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Abstract

In network analysis, how to estimate the number of communities K is a fundamental
problem. We consider a broad setting where we allow severe degree heterogeneity and a
wide range of sparsity levels, and propose Stepwise Goodness-of-Fit (StGoF) as a new
approach. This is a stepwise algorithm, where for m = 1,2,..., we alternately use a
community detection step and a goodness-of-fit (GoF) step. We adapt SCORE [19] for
community detection, and propose a new GoF metric. We show that at step m, the GoF
metric diverges to oo in probability for all m < K and converges to N(0,1) if m = K.
This gives rise to a consistent estimate for K. Also, we discover the right way to define
the signal-to-noise ratio (SNR) for our problem and show that consistent estimates for
K do not exist if SNR — 0, and StGoF is uniformly consistent for K if SNR — oo.
Therefore, StGoF achieves the optimal phase transition.

Similar stepwise methods (e.g., [38, 34]) are known to face analytical challenges. We
overcome the challenges by using a different stepwise scheme in StGoF and by deriving
sharp results that are not available before. The key to our analysis is to show that
SCORE has the Non-Splitting Property (NSP). Primarily due to a non-tractable rotation
of eigenvectors dictated by the Davis-Kahan sin(f) theorem, the NSP is non-trivial to
prove and requires new techniques we develop.
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1 Introduction

Suppose A is the adjacency matrix for a symmetric and connected network with n nodes:

Ay = if node 7 and node j have an edge, l<itji<n (1.1)
0, otherwise,

As a convention, self-edges are not allowed so all the diagonal entries of A are 0. As usual,

we assume the network has K (unknown) communities N7, Na, ..., Nk. Similar to that of

a cluster in multivariate analysis, the precise meaning a community is hard to formalize, but

frequently and intuitively, communities in a network are groups of nodes that have more edges

within than between (e.g., [12]).

Our primary goal is to estimate K. This is a fundamental problem in network analysis:
In many recent approaches, K is assumed as known a priori (e.g., [10, 39, 16] on community
detection, [22, 9] on mixed-membership estimation, [31, 18, 411] on dynamic networks, and
[13, 3, 15] on network regression analysis). Unfortunately, K is rarely known in applications,
so the performance of these approaches hinges on how well we can estimate K.

Real world networks have several noteworthy features. First, a network may have severe
degree heterogeneity. Take the Polblog network in Table 1 for example. The maximum
degree is 351 and the minimum degree is 1. Second, the network sparsity (e.g., measured by
the average degree) may range significantly from one network to another. Last, frequently,
the desired community structure is masked by strong noise, and the signal-to-noise ratio
(SNR) is usually relatively small. Motivated by these features, we adopt the widely-used
degree-corrected block model (DCBM) [25]. Recall that the network has K communities
Ni, Na, ..., Ng. For each 1 < ¢ < n, we encode the community label of node 7 by a
vector m; € RE where for i € N, m(k) = 1 and m;(m) = 0 for m # k. Moreover, for a
K x K symmetric nonnegative matrix P which models the community structure and positive
parameters 0y, 6o, . . ., 8, which model the degree heterogeneity, we assume the upper triangular

entries of A are independent Bernoulli variables satisfying
]P)(AZJ = 1) = 910] . 7T;P7Tj = Qij; 1< <] <n, (12)

where € denotes the matrix OIIPII'O, with © being the n x n diagonal matrix diag(6s, ..., 6,)



and II being the n x K matrix [m, 7o, ..., m,]". For identifiability, we assume
P is non-singular and all diagonal entries of P are 1. (1.3)

Write for short diag(Q2) = diag(11, Q29,...,Qn), and let W be the matrix where for 1 <

1,7 <n, Wij = A;; —Qy; if i # 7 and W;; = 0 otherwise. In matrix form, we have
A =Q— diag(Q) + W, where we recall ) = OIIPII'O. (1.4)

When 0; =6, = ... =0,,, DCBM reduces to the stochastic block model (SBM).

We let n be the driving asymptotic parameter, and allow (6,11, P) to depend on n, so
DCBM is broad enough to capture the three features aforementioned. In detail, let § =
(01,02, ...,0,), Opmer = max{6y,...,60,}, and 0,,;, = min{6;,...,0,}. First, a reasonable
metric for the degree heterogeneity is 0,40 /0min, S0 to allow severe degree heterogeneity, we
prefer not to put an artificial upper bound on 6,4, /0. Second, a reasonable metric for
network sparsity is [|0|| (e.g., see [23, 19]). ! To cover all sparsity levels of interest, and
especially the very sparse case (e.g., §; = O(y/log(n)/n) for all 1 <i < n) and the very dense

case (e.g., 01 = O(1) for all 1 <i <mn), we assume (C' > 0 is a constant)

C'/log(n) < 0] < Cv/n. (1.5)

Last, let A1, Ag, ..., Ag be the K nonzero eigenvalues of €2, arranged in the descending order
of magnitudes. We will soon see that the signal strength and noise level in our setting are

captured by |Ag| and ||W]|, respectively, where under mild conditions,
|[W|| = a multi-log(n) term -v/A; with high probability, where \; = ||6]|>. (1.6)

Therefore, a reasonable metric for the signal to noise ratio (SNR) is |Ax|/v/ A1 (see Section 3

for more discussion). We consider two extreme cases (assuming n — 00).

e Strong signal case. |A],| s, ..., || are at the same magnitude, and so SNR =< /).

o Weak signal case. |\i|/+/A1 is much smaller than v/)\; and grows to oo slowly.

! An appropriate measure for sparsity is ||| (e.g.,[23]). In (1.3), we assume all diagonal entries of P are 1,
so if K is finite and some regularity conditions hold, ||©2|| < ||0||>. Also, d; (degree of node 7) is at the order of
0;1|0|1, which is O(n6?) if all §; are at the same order. Therefore, the range of interest for 6; is between 1/y/n
and 1, up to some logarithmic factors (e.g., log(n)).



For example, in a weak signal case, we may have A\; = O(y/n) and SNR = loglog(n) and
A1 = /n. Section 3.3 suggests that when SNR = o(1), consistent estimate for K does not
exist, so the weak signal case is very challenging. Motivated by the above observations, it is

desirable to find a consistent estimate for K that satisfies the following requirements.

e (R1) Allow severe degree heterogeneity (i.e., no artificial bound on 0,45 /0min)-
e (R2) Optimally adaptive to all sparsity levels of interest (e.g., see (1.5)).

e (R3) Attain the information lower bound. Consistent for both the strong signal case

where SNR is large and the weak signal case where SNR may be as small as loglog(n).

Example 1. A frequently considered DCBM is to assume P = Fy and 6; < \/a,, for all
1 < i < n, where a,, > 0 is a scaling parameter and F, is a fixed matrix. It is seen that
A1, ..., A are at the same order, so the model only considers the strong signal case.

Example 2. Let eq,...,ex be the standard basis vectors of RX. Fix a positive vector
¢ € R* and b, € (0,1). Consider a DCBM where each community has n/K nodes, and
P =(1-b,)Ix+b,1x1). Here, (1—b,) measures the “dis-similarity” of different communities.
By basic algebra, A\; < ||0]]2, Ao = ... = Ag < [|0||*(1 —b,,), and SNR =< ||#||(1 — b,,); moreover,
10|l = O(1/log(n)) in the very sparse case, and [|#]] = O(y/n) in the dense case. When b,, < ¢
for a constant ¢y < 1, |[Ag| > C|A;| and SNR < ||f]|; we are in the strong signal case if
|6]] > n® for a constant @ > 0. When b, = 1+ o(1) and [|0||(1 — b,) = loglog(n) (say),
SNR = loglog(n) and we are in the weak signal case.

Example 3. An SBM can be identifiable even if P is singular (e.g., [37]). However, a
DCBM can be non-identifiable if P is singular. For example, consider an SBM with parameters
(I, P) where P € R22, P;; = a, Py, = ¢, Py = Py = b, and ac = b? (so the rank of P is 1).
The model is an identifiable SBM with two communities. But if we treat it with a DCBM
with parameters (K, O,II, P), then we can either take (K, 0,1, P) = (2,In7ﬁ,}3), or take
(K,0,1I, P) = (1, @,ﬁ, 1), so it is not identifiable. Here © = diag(fy,...,0,) and 6; = \/a if

i is in community 1 and 6; = \/c if i is in community 2, 1 < i < n.
1.1 Literature review and our contributions

Exiting approaches for estimating K can be roughly divided into the spectral approaches,

cross validation approaches, penalization approaches, and likelihood ratio approaches.



For spectral approaches, Le and Levina [28] proposed to estimate K using the eigenvalues
of the non-backtracking matrix or Bethe Hessian matrix. The approach uses interesting ideas
from graph theory, but unfortunately, it requires relatively strong conditions for consistency.
For example, their Theorem 4.1 only considers the very sparse SBM model where ¢, = 0, =
...=0,=1/y/n and P = B, for a fixed matrix Fy. Liu et al. [33] proposed to estimate K
using the scree plot with careful theoretical justification, but the approach is unsatisfactory
for networks with severe degree heterogeneity, for it is hard to derive a sharp bound for
the spectral norm of the noise matrix W (e.g., [19]). Therefore, their approach requires the
condition of 0,4, < CO,i. The paper also assumed ||0|| = O(y/n) so it did not address the
settings of sparse networks (e.g., see (1.5)). For cross-validation approaches, we have [, 30],
and among the penalization approaches, we have [30, 5, 27], where K is estimated by the
integer that optimizes some objective functions. For example, Salda et al. [30] used a BIC-
type objective function and [5, 27] used an objective function of the Bayesian model selection
flavor. However, these methods did not provide explicit theoretical guarantee on consistency
(though a partial result was established in [30], which stated that under SBM, the proposed
estimator K is no greater than K with high probability).

