − 1)bn)‖θ‖2 and
λk ∼ (1−bn)‖θ‖2, 2≤ k ≤K . The sparsity level is

√
λ1 � ‖θ‖, the community dissimilarity

is characterized by λ2/λ1 � (1− bn), and the SNR is |λ2|/
√
λ1 � ‖θ‖(1− bn). The Region

of Possibility and Region of Impossibility are given by {1�‖θ‖�
√
n,‖θ‖(1− bn)→∞}

and {1�‖θ‖�
√
n,‖θ‖(1− bn)→ 0}, respectively. See Figure 1 (right panel).

Remark 2. As the phase transition is hinged on λ2/
√
λ1, one may think that the statistic

λ̂2/
√
λ̂1 is optimally adaptive, where λ̂k is the k-th largest (in magnitude) eigenvalue of

A. This is however not true, because the consistency of λ̂2 for estimating λ2 can not be
guaranteed in our range of interest, unless with strong conditions on θmax [23].
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|λ2|
λ1

√

λ1

Impossibility
|λ2|/

√
λ1 → 0

Possibility
|λ2|/

√
λ1 → ∞

(1
-b

n
)

‖θ‖

Impossibility
(1− bn)‖θ‖ → 0

Possibility
(1− bn)‖θ‖ → ∞

FIG 1. Left: Phase transition. In Region of Impossibility, any alternative hypothesis is indistinguishable from
a null hypothesis, provided that some mild conditions hold. In Region of Possibility, the Signed Polygon test is
able to separate any alternative hypothesis from a null hypothesis asymptotically. Right: Phase transition for the
special DCMM model in Example 1, where

√
λ1 � ‖θ‖, |λ2|/λ1 � (1− bn), and |λ2|/

√
λ1 � (1− bn)‖θ‖.

1.3. Literature review, the Signed Polygon, and our contribution. Recently, the global
testing problem has attracted much attention and many interesting approaches have been pro-
posed. To name a few, Mossel et al. [36] and Banerjee and Ma [3] (see also [4]) considered a
special case of the testing problem, where they assume a simple null of Erdos-Renyi random
graph model and a special alternative which is an SBM with two equal-sized communities.
They provided the asymptotic distribution of the log-likelihood ratio within the contiguous
regime. Since the likelihood ratio test statistic is NP-hard to compute, [3] introduced an ap-
proximation by linear spectral statistics. Lei [31] also considered the SBM model and studied
the problem of testing whether K =K0 or K >K0, where K0 is a pre-specified integer. His
approach is based on the Tracy-Widom law of extreme eigenvalues and requires delicate ran-
dom matrix theory. Unfortunately, these works have been focused on the SBM (which allows
neither severe degree heterogeneity nor mixed membership). Therefore, despite the elegant
theory in these works, it remains unclear how to extend their ideas to our settings.

Along a different line, graphlet counts (GC) have been frequently used for hypothesis
testing in non-parametric and parametric network models. This includes the EZ test [16] and
GC test [25]. Other interesting works include [6, 7, 35]. In particular, [25] suggested a general
recipe for constructing test statistics and showed that both GC and EZ tests have competitive
power in a broad setting. Unfortunately, it turns out that in the less sparse case, the variance
of the GC test statistic is much larger than expected, which largely hurts the power of the test.
The underlying reason is that GC tests use non-centered cycle counts. If, however, we use
centered cycle counts, we can largely reduce the variances and have a more powerful test. A
similar phenomenon was discovered by Bubeck et al. [10] for the SBM setting.

This motivate a class of new tests which we call Signed Polygon, including the Signed Tri-
angle (SgnT) and the Signed Quadrilateral (SgnQ). The Signed Polygon statistics are related
to the Signed Cycle statistics, first introduced by Bubeck et al. [10] and later generalized
by Banerjee [2]. Both Signed Polygon and Signed Cycle recognize that using centered-cycle
counts may help reduce the variance, but there are some major differences. The study of
the Signed Cycles has been focused on the SBM and similar models, where under the null,
P(Aij = 1) = α, 1≤ i 6= j ≤ n, and α is the only unknown parameter. In this case, a natural
approach to centering the adjacency matrix A is to first estimate α using the whole matrix
A (say, α̂), and then subtract all off-diagonal entries of A by α̂. However, under the null of
our setting, P(Aij = 1) = θiθj , 1≤ i 6= j ≤ n, and there are n different unknown parameters
θ1, θ2, . . . , θn. In this case, how to center the matrix A is not only unclear but also worrisome,
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especially when the network is very sparse, because we have to use limited data to estimate a
large number of unknown parameters. Also, for any approaches we may have, the analysis is
seen to be much harder than that of the previous case. Note that the ways how two statistics
are defined over the centered adjacency matrix are also different; see Section 1.4 and [10, 2].

In the Signed Polygon, we use a new approach to estimate θ1, θ2, . . . , θn under the null, and
use the estimates to center the matrix A. To our surprise, data limitation (though a challenge)
does not ruin the idea: even for very sparse networks, the estimation errors of θ1, θ2, . . . , θn
only have a negligible effect. The main contributions of the paper are as follows.

• Discover the phase transition for global testing in the broad DCMM setting by identifying
the Regions of Impossibility and Possibility.

• Propose the Signed Polygon as a class of new tests that are appropriate for networks with
severe degree heterogeneity and mixed-memberships.

• Prove that the Signed Triangle and Signed Quadrilateral tests satisfy all the requirements
(R1)-(R4), and especially that they are optimally adaptive and perform well for all net-
works in the Region of Possibility, ranging from very sparse ones to the least sparse ones.

To show the success of the Signed Polygon test for the whole Region of Possibility is very
subtle and extremely tedious. The main reason is that we hope to cover the whole spectrum
of degree heterogeneity and sparsity levels. Crude bounds may work in one case but not
another, and many seemingly negligible terms turn out to be non-negligible (see Sections 1.4
and 4). The lower bound argument is also very subtle. Compared to work on SBM where
there is only one unknown parameter under the null, our null has n unknown parameters.
The difference provides a lot of freedom in constructing inseparable hypothesis pairs, and so
the Region of Impossibility in our setting is much wider than that for SBM. Our construction
of inseparable hypothesis pairs uses theorems on non-negative matrix scaling, a mathematical
area pioneered by Sinkhorn [40] and Olkin [34] among others (e.g., [9, 27]).

1.4. The Signed Polygon statistic. Recall that A is the adjacency matrix of the network.
Introduce a vector η̂ by (1n denotes the vector of 1’s)

(1.8) η̂ = (1/
√
V )A1n, where V = 1′nA1n.

Fixing m ≥ 3, the order-m Signed Polygon statistic is defined by (notation: (dist) is short
for “distinct", which means any two of i1, . . . , im are unequal)

(1.9) U (m)
n =

∑
i1,i2,...,im(dist)

(Ai1i2 − η̂i1 η̂i2)(Ai2i3 − η̂i2 η̂i3) . . . (Aimi1 − η̂im η̂i1).

When m= 3, we call it the Signed-Triangle (SgnT) statistic:

(1.10) Tn =
∑

i1,i2,i3(dist)

(Ai1i2 − η̂i1 η̂i2)(Ai2i3 − η̂i2 η̂i3)(Ai3i1 − η̂i3 η̂i1).

When m= 4, we call it the Signed-Quadrilateral (SgnQ) statistic:

(1.11) Qn =
∑

i1,i2,i3,i4(dist)

(Ai1i2 − η̂i1 η̂i2)(Ai2i3 − η̂i2 η̂i3)(Ai3i4 − η̂i3 η̂i4)(Ai4i1 − η̂i4 η̂i1).

For analysis, we focus on Tn and Qn, but our main results are extendable to general m.
The key to understanding and analyzing the Signed Polygon is the Ideal Signed Polygon.

Introduce a non-stochastic counterpart of η̂ by

(1.12) η∗ = (1/
√
v0) Ω1n, where v0 = 1′nΩ1n.
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Define the order-m Ideal Signed Polygon statistic by

(1.13) Ũ (m)
n =

∑
i1,i2,...,im(dist)

(Ai1i2 − η∗i1η
∗
i2)(Ai2i3 − η

∗
i2η
∗
i3) . . . (Aimi1 − η

∗
imη
∗
i1).

We expect to see that η̂ ≈ E[η̂]≈ η∗. We can view Ũ
(m)
n as the oracle version of U (m)

n , with
η∗ given. We can also view U

(m)
n as the plug-in version of Ũ (m)

n , where we replace η∗ by η̂.
For implementation, it is desirable to rewrite Tn and Qn in matrix forms, which allows us

to avoid using an for-loop and compute much faster (say, in MATLAB or R). For any two
matrices M,N ∈Rn,n, let tr(M) be the trace of M , diag(M) = diag(M11,M22, . . . ,Mnn),
andM ◦N be the Hadamard product ofM andN (i.e.,M ◦N ∈Rn,n, (M ◦N)ij =MijNij).
Denote Ã=A− η̂η̂′. The following theorem is proved in the supplementary material.

THEOREM 1.1. We have Tn = tr(Ã3) − 3tr(Ã ◦ Ã2) + 2tr(Ã ◦ Ã ◦ Ã) and Qn =

tr(Ã4) − 4tr(Ã ◦ Ã3) + 8tr(Ã ◦ Ã ◦ Ã2) − 6tr(Ã ◦ Ã ◦ Ã ◦ Ã) − 2tr(Ã2 ◦ Ã2) + 2 ·
1′n[diag(Ã)(Ã ◦ Ã)diag(Ã)]1n + 1′n[Ã ◦ Ã ◦ Ã ◦ Ã]1n. The complexity of computing both
Tn and Qn is O(n2d̄), where d̄ is the average degree of the network.

Compared to the EZ and GC tests [16, 25], the computational complexity of SgnT and
SgnQ is of the same order.

Remark 3. The computational complexity of U (m)
n remains as O(n2d̄) for larger m. Simi-

larly as that in Theorem 1.1, the main complexity of U (m)
n comes from computing Ãm. Since

we can compute Ãm with Ãm = Ãm−1Ã and recursive matrix multiplications, each time with
a complexity of O(n2d̄), the overall complexity is O(n2d̄).