For likelihood ratio approaches, Wang and Bickel [35] proposed to estimate K by solving
a BIC type optimization problem, where the objective function is the sum of log-likelihood
and model complexity. The major challenge is that the likelihood is the sum of exponentially
many terms and is hard to compute. In a remarkable paper, Ma et al. [31] extended the idea
of [38] by proposing a new approach that is computationally more feasible.

On a high level, we can recast their methods as a stepwise testing or sequential testing
algorithm. Consider a stepwise testing scheme where for m = 1,2, ..., they construct a test
statistic K%m) (e.g. log-likelihood) assuming m is the correct number of communities. They
estimate K as the smallest m such that the pairwise log-likelihood ratio (f%mﬂ) — &m)) falls
below a threshold. Call m < K, m = K, and m > K the under-fitting, null, and over-fitting
cases, respectively. As mentioned in [38, 34], such an approach faces a two-fold challenge.
First, one has to analyze 0™ for both the under-fitting case and the over-fitting case, but
there are no efficient technical tools to address either case. Second, it is hard to derive sharp

(m+1) g%m)

results on the limiting distribution of ¢, in the null case, and so it is unclear

how to pin down the threshold. Ma et al. [31] (see also [38]) made interesting progress but



unfortunately the problems are not resolved satisfactorily. For example, they require hard-to-
check conditions on both the under-fitting and over-fitting cases. Also, it is unclear whether

2D _ 0 i the under-

their results are sharp in the over-fitting case and how to standardize
fitting case as the variance term is unknown (so it unclear how to pin down the threshold).
Most importantly, both papers focus on the setting in Example 1 (see above), where severe
degree heterogeneity is not allowed and they only consider the strong signal case.

We propose Stepwise Goodness-of-Fit (StGoF') as a new approach to estimating K. Our
idea follows a different vein, and is different both in the statistics we developed and in the
stepwise scheme we use. In detail, for m = 1,2,..., StGoF alternately uses a community
detection sub-step (where we apply SCORE [19] assuming m is the correct number of com-

munities) and a Goodness-of-Fit (GoF') sub-step. We propose a new GoF approach and let
wﬁ[”) be the GoF test statistic in step m. Assuming SNR — oo, we show that

) — N(0,1), when m = K (null case), (L.7)
— 00 in probability, when 1 < m < K (under-fitting case).

For a properly chosen threshold ¢, define the StGoF estimate by K = minm{wrgm) < t}.
By (1.7), K is consistent. Now, first, (1.7) shows that N(0,1) is the limiting null. Such
an explicit limiting null is crucial in pinning down the threshold ¢. Second, a noteworthy
advantage of StGoF is that, we do not need to analyze the over-fitting case to prove the
consistency of K. In comparison, if we follow the approaches by [34, 38] and similarly define
K by minm{ﬁ,(zmﬂ) i < t}, then we have to derive the limiting distribution for gl glm)
with m = K, which is an over-fitting case. In this case, how to derive tight bounds is an open

A gt can be derived theoretically, it

problem (even if the limiting distribution of
contains unknown parameters, so it is hard to pin down the threshold t). For these reasons,
it is unclear how to derive sharp results with these approaches.

Fortunately, sharp results are possible if we use the StGoF approach. In Section 3.3,
we show that when SNR — 0, consistent estimates for K do not exist. Therefore, our
consistency result above is sharp in terms of the rate of SNR, so StGoF achieves the optimal
phase transition, in a broad setting (where we allow degree heterogeneity, flexible sparsity

levels, and weak signals). The phase transition is a well-known optimality framework. It is

related to the minimax framework but can be frequently more informative [7].



Compared with the approaches in [31, 38|, (a) they focused on more restricted settings,
with either strong signals, or strong eigen-gap conditions, or the more specific SBM model,
(b) they did not have an explicit limiting null, and (c) they have to analyze the over-fitting
case but it remains an open problem to derive sharp bounds. For these reasons, it is unclear
whether they are able to achieve the optimal phase transition.

To prove (1.7), the key is to show that when m < K, SCORE has the so-called Non-
Splitting Property (NSP), meaning that with high probability all nodes in each (true) com-
munity are always clustered together. The proof of NSP is non-trivial. It depends on the
row-wise distances of the matrix = consisting of the first m columns of [, ..., k]T", where
& is the k-th eigenvector of €2 and I' is an orthogonal matrix dictated by the Davis-Kahan
sin(f) theorem [0]. T is data dependent and hard to track, and when it ranges, the row-wise
distances of = are the same if m = K but may vary significantly if m < K. This is why
SCORE is much harder to study in the under-fitting case than in the null case. To overcome
the challenge, we need new and non-trivial proof ideas; see Section 4.

While our paper uses SCORE, it is very different from [19]. The goal of [19] is community
detection where K is known, focusing on the null case (m = K). Here, the goal is to estimate
K: SCORE is only used as part of our stepwise algorithm, and the focus is on the under-
fitting case (m < K), where the property of SCORE is largely unknown, and our results on
the NSP of SCORE are new. Our contributions are two fold. First, we propose StGoF as a
new approach to estimating K. We show that StGoF has N(0,1) as the limiting null, achieves
the optimal phase transition, and is uniformly consistent in broad settings (so it satisfies all
requirements (R1)-(R3) as desired). Second, we overcome the technical challenges for stepwise
algorithms of this kind by (a) developing a new stepwise scheme as in StGoF, (b) deriving
sharp results as in (1.7), and (c¢) developing new techniques to prove the NSP of SCORE.

1.2 Content

Section 2 introduces the StGoF algorithm, and Section 3 shows that StGoF is consistent for
K uniformly in a broad setting, and achieves the optimal phase transition. Section 4 shows
that SCORE has the Non-Splitting Property (NSP) for 1 < m < K, which is one of the keys
to our study in Section 2. Section 5 presents simulation results, and Section 6 contains real

data analysis. The supplementary material contains the proofs of all theorems and lemmas.



2 The stepwise Goodness-of-Fit (StGoF') algorithm

StGoF is a stepwise algorithm where for m = 1,2, ..., we alternately use a community detec-
tion step and a Goodness-of-Fit (GoF) step. We may view StGoF as a general framework,
where for either step, we can use a different algorithm. However, for most existing community
detection algorithms (e.g., [25, 35]), it is unclear whether they have the desired theoretical
properties (especially the NSP), so we may face analytical challenges. For this reason, we
choose to use SCORE [19], which we prove to have the NSP. For GoF, existing algorithms
(e.g., [14, 29]) do not apply to the current setting, so we propose Refitted Quadrilateral (RQ)

as a new GoF metric (a quadrilateral in a graph is a length-4 cycle [1]; see details below).

m=m+1
No
Yes
—_— —_— R —

Figure 1: The flow chart of StGoF.

In detail, fix 0 < o < 1 (e.g., a = 1% or 5%). Let z, be the o upper-quantile of N(0,1),

StGoF runs as follows. Input: adjacency matrix A (initialize with m = 1; see Figure 1).

o (a). Community detection. If m = 1, let II™ be the n-dimensional vector of 1’s. If
m > 1, apply SCORE to A assuming m is the correct number of communities and obtain

an 1 x m matrix 11 for the estimated community labels.

e (b). Goodness-of-Fit. Pretending I1(™ is the matrix of true community labels, we obtain
an estimate Q™ for Q by refitting the DCBM, following (2.2)-(2.3) below. Obtain the
Refitted Quadrilateral test score ¢\ as in (2.5)-(2.8).

e (c). Termination. If WM > z,, repeat (a)-(b) with m = m + 1. Otherwise, output m

as the estimate for K. Denote the final estimate by K*.

We now fill in the details for steps (a)-(b). Consider (a) first. The case of m = 1 is trivial
so we only consider the case of m > 1. Let A, be the k-th largest (in magnitude) eigenvalue of
A, and let ék be the corresponding eigenvector. For each m > 1, we apply SCORE as follows.

Input: A and m. Output: estimated community label matrix [ ¢ rrm,



e Obtain the first m eigenvectors fl,fz, e ,ém of A. Define the n x (m — 1) matrix of
entry-wise ratios Rm) by E(m)(z‘, k) = ékﬂ(i)/fl(i), 1<i<n,1<k<m-—1.2

e Cluster the rows of R(™ by the k-means assuming we have m clusters. Output m =

G Ay ()

T ey T . (k) = 1if node i is clustered to cluster k£ and 0 otherwise).

Consider (b). The idea is to pretend that the SCORE estimate I1(™ is accurate. We then
use it to estimate 2 by re-fitting, and check how well the estimated €2 fits with the adjacency
matrix A. In detail, let d; be the degree of node i, 1 < i < n, and let ./Vk(m) be the set of nodes
that SCORE assigns to group k, 1 < k < m. We decompose 1,, as follows

=31, where 1{™(j) = 1if j € V™ and 0 otherwise. (2.1)
k=1

For most quantities that have superscript (m), we may only include the superscript when
introducing these quantities for the first time, and omit it later for notational simplicity when
there is no confusion. Introduce a vector 6™ = (8™ 65 ... 4y € R" and a matrix

Pm) ¢ R™™ where for all 1 <i<nand 1<k /tl<m,

0 = [d/ (14 AL,)) DAL, Y = (A1) (1AL (LAL).  (22)

Let ©(m = diag(f). We refit Q by

/\

Q0™ = @UmIIm pim) ([1m)y g m) (2.3)

Recall that 2 = OIIPII'© and P has unit diagonal entries. In the ideal case where m = K,
[ = I, and A = 2, we have (@(m), ﬁ(m), Q(m)) = (O, P,Q2). This suggests that the refitting
in (2.3) is reasonable. The Refitted Quadrilateral (RQ) test statistic is then

QUM = > (A — O (Ans, — Q0 (s, — Q) (A, — Q). (2.4)

11,12,23,24 (dist)

(“dist” means the indices are distinct). Without the refitted matrix (Al(m), ng) reduces to

C, = Z Aiyiy Aigis Aigiy Aiyiy = total number of quadrilaterals. (2.5)

i1,’i2,i3,i4(di5t)

In the null case of m = K, first, Var(Q%m)) can be well-approximated by 8C,,. Second,

while the mean of QgK) is 0 in the ideal case of QU9 = 2, in the real case, it is comparable to

2As the network is connected, &; is uniquely defined with all positive entries, by Perron’s theorem [19].