Remark 4 (Connection to the Signed Cycle). In the more idealized SBM or MMSBM
model, we do not have degree heterogeneity, and Ω = αn1n1

′
n under the null, where αn

is the only unknown parameter. In this simple setting, it makes sense to estimate αn by
α̂n = d̄/(n− 1), where d̄ is the average degree. This gives rise to the Signed Cycle statistics
[2, 10]: C(m)

n =
∑

i1,i2,...,im(dist)(Ai1i2− α̂n)(Ai2i3− α̂n) . . . (Aimi1− α̂n). Bubeck et al. [10]

first proposed C(3)
n for a global testing problem in a model similar to MMSBM. Although

their test statistic is also called the Signed Triangle, it is different from our SgnT statistic
(1.10), because their tests are only applicable to models without degree heterogeneity. The
analysis of the Signed Polygon is also much more delicate than that of the Signed Cycle, as
the error (α̂n − αn) is much smaller than the errors in (η̂− η∗).

It remains to understand (A) how the Signed Polygon manages to reduce variance, and (B)
what are the analytical challenges.

Consider Question (A). We illustrate it with the Ideal Signed Polygon (1.13) and the null
case. In this case, Ω = θθ′. It is seen η∗ = θ, Aij − η∗i η∗j = Aij − Ωij =Wij , for i 6= j (see

(1.5) for definition of W ), and so Ũ (m)
n =

∑
i1,i2,...,im(dist)Wi1i2Wi2i3 . . .Wimi1 . Here, each

term is an m-product of independent centered Bernoulli variables, and Wi1i2Wi2i3 . . .Wimi1

and Wi′1i
′
2
Wi′2i

′
3
. . .Wi′mi

′
1

are correlated only when {i1, i2, . . . , im} and {i′1, i′2, . . . , i′m} are
the vertices of the same polygon. Such a construction is known to be efficient in variance
reduction (e.g., [10]).

In comparison, for an order-mGC statistic [25],N (m)
n =

∑
i1,i2,...,im(dist)Ai1i2Ai2i3 . . .Aimi1

is the main term. Since here the Bernoulli variables are not centered, we can split N (m)
n into

two uncorrelated terms: N (m)
n = Ũ

(m)
n + (N

(m)
n − Ũ (m)

n ). Compared to the Signed Polygon,
the additional variance comes from the second term, which is undesirably large in the less
sparse case [29].
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Remark 5. The above also explains why the order-2 Signed Polygon does not work well.
In fact, when m= 2, Ũ (m)

n =
∑

i1 6=i2 W
2
i1i2

under the null, which has an unsatisfactory vari-
ance due to the square of the W -terms.

Consider Question (B). We discuss with the SgnQ statistic. Recall that η∗ is a non-
stochastic proxy of η̂. For any 1≤ i, j ≤ n and i 6= j, we decompose η∗i η

∗
j − η̂iη̂j = δij + rij ,

where δij is the main term, which is a linear function of η̂i and η̂j , and rij is the remainder
term. Introduce

(1.14) Ω̃ = Ω− η∗(η∗)′.

We have Aij − η̂iη̂j = Ω̃ij + Wij + δij + rij . After inserting this into Qn, each 4-product
is now the product of 4 bracketed terms, where each bracketed term is the sum of 4 terms.
Expanding the brackets and re-organizing, Qn splits into 4× 4× 4× 4 = 256 post-expansion
sums, each having the form

∑
i1,i2,i3,i4(dist) ai1i2bi2i3ci3i4di4i1 , where a is a generic term

which can be equal to either of the four terms Ω̃,W , δ, and r; same for b, c and d. While some
of these terms may be equal to each other, the symmetry we can exploit is limited, due to (a)
degree heterogeneity, (b) mixed-memberships, and (c) the underlying polygon structure. As
a result, we still have more than 50 post-expansion sums to analyze.

The analysis of a post-expansion sum with the presence of one or more r-term is the most
tedious of all, where we need to further decompose each r-term into three different terms.
This requires analysis of more than 100 additional post-expansion sums. We may think most
of the post-expansion sums are easy to control via a crude bound (e.g., by Cauchy-Schwarz
inequality). Unfortunately, this is not the case, and many seemingly negligible terms turn out
to be non-negligible. Here are some of the reasons.

• We wish to cover most interesting cases. A crude bound may be enough for some cases
but not for others.

• We desire to have a single test that achieves the phase transition for the whole range of
interest. Alternatively, we may want to find several tests, each covering a subset of cases
of interest, but this is less appealing.

As a result, we have to analyze a large number of post-expansion sums, where the analysis
is subtle, extremely tedious, and error-prone, involving delicate combinatorics, due to the
underlying polygon structure. See Section 4.

Remark 6. In Signed Polygon (1.9), we estimate Ω by η̂η̂′ = (1′nA1n)−1A1n1
′
nA for

the null. Alternatively, we may use a spectral approach and estimate Ω by λ̂1ξ̂1ξ̂
′
1, where λ̂1

and ξ̂1 are the first eigenvalue and eigenvector of A, respectively. Unfortunately, even in the
more idealized SBM case, this estimate may be unsatisfactory for sparse networks (e.g., [11,
Section 2.2]). In fact, for our main results to hold, we need to have |λ̂1 − λ1| ≤ C‖θ‖ with
large probability, but the best concentration inequality we have is |λ̂1− λ1| ≤C

√
θmax‖θ‖1

with large probability [24, Lemma C.1]. In the presence of severe degree heterogeneity, we
often have

√
θmax‖θ‖1 � ‖θ‖. Also, unlike η̂η̂′ in our proposal, λ̂1ξ̂1ξ̂

′
1 is not an explicit

function of A, so the alternative version of the Signed Polygon statistic is much harder to
analyze.

1.5. Organization of the paper. Section 2 focuses on the Region of Possibility and con-
tains the upper bound argument. Section 3 focuses on the Region of Impossibility and con-
tains the lower bound argument. Section 4 presents the key proof ideas, with the proof of
secondary lemmas deferred to the supplementary material. Section 5 presents the numerical
study, and Section 6 discusses extensions and connections.

For any q > 0 and θ ∈ Rn, ‖θ‖q denotes the `q-norm of θ (when q = 2, we drop the
subscript for simplicity). Also, θmin and θmax denote min{θ1, . . . , θn} and max{θ1, . . . , θn},
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respectively. For any n > 1, 1n ∈ Rn denotes the vector of 1’s. For two positive sequences
{an}∞n=1 and {bn}∞n=1, we write an ∼ bn if limn→∞ an/bn = 1, and we write an � bn if
for sufficiently large n, there are two constants c2 > c1 > 0 such that c1 ≤ an/bn ≤ c2. We
use

∑
i1,i2,...,im(dist) to denote the sum over all (i1, . . . , im) such that 1≤ ik ≤ n and ik 6= i`

for 1 ≤ k 6= ` ≤m. We use C > 0 as a generic constant that may vary from occurrence to
occurrence. For constants that need to be more specific, we use c0, c1, etc.

2. The Signed Polygon test and the upper bound. For reasons aforementioned, we
focus on the SgnT statistic Tn and SgnQ statistic Qn, but the ideas are extendable to general
Signed Polygon statistics. In this section, we study the upper bound. In detail, in Section 2.1,
we establish the asymptotic normality of both test statistics. In Sections 2.2-2.3, we discuss
the power of the two tests. We show that if |λ2|/

√
λ1→∞ and some mild regularity con-

ditions hold, then for each of the two tests, the sum of Type I and Type II errors tends to 0
as n→∞. The lower bound is studied in Section 3, where we show that for an alternative
hypothesis setting with |λ2|/

√
λ1→ 0, we can always pair it with a null setting so that two

hypotheses are asymptotically inseparable.
In a DCMM model, Ω = ΘΠPΠ′Θ, where Θ = diag(θ1, . . . , θn), and Π is the n × K

membership matrix [π1, π2, . . . , πn]′. We assume as n→∞,

(2.15) ‖θ‖→∞, θmax→ 0, and (‖θ‖2/‖θ‖1)
√

log(‖θ‖1)→ 0.

The first condition is necessary. In fact, if ‖θ‖ → 0, then the alternative is indistinguish-
able from the null, as suggested by lower bounds in Section 3. The second one is mild
as we usually assume θmax ≤ C . This is due to that under DCMM, P has unit diagonal
entries and θiθj(π

′
iPπj) is a probability for all i 6= j. The last one is weaker than that

of θmax
√

log(n)→ 0, and is very mild. It is assumed mostly for technical reasons and is
not required in many cases (e.g, the dense case where all θi = O(1)). Moreover, introduce
G= ‖θ‖−2Π′Θ2Π ∈RK×K . This matrix is properly scaled and it can be shown that ‖G‖ ≤ 1
(Appendix E, supplemental material). When the null is true, K = P =G= 1, and we do not
need any additional condition. When the alternative is true, we assume

(2.16)
max1≤k≤K{

∑n
i=1 θiπi(k)}

min1≤k≤K{
∑n

i=1 θiπi(k)}
≤C, ‖G−1‖ ≤C, ‖P‖ ≤C;

Here, C > 0 is a generic constant; see Section 1.5. The conditions are mild. Take the first
two for example. When there is no mixed membership, they only require the K classes to be
relatively balanced.

2.1. Asymptotic normality of the null. Theorems 2.1-2.2 are proved in the supplement.

THEOREM 2.1 (Limiting null of the SgnT statistic). Consider the testing problem
(1.6) under the DCMM model (1.1)-(1.4), where the condition (2.15) is satisfied. Sup-
pose the null hypothesis is true. As n → ∞, E[Tn] = o(‖θ‖3), Var(Tn) ∼ 6‖θ‖6, and
(Tn −E[Tn])/

√
Var(Tn)−→N(0,1) in law.

THEOREM 2.2 (Limiting null of the SgnQ statistic). Consider the testing problem
(1.6) under the DCMM model (1.1)-(1.4), where the condition (2.15) is satisfied. Suppose
the null hypothesis is true. As n→∞, E[Qn] = (2 + o(1))‖θ‖4, Var(Qn) ∼ 8‖θ‖8, and
(Qn −E[Qn])/

√
Var(Qn)−→N(0,1) in law.

Note that under the null, the limiting distributions of Tn/
√

Var(Tn) and Qn/
√

Var(Qn)

are N(0,1) and N(1/
√

2,1), respectively. To appreciate the difference, recall that the Signed
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Polygon can be viewed as a plug-in statistic, where we replace η∗ in the Ideal Signed Polygon
by η̂. Under the null, the effect of the plug-in is negligible for SgnT but not for SgnQ, so the
two limiting distributions are different. See Section 4 for details.