10



[Var(QgK))]l/ 2 and is not negligible, so we need bias correction. Motivated by these, for any

m > 1, we introduce two vectors §"™, h(m € R™ where

A

g = @O/, WY = 1810, 1<k <m. (26)

Write for short V(™ = diag(Pg) and H™ = diag(h). We estimate the mean of Q™ by
B = 2||0||* - [¢V(PH>P o PH*P)V 4], (2.7)

where for matrixes A and B, A o B is their Hadamard product [13]. Here, in the null case,
B™ is a good estimate for E[Q;m)], and in the under-fitting case, it is much smaller than the

leading term of Q%m) and so is negligible. Finally, the StGoF statistic is defined by

P = 1Q4Y™ — BU™M]/\/8C,,. (2.8)

For each m, StGoF has a SCORE step (consisting of a PCA step and a k-means step) [19]
and a GoF step. The complexity of PCA step is O(n?m) if we use the power method, and the
complexity of the GoF step is O(n%d), where d is the average node degree. In Section 3, we
show that under mild conditions, StGoF terminates in K steps with high probability. So aside
from running K times of k-means, the complexity of StGoF is O(n?K? 4+ n?Kd). Note that
many real networks are sparse, where the factor d is relatively small. Similarly, [34] iterates
for m = 1,2,..., kmaz (Kmaz is @ prescribed upper bound for K), where for each m, it runs
PCA once, k-means for (m + 1) times, and then computes a quantity with a cost of O(n?m).
Therefore, aside from running k-means for O(k2, ) times, the cost is O(n?k?2,,,). The approach
by [38] also iterates for m = 1,2, ..., ke, where for each m, they need an exhaustive search
step which is NP hard. To overcome the challenge, they use a spectral clustering approach
to approximate the solution, where the cost (aside from running k-means for k., times) is
O(n*k?,,,). In theory, as the complexity of k-means is relatively high, the main costs of three
algorithms come from the k-means part, and StGoF is less expensive (the times it runs for
k-means is fewer than those of the others). In practice, we usually implement the k-means
with the (relatively fast) Lloyd’s algorithm [12], so all three algorithms are reasonably fast.
For example, for a typical setting in Experiment 5a of Section 6 with (n, K) = (600, 6), the
computing time of three methods for 100 repetitions are 1, 10, 8 minutes, respectively, and for

a typical setting in Experiment 4b of Section 6 with (n, K') = (1200, 3), the computing time

of three methods for 100 repetitions are 2, 30,40 minutes, respectively.

11



Lemma 2.1. Suppose K = O(d), where d is the average degree of the network. For each
m=1,2,..., K, the complerity for computing V™ by (2.2)-(2.5) is O(n2d).

Our StGoF procedure is new. Existing stepwise algorithms (e.g., those in [38, 31]) iterate

by comparing £/ — ¢

with a benchmark (which unfortunately has unknown parameters)
for m = 1,2,..., K, and can not avoid the over-fitting case. StGoF iterates by comparing

™ Wwith N (0,1) for m = 1,2,..., K, and successfully avoids the over-fitting case. Such a
difference is crucial for obtaining sharp theoretical result; see Section 3.

Comparing with [19], though we use SCORE in the clustering step, but is for a different
purpose: The orthodox SCORE is for community detection in the null case of m = K. We
use SCORE to construct a low-rank matrix Q™ in the under-fitting case of m < K, where
the analysis is quite different and requires new technical tools; see Section 4.

The RQ test w,(lm) is connected to the SgnQ test [23] (a recent idea for global testing, which
can be viewed as an improved version of the GC test by [21] and the EZ test by [10]), but
there are major differences. First, the SgnQ test is for global testing where we test K = 1
v.s. K > 1, and it is unclear how to use it for goodness-of-fit in each step of StGoF. Second,
Sgn( is not a stepwise algorithm and does not depend on any intermediate clustering results.
The RQ critically depends on the intermediate clustering results by SCORE, where the NSP
of SCORE plays a key role. Third, SgnQ does not need re-fitting, but RQ requires a re-fitting
step. The re-fitting errors cause a non-negligible bias in Q%m) To obtain a tractable limiting
null (where m = K'), we need to figure out the right bias correction as in (2.7), with long and
careful calculations. At the same time, by similar proofs as in our main theorems, we can
show that ¥\ — N(0,1) if K = 1 and ¢{" — 0o in probability if K > 1 and |Xs|/v/A; — oo,
where )y, is the k-th largest (in magnitude) eigenvalue of 2. Comparing with the lower bound

1, () is optimal for global testing.

in |

Remark 1. Existing GoF algorithms include [14, 29], but they only address narrower
settings (e.g., dense networks that follow SBM and have strong signals). As mentioned in
[14], it remains unclear how to generalize these approaches to the DCBM setting here. In
principle, a GoF approach only focuses on the null case, and can not be used for estimating
K without sharp results in the under-fitting case, or the over-fitting case, or both.

Remark 2. For SBM settings where P is singular (see Example 3), r < K (r = rank(f2)).

In this case, StGoF can consistently estimate r. To estimate K, we may revise StGoF by

12



replacing the SgnQ test in the GoF step by a degree-based y*-test (the success of which was
shown for global testing with SBM; e.g. [2, 20]). By the NSP of SCORE, we can show that
the new estimator is consistent under similar regularity conditions. Though the y*-tests may
be powerful in some SBM settings, they usually lose power in more general DCBM settings,
as suggested by the following result on degree matching. Consider a DCBM setting where we
test K =1 vs. K > 1 (i.e., global testing). It was shown in [23, 20] that for any alternative
(i.e., K > 1), we can pair it with a null such that for each node, the expected degrees under
the two models in the pair match with each other. Therefore, a naive degree-based test may

lose power in separating the two models in the pair.

3 The consistency and optimality of StGoF

In this section, we discuss the consistency and optimality of StGoF. The NSP of SCORE (one
of the key components in our proofs and a second part of our main results) is deferred to

Section 4. Consider a DCBM with K communities as in (1.4). We assume
| Pl < C, 160]] = oo, and  Bpaxy/log(n) — 0. (3.1)

The first one is a mild regularity condition on the K x K community structure matrix P.
The other two are mild conditions on sparsity. See (1.5) for the interesting range of ||6|. We
exclude the case where §; = O(1) for all 1 < i < n for convenience, but our results continue
to hold in this case provided that we make some small changes in our proofs. Moreover, for
1 <k < K, let N} be the set of nodes belonging to community %, let ny be the cardinality of
N, and let %) be the n-dimensional vector where QZ@ =0, if i € N} and Gfk) = 0 otherwise.

We assume the K communities are balanced in the sense that

min_{ng/n, |0%]/10]:, 167112/101%} = C. (3.2)

{1<k<K}

In the presence of severe degree heterogeneity, the valid SNR for SCORE is

= ao(0)(| x|/ VA1 where ao(0) = (Omin/Omaz) - (10]]/ v/ Omac||0][1)

In the special case of 0,00 < COppin, it is true that ag(f) < 1 and s,, < | Ak |/v/A1. In this case,
sp is the SNR introduced in (1.6). We assume

sp > Coy/log(n), for a sufficiently large constant Cy > 0. (3.3)
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In the special case Opar < Clpin, (3.3) is equivalent to [Ag|/v/A > C4/log(n), which is
mild. Define a diagonal matrix H € R¥X by Hy, = [|0%®]/]|0]|, 1 < k < K. For the matrix
HPH and 1 < k < K, let py be the k-th largest eigenvalue (in magnitude) and n; be the
corresponding eigenvector. By Perron’s theorem [13], if P is irreducible, then the multiplicity
of 1 is 1, and all entries of 7y are strictly positive. Note also the size of the matrix P is small.

It is therefore only a mild condition to assume that for a constant 0 < ¢y < 1,

maxlgksK{nl(k)}} <C. (3.4)

. . > d
lelglgnK |\ — pe| > colpal, an miny <x<x {m (k)

In fact, (3.4) holds if all entries of P are lower bounded by a positive constant or P — F for a
fixed irreducible matrix Fy. We also note that the most challenging case for network analysis
is when P is close to the matrix of 1’s (where it is hard to distinguish one community from
another), and (3.4) always holds in such a case. In this paper, we implicitly assume K is fixed.
Our method can be extended to the case where K diverges with n at a speed not too fast,

but the right hand side of (3.2) needs to be replaced by C/K. See Section 7 for discussions.

3.1 The null case and a confidence lower bound for K

In the null case, m = K, so if we apply SCORE to the rows of RO assuming m clusters, then
we have perfect community recovery with overwhelming probability, and StGoF provides a

confidence lower bound for K. The next theorem is proved in the supplement.

Theorem 3.1. Fiz 0 < o < 1. Suppose we apply StGoF to a DCBM model where (3.1)-

(3.4) hold. As n — oo, up to a permutation of the columns of ﬁ(K), P(ﬁ(K) £ 1) < Cn~3,
SR N(0,1) in law, and P(K* < K) > (1 — ) + o(1).

Theorem 3.1 allows for severe degree heterogeneity. If the degree heterogeneity is moderate,

Sn = |Ak|/VA1, and we have the following corollary.

Corollary 3.1. Fiz 0 < a < 1. Suppose we apply StGoF to a DCBM model where (3.1)-(3.2)

and (3.4) hold. Suppose Opae < COpmin and |Ax|/v/ A1 > Cor/log(n) for a sufficiently large
constant Cy > 0. As n — oo, up to a permutation of the columns of ﬁ(K), ]P’(ﬁ(K) # 1II) <

cn=3, i = N(0,1) in law, and P(K: < K) > (1 — a) + o(1).

It follows that K ¥ is a level-(1 — «) confidence lower bound for K. If a depends on n and

tends to 0 slowly enough, these results continue to hold. In this case, P(K* < K) = 1 — o(1).
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When perfect community recovery is impossible but the faction of misclassified nodes is small
with high probability (e.g., for a slightly smaller SNR), the asymptotic normality continues
to hold. Similar comments apply to Theorem 3.3 and Corollary 3.2. As far as we know, this
is the first time in the literature that we have derived a (completely) explicit limiting null.
The result can be used to derive p-values in settings such as Goodness-of-Fit [11, 29]. If the
assumed model in GoF is DCBM with K communities, then by Theorem 3.1, we can apply
StGoF with m = K and derive an approximate p-value as P(N(0,1) > ¢£LK)). The proof of
Theorem 3.1 is non-trivial and tedious. The main reason is that (2 is unknown and we must
estimate it with refitting (see Q) in (2.3)). The refitting errors are non-negligible even when

IT is given: we must choose a bias correction term as in (2.4) and analyze Q%K) carefully.

3.2 The under-fitting case of m < K and consistency of StGoF

Fixing an m such that 1 < m < K (the case of m = 1 is trivial), suppose we apply SCORE to
the rows of R(™ assuming m is the correct number of communities. Let 1™ be the matrix of
estimated community labels. In this case, we underestimate the number of clusters, so perfect
community recovery is impossible. Fortunately, SCORE satisfies the Non-Splitting Property
(NSP). Recall that II is the matrix of true community labels.

Definition 3.1. Fiz K > 1 and m < K. We say that a realization of the n x m matrix of
estimated labels T1(™) satisfies the NSP if for any pair of nodes in the same (true) community,
the estimated community labels are the same (i.e., each community in Il is contained in a

community in the realization of [ ). When this happens, we write 11 < e,

Theorem 3.2. Consider a DOBM where (3.1)-(3.4) hold. With probability at least 1—O(n™?),

foreachl <m < K, 11 =< [ up to a permutation in the columns.

By Theorem 3.2, SCORE has the NSP (with high probability). Theorem 3.2 is the key to our
upper bound study below. In Section 4, we explain the main technical challenges for proving

Theorem 3.2, and present the key theorems and lemmas required for the proof.

Theorem 3.3. Fiz 0 < a < 1. Suppose we apply StGoF to a DCBM model where (3.1)-(3.4)
hold. As n — oo, min1§m<K{¢7(1m)} — 00 in probability and P(}?Z # K) < a+o(l).
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Theorem 3.3 allows for severe degree heterogeneity. When the degree heterogeneity is moder-

ate, SNR < |Ak|/v/ A1 and we have the following corollary.

Corollary 3.2. Fiz 0 < a < 1. Suppose we apply StGoF to a DCBM model where (3.1)-(3.2)
and (3.4) hold, Oz < COpin, and |Ag|/vVA1 > Cor/log(n) for a sufficiently large constant

Co>0. Asn — oo, min1§m<K{w£m)} — o0 in probability and P(K* # K) < o+ o(1).

Now in Theorem 3.3 and Corollary 3.2, if we let & depend on n and tend to 0 slowly enough,
then we have IP’(K ¥ = K) — 1. Theorem 3.3 is proved in the supplement. The proof is
non-trivial and long, so for instruction, we explain (a) what are the technical challenges and
especially why the NSP is critical, and (b) why StGoF provides a consistent estimate.

Consider (a) first. The main technical challenge is how to analyze wﬁm) where we not only
need sharp row-wise large deviation bounds for the matrix ﬁ(m), but also need to establish
the NSP of SCORE, where we note m < K. To see why NSP is important, note that lem)
depends on (™ (see (2.4)), where Q0 is obtained by refitting using the SCORE estimate
ﬁ(m), and depends on A in a complicate way. The dependence poses challenges for analyzing
Q%m), to overcome which, a conventional approach is to use concentrations. However, e
has exp(O(n)) possible realizations, and how to characterize the concentration of II™ is a
challenging problem (e.g., [38, 31]). ® Fortunately, if SCORE has the NSP, then 1™ only
has (ﬁ ) possible realizations. In fact, e may have even fewer possible realizations if we
impose some mild conditions. Therefore, for each 1 < m < K, Qm) only concentrates on a few
non-stochastic matrices. Using this and union bound, we can therefore remove the technical
hurdle for analyzing /™ in the under-fitting case.

The proof of NSP is non-trivial, partially due to the intractable rotation of eigenvectors
dictated by the Davis-Kahan sin(f) theorem. See Section 4 for detailed explanations.

Consider (b). Fix 1 < m < K. By the NSP of SCORE, except for a small proba-
bility, the estimated membership matrix [m ¢ rrm only has finitely many realizations.
Fixing a realization e = Iy, let Nl(m’o), e ,Nrszm’o) be the clusters defined by II,. Let
gm0 @m0 and PO he constructed similarly as in (2.1)-(2.2), except that (A,TI(™)
and the vector d = (dy,ds,...,d,) are replaced by (,1I5) and Q1,, respectively. Let
Qm0) — @(m’O)HOP(m’O)H{)@(m’O). Then, on the event [ = Iy, Q09 is a non-stochastic

3To shed light on why (™ has so many possible realizations, suppose we wish to group n iid samples
from N(0,1) into two clusters with the same size. We have exp(O(n)) possible clustering results.
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proxy of the refitted matrix Q™. Recall that Q is a non-stochastic proxy of the adjacency
matrix A. We thus expect the RQ statistic in (2.4) to satisfy that

m m,0 m,0 m,0 m,0
Q7(7, ) ~ Z (QiliQ - Qz(lig ))(91213 - Q’Egig ))(91314 - Q§3i4 ))(9147,1 - Q’E4i1 ))

i1,i2,i3,i4(dist)

~ tr((Q — QO on the event of 1™ = II,. (3.5)

Now, when m = K, it can be shown that [ =11 except for a small probability. Note also
that when IIy = II, our re-fitting procedure guarantees that #(™% = ¢, P(m9 = P and so
QMmO = Q. Tt follows that tr((2 — Q0)4) = 0. When m < K, Q™0 has a rank m < K
and ) has a rank K. Recall that Aq,..., A\x are the nonzero eigenvalues of (2 (arranged in
the descending order of magnitudes). By Weyl’s theorem, the kth largest absolute eigenvalue
of Q — Q™Y is always lower bounded by |Ajim|, for all 1 < k < K —m. It follows that

tr((Q — QYY) = SO N (Q — QURO) A > STETm A Tn summary,

tr((Q — QO = 0if m = K, and tr((Q — QO > 3K Mifm < K4 (3.6)

Recall that wﬁm) is the standardized version of Q,(Im), and that except for a small probability,
Il has only one possible realization for Il in the null case and has only finite realizations in

the alternative case. Using the above and union bounds, we can show that

i N(0,1), if m=K,

(3.7)
E| gm)] — (ZkK:m+1 A$)/A? and so @Z)ﬁf’w — oo in prob., if1<m < K,

where (3,1 A)/AF > (A /v/A)* when m < K. Therefore, with a proper threshold on
ém), StGoF stops at m = K with an overwhelming probability and outputs a consistent
estimate for K. The proofs for the NSP and (3.6)-(3.7) are technically demanding. See

Section 4 and Section A of the supplement for detailed explanations and proofs.

R 4This explaiAns why in StGoF we do not use the refitted triangle (RT) T3™ = D s in i (dist) (Airiz —
QU (Aiais = Q) (A

Tflm) > Z?:m 41 )\i with large probability, A,,+1,...,Ax may have different signs and so may cancel with
each other. We can not use B{"™ = D i i (disty(Ainia — QY Ay, — ﬁg;bl)) cither. The variance of B{™ is

’Lliz
unappealingly large so the resultant procedure can not achieve the optimal phase transition; see Section 3.3.

igip — QEZE), which is comparably easier to analyze. While we may similarly derive

Also, see [23] for discussion on statistics similar to 7™ and B{™.
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3.3 Information lower bound and phase transition

In Theorem 3.3 and Corollary 3.2, we require the SNR, |Ag|/v/A1, to tend to oo at a speed of
at least \/m . We show that such a condition cannot be significantly relaxed. There are
relatively few studies on the lower bound for estimating K, and our results are new.

We say two DCBM models are asymptotically indistinguishable if for any test that tries to
decide which model is true, the sum of Type I and Type II errors is no smaller than 1+o0(1), as
n — 0o. Given a DCBM with K communities, our idea is to construct a DCBM with (K +m)
communities for any m > 1, and show that two DCBM are asymptotically indistinguishable,
provided that the SNR of the latter is o(1).

Fixing K, > 1, we consider a DCBM with K, communities that satisfies (1.1)-(1.3). Let
(O, ﬁ, 15) be the parameters of this DCBM, and let Q = OIIPII'O. When K, > L, let (5, 1)
be the last column of ﬁ, and let S € REo-LKo-1 1o the sub-matrix of P excluding the last
row and the last column. Given m > 1 and b, € (0,1), we construct a DCBM model with
(Ko + m) communities as follows. We define a (Ko + m) x (Ko + m) matrix P:

S 61;71—&-1 /
P = , where M = (1 —by) g1 + b1, . (3.8)

/ m+1
Ly 2l

When Ky = 1, we simply let P = 1?;;71 M. Let ; € {1,...,K,} be the community label of

node i defined by II. We generate labels ¢; € {1,..., Ko+ m} by

b i, 1flil- e{l,...,Ky—1}, (39)
uniformly drawn from {Ko, Ko+ 1,... Ko +m}, if {; = K.