2.2. The level-α SgnT and SgnQ tests. By Theorems 2.1 and 2.2, the null variances of
the two statistics depend on ‖θ‖2. To use the two statistics as tests, we need to estimate ‖θ‖2.
For η̂ and η∗ defined in (1.8) and (1.12), respectively, we have η̂ ≈ η∗ and η∗ = θ under the
null. A reasonable estimator for ‖θ‖2 under the null is therefore ‖η̂‖2. We propose to estimate
‖θ‖2 with (‖η̂‖2 − 1), which corrects the bias and is slightly more accurate than ‖η̂‖2. The
following lemma is proved in the supplementary material.

LEMMA 2.1 (Estimation of ‖θ‖2). Consider the testing problem (1.6) under the DCMM
model (1.1)-(1.4), where the condition (2.15) holds when either hypothesis is true and con-
dition (2.16) holds when the alternative is true. Then, under both hypotheses, as n→∞
(‖η̂‖2 − 1)/‖η∗‖2 → 1 in probability, where ‖η∗‖2 = (1′nΩ21n)/(1′nΩ1n). Furthermore,
‖η∗‖2 = ‖θ‖2 under H(n)

0 and ‖η∗‖2 � ‖θ‖2 under H(n)
1 .

Combining Lemma 2.1 with Theorem 2.1 gives

(2.17) Tn/
√

6(‖η̂‖2 − 1)3 −→ N(0,1), in law.

Fix α ∈ (0,1). We propose the following SgnT test, which is a two-sided test where we reject
the null hypothesis if and only if

(2.18) |Tn| ≥ zα/2
√

6(‖η̂‖2 − 1)3/2, zα/2: upper (α/2)-quantile of N(0,1).

Similarly, combining Theorem 2.2 and Lemma 2.1, we have

(2.19) [Qn − 2(‖η̂‖2 − 1)2]/
√

8(‖η̂‖2 − 1)4 −→ N(0,1), in law.

With the same α, we propose the following SgnQ test, which is a one-sided test where we
reject the null hypothesis if and only if

(2.20) Qn ≥
(
2 + zα

√
8
)
(‖η̂‖2 − 1)2, zα: upper α-quantile of N(0,1).

As a result, for both tests we just defined, the levels satisfy

PH(n)
0

(Reject the null)→ α, as n→∞.

Figure 2 shows the histograms of Tn/
√

6(‖η̂‖2 − 1)3 (left) and (Qn − 2(‖η̂‖2 −
1)2)/(

√
8(‖η̂‖2 − 1)4) (right) under a null and an alternative simulated from DCMM. Recall

that in DCMM, Ω = θθ′ under the null and Ω = ΘΠPΠΘ, where Θ = diag(θ1, . . . , θn). For
the null, we take n= 2000 and draw θi from Pareto(12,3/8) and scale θ to have an `2-norm
of 8. For the alternative, we let (n,K) = (2000,2), P be the matrix with 1 on the diagonal
and 0.6 on the off-diagonal, rows of Π equal to {1,0} and {0,1} half by half, and with the
same θ as in the null but (to make it harder to separate from the null) rescaled to have an
`2-norm of 9. The results confirm the limiting null of N(0,1) for both tests.

2.3. Power analysis of the SgnT and SgnQ tests. The matrices Ω and Ω̃ play a key role in
power analysis. Recall that Ω is defined in (1.3) where rank(Ω) =K , and Ω̃ = Ω− η∗(η∗)′
is defined in (1.14) with η∗ = Ω1n/

√
1′nΩ1n as in (1.12). Recall that λ1, λ2, . . . , λK are

the K nonzero eigenvalues of Ω. Let ξ1, ξ2, . . . , ξK be the corresponding eigenvectors. The
following theorems are proved in the supplemental material.
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FIG 2. Left: histograms of the SgnT test statistics in (2.17) for the null (blue) and the alternative (yellow). Em-
pirical mean and SD under the null: 0.04 and 0.94. Right: same but for SgnQ test statistic in (2.19). Empirical
mean and SD under the null: −0.02 and 0.92. Repetition: 1000 times. See setting details in the main text.

THEOREM 2.3 (Limiting behavior the SgnT statistic (alternative)). Consider the testing
problem (1.6) under the DCMM model (1.1)-(1.4). Suppose the alternative hypothesis is true,
and the conditions (2.15)-(2.16) hold. As n→∞, E[Tn] = tr(Ω̃3) + o((|λ2|/λ1)3‖θ‖6) +
o(‖θ‖3) and Var(Tn)≤C

(
‖θ‖6 + (λ2/λ1)4‖θ‖4‖θ‖63

)
.

THEOREM 2.4 (Limiting behavior of the SgnQ statistic (alternative)). Consider the test-
ing problem (1.6) under the DCMM model (1.1)-(1.4). Suppose the alternative hypothesis is
true and the conditions (2.15)-(2.16) hold. As n→∞, E[Qn] = tr(Ω̃4)+o((λ2/λ1)4‖θ‖8)+
o(‖θ‖4) and Var(Qn)≤C

(
‖θ‖8 +C(λ2/λ1)6‖θ‖8‖θ‖63

)
.

We conjecture that both Tn and Qn are asymptotically normal under the alternative. In
fact, asymptotic normality is easy to establish for the Ideal SgnT and Ideal SgnQ. To establish
results for the real SgnT and real SgnQ, we need very precise characterization of the plug-in
effect. For reasons of space, we leave them to the future.

Consider the SgnT test (2.18) first. By Theorem 2.3 and Lemma 2.1, under the alternative,

(2.21) the mean and variance of Tn√
6(‖η̂‖2−1)3

are tr(Ω̃3)√
6‖η∗‖6

and σ2
n, respectively,

where σ2
n denotes the asymptotic variance, which satisfies that

(2.22) σ2
n ≤

{
C, if |λ2/λ1| �

√
‖θ‖/‖θ‖33,

C(λ2/λ1)4 · (‖θ‖63/‖θ‖2), if |λ2/λ1| �
√
‖θ‖/‖θ‖33.

If we fix the degree heterogeneity vector θ and let (λ2/λ1) range, there is a phase change in
the variance. We shall call:

• the case of |λ2/λ1| ≤C
√
‖θ‖/‖θ‖33 as the weak signal case for SgnT.

• the case of |λ2/λ1| �
√
‖θ‖/‖θ‖33 as the strong signal case for SgnT.

It remains to derive a more explicit formula for tr(Ω̃3). Recall that λk and ξk are the k-th
eigenvalue and eigenvector of Ω, 1 ≤ k ≤ K , respectively. Define Λ ∈ R(K−1)×(K−1) and
h ∈ RK−1 by Λ = diag(λ2, λ3, . . . , λK) and hk = (1′nξk+1)/(1′nξ1), 1≤ k ≤K − 1. It can
be shown that 1′nξ1 6= 0 and ‖h‖∞ ≤C so the vector h is well-defined. In the special case of
‖h‖∞ = o(1) (this happens when the angle between 1n and ξ1 is small):

• We can show that tr(Ω̃3)≈
∑K

k=2 λ
3
k.

• Motivated by these, we say “signal cancellation" happens when |tr(Ω̃3)| �
∑K

k=2 |λk|3.
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Therefore, “signal cancellation" may happen if the (K − 1) eigenvalues λ2, λ3, . . . , λK have
different signs. In fact, in the extreme case, we can have

∑K
k=2 λ

3
k = 0, though

∑K
k=2 |λk|3

is very large (e.g., [25, Section 3.3]). Normally, the “signal cancellation" is found for odd-
order moment-based statistics (e.g., 3rd, 5th, . . ., moment), but not for even-order moment
methods (in fact, the SgnQ test won’t experience such “signal cancellation").

Fortunately, “signal cancellation" is only possible when λ2, λ3, . . . , λK have different
signs, and can be avoided in some special cases. We propose the following conditions.

CONDITION 2.1. (a) λ2, λ3, . . . , λK have the same signs, (b) K = 2, and (c) |λ2|/λ1→
0, and |tr(Λ3) + 3h′Λ3h+ 3(h′Λh)(h′Λ2h) + (h′Λh)3| ≥C

∑K
k=2 |λk|3.

In (a)-(b), λ2, . . . , λK have the same signs. Condition (c) is based on more delicate analy-
sis; see the proof of Lemma 2.2 for details.

While the above discussion is motivated by the case of ‖h‖∞ = o(1), the idea continues
to be valid for more general cases. The following is proved in the supplementary material.

LEMMA 2.2 (Analysis of tr(Ω̃3)). Suppose conditions of Theorem 2.3 hold. Under the
alternative hypothesis,

• If |λ2|/λ1→ 0, then tr(Ω̃3) = tr(Λ3) + 3h′Λ3h+ 3(h′Λh)(h′Λ2h) + (h′Λh)3 +o(|λ2|3).
• If λ2, λ3, . . . , λK have the same signs, then

|tr(Ω̃3)| ≥

{∑K
k=2 |λk|3 + o(|λ2|3), if |λ2/λ1| → 0,

C|λ2|3, if |λ2/λ1| ≥C.

• In the special case where K = 2, the vector h is a scalar, and

|tr(Ω̃3)|

{
= [(h2 + 1)3 + o(1)] · |λ2|3, if |λ2|/λ1→ 0,

≥C|λ2|3, if |λ2/λ1| ≥C.

As a result, when either one of (a)-(c) holds, |tr(Ω̃3)| ≥C
∑K

k=2 |λk|3.

It can be shown ‖η∗‖ �
√
λ1 � ‖θ‖. We combine Lemma 2.2 with (2.21)-(2.22). In

the weak signal case, E[Tn]√
Var(Tn)

≥ C(
∑K

k=2 |λk|3)
‖θ‖3 ≥ C

(
λ
− 3

2

1

∑K
k=2 |λk|3

)
. In the strong signal

case, since (λ2/λ1)2 ≤ λ−2
1 (
∑K

k=2 |λk|3)
2

3 , we have E[Tn]√
Var(Tn)

≥ C(
∑K

k=2 |λk|3)

λ−2
1 (

∑K
k=2 |λk|3)

2
3 ‖θ‖33‖θ‖2

≥
C‖θ‖3
‖θ‖33

(
λ
− 3

2

1

∑K
k=2 |λk|3

) 1

3 , where it should be noted that in our setting, ‖θ‖3/‖θ‖33→∞. As

a result, in both cases, the power of the SgnT test → 1 as long as λ−3/2
1

∑K
k=2 |λk|3→∞.

This is validated in the following theorem, which is proved in the supplemental material.

THEOREM 2.5 (Power of the SgnT test). Under the conditions of Theorem 2.3, for any
fixed α ∈ (0,1), consider the SgnT test in (2.18). Suppose one of the cases in Condition 2.1
holds. As n→∞, if λ−1/2

1

(∑K
k=2 |λk|3

)1/3→∞, then the Type I error → α, and the Type
II error→ 0.

Next, consider the SgnQ test (2.20). By Theorem 2.4 and Lemma 2.1, under the alternative,
the mean and variance of [Qn−2(‖η̂‖2−1)2]/

√
8(‖η̂‖2 − 1)4 are tr(Ω̃4)/

√
8‖η∗‖8 and σ2

n,
respectively, where σ2

n denotes the asymptotic variance and satisfies

σ2
n ≤

{
C, if |λ2/λ1| � ‖θ‖−1

3 ,

C(λ2/λ1)6 · ‖θ‖63, if |λ2/λ1| � ‖θ‖−1
3 .
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Similar to the SgnT test, if we fix the degree heterogeneity vector θ and let (λ2/λ1) range,
there is a phase change in the variance. We shall call:

• the case of |λ2/λ1| ≤C‖θ‖−1
3 as the weak signal case for SgnQ.

• the case of |λ2/λ1| � ‖θ‖−1
3 as the strong signal case for SgnQ.

We now analyze tr(Ω̃4). The following lemma is proved in the supplementary material.

LEMMA 2.3 (Analysis of tr(Ω̃4)). Suppose the conditions of Theorem 2.4 hold. Under
the alternative hypothesis,

• If |λ2|/λ1 → 0, then tr(Ω̃4) = tr(Λ4) + (q′Λq)4 + 2(h′Λ2h)2 + 4(h′Λh)2(h′Λ2h) +
4h′Λ4h+ 4(h′Λh)(h′Λ3h) + o(λ4

2) &
∑4

k=2 λ
4
k.

• If |λ2|/λ1 ≥C , then tr(Ω̃4)≥C
∑K

k=2 λ
4
k.

• In the special case of K = 2, h is a scalar and tr(Ω̃4) = [(h2 + 1)4 + o(1)] · λ4
2.

As a result, the SgnQ test has no issue of “signal cancellation", and it always holds that
tr(Ω̃4) ≥ C

∑K
k=2 λ

4
k. Then, in the weak signal case, we have E[Qn]√

Var(Qn)
≥ C(

∑K
k=2 λ

4
k)

‖θ‖4 ≥

C
(
λ−2

1

∑K
k=2 λ

4
k

)
. In the strong signal case, since (λ2/λ1)3 ≤ λ−3

1 (
∑K

k=2 λ
4
k)

3

4 , we have
E[Qn]√
Var(Qn)

≥ C(
∑K

k=2 λ
4
k)

λ−3
1 (

∑K
k=2 λ

4
k)

3
4 ‖θ‖33‖θ‖4

≥ C‖θ‖3
‖θ‖33

(
λ−2

1

∑K
k=2 λ

4
k

) 1

4 , where ‖θ‖3/‖θ‖33→∞. So, in

both cases, the power of the SgnQ test goes to 1 if λ−2
1

∑K
k=2 λ

4
k→∞. This is validated in

Theorem 2.6, which is proved in the supplemental material.

THEOREM 2.6 (Power of the SgnQ test). Under the conditions of Theorem 2.4, for any
fixed α ∈ (0,1), consider the SgnQ test in (2.20). As n→∞, if λ−1/2

1

(∑K
k=2 λ

4
k

)1/4→∞,
then the Type I error→ α, and the Type II error→ 0.

In summary, Theorem 2.5 and Theorem 2.6 imply that as long as

(2.23) |λ2|/
√
λ1→∞,

the levels of SgnT and SgnQ tests tend to α as expected, and their powers tend to 1. The
SgnT test requires mild conditions to avoid “signal cancellation", but the SgnQ test has no
such issue (such an advantage of SgnQ test is confirmed by numerical study in Section 5).

Remark 7. Practically, we prefer to fix α, say, α= 5%. If we allow the level α to change
with n, then when (2.23) holds, there is a sequence of αn that tends to 0 slowly enough such
that |λ2|/(zαn/2 ·

√
λ1)→∞. As a result, for either of the two tests, the Type I error→ 0 and

the power→ 1, so the sum of Type I and Type II errors→ 0.
Example 1 (contd). For this example, λ1 ∼ (1 + (K − 1)bn)‖θ‖2, and λk ∼ (1 −

bn)‖θ‖2, k = 2,3, . . . ,K . The condition (2.23) of |λ2|/
√
λ1 → ∞ translates to (1 −

bn)‖θ‖→∞. See Section 1.2 and also Section 3 for more discussion.

3. Optimal adaptivity, lower bound, and Region of Impossibility. We now focus on
the Region of Impossibility, where |λ2|/

√
λ1→ 0. We first present a standard minimax lower

bound, from which we can conclude that there is a sequence of hypothesis pairs (one alterna-
tive and one null) that are asymptotically indistinguishable. However, this does not answer the
question whether all alternatives in the Region of Impossibility are indistinguishable from
the null. To answer this question, we need much more sophisticated study; see Section 3.2.
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3.1. Minimax lower bound. Given an integer K ≥ 1, a constant c0 > 0, and two posi-
tive sequences {αn}∞n=1 and {βn}∞n=1, we define a class of parameters for DCMM (recall
that Ω = ΘΠPΠ′Θ, G = ‖θ‖−2Π′Θ2Π and is properly scaled, and λk is the k-th largest
eigenvalue of Ω in magnitude):

Mn(K,c0, αn, βn) =

{
(θ,Π, P ) : θmax ≤ βn,‖θ‖−1 ≤ βn,‖θ‖2‖θ‖−1

1

√
log(‖θ‖1)≤ βn,

maxk{
∑n

i=1 θiπi(k)}
mink{

∑n
i=1 θiπi(k)} ≤ c0,‖G−1‖ ≤ c0, |λ2|/

√
λ1 ≥ αn

}
.

For the null case, K = P = πi = 1, and the above defines a class of θ, which we write for
short byMn(1, c0, αn, βn) =M∗n(βn).

THEOREM 3.1 (Minimax lower bound). Fix K ≥ 2, a constant c0 > 0, and any se-
quences {αn}∞n=1 and {βn}∞n=1 such that αn→ 0 and βn→ 0 as n→∞. Then, as n→∞,

inf
ψ

{
sup

θ∈M∗n(βn)
P(ψ = 1) + sup

(θ,Π,P )∈Mn(K,c0,αn,βn)
P(ψ = 0)

}
→ 1,

where the infimum is taken over all possible tests ψ.

Theorem 3.1 says that in the Region of Impossibility, there exists a sequence of alternatives
that are inseparable from the null. This does not show what we desire, that is any sequence in
the Region of Impossibility is inseparable from the null. This is discussed in the next section.

3.2. Region of Impossibility. Recall that under DCMM, Ω = ΘΠPΠ′Θ and Π =
[π1, π2, . . . , πn]′. Since our model is a mixed-membership latent variable model, in order
to characterize the least favorable configuration, it is conventional to use a random mixed-
membership (RMM) model for the matrix Π, while (Θ, P ) are still non-stochastic. In detail,

• Let V = {x ∈RK , xk ≥ 0,
∑K

k=1 xk = 1}.
• Let V0 = {e1, e2, . . . , eK}, where ek is the k-th Euclidean basis vector.

In DCMM-RMM, we fix a distribution F defined over V and assume πi
iid∼ F where

h ≡ E[πi]. If we further restrict that F is defined over V0, then the network has no mixed-
membership, and DCMM-RMM reduces to DCBM-RMM.

The desired result is to show that, for any given P and F , there is a sequence of hypothesis
pairs (a null and an alternative)

(3.24) H
(n)
0 : Ω = θθ′, and H

(n)
1 : Ω = Θ̃ΠPΠ′Θ̃,

where Θ̃ = diag(θ̃1, θ̃1, . . . , θ̃n) and θ̃i can be different from θi, such that the two hypotheses
within each pair are asymptotically indistinguishable from each other, provided that under
the alternative |λ2|/

√
λ1→ 0.

Here, since Ω depends on πi, λk is random, and it is more convenient to translate the
condition of |λ2|/

√
λ1→ 0 to the condition of

(3.25) ‖θ‖ · |µ2(P )| → 0,

where µk(P ) is the k-th largest eigenvalue of P in magnitude. The equivalence of two con-
ditions are justified in Appendix F.1 of the supplement. Condition (2.16) can also be ensured
with high probability, by assuming that all entries of E[πi] are at the order of O(1).

Under the DCBM, the desired result can be proved satisfactorily. The key is the following
lemma, which is in the line of Sinkhorn’s beautiful work on scalable matrices [40] (see also
[9, 27, 34]) and is proved in the supplement.
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LEMMA 3.1. Fix a matrix A ∈ RK,K with strictly positive diagonal entries and non-
negative off-diagonal entries, and a strictly positive vector h ∈ RK , there exists a diagonal
matrix D = diag(d1, d2, . . . , dK) such that DADh= 1K and dk > 0, 1≤ k ≤K .

In detail, consider a DCBM-RMM setting where πi
iid∼ F and F is supported over V0 (with

possibly unequal probabilities on the K points). Recall h= E[πi]. By Lemma 3.1, there is a
unique diagonal matrix D such that DPDh= 1K . Let

(3.26) θ̃i = dk · θi, if πi = ek, 1≤ i≤ n, 1≤ k ≤K.
The following theorem is proved in the supplementary material.

THEOREM 3.2 (Region of Impossibility (DCBM)). Fix K > 1 and a distribution F de-
fined over V0. Consider a sequence of DCBM model pairs indexed by n:

H
(n)
0 : Ω = θθ′ and H

(n)
1 : Ω = Θ̃ΠPΠ′Θ̃,

where πi
iid∼ F and Θ̃ = diag(θ̃1, θ̃2, . . . , θ̃n) with θ̃i defined as in (3.26). If θmax ≤ c0 for

a constant c0 < 1, min1≤k≤K{hk} ≥ C , and ‖θ‖ · |µ2(P )| → 0, then for each pair of two
hypotheses, the χ2-distance between the two joint distributions tends to 0, as n→∞.