Let II be the corresponding community label matrix. This gives rise to a DCBM model with
(Ko + m) communities, where @ = OIIPII'O. Though P does not have unit diagonals, we
can re-parametrize so that it has unit diagonals: Let D be the (K, +m) x (K¢ +m) diagonal
matrix with Dy = /P, 1 < k < Ko+ m. Now, if we let P* = D='PD~ 0 = 0,|| D71,
and ©* = diag(67,...,0"), then P* has unit-diagonals and Q = ©*[IP*II'©*.

Here some rows of II are random (so we may call the corresponding model the random-
label DCBM), but this is conventional in the study of lower bounds. Let A, be the kth largest
eigenvalue (in magnitude) of Q. Since Q is random, A;’s are also random (but we can bound

Ak |/v/ A1 conveniently). The following theorem is proved in the supplement.
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Theorem 3.4. Fiz Ko > 1 and consider a DCBM model with n nodes and K, communities,
whose parameters (H,ﬁ, ﬁ) satisfy (3.1)-(3.2). Let (5',1) be the last column of P, and let S

be the sub-matriz ofﬁ excluding the last row and last column. We assume |3'S™15 —1| > C.

e Fizm > 1. Given any b, € (0,1), we can construct a random-label DCBM model with
K = Ko+m communities as in (3.8)-(3.9). Then, asn — oo, [Ax|/v/ 1 < C||0]|(1-b,)
with probability 1 — o(n™1). Moreover, if (1 — b,)/[Amin(S)| = o(1), where Apin(S) is
the minimum eigenvalue (in magnitude) of S, then |Ak|/v/A1 > C7H|0]|(1 — b,) with
probability 1 — o(n™'). Here C' > 1 is a constant that does not depend on b,,.

o Fixmy,my > 1 withmy # my. Asn — oo, if ||0||(1—b,) — 0, then the two random-label

DCBM models associated with my and mo are asymptotically indistinguishable.

Here, the condition |8/S~*3—1| > C is used to bound the last diagonal entry of P~!, which
is 1/(8'S™1f—1). By Theorem 3.4, starting from a (fixed-label) DCBM with K, communities,
we can construct a collection of random-label DCBM, with Ko+ 1, Ko + 2, ..., Ky +m com-
munities, respectively, where (a) for the model with (K + m) communities, [Ag,im|/vV A1 =
10]|(1 — b,,), with an overwhelming probability, and (b) each pair of models are asymptotically
indistinguishable if ||0||(1 — b,,) = o(1). Therefore, for a broad class of DCBM with unknown
K where SNR = o(1) for some models, a consistent estimate for K does not exist.

Fixing my > 1 and a sequence of numbers a, > 0, let M, (my, a,) be the collection of
DCBM for an n-node network with K communities, where 1 < K < my, |)\K|/\/X1 > ay,
and (3.1)-(3.2) hold. In Section 3.2, we show that if a,, > Cy+/log(n) for a sufficiently large
constant Cp, then for each DCBM in M,,(mq, a,), StGoF provides a consistent estimate for
K. The following theorem says that, if we allow a,, — 0, then M,,(my, a,) is too broad, and

a consistent estimate for K does not exist.

Theorem 3.5. Fizmg > 1 and let M,,(mq, a,,) be the class of DCBM as above. Asn — oo, if
an — 0, then inf ¢ {SUP \p, (mo.an) P(K # K)} > (1/6+0(1)), where the probability is evaluated

at any given model in M, (mg,a,) and the supremum is over all such models.

Combining Theorems 3.1, 3.5, and Corollary 3.2, we have a phase transition result (phase
transition is a recent theoretical framework (e.g., [7, 24]). Tt is closely related to the classical

minimax framework but can be more informative in many cases).
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e Impossibility. If a, — 0, then M,,(mg,a,) defines a class of DCBM that is too broad
where some pairs of models in the class are asymptotically indistinguishable. Therefore,
no estimator can consistently estimate the number of communities for each model in the

class (and we say “a consistent estimate for K does not exist” for short).

e Possibility. 1f a, > C’OM for a sufficiently large Cy, then for every DCBM in
M., (myg, a,,), StGoF provides a consistent estimate for the number of communities if the
model only has moderate degree heterogeneity (i.e., 0oz < COpin). StGoF continues to
be consistent in the presence of severe degree heterogeneity if the adjusted SNR satisfies

that s, > Cpy/log(n) with a sufficiently large Cp.

The case of C' < a, < Cy/log(n) is more delicate. Sharp results are possible if we consider
more specific models (e.g., for a scaling parameter o, > 0, (0;/«a,) are iid from a fixed
distribution F', and the off-diagonals of P are the same). We leave this to the future.

Comparing with existing works, we have the following comments: (a) StGoF is the first
method that is proved to achieve the optimal transition, (b) StGoF is the first method that is
proved to have a (completely) explicit limiting null, (¢) we prove the NSP of SCORE, and use
it to derive sharp results that are not available before, (d) our settings are much broader and
our regularity conditions are much weaker, and (e) we overcome the challenges of stepwise
algorithms of this kind by using the sharp results we derive and by using a different stepwise
scheme (so to avoid the analysis of the over-fitting case where the NSP does not hold). We
now compare with [38, 34] with more details.

First, their approaches require a signal strength much stronger than ours, and so do not
achieve the phase transition. When 6. < COpin, our result requires |Ag|/v/A1 > Coy/log(n),
which matches the lower bound in Section 3.3. However, [35] needs [Ax|/v/ A > n!/*\/log(n)
(see their Section 2.5), which is non-optimal. Also, [34] proves consistency under the condition
of Ay > C'log(n). Recall that they assume P = p,Fy. In their setting, |\i], ..., |\x| are at
the same order, and \; > C'log(n) indeed translates to [Ax|/v/A; > Co+/log(n). However, for
general settings where |A{|, - - ,|\k| are at different orders, it is unclear whether their method
is optimal (because the SNR is captured by |Ag|/v/A1, not v/A;). In comparison, our result
matches with the lower bound for all settings. Second, [38] only studies the SBM where 6;’s

are all equal, and [34] assumes that 0,,x < Clpin and P = p, Py, for a fixed matrix Py; in this
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setting, the degree heterogeneity is only moderate, and |Aq],--- , |\k| are at the same order.
This excludes many practical cases of interest. Last, besides the very mild condition of (3.2),
we do not need any hard-to-check conditions on II. In contrast, [38, 3] impose stringent
conditions. For example, [31] defines a quantity Qx (k) by applying spectral clustering to 2
and then evaluating the change of residual sum of squares by further splitting one cluster.
They impose conditions on Qg (k) for every 1 < k < K — 1 (see their Assumption 3). These
conditions are hard to check in practice. Moreover, when P = p,, Py does not hold for a fixed
Py, the conditions on {Qk(k)}1<k<rx—_1 are easy to violate (e.g., in our Example 1).

The advantage of our theory partially comes from the way our algorithm is designed.
StGoF only assesses one candidate of K in each step, instead of comparing two adjacent values
of K. It helps avoid the analysis of the over-fitting case, and it also avoids imposing stringent
conditions on II. Another advantage comes from our new proof ideas. We do not need [
to converge to a non-stochastic matrix, because our proof is not based on Taylor expansion.
For example, a key component of our analysis is the NSP of SCORE. We develop the NSP
under very weak conditions where 1™ can be non-tractable, non-unique, and depending on

a data-driven rotation matrix (see Section 4).

4 The non-splitting property (NSP) of SCORE

To prove the NSP of SCORE, we face technical challenges. In the SCORE step of StGoF, for
each 2 < m < K, we cluster n rows of the matrix R into m clusters. We find that for any
two rows of E(m), the distance critically depends on a non-tractable data-dependent rotation
matrix [ dictated by the David-Kahn sin(f) theorem [0], and it may vary significantly as T
changes from one realization to another. This poses an unconventional setting for clustering.
To overcome the challenge, we first discover a new distance-based quantity that is semi-
mvariant with respect to T: the quantity remains at the same order of O(1) as T varies from
one realization to another. We then develop a new k-means theorem (Theorem 4.1) and use
it to prove the NSP. The proof of Theorem 4.1 is non-trivial: our setting is an unconventional
clustering setting and we do not want to impose unrealistic and strong conditions. Note that
the literature on SCORE has been focused on the null case of m = K, but our primary interest

is in the under-fitting case of m < K.

21



4.1 Row-wise large-deviation bounds and Ideal polytope

Recall that for 2 < m < K, R is an n x (m — 1) matrix constructed from the eigenvectors
él, ég, e ,ém by taking entry-wise ratios between 52, e ,ém and él; see Section 2. Let A\ be
the k-th largest (in magnitude) eigenvalue of 2 and let & be the corresponding eigenvector.
Under our assumptions (e.g., see condition (3.4)), there exists a (K —1) x (K — 1) orthogonal
matrix [ such that [él,ég, o ,fK] ~ [&,8&, ..., ¢k - diag(l,f). The rotation matrix T is
dictated by the Davis-Kahan sin(6) theorem in spectral analysis. It is well-known that the
matrix is data dependent and hard to track. Even if Aj, ..., Ag are distinct (so each vector
in {&,...,&k} is unique up to a %1 factor), T can still take arbitrary values on the Stiefel
manifold and does not concentrate on any non-stochastic rotation matrix on the manifold. °

Therefore, we must consider all possible realizations [ =T. This not only poses analytical
challenges (see Section 4.2) but also makes notations more complicate. Fix a (non-stochastic)
orthogonal matrix I'. For 2 < k < K, let &/(T") be the kth column of [¢;, &, . . ., £x]-diag(1,T),°
and let &(4,T) be the jth entry of &(I'), 1 < j < n. Define R™(T') € R™»™~! by

R™ @i, 6;T) = &1 (1) /6(1), 1<i<n, 1<0<m-—1. (4.1)

Comparing (4.1) with the definition of R™ in Section 2, it is seen that R(™)(T) is the pop-
ulation counterpart of R™ on the event of I' = I'. Lemma 4.1 provides a sharp row-wise

large-deviation bound for R — RU™(I") and is proved in the supplemental material.