To generalize this to RMM-DCMM, we fix a distribution F defined over V . Given a set of
(Θ, P,Π) with Θ = diag(θ1, θ2, . . . , θn) and πi

iid∼ F , let h̃D = E[D−1πi/‖D−1πi‖1] for any
diagonal matrix D ∈RK×K with positive diagonals. We assume that there is a D such that

(3.27) DPDh̃D = 1K , min
1≤k≤K

{h̃D,k} ≥C.

When such a D exists, we let

(3.28) θ̃i = θi/‖D−1πi‖1, 1≤ i≤ n.
When the support of F is restricted to V0, all realizations of πi are degenerate (i.e., one entry
is 1, and other entries are 0), so h̃D = h, θ̃i is the same as that in (3.26), and (3.27) holds
by Lemma 3.1. Under DCMM-RMM, πi’s are not degenerate. We conjecture that (3.27)
continues to hold generally (we can show it for the cases of K = 2,3; the proof is elementary
so is omitted). The following theorem is proved in the supplementary material.

THEOREM 3.3 (Region of Impossibility (DCMM)). Fix K > 1 and a distribution F
defined over V . Consider a sequence of DCMM model pairs indexed by n:

H
(n)
0 : Ω = θθ′ and H

(n)
1 : Ω = Θ̃ΠPΠ′Θ̃,

where πi
iid∼ F and Θ̃ = diag(θ̃1, θ̃2, . . . , θ̃n) with θ̃i defined as in (3.28). If (3.27) holds,

θmax ≤ c0 for a constant c0 < 1, and ‖θ‖ · |µ2(P )| → 0, then for each pair of two hypotheses,
the χ2-distance between the two joint distributions tends to 0, as n→∞.

One of the main strengths of Theorems 3.2-3.3 is that this lower bound is valid for an
arbitrary choice of θ ∈Rn+. This is stronger than the standard minimax lower bound.

In Theorem 3.3, we try to be as general as we can so Π is given (and we are not allowed
to change it in our construction). For any P and F , by Lemma 3.1, there is a unique positive
diagonal matrix D such that DPDh= 1K where h= E[πi]. We now consider a special case
where we allow Π to depend on D in our construction. In this case, Condition (3.27) can be
removed. Let Π̃ = [π̃1, π̃2, . . . , π̃n]′ and Θ̃ = diag(θ̃1, θ̃2, . . . , θ̃n), with

(3.29) π̃i =Dπi/‖Dπi‖1, θ̃i = ‖Dπi‖1 · θi.



15

THEOREM 3.4 (Region of Impossibility (DCMM with flexible Π)). Fix K > 1 and a
distribution F defined over V . Consider a sequence of DCMM model pairs indexed by n:
H

(n)
0 : Ω = θθ′ and H(n)

1 : Ω = Θ̃Π̃P Π̃′Θ̃, where Π̃ and Θ̃ are defined as in (3.29). If θmax ≤
c0 for a constant c0 < 1, min1≤k≤K{hk} ≥ C , and ‖θ‖ · |µ2(P )| → 0, then for each pair of
two hypotheses, the χ2-distance between the two joint distributions tends to 0, as n→∞.

Finally, we consider the case where we require that the null and the alternative have per-
fectly matching Θ matrix (up to an overall scaling). This is especially of interest when we
consider SBM or MMSBM models where we have little freedom in choosing the Θ matrix.
In this case, in order that the two hypotheses are indistinguishable, the expected node degrees
under the alternative have to match those under the null. For each 1≤ i≤ n, conditional on πi
and neglecting the effect of no self edges, the expected degree of node i equals to ‖θ‖1 ·θi and

‖θ‖1 · (π′iPh) · θi under the null and under the alternative, respectively, where {πj}j 6=i
iid∼ F

and h= E[πj ]. For the expected degrees to match under any realized πi, it is necessary that

(3.30) Ph= qn1K , for some scaling parameter qn > 0.

THEOREM 3.5 (Region of Impossibility (DCMM with matching Θ)). Fix K > 1 and
a distribution F defined over V . Consider a sequence of DCMM model pairs indexed by
n: H(n)

0 : Ω = qn · θθ′ and H(n)
1 : Ω = ΘΠPΠ′Θ, where Θ = diag(θ1, θ2, . . . , θn), πi

iid∼ F ,
and (P,h, qn) satisfy (3.30). If θmax ≤ c0 for a constant c0 < 1, min1≤k≤K{hk} ≥ C , and
‖θ‖ · |µ2(P )| → 0, then for each pair of two hypotheses, the χ2-distance between the two
joint distributions tends to 0, as n→∞.

Theorems 3.4-3.5 are proved in the supplementary material.
Example 1 (contd). In Example 1, πi is drawn from e1, e2, . . . , eK with equal probabil-

ities, and P = (1 − bn)IK + bn1K1′K . Therefore, h = E[πi] = (1/K)1K . In this case, all
conditions of Theorem 3.5 hold. Note qn = (1/K) + (K − 1)bn/K and µ2(P ) = (1− bn).

Remark 8 (Least favorable configuration of LDA-DCMM). The Dirichlet model is often
used for mixed-memberships [1]. Consider the model pairs H(n)

0 : Ω = qnθθ
′ and H

(n)
1 :

Ω = ΘΠPΠ′Θ and where πi
iid∼ Dir(α) (Dir(α): Dirichlet distribution with parameters α=

(α1, . . . , αK)′). By Theorem 3.5, as long as Pα∝ 1K , the null and alternative hypotheses are
asymptotically indistinguishable if (1− qn)‖θ‖ → 0. One can easily construct P such that
Pα∝ 1K . For example, P = (1− qn)MM ′ + qn1K1′K , where M ∈ RK×(K−1) is a matrix
whose columns are from Span⊥(α) and satisfy diag(MM ′) = IK .

3.3. Optimal adaptivity. Recall that
√
λ1, |λ2|/λ1, and |λ2|/

√
λ1 can be viewed as a

measure for the sparsity, community dissimilarity, and SNR, respectively. Combining Theo-
rems 2.1-2.4, Theorems 3.2-3.5, and Remark 7 in Section 2.3, in the two-dimensional phase
space where the x-axis is

√
λ1 and the y-axis is the |λ2|/λ1, we have a partition to two

regions, the Region of Possibility and the Region of Impossibility.

• Region of Impossibility (1�
√
λ1�

√
n, |λ2|/

√
λ1 = o(1)). In this region, any DCBM

alternative is asymptotically inseparable from the null, and up to a mild condition, any
DCMM alternative is also asymptotically inseparable from the null.

• Region of Possibility (1�
√
λ1�

√
n, |λ2|/

√
λ1→∞). In this region, asymptotically,

any alternative is completely separable form any null.

The SgnQ test is optimally adaptive: for any alternative in the Region of Possibility, the test
is able to separate it from the null with a sum of Type I and Type II errors tending to 0. The
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SgnT test is also optimally adaptive, provided that some mild conditions hold to avoid signal
cancellation. To the best of our knowledge, the Signed Polygon is the only known test that is
both applicable to general DCMM (where we allow severe degree heterogeneity and arbitrary
mixed-memberships) and optimally adaptive. The EZ and GC tests are the only other tests
we know that are applicable to general DCMM, but their variances are unsatisfactorily large
for the less sparse case, so they are not optimally adaptive. See [29] for details.

Remark 9. Most existing lower bound results [36, 2, 16] are within the standard minimax
framework, where they focus on a particular sequence of alternative (e.g., the off-diagonals
of P are equal). In our case, the standard minimax theorem only implies that in the Region
of Impossibility, there is a sequence of alternative that are inseparable from the null. Our
results (Theorems 3.2-3.5) shed new light on the Region of Impossibility, saying that for each
alternative, we can pair it with a null such that two hypotheses are asymptotically inseparable.

Remark 10. Existing minimax lower bounds [36, 4, 2] are largely focused on the SBM.
Though a least favorable scenario for SBM is least favorable for DCMM, the former does
not provide much insight on how the least favorable configurations and the phase transition
depend on the degree heterogeneity and mixed-memberships. Moreover, our results (see also
[19]) suggest that ‖θ‖, not ‖θ‖1, determines the separating boundary. In the SBM case, θ1 =
. . .= θn and ‖θ‖1 =

√
n‖θ‖, so it is hard to tell which of the two norms decides the boundary.

In DCMM, there is no simple relationship between ‖θ‖1 and ‖θ‖, and we can tell this clearly.
Remark 11. A sharper version of the phase transition is that there exists a constant c0 > 0

such that the Region of Possibility and Region of Impossibility are given by |λ2|/
√
λ1 > c0

and |λ2|/
√
λ1 < c0, respectively. In some special cases, this kind of results exist for com-

munity detection (a related but different problem). For example, [19] considered a setting
where (i) there is no mixed-membership, (ii) for some constants a, b > 0, P (k, `) = a if
k = ` and b otherwise, (iii) the communities have equal size, and (iv) for a constant φ > 0,
{
√
nθi}ni=1 are iid drawn from a fixed distribution supported in [φ,∞). They showed that,

when (a − b)2E‖θ‖2 < K(a + b), it is impossible to reconstruct the community label ma-
trix Π. Moreover, in the special case of K = 2, [18] (also, see [12]) showed that when
(a − b)2E‖θ‖2 > 2(a + b), it is possible to construct an estimate of Π that is positively
correlated with the true community labels. By connecting (a, b,E‖θ‖2) with eigenvalues, it
is seen that these results give a sharp phase transition at c0 = 1, in the special case where
K = 2 and (i)-(iv) hold. For more general settings, whether such a sharp phase transition
exists is unclear: a slight change in conditions (i)-(iv) may affect the lower bounds, and the
optimal tests (for the sharp phase transition) are hard to find as they usually need to adapt to
specific features of the model. Also, technically, allowing for mixed-memberships makes the
lower bound much harder to study, and allowing for unequal community sizes and unequal
off-diagonal entries in P requires an application of DAD theorem in lower bound construc-
tion (which is not needed in [19]). Moreover, [12, 18, 19] are for community detection and
our paper is on global testing. For general DCMM settings, it is unclear whether the phase
transitions for two problems are the same.

4. The behavior the SgnQ test statistics. In this section, we study the SgnQ test statis-
tic Qn and explain how to prove Theorems 2.2, 2.4, and 2.6. We introduce a proxy SgnQ test
statistic Q∗n and an Ideal SgnQ test statistic Q̃n. Write Qn = Q̃n + (Q∗n− Q̃n) + (Qn−Q∗n).
We study the three terms on the RHS in Sections 4.1-4.3, respectively. Given these results,
the proofs of Theorems 2.2, 2.4, and 2.6 are straightforward and contained in Appendix B.
The study of the SgnT test statistic Tn is similar and contained in Appendix A, where we also
prove Theorems 2.1, 2.3, and 2.5.

Recall that the SgnQ statistic Qn is defined as

Qn =
∑

i1,i2,i3,i4(dist)

(Ai1i2 − η̂i1 η̂i2)(Ai2i3 − η̂i2 η̂i3)(Ai3i4 − η̂i3 η̂i4)(Ai4i1 − η̂i4 η̂i1),
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where η̂ = A1n/
√
V , with V = 1′nA1n. In Section 1.4, we have introduced the following

non-stochastic proxy of η̂: η∗ = Ω1n/
√
v0, where v0 = 1′nΩ1n. We now introduce another

(stochastic) proxy η̃ by

(4.31) η̃ =A1n/
√
v, where v = E[1′nA1n] = 1′n(Ω− diag(Ω))1n.

Denoting the mean of η̃ by η, it is seen that

(4.32) η = ([Ω− diag(Ω)]1n)/
√

1′n(Ω− diag(Ω))1n.

Here, η and η∗ are close to each other but η∗ has a more explicit form. For example, under
the null hypothesis, Ω = θθ′, and it is seen that η∗ = θ. Recall that A = Ω− diag(Ω) +W

and Ω̃ = Ω− η∗(η∗)′. Fix 1≤ i, j ≤ n and i 6= j. First, we write

Aij − η̂iη̂j = (Aij − η∗i η∗j ) + (η∗i η
∗
j − η̂iη̂j) = Ω̃ij +Wij + (η∗i η

∗
j − η̂iη̂j).

Second, we write η∗i η
∗
j − η̂iη̂j = δij + rij , where

(4.33) δij = ηi(ηj − η̃j) + ηj(ηi − η̃i)

is the linear approximation term of (η∗i η
∗
j − η̂iη̂j) and rij ≡ (η∗i η

∗
j − η̂iη̂j)− δij is the remain-

der term. By definition and elementary algebra,

(4.34) rij = (η∗i η
∗
j − ηiηj)− (ηi − η̃i)(ηj − η̃j) + (1− v

V
)η̃iη̃j .

It is shown that rij is of a smaller order than that of δij . The remainder term can be shown to
have a negligible effect over Tn and Qn, in terms of the variances of Tn and Qn, respectively;
see Theorem 4.3.

Let X be the symmetric matrix where all diagonal entries are 0 and for 1 ≤ i, j ≤ n but
i 6= j, Xij =Aij − η̂iη̂j , or equivalently,

(4.35) Xij = Ω̃ij +Wij + δij + rij .

If we omit the remainder term, then we have a proxy ofX , denoted byX∗, where all diagonal
entries of X∗ are 0, and for 1≤ i, j ≤ n but i 6= j,

(4.36) X∗ij = Ω̃ij +Wij + δij .

If we further omit the δ term, then we have another proxy of X , denoted by X̃ , where all
diagonal entries of X̃ are 0, and for 1≤ i, j ≤ n but i 6= j,

(4.37) X̃ij = Ω̃ij +Wij .

With the above notations, we can rewrite Qn as Qn =
∑

i1,i2,i3,i4(dist)Xi1i2Xi2i3Xi3i4Xi4i1 .
We introduce the Proxy SgnQ test statistic and Ideal SgnQ test statistic by

Q∗n =
∑

i1,i2,i3,i4(dist)

X∗i1i2X
∗
i2i3X

∗
i3i4X

∗
i4i1 , Q̃n =

∑
i1,i2,i3,i4(dist)

X̃i1i2X̃i2i3X̃i3i4X̃i4i1 .

The Ideal SgnQ test statistic Q̃n is the same as that defined in (1.13). Using these notations,
we partition Qn as Qn = Q̃n + (Q∗n − Q̃n) + (Qn −Q∗n). In Sections 4.1-4.3, we study the
three terms on the RHS respectively.
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4.1. The behavior of the Ideal SgnQ test statistics. In view of (4.37), the Ideal SgnQ test
statistic Q̃n is written as

(4.38) Q̃n =
∑

i1,i2,i3,i4(dist)

(Ω̃i1i2 +Wi1i2)(Ω̃i2i3 +Wi2i3)(Ω̃i31i4 +Wi3i4)(Ω̃i4i1 +Wi4i1).

Under the null, Ω = θθ′ and η∗ = θ. By definition, Ω̃ij = 0, and the statistic reduces to Q̃n =∑
i1,i2,i3,i4(dist)Wi1i2Wi2i3Wi3i4Wi4i1 . The RHS is the sum of a large number of uncorrelated

terms, with each term being a 4-product of independent centered-Bernoulli variables. It can
be shown that the statistic is asymptotically normal, with E[Q̃n] = 0 and Var(Q̃n)∼ 8‖θ‖8.

Consider the alternative hypothesis. In the RHS of (4.38), expanding the bracket and
re-arranging, we have 2 × 2 × 2 × 2 = 16 post-expansion sums, each having the form of∑

i1,i2,i3,i4(dist) ai1i2bi2i3ci3i4di4i1 , where a is a generic notation which may either equal to

Ω̃ or W ; same for b, c, and (d). For example,
∑

i1,i2,i3,i4(dist)Wi1i2Ω̃i2i3Wi3i4Wi4i1 is one of

the 16 post-expansion sums, corresponding to b= Ω̃, and a= c= d=W . Note that each of
16 post-expansion sums is the sum of many 4-product, where the number of the Ω̃ factors in
each product is the same; denote this number (which can be 0, 1, 2, 3, or 4) by NΩ̃. Similarly,
the number of the W factors in each product are also the same. Denote it by NW , we have
NΩ̃ +NW = 4. For the example above, (NΩ̃,NW ) = (1,3).

According to (NΩ̃,NW ), we can group the 16 post-expansion sums into 6 different types.
Table 1 presents the mean and variance of each type (Recall that λ1, . . . , λK are the K eigen-
values of Ω, arranged in descending order in magnitude. In Table 1, α = |λ2|/λ1. In the
alternative, we assume |λ2|/

√
λ1→∞, which translates to α‖θ‖→∞ since

√
λ1 � ‖θ‖).

TABLE 1
The 6 different types of the 16 post-expansion sums of Q̃n (‖θ‖q is the `q-norm of θ (the subscript is dropped

when q = 2). In our setting, α‖θ‖→∞, and ‖θ‖44�‖θ‖
3
3�‖θ‖

2�‖θ‖1.

Type # (N
Ω̃
,NW ) Examples Mean Variance

I 1 (0, 4)
∑
i,j,k,`(dist)WijWjkWk`W`i 0 � ‖θ‖8

II 4 (1, 3)
∑
i,j,k,`(dist) Ω̃ijWjkWk`W`i 0 ≤Cα2‖θ‖4‖θ‖63 = o(‖θ‖8)

IIIa 4 (2, 2)
∑
i,j,k,`(dist) Ω̃ijΩ̃jkWk`W`i 0 ≤Cα4‖θ‖6‖θ‖63 = o(α6‖θ‖8‖θ‖63)

IIIb 2 (2, 2)
∑
i,j,k,`(dist) Ω̃ijWjkΩ̃k`W`i 0 ≤Cα4‖θ‖12

3 = o(‖θ‖8)

IV 4 (3, 1)
∑
i,j,k,`(dist) Ω̃ijΩ̃jkΩ̃k`W`i 0 ≤ α6‖θ‖8‖θ‖63

V 1 (4, 0)
∑
i,j,k,`(dist) Ω̃ijΩ̃jkΩ̃k`Ω̃`i ∼ tr(Ω̃4) 0

From the table, among all 16 post-expansion sums, the total mean is ∼ tr(Ω̃4), and the
total variance ≤ C‖θ‖8 + C(|λ2|/λ1)6‖θ‖8‖θ‖63, with Type I sum and Type IV sum being
the major contributors. The following theorem is proved in the supplementary material.

THEOREM 4.1 (Ideal SgnQ test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)-(1.4), where the condition (2.16) is satisfied under the alternative hy-
pothesis. Suppose θmax → 0 and ‖θ‖ → ∞ as n→∞, and suppose |λ2|/

√
λ1 →∞ un-

der the alternative hypothesis. Then, under the null hypothesis, as n → ∞, E[Q̃n] = 0,

Var(Q̃n) = 8‖θ‖8 · [1 + o(1)], and (Q̃n − E[Q̃n])/

√
Var(Q̃n) −→ N(0,1) in law. Fur-

thermore, under the alternative hypothesis, as n → ∞, E[Q̃n] = tr(Ω̃4) + o(‖θ‖4) and
Var(T̃n)≤C[‖θ‖8 + (|λ2|/λ1)6‖θ‖8‖θ‖63].
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4.2. The behavior of (Q∗n − Q̃n). The Proxy SgnQ test statistic is defined as Q∗n =∑
i1,i2,i3,i4(dist)X

∗
i1i2
X∗i2i3X

∗
i3i4
X∗i4i1 . Inserting X∗ij = Ω̃ij +Wij + δij and expanding every

bracket, we similarly obtain 3× 3× 3× 3 = 81 different post-expansion sums, where 15 of
them do not involve any δ term. The sum of the remaining 65 terms is (Q∗n − Q̃n). For each
of these 65 post-expansion sums, we are summing over many 4-products, where each of them
has the same number of Ω̃ factors, W factors, and δ factors, which we denote by NΩ̃,NW ,
and Nδ , respectively. According to (NΩ̃,NW ,Nδ), we divide the 65 post-expansion sums
into 10 different types. See Table 2, where we recall that α= |λ2|/λ1.

TABLE 2
The 10 types of the post-expansion sums for (Q∗n − Q̃n). Notations: same as in Table 1.