Lemma 4.1 (Row-wise bounds). Consider a DCBM model where (3.1)-(3.4) hold. Let s, =
ao(0)(|Ak|/vVAL), where ag() is as in Section 3. For each 1 < i < n, let (rgm)(f‘))’ and
(ﬁ(m))’ denote the i-th row of R™(T) and R™, respectively. As n — oo, with probability
1—=0Mm™3), foralll <m <K and 1 <i<n and all (K —1) x (K — 1) orthogonal matriz
T, ||fz(m) - rz(m)(I’)H < ||f§K) - TEK)(F)H < Cs;t\/log(n) over the event T =T.

Under our assumptions, s, '+/log(n) is upper bounded by a sufficiently small constant. It

) is sufficiently close to ™ (I') on the event I =T..

implies that each 7"
It remains to study the geometry underlying {rgm)(f‘)}lgign for an arbitrary rotation ma-

trix I' € RE-LK-1 Recall that H € R¥X is the diagonal matrix with Hy, = [|0%]|/]6],

5T is tractable only if we impose a strong eigen-gap condition. However, this excludes many practical

settings of interest, especially when the signals are weak and |A1],...,|\k| are at different orders.
6By Perron’s theorem, &; is uniquely defined and a strictly positive vector. Vectors &, ..., x are not
necessarily unique, but we can select an arbitrary candidate of &, ...,k to define &(T),..., &k (D).
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Figure 2: An example (K = 4). From left to right: m = 4,3,2. Red dots: the 4 distinct rows
of R, which are vgm), vém), ’Uém), vflm). Blue crosses: the rows of R™. The red dots are the
vertices of a tetrahedron when m = 4, vertices of a quadrilateral when m = 3, and scalars
when m = 2. For each m, the n rows of R™ form K clusters, each corresponding to a true
community. The figure is only for illustration, and we should not have the wrong impression
that the K clusters are always well-separated.

1 <k < K. Foreach 1 < k < K, let ug be the k-th largest (in magnitude) eigenvalue of
HPH and let n, € RX be the associated (unit-norm) eigenvectors, respectively. By Lemma
B.1 of the supplement, 7 is unique and all entries are strictly positive. Also, while (7, ..., 7k)
may be non-unique, there is a one-to-one correspondence between the choice of (12, ..., 1K)
and the choice of (&,...,&k); see the paragraph above (4.1). Fix I'. For each 2 < k < K,
let nx(T") be the (k — 1)-th column of [n, N3, ..., nk]T, and let n(i,T') denote the i-th entry
of ni(T'), 1 <i < K. Define a K x (m — 1) matrix V™(T) by

VO (k, 6T) = e (ks 1) /mu(k),  1<k<K,1<(<m-—1. (4.2)
Let (v,(cm)(f‘))’ be the k-th row of V(™)(I"). Lemma 4.2 is proved in the supplement.

Lemma 4.2 (The ideal polytope). Consider a DCBM model where (3.4) holds. Fix 1 <m <
K. We have that r™ (T) = o™ (T') for alli € Ny and 1 <k < K.

Combining Lemmas 4.1-4.2 gives the following claim. Viewing {ff’”)}lgign as a point cloud
in R™~! we have that with overwhelming probability, for any realization of [ =T and each
1 <m < K, there are K clusters in the point cloud, corresponding to K true communities,

where vgm)(f‘), . ,vg{n)(f‘) are the cluster centers (see Figure 2).

4.2 Challenges in proving NSP and our approach

Given the results in previous section, one may think that NSP is easy to prove. Unfortunately,
this is not the case: even with the results in the previous section, how to prove NSP remains

a non-trivial problem, especially when m < K. We now provide a detailed explanation.
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Recall that T is data dependent and hard to track, so we have to consider all realizations
of [ =T. Therefore, to prove the claim, we need to show that the NSP holds uniformly for all
I' in the Stiefel manifold Ok _1. Given a realization of [ = I, let B™ and B™ be the sub-
matrices of I' and T, consisting of the first (m — 1) columns. Introduce a matrix Vg € REA-1
by Vo(i, k) = mpyr(i)/m(i), 1 < i < K,1 < k < K — 1, where n;’s are as in the previous
section. For each 1 < m < K, by our notations, the K cluster centers in Lemma 4.2 are the
K rows of the matrix V™)(T') € RE™1 and V™)(T) is related to V; by V™(T) = V,B™.
For any K x (m — 1) matrix M, let dgx (M) be the minimum pairwise Euclidean distance of
the K rows of M. In [19], it was shown that dx (V) > V2. We now discuss the null case and
the under-fitting case separately.

In the null case, m = K, and B =T is a rotation matrix. Since the Euclidean distances
remain unchanged for rotation, the relative position of the K cluster centers is invariant with
respect to I', and especially, dx(V™(I') = dg(Vy) > v/2. Combining this with Lemmas
4.1-4.2, we have: (a) With high probability, the n rows of RO split into K clusters; for each
row, the distance to the closest cluster center is < O(s,+/log(n)) = o(1). (b) The K cluster
centers are well-separated by a distance of v/2. (c) m = K, so the number of clusters assumed
in k-means matches the number of true clusters. In this case, the cluster labels estimated by
k-means match with the true cluster labels (up to a permutation) so the NSP follows.

The under-fitting case is unfortunately much harder to prove. For m < K, B™ is not a
square matrix (it is not a rotation matrix even in the simplest case where I' is the identity
matrix). Compared to the null case, we have some major differences. First, even in the case
where T is the identity matrix, we may have dg (V™) = 0 so the K cluster centers are not
well-separated. Second, for any two rows of V(™) (I") (each is one of the K cluster centers), the
Euclidean distance critically depends on I'. As I' varies continuously in the Stiefel manifold,
the distance may vary from O(1) to 0. Therefore, the relative positions of the K cluster
centers critically depend on I', and may vary significantly from one case to another (we may
have dg (V™(T)) > C for one I' and dg (V™ (I')) = 0 for another T'). Note also that since
m < K, the number of clusters fed into the k-means algorithm is smaller than the number of
true clusters. Seemingly, this is an unconventional clustering setting, especially as our goal is
to show that when we apply k-means, the NPS holds uniformly for all I'. To overcome the

challenges, (1) we propose a new metric for the relative positions of the K cluster centers,
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and (2) we develop a new k-means theorem specifically for the setting we have. Here, (1) is
motivated by the observation that, the main reason NSP is easier to prove in the null case
is that dx(V)(I')) (minimum pairwise distance of the K cluster centers) is invariant to I'
and so the K clusters are always well-separated, uniformly for all I'. In the under-fitting case,
dx (V™)) is not invariant to I', but there may exist a different measure that is invariant
to I. This motivates us to define d,,,(V ™ (I')) as a new measure for the relative positions of
the K cluster centers, which is semi-invariant to I' (i.e., there are constants ¢y > ¢; > 0 such
that ¢; < d,,(V™(I')) < ¢, for all ' in the Stiefel manifold). In detail, for any 1 < m < K
and any given K points in R™!, we have the following definition, which is an extension of

the minimum pairwise distance.

Definition 4.1 (Distance-based metrics defined by bottom up pruning). Fizing K > 1 and
1 <m < K, consider a K x (m—1) matric U = [uy, us, ...,ux). First, let dg(U) be the min-
imum pairwise distance of all K rows. Second, let uy and u, (k < ) be the pair that satisfies
lur — wel| = di(U) (if this holds for multiple pairs, pick the first pair in the lexicographical
order). Remove row £ from the matriz U and let dx—1(U) be the minimum pairwise distance
for the remaining (K — 1) rows. Repeat this step and define dx_o(U),dx_3(U),...,da(U)
recursively. Note that dg(U) < dg_1(U) < ... <dy(U).

For each fixed T, dg (V™ (T)) is the minimum pairwise distance between the K cluster
centers Uim)(F), . ,v}?)(f‘), and d,,,(V™(T)) is the minimum pairwise distance of the m
remaining cluster centers after we prune (m — K) cluster centers in the bottom-up fashion as
above. When I ranges continuously in Ok 1, dx (V™ (I')) may range continuously from O(1)
to 0, but fortunately d,,(V " (I')) remains at the same order of O(1), and so is semi-invariant.

This is the following lemma, which is proved in the supplement.

Lemma 4.3. Consider a DCBM model where (3.2) and (3.4) hold. Fiz 1 < m < K. There
is a constant C' > 0 (which may depend on m), such that minpeoK_l{dm(V(m)(F))} >C.

We now discuss (2). To prove that NSP holds uniformly for all T'; it remains to develop a
new k-means theorem. We can have two versions of the k-means theorem: a “weaker” version
where we assume dg (V™ (")) > O, for a constant C' > 0, and a “stronger” version where we
only require ¢; < d,,,(V™(T') < ¢y, and dg (V™ (T')) may be as large as O(1) or as small as 0.

As dg(V™(I)) = 0 for many I, the “weaker” version is inadequate for our setting. Theorem
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4.1 is a “stronger” version of the k-means theorem, and is proved in the supplement. The

“weaker” version is implied by Theorem 4.1 and so the proof is skipped.