Type # (Nδ ,N
Ω̃

,NW ) Examples Abs. Mean Variance

Ia 4 (1, 0, 3)
∑
i,j,k,`
(dist)

δijWjkWk`W`i 0 ≤C‖θ‖2‖θ‖63 = o(‖θ‖8)

Ib 8 (1, 1, 2)
∑
i,j,k,`
(dist)

δijΩ̃jkWk`W`i 0 ≤Cα2‖θ‖4‖θ‖63 = o(‖θ‖8)

4
∑
i,j,k,`
(dist)

δijWjkΩ̃k`W`i 0 ≤Cα2‖θ‖4‖θ‖63 = o(‖θ‖8)

Ic 8 (1, 2, 1)
∑
i,j,k,`
(dist)

δijΩ̃jkΩ̃k`W`i ≤Cα2‖θ‖6=o(α4‖θ‖8) ≤ Cα4‖θ‖10‖θ‖33
‖θ‖1 = o(α6‖θ‖8‖θ‖63)

4
∑
i,j,k,`
(dist)

δijΩ̃jkWk`Ω̃`i 0 ≤ Cα4‖θ‖4‖θ‖93
‖θ‖1 = o(‖θ‖8)

Id 4 (1, 3, 0)
∑
i,j,k,`
(dist)

δijΩ̃jkΩ̃k`Ω̃`i 0 ≤ Cα6‖θ‖12‖θ‖33
‖θ‖1 =O(α6‖θ‖8‖θ‖63)

IIa 4 (2, 0, 2)
∑
i,j,k,`
(dist)

δijδjkWk`W`i ≤C‖θ‖4=o(α4‖θ‖8) ≤C‖θ‖2‖θ‖63 = o(‖θ‖8)

2
∑
i,j,k,`
(dist)

δijWjkδk`W`i ≤C‖θ‖4=o(α4‖θ‖8) ≤ C‖θ‖6‖θ‖33
‖θ‖1 = o(‖θ‖8)

IIb 8 (2, 1, 1)
∑
i,j,k,`
(dist)

δijδjkΩ̃k`W`i 0 ≤Cα2‖θ‖4‖θ‖63 = o(‖θ‖8)

4
∑
i,j,k,`
(dist)

δijΩ̃jkδk`W`i ≤Cα‖θ‖4=o(α4‖θ‖8) ≤ Cα2‖θ‖8‖θ‖33
‖θ‖1 = o(‖θ‖8)

IIc 4 (2, 2, 0)
∑
i,j,k,`
(dist)

δijδjkΩ̃k`Ω̃`i ≤Cα2‖θ‖6=o(α4‖θ‖8) ≤ Cα4‖θ‖14
‖θ‖21

= o(α6‖θ‖8‖θ‖63)

2 ≤
∑
i,j,k,`
(dist)

δijΩ̃jkδk`Ω̃`i
Cα2‖θ‖8
‖θ‖21

=o(α4‖θ‖8) ≤ Cα4‖θ‖8‖θ‖63
‖θ‖21

= o(‖θ‖8)

IIIa 4 (3, 0, 1)
∑
i,j,k,`
(dist)

δijδjkδk`W`i ≤C‖θ‖4=o(α4‖θ‖8) ≤ C‖θ‖6‖θ‖33
‖θ‖1 = o(‖θ‖8)

IIIb 4 (3, 1, 0) ≤
∑
i,j,k,`
(dist)

δijδjkδk`Ω̃`i ≤ Cα‖θ‖6
‖θ‖31

=o(α4‖θ‖8) ≤ Cα2‖θ‖8‖θ‖33
‖θ‖1 = o(‖θ‖8)

IV 1 (4, 0, 0)
∑
i,j,k,`
(dist)

δijδjkδk`δ`i ≤C‖θ‖4=o(α4‖θ‖8) ≤ C‖θ‖10
‖θ‖21

= o(‖θ‖8)

We now analyze Q∗n − Q̃n. Consider the null hypothesis first. Under the null, Ω̃ is a zero
matrix, so the nonzero post-expansion sums only include Type Ia, Type IIa, Type IIIa, and
Type IV. It is seen that |E[Q∗n−Q̃n]| ≤C‖θ‖4, and Var(Q∗n−Q̃n) = o(‖θ‖8). Note that ‖θ‖8
is the order of Var(Q̃n) under the null. The difference between the variance of Q∗n and the
variance of Q̃n is negligible, but the difference between the mean of Q∗n and the mean of Q̃n
is non-negligible. With lengthy calculations (see the supplementary material), we can show
that E[Q∗n − Q̃n] ∼ 2‖θ‖4. Therefore, (Q∗n − 2‖θ‖4) and Q̃n have a negligible difference
under the null.

Consider the alternative hypothesis next. From Table 2, |E[Q∗n−Q̃n]| ≤C(|λ2|/λ1)2‖θ‖6,
where the major contribution is from Type Ic and Type IIc post-expansion sums. Un-
der our assumptions for the alternative, |λ2|/

√
λ1 →∞ and λ1 � ‖θ‖4. It is easy to see

that |E[Q∗n − Q̃n]| = o(λ4
2), where λ4

2 is the order of tr(Ω̃4) and E[Q̃n]; see Lemma 2.3
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and Theorem 4.1. Additionally, ‖θ‖4 = O(λ2
1) = o(λ4

2), which is also of a smaller or-
der of E[Q̃n]. We conclude that

∣∣E[Q∗n − Q̃n − 2‖θ‖4]
∣∣ = o(E[Q̃n]). From the table,

Var(Q∗n− Q̃n)≤C(|λ2|/λ1)6‖θ‖12‖θ‖33/‖θ‖1 + o(‖θ‖8), with the major contribution from
Type Id. Here, the second term is smaller than Var(Q̃n), and the first term is upper bounded
by C(|λ2|/λ1)6‖θ‖8‖θ‖63 (using the universal inequality of ‖θ‖4 ≤ ‖θ‖1‖θ‖33), which has a
comparable order as Var(Q̃n). It follows that Var(Q∗n − Q̃n − 2‖θ‖4) = Var(Q∗n − Q̃n) ≤
CVar(Q̃n). Combining the above, we obtain that the SNR of (Q∗n − 2‖θ‖4) and Q̃n are at
the same order.

These results are summarized in Theorem 4.2, which is proved in the supplement.

THEOREM 4.2 (Proxy SgnQ test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)-(1.4), where the condition (2.16) is satisfied under the alternative hypoth-
esis. Suppose θmax→ 0 and ‖θ‖ →∞ as n→∞, and suppose |λ2|/

√
λ1→∞ under the

alternative hypothesis. Then, under the null hypothesis, as n→∞, E[(Q∗n−2‖θ‖4)− Q̃n] =

o(‖θ‖4) and Var(Q∗n − Q̃n) = o(‖θ‖8). Furthermore, under the alternative hypothesis,
E[(Q∗n− 2‖θ‖4)− Q̃n] = o((|λ2|/λ1)4‖θ‖8) and Var(Q∗n− Q̃n)≤C(|λ2|/λ1)6‖θ‖8‖θ‖63 +
o(‖θ‖8).

4.3. The behavior of (Qn−Q∗n). Recall thatQn =
∑

i1,i2,i3,i4(dist)Xi1i2Xi2i3Xi3i4Xi4i1 ,

where Xij = Ω̃ij +Wij + δij + rij for any i 6= j. Similar to Sections 4.1-4.2, we first expand
every bracket in the definitions and obtain 4×4×4×4 = 256. Out of the 256 post-expansion
sums in Qn, 3× 3× 3× 3 = 81 of them do not involve any r term and are contained in Q∗n;
this leaves a total of 256−81 = 175 different post-expansion sums in (Qn−Q∗n). In the sup-
plementary material, we investigate the order of mean and variance of each of the 175 post-
expansion sums in (Qn −Q∗n). The calculations are very tedious: although we expect these
post-expansion sums to be of a smaller order than the post-expansion sums in Sections 4.1-
4.2, it is impossible to prove this argument rigorously using only some crude bounds (such as
Cauchy-Schwarz inequality). Instead, we still need to do calculations for each post-expansion
sum; details are in the supplementary material.

THEOREM 4.3 (Real SgnQ test statistic). Consider the testing problem (1.6) under the
DCMM model (1.1)-(1.4), where the condition (2.16) is satisfied under the alternative hypoth-
esis. Suppose θmax→ 0 and ‖θ‖ →∞ as n→∞, and suppose |λ2|/

√
λ1→∞ under the

alternative hypothesis. Then, under the null hypothesis, as n→∞, |E[Qn−Q∗n]|= o(‖θ‖4)
and Var(Qn−Q∗n) = o(|θ‖8). Under the alternative hypothesis, as n→∞, |E[Qn−Q∗n]|=
o((|λ2|/λ1)4‖θ‖8) and Var(Qn −Q∗n) = o((|λ2|/λ1)6‖θ‖8|θ‖63) + o(‖θ‖8).

5. Simulations. We investigate the numerical performance of two Signed Polygon tests,
the SgnT test (2.18) and the SgnQ test (2.20). We also include the EZ test [16] and the GC
test [25] for comparison. For reasons mentioned in [25], we use a two-sided rejection region
for EZ and a one-sided rejection region for GC.

Given (n,K), a scalar βn > 0 that controls ‖θ‖, a symmetric nonnegative matrix P ∈
RK×K , a distribution f(θ) on R+, and a distribution g(π) on the standard simplex of RK ,
we generate two network adjacency matrices Anull and Aalt, under the null and the alterna-
tive, respectively, as follows: (i) Generate θ̃1, θ̃2, . . . , θ̃n iid from f(θ). Let θi = βn · θ̃i/‖θ̃‖,
1 ≤ i ≤ n. (ii) Generate π1, π2, . . . , πn iid from g(π). (iii) Let Ωalt = ΘΠPΠ′Θ′, where
Θ = diag(θ1, · · · , θn) and Π = [π1, π2, . . . , πn]′. GenerateAalt from Ωalt according to Model
(1.1). (iv) Let Ωnull = (a′Pa) · θθ′, where a= Egπ ∈RK is the mean vector of g(π). Gener-
ate Anull from Ωnull according to Model (1.1). The pair (Ωnull,Ωalt) is constructed in a way
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such that the corresponding networks have approximately the same expected average degree.
This is the most subtle case for distinguishing two hypotheses (see Section 3).

It is of interest to explore different sparsity levels and also focus on the parameter settings
where the SNR is neither too large nor too small. Therefore, for most experiments, we let
βn = ‖θ‖ range but fix the SNR at more or less the same level. See details below. For each
parameter setting, we generate 200 networks under the null hypothesis and 200 networks
under the alternative hypothesis, run all the four tests with a target level α = 5%, and then
record the sum of percent of type I errors and percent of type II errors. For space limit, we
do not report separately the percent of each type of errors but relegate these results to the
supplementary material.