Theorem 4.1 (The “stronger” version of the k-means theorem). Fiz 1 < m < K and let n
be sufficiently large. Consider the non-stochastic vectors x1,. .., x, that take only K values in
Upy .. ug. Write U = [uy, ... ,uk]. Let Fp ={1 <i<n:z;,=uwu}, 1 <k < K. Suppose
for some constants 0 < oy < 1 and Cy > 0, minj<p<p |[Fi| > aon and maxi<p<i [|ugl <
Co-dn(U). We apply the k-means clustering to a set of n points &1, Za, ..., T, assuming < m
clusters, and denote by gl, SQ, cee S, the obtained clusters (if the solution is not unique, pick

any of them). There exists a constant ¢ > 0, which only depends on (agp, Co,m), such that, if
maxi<i<n ||Ti — ;|| < ¢ dn(U), then #{1 <j<m: Sj N Fy # @} =1, foreach 1 <k < K.

To prove the NSP of SCORE, we apply Theorem 4.1 with U = V™)(T"), 2; = r}’”)(r),
(m)

and #; = 7,"’, and the main condition we need is ¢; < d,,,(V™(T')) < ¢, uniformly for all

I'. But by Lemma 4.3, this is implied, so we do not need extra conditions to show the NSP.

13

If however we use a “weaker” version of the k-means theorem, then we need conditions such
as dg(V™(I')) > C for all T' (as explained above, the condition can be violated easily). The
formal proof of the NSP (i.e., Theorem 3.2) is given in Section B.1 of the supplement, where
we combine Lemmas 4.1-4.3, Theorem 4.1, and some elementary probability.

Theorem 4.1 is quite general and may be useful for many other unsupervised learning
settings (e.g., [I1]). The proof of the theorem is non-trivial and we now briefly explain the
reason. As the objective function of the k-means is nonlinear and we do not have an explicit
formula for the k-means solution, we prove by contradiction. Let / be the estimated cluster
label vector by k-means and RSS (é) be the associated objective function, we aim to show
that, when NSP does not hold for f, we can always find a cluster label vector ¢ such that
RSS(¢) < RSS({) (a contradiction). The key is finding such an ¢ and evaluating RSS(¢).
However, except for a lower bound on d,,(U), we have little information about the K true
cluster centers. Since dg (U) can take any value in [0, d,,,(U)], a pair of true cluster centers may
be well-separated, moderately close, sufficiently close, or exactly overlapping (correspondingly,
their distance is much larger than, comparable with, or much smaller than max;<;<,, ||Z; — x|,

or exactly zero). With the infinitely many configurations of true cluster centers, the main

challenge in the proof is pinning down a strategy of constructing ¢ that guarantees a decrease
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of RSS for every possible configuration. One might think that the oracle k-means solution
¢* (k-means applied to z1,x9,...,x,) can help guide the construction of ¢, but unfortunately
this does not work: first, we do not have an explicit form of £*; second, in some of our settings,
{ can be significantly different from ¢*. The way we construct ¢ and evaluate RSS(¢) subtly
utilizes the definition of d,,(U) and properties of k-means objective, which is highly non-trivial
(see the supplemental material). Note that while [38, 34] proved special cases of the “weaker”
version of the k-means theorem, they used assumptions (i) true cluster centers are mutually
well separated, (ii) the oracle solution ¢* is mathematically tractable, and (iii) ¢ is exactly the
same as £*. As none of (i)-(iii) holds in our setting, it is unclear how to generalize their proofs.
We deal with a much harder setting (the “stronger” version), and our proof is different.

We conjecture that Theorem 4.1 (and so the NSP of SCORE) continues to hold if we
replace the k-means step in SCORE by (say) the e-approximation k-means (e.g., [20]). Let
{ be the e-approximate k-means solution. We have RSS(¢) < (1 + €)min, RSS(¢). For an
appropriately small €, if the NSP does not hold, then by a similar proof as that of Theorem 4.1,
we can first construct an £ such that RSS(f) < RSS({)—O(d,(U)), and then use it to deduce

a contradiction. For reasons of space, we leave this to future.

5 Simulations

In Experiments 1-3, we compare StGoF with the BIC approach [33],” the ECV approach
[30], and the NCV approach [1]. We use the R package “randnet” to implement these other
methods. In Experiment 4, we compare StGoF with the RPLR approach [31]. In Experiment
5, we consider settings with comparably larger values of K. In all simulations, we fix « = 0.05
in StGoF. Given (n, K), a scalar 3, > 0 that controls the sparsity, a symmetric non-negative
matrix P € RE*E a distribution f(#) on (0,00), and a distribution g(7) on the standard
simplex of R¥ | we generate the adjacency matrix A € R™" as follows: First, generate 9~1, - 6,,
iid from f(6). Let 6; = 5,0;/||0|| and © = diag(6s, ...,6,). Next, generate 7, ..., m, iid from
g(m), and let Il = [my, ..., m,]". Last, let Q = ©IIPII'O and generate A from €2, for 100 times

independently. For each algorithm, we measure the performance by the fraction of times it

7[38] primarily focused on the SBM model. Their algorithm has an ad-hoc extension to DCBM, which has
no theoretical guarantee. We use this extension, instead of the original BIC approach.
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Figure 3: Experiment la (left), 1b (middel) and lc (right), where from la to lc, the degree
heterogeneity is increasingly more severe. For all three panels, x-axis is ||0|| (sparsity level),
and y-axis is the estimation accuracy over 100 repetitions ((n, K) = (600,4)).

correctly estimates K (i.e., accuracy). Note that [|6|| = S,, and SNR =< ||0||(1 — b,). For the
experiments, we let (3, range so to cover many different sparsity levels, but keep [|0]|(1 — b,)
fixed (so the problem of estimating K is not too difficult or too easy; see details below).
Experiment 1. We study how degree heterogeneity affect the results and comparisons.
Fixing (n, K) = (600, 4), we let P € R** be a Toeplitz matrix with P(k, ) = 1—[(1—b,)(|k—
(| +1)]/K in the off-diagonal and 1 in the diagonal. Let g(7) be the uniform distribution over
ey, €9, €3, e4 (standard basis vectors). We consider three sub-experiments, Exp la-1c. In these
sub-experiments, we keep (1 — b,)||0|| fixed at 9.5 so the SNR’s are roughly at the same level.
We let 3, range from 10 to 14 so to cover both the more sparse and the more dense cases.
Moreover, for the three sub-experiments, we take f(6) to be Unif(2,3), Pareto(8,.375) (8 is
the shape parameter and .375 is the scale parameter), and two point mixture 0.95d; + 0.050,
(0, is a point mass at a), respectively (from Exp la to Exp lc, the degree heterogeneity gets
increasingly more severe). See Figure 3. StGoF consistently outperforms other approaches.
Experiment 2. We study how the relative sizes of different communities affect the results
and comparisons. Given b, > 0, we set (n, K) = (1200, 3), f(f) as Pareto(10,0.375), and let
P be such that P(k,¢) =1 — W, for 1 < k,¢ < 3. We let 8, range in {12,13,...,17}
and keep (1 —b,)||0|| fixed at 10 so the SNR’s are roughly at the same level. We take g(7) as
the distribution with weights a, b, and (1 — a — b) on vectors ey, ey, e3, respectively. Consider
three sub-experiments, Exp 2a-2c, where we take (a,b) = (.30,.35), (.25,.375), and (.20, .40),
respectively, so three communities are slightly unbalanced, moderately unbalanced, and very

unbalanced, respectively. See Figure 4. First, StGoF consistently outperforms NCV, ECV and
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Figure 4: Experiment 2a (left), 2b (middle), and 2c¢ (right), where from 2a to 2c, the commu-
nities sizes are more and more unbalanced. For all three panels, z-axis is ||0]| (sparsity level),
and y-axis is the estimation accuracy over 100 repetitions ((n, K) = (1200, 3)).
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Figure 5: Experiment 3a (left) and 3b (right), where 3a allows for mixed memberships and
3b allows for outlier nodes. For both panels, z-axis is ||| (sparsity level), and y-axis is the
estimation accuracy over 100 repetitions ((n, K') = (600,4)).

BIC. Second, when three communities get increasingly unbalanced, all methods become less

accurate, suggesting that estimating K gets increasingly harder. Last, the performances of

ECV and NCV are close to that of StGoF when communities are relatively balanced (e.g., Exp

2a), but is more unsatisfactorily when communities are more unbalanced (e.g., Exp 2b-2c).

Experiment 3. We study robustness of the algorithms under model misspecification. Fix
(n, K) = (600,4). Let P have unit diagonals and P(k, () =1 — w as off-diagonals.
Let f(0) be Unif(2,3). We consider two sub-experiments, Exp 3a-3b. For sparsity, we let [,
range from 11 to 16 in Exp 3a and from 11 to 18 in Exp 3b, while fixing (1 —1b,)||#|| = 10.5. In

Exp 3a, we allow mixed-memberships. Let g(7) to be the mixing distribution with probability

.2 on each of eq, ey, e3,e4 and probability .2 on Dirichlet(14). Once we have 6;, m;, and P,

let Q;; = 0,0,7/Pr;, similar to that in DCBM. In Exp 3b, we allow outliers. Let g(m) be

the mixing distribution with a point mass .25 on each of ey, eq, €3, €4, and obtain 2 as in
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Figure 6: Experiment 4a (left), 4b (middle), and 4c (right), where (n,K) =
(600, 3), (1200, 3), (1200,4) respectively. For all three panels, xz-axis is ||0|| (sparsity level),
and y-axis is the estimation accuracy over 100 repetitions.