5.1. Experiment 1. We study the role of degree heterogeneity. Fix (n,K) = (2000,2).
Let P be a 2× 2 matrix with unit diagonal entries and all off-diagonal entries equal to bn.
Let g(π) be the uniform distribution on {(0,1), (1,0)}. We consider three sub-experiments,
Exp 1a-1c, where respectively we take f(θ) to be the following: (a) Uniform(2,3), (b) two-
point distribution 0.95δ1 + 0.05δ3, where δa is a point mass at a, and (c) Pareto(10,0.375),
where 10 is the shape parameter and 0.375 is the scale parameter. The degree heterogeneity
is moderate in Exp 1a-1b, but more severe in Exp 1c. In such a setting, SNR is at the order of
‖θ‖(1− bn). Therefore, for each sub-experiment, we let βn = ‖θ‖ vary while fixing the SNR
to be ‖θ‖(1− bn) = 3.2. The sum of Type I and Type II errors are displayed in Figure 3.

First, both the SgnQ test and the GC test are based on the counts of 4-cycles, but the GC
test counts non-centered cycles and the SgnQ test counts centered cycles. As we pointed out
in Section 1, counting centered cycles may have much smaller variances than counting non-
centered cycles, especially in the less sparse case, and thus improves the testing power. This
is confirmed by numerical results here, where the SgnQ test is consistently better than the
GC test, significantly so in the less sparse case. Similarly, both the SgnT test and the EZ test
are based on the counts of 3-cycles, but the EZ test counts non-centered cycles and the SgnT
test counts centered cycles, and we expect that SgnT significantly improves EZ, especially in
the less sparse case. This is also confirmed in the experiment.

Second, SgnQ and GC are order-4 graphlet counting statistics, and SgnT and EZ are order-
3 graphlet counting statistics. In comparison, SgnQ significantly outperforms SgnT, and GC
significantly outperforms EZ (in the more sparse case; see discussion below for the less
sparse case). A possible explanation is that higher-order graphlet counting statistics have
larger SNR. Investigation towards this direction is interesting, and we leave it to future study.
Note that SgnQ is the best among all four tests.

Last, GC outperforms EZ in the more sparse case but underperforms EZ in the less sparse
case. The reason for the latter is as follows. The biases of both tests are negligible in the more
sparse case, but are non-negligible in the less sparse case, with that of GC much larger. In
[29], we propose a bias correction method, where the performance of GC is significantly im-
proved. However, GC continues to underperform SgnQ, because even with the bias corrected,
it still has a variance that is unsatisfactorily large.

5.2. Experiment 2. We study the cases with larger K and a more complicated matrix
of P . For some bn ∈ (0,1), let εn = 1

6 min(1 − bn, bn), and let P be the matrix with 1 on
the diagonal and the off-diagonal entries iid drawn from Unif(bn − εn, bn + εn); once the P
matrix is drawn, it is fixed throughout different repetitions. We consider two sub-experiments,
Exp 2a and 2b. In Exp 2a, we take (n,K) = (1000,5), f(θ) to be Pareto(10,0.375), and
g(π) to be the uniform distribution on {e1, · · · , eK} (the standard basis vectors of RK ).
We let βn range but fix ‖θ‖(1− bn) at 4.5, so the SNR will not change drastically. In Exp
2b, we take (n,K) = (3000,10), f(θ) to be 0.95δ1 + 0.05δ3, and g(π) = 0.1

∑2
k=1 δek +
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FIG 3. From left to right: Experiment 1a, 1b, and 1c. The y-axis are the sum of Type I and Type II errors (testing
level is fixed at 5%). The x-axis are ‖θ‖ or sparsity levels. Results are based on 200 repetitions.
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FIG 4. From left to right: Experiment 2a and 2b. The y-axis are the sum of Type I and Type II errors (testing level
is fixed at 5%). The x-axis are ‖θ‖ or sparsity levels. Results are based on 200 repetitions.
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FIG 5. From left to right: Experiment 3a, 3b, and 3c. The y-axis are the sum of Type I and Type II errors (testing
level is fixed at 5%). The x-axis are ‖θ‖ or sparsity levels. Results are based on 200 repetitions.

0.15
∑6

k=3 δek + 0.05
∑10

k=7 δek (so to have unbalanced community sizes). Similarly, we let
βn range but fix ‖θ‖(1− bn) = 5.2. The sum of Type I & II errors are shown in Figure 4.

In these examples, EZ and GC underperform SgnT and SgnQ, especially in the less sparse
case, and the performances of SgnT and SgnQ are more similar to each other, compared
to those in Experiment 1. In these examples, we have larger K , more complicated P , and
unbalanced community sizes, and the performance of SgnT and SgnQ test statistics suggest
that they are relatively robust.

5.3. Experiment 3. We investigate the role of mixed-membership. We have three sub-
experiments, Exp 3a-3c. where the memberships are not-mixed, lightly mixed, and signifi-
cantly mixed, respectively. For all sub-experiments, we take (n,K) = (2000,3) and f(θ) to
be Unif(2,3). For Exp 3a, we let g1(π) = 0.4δe1 +0.3δe2 +0.3δe3 . In Exp 3b, we let g2(π) =
0.3
∑3

k=1 δek +0.1 ·Dirichlet, and in Exp 3c, we let g3(π) = 0.25
∑3

k=1 δek +0.25 ·Dirichlet,
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where Dirichlet represents the symmetric K-dimensional Dirichlet distribution. In Exp 3a-
3b, we let βn range while (1− bn)‖θ‖ is fixed at 4.2 so the SNR’s are roughly the same. In
Exp 3c, we also let βn range but (1− bn)‖θ‖= 4.5 (the SNR’s need to be slightly larger to
counter the effect of mixed-membership, which makes the testing problem harder).

The sum of Type I and Type II errors are presented in Figure 5. First, the results confirm
that mixed-memberships make the testing problem harder. For example, the value of ‖θ‖(1−
bn) in Exp 3c is higher than that of Exp 3a-3b, but the testing errors are higher, due to
that the memberships in Exp 3c are more mixed. Second, SgnQ consistently outperforms
EZ and SgnT. Third, GC is comparable with SgnQ in the more sparse case, but performs
unsatisfactorily in the less sparse case, for reasons explained before. Last, in these settings,
SgnT is uniformly better than EZ, and more so when the memberships become more mixed.

5.4. Experiment 4. We vary the size of network and study its impact on testing errors.
We fix K = 2 and let P be a 2× 2 matrix with unit diagonals and off-diagonals equal to bn.
Let g(π) be the uniform distribution on {(0,1), (1,0)} and let f(θ) be Pareto(8,0.375). We
let n ranges from {100,300,1000,3000}. Note that in our data generating process, βn = ‖θ‖
controls the sparsity level and (1− bn)‖θ‖ is the SNR. As n varies, we fix βn = 4 and change
bn accordingly so that the SNR is fixed at 3. The results are in Table 3. This is a sparse setting,
therefore, the biases in EZ and GC are negligible and they both control the Type I error well.
The SgnT and SgnQ tests also control the Type I error well. In terms of the Type II errors,
GC and SgnQ are better than EZ and SgnT. The results are relatively stable as n varies.

TABLE 3
Experiment 4. Numbers in each cell are Type I error, Type II error, and their sum.

n 100 300 1000 3000
EZ (.025, .22, .245) (.055, .26, .315) (.05, .27, .32) (.06, .275, .335)
GC (.02, .02, .04) (.06, .02, .08) (.04, .005, .045) (.04, .005, .045)

SgnT (.01, .15, .16) (.04, .14, .18) (.065, .175, .24) (.06, .14, .2)
SgnQ (.05, .015, .02) (.04, .005, .045) (.04, 0, .04) (.02, .005, .025)

6. Discussions. A closely related idea is to use ‖A− η̂η̂′‖ as the test statistics. To see
why this is a reasonable choice, consider the proxy test statistic ‖A − η∗(η∗)′‖, where we
recall that η∗ = θ under the null; see (1.12). Therefore, A − η∗(η∗)′ is equal to W and
(Ω − (η∗(η∗)′) + W , under the null and the alternative, respectively. The test has reason-
able power, as ‖A− η∗(η∗)′‖ is expected to be bigger in the alternative than in the null. An-
other related idea is to extend the Signed Polygon to address the problem of testing whether
K = k0 vs. K > k0, where k0 > 1 is a prescribed integer. Let Ω̂ =

∑k0
k=1 λ̂kξ̂kξ̂

′
k, where

λ̂k are the k-th eigenvalue of A, arranged in the descending order in magnitude, and ξ̂k is
the corresponding eigenvector. The Signed Polygon test statistic can then be extended to
U

(m)
n,k0

=
∑

i1,i2,...,im(dist)(Ai1i2 − Ω̂i1i2)(Ai2i3 − Ω̂i2i3) . . . (Aimi1 − Ω̂imi1). See [26] for more
discussion. It remains unclear whether these test statistics are optimally adaptive, and we
leave the study to the future.

Another testing idea would be using the first eigenvalue of Ã= θ̂−1Aθ̂−1 − b̂1n1′n, for a
reasonable estimate θ̂ for θ and a proper b̂. Unfortunately, even if θ̂ = θ, the distribution of
the test is unknown for general cases. In fact, this is essentially the approaches proposed in
[8, 31]). Both papers showed that in the dense case of θ1 = θ2 = . . .= θn =O(1), the largest
eigenvalue of Ã (when standardized) converges to the Tracy-Widom law. Unfortunately, the
approaches have been focused on the more idealized SBM model and the less sparse case
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where θ1 = θ2 = . . . = θn =
√
αn ≥ O(n−1/6), and the limiting distribution remains un-

known for other cases.
The testing problem is also closely related to the problem of estimating K . In fact, we can

cast the estimation problem as a sequential testing problem where we test K = k0 vs. K > k0

for k0 = 1,2,3, . . ., and estimate K to be the smallest k0 where we accept the null.
Note also the lower bound argument for the global testing problem sheds useful insight

for many other problems (e.g., estimating K , community detection, mixed-membership).
Take the problem of estimating K for example. Given an alternative setting, if we can not
distinguish it from some null setting, then the underlying parameter K is not estimable.

In a high level, these ideas, together with the Signed Polygon, are related to the ideas in
[21] on testing K = k0 vs. K > k0, in [31] on goodness of fit, and in [30] on estimating K .
However, the focus of these works are on the more idealized model where we don’t have
degree heterogeneity, and how to extend their ideas to the current setting remains unclear.

SUPPLEMENTARY MATERIAL

Additional Results and Technical Proofs. The supplemental material contains the results
not reported in the main article due to space limit and the proofs of all theorems and lemmas.
().
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