DCBM. Let p, = %Zlgi,jﬁn ;. We then randomly select 10% of nodes and re-set Q;; = p,
if either of (7,j) is selected. ECV and NCV are not model based so should be less sensitive
to model misspecification; we use their results as benchmarks to evaluate StGoF and BIC.
Figure 5 shows that StGoF is not sensitive to model misspecification, and that BIC behaves less
satisfactory here than in Experiment 1-2, and so is more sensitive to model misspecification.
Experiment 4. We compare StGoF with RPLR [31] (and also BIC, ECV, and NCV).
RPLR has tuning parameters (Kpax, ¢;, hn). Following [34], we set (Komax, ¢y, hn) = (10,1, d74/2),
where d is the average node degree. Consider three sub-experiments, Exp 4a-4b, covering dif-
ferent combinations of (n, K,0, P). In Exp 4a, (n, K) = (600,3), P(k,{) =1 — w
if k # ¢ and 1 otherwise. We let ||0|| vary and select b,, such that (1 —b,)||0|| =9, and let f(6)
be Unif(2,3). In Exp 4b, (n, K) = (1200, 3), P(k,¢) = 1 if k = ¢ and b,, otherwise. We let |||
vary while keeping (1—5,)||0|| = 4.75, and let f(#) be Unif(3,4). In Exp 4c, (n, K) = (1200, 4),
and P is the same as in Exp 4a. We let ||#|| vary while keeping (1 — b,)||#|| = 10.5, and let
f(0) be Pareto(10,.375). We take g(m) to be the mixing distribution which puts probability .2
on each of ey, ey, e3,e4 and .2 on Dirichlet(1,) (the model does not satisfy DCBM so we have
a model misspecification). See Figure 6. RPLR underperforms StGoF, especially in Exp 4b
(where the first two eigenvalues of 2 have a relatively large gap). This is because RPLR tends
to estimate K as the index that has the largest eigen-gap. If the largest eigen-gap happens at
an index smaller than K, RPLR tends to underestimate (see Section 6 for more discussion).

Experiment 5. We study two sub-experiments, Exp 5a-5b, for settings with a larger K.

In Exp 5a, (n, K) = (600, 6). We let P have 1 in the diagonal and P(k, ¢) = 1— 0=bn)(k TR

2K
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Figure 7: Experiment 5a (left) and 5b (right), where (n, K') = (600, 6) for ba and (n, K) =
(600,8) for 5b. For both panels, z-axis is ||| (sparsity level), and y-axis is the estimation
accuracy over 100 repetitions.

in the off-diagonal, and take f(6) as the two-point mixture 0.956; + 0.050,. We vary [|6]| and
select b, such that (1 —1b,)[|0|| = 15.5. In Exp 5b, (n, K) = (600, 8), P has unit diagonals and
b, in the off-diagonal, and f(0) is the same as in Exp ba. As ||0|| vary, we select b, such that
(1 —0,)]|0]] = 10.5. See Figure 7. Note that ECV and NCV are cross-validation approaches,
which may be less satisfactory for larger K.

Remark 3. StGoF may estimate K incorrectly if some regularity conditions are violated.
If this happens, we may either underestimate or overestimate K, depending on the data set.
E.g., if the network has very weak signals (i.e., [Axg|/v/A1 is small), StGoF may underestimate

K, and if the model is misspecified (say, due to many outliers), StGoF may overestimate K.

6 Real data analysis

In theory, a good approximation for the null distribution of wr(Lm) is N(0,1) (see Theorem 3.1),
but such a result requires some model assumptions, which may be violated in real applications
(e.g., outliers, artifacts). We thus propose a modification of StGoF using the idea of empirical
null [8]. Under model misspecification, a good approximation for the null distribution of
™ is no longer N(0,1) (i.e., theoretical null), but N(u,0?) (i.e., empirical null) for some
(u,0) # (0,1). Efron [8] argued that due to artifacts or model misspecification, the empirical
null frequently works better for real data than the theoretical null. The problem is then how
to estimate the parameters (u,0?) of the empirical null.

We propose a bootstrap approach to estimating (u, o?). Recall that A, is the k-th largest

eigenvalue of A and ék is the corresponding eigenvector. Fixing N > 1 and m > 1, letting
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M = S Ae&il and let Stm = A — M. For b = 1,2,...,N, we simultaneously
permute the rows and columns of S(m and denote the resultant matrix by Smb) Truncating
all entries of (]\/4\ (m) 4§ (mb)) at 1 at the top and 0 at the bottom, and denote the resultant
matrix by Q®). Generate an adjacency matrix A® such that for all 1 <i < j < n, Ag) are
independent Bernoulli samples with parameters Qg) (we may need to repeat this step until
the network is connected). Apply StGoF to A®) and denote the resultant statistic by QS’).
We estimate u and o by the empirical mean and standard deviation of {Q%b)}évzl, respectively.
Denote the estimates by 4(™ and 6™, respectively. The bootstrap StGoF statistic is then
i) = [Q%m) —a™m] /6™ m =1,2,..., where Q'™ is the same as in (2.8). Similarly, we
estimate K as the smallest integer m such that ¢7(1m’*) < z,, for the same z, in StGoF. We
recommend N = 25, as it usually gives stable estimates for 2™ and 6™ . We call this method
the bootstrap StGoF (StGoF*).

We consider 6 data sets as in Table 6, which can be downloaded from http://www-personal .
umich.edu/~mejn/netdata/. We now discuss the true K. For the dolphin network, it was ar-
gued in [32] that both K = 2 or K = 4 are reasonable. For UKfaculty network, we symmetrize
the network by ignoring the directions of the edges. There are 4 school affiliations for the
faculty members so we take K = 4. For the Football network, we take K = 11. The network
was manually labelled as 12 groups, but the 12 group only consists of the 5 “independent”
teams that do not belong to any conference and do not form a conference themselves. For
the Polbooks network, Le and Levina [28] suggest that K = 3, but it was argued by [22] that
a more appropriate model for the network is a degree corrected mixed-membership (DCMM)
model with two communities, so K = 2 is also appropriate.

We compare StGoF and StGoF* with the BIC [35], BH [28], ECV [30], NCV [1] and RPLR
[341]. The first 4 methods are implemented via the R package “randnet”. Among them, ECV
and NCV are cross validation (CV) approaches and the results vary from one repetition to
the other. Therefore, we run each method for 25 times and report the mean and SD. The
StGoF* uses bootstrapping mean and standard deviation and is also random, but the SDs are
0 for five data sets. Most methods require a feasible range of K a priori (say, {1,2, ..., kmnaz}»
where k,,q, is a prescribed upper bound for K. For the 6 data sets considered here, the largest
(true) K is 11, so we take k,,q, = 15.

In Section 5, we mention that RPLR tends to underestimate K if the largest eigen-gap
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Name n K |BIC BH ECV NCV RPLR StGoF  StGoF*
Dolphins 62 2,4 2 2 3.08(91) [2,5] 2.20(2.71) [1,15] 2 2 3
Football 115 11 | 10 10 11.28(.61) [11,13] 12.36(1.15) [11,15] 2 10 10
Karate 3 2] 2 2 260(1.0) [1,6] 2.56(.58) [2,4] * 2 2
UKfaculty 81 4 | 4 3 556(1.61) [3,11]  2.40(.28) [2,3] 4 4 4
Polblogs 1222 2 | 6 8 4.88(1.13) [4, §] 2(0) [2, 2] 2 2% 2
Polbooks 105 2,3| 3 4 7.56(2.66) [2,15]  2.08(.71) [2,] 3 5 24(.25) [2,3]

Table 1: Comparison of estimated K. Take ECV for Dolphins for example: for 25 independent
repetitions, the mean and SD of estimated K are 3.08 and 0.91, ranging from 2 to 5 (the SDs
of StGoF* are 0 for the first 5 data sets). For Karate, RPLR (with k., = 15) reports an
error message without an estimated K; the error messages disappear if we take k.. = 5,
where the estimated K is 2. See the text for more discussion.

of €2 happens at an index smaller than K. This seems to be the case for Football, where
RPLR significantly underestimates. RPLR also has a (seemingly fixable) coding issue: the
code (generously shared by the authors) may report an error message and does not output an
estimate for K (e.g., if we apply it to the Dolphins, Karate, and UKfaculty with k., = 15
for 500 times, then in 63%, 100%, and 96% of the times respectively, the code reports an error
and does not output an estimate for K). If we take k4, = 10 for Dolphins and UKfaculty
and take k.., = b for Karate, then the error messages disappear and the estimated K are
2,4, 2 for Dophis, UKfaculty, and Karate, respectively.

The Polblogs network is suspected to have outliers, so most methods do not work well.
For this particular network, the mean of StGoF is much larger than expected, so we choose
to estimate K by the m that minimizes wf@m) for 1 < m < 15 (for this reason, we put a
next to 2 in the table). Note that StGoF* correctly estimates K as 2. The Polbooks network
is suspected to have a signifiant faction of mixed nodes [22], which explains why StGoF
overestimates K. Fortunately, for both data sets, StGoF* estimates K correctly, suggesting

that the bootstrapping means and standard deviations help standardize Q%m)

7 Discussions

How to estimate K is a fundamental problem in network analysis. We propose StGoF as a
new stepwise algorithm for estimating K, which (a) has N(0,1) as its limiting null, (b) is
uniformly consistent in a setting much broader than those considered in the literature, and
(c) achieves the optimal phase transition. The results, especially (a) and (c), do not exist

before. Analysis of stepwise algorithms of this kind is known to face challenges. We overcome
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them by using a different stepwise scheme and by deriving sharp results, where the key is to
prove the NSP of SCORE; we prove the NSP with new ideas and techniques.

We discuss some open questions. First, in this paper, we are primarily interested in DCBM,
but the idea can be extended to the broader DCMM, where mixed-memberships exist. To
this end, we need to replace SCORE by Mixed-SCORE [22] (an adapted version of SCORE
for networks with mixed memberships), and modify the refitting step accordingly. In this
case, whether NSP continues to hold is unclear, but we may have a revised version of NSP
that holds for all pure nodes (i.e., nodes without mixed-memberships) and we can then use it
to study the mixed nodes. The analysis of the resultant procedure is much more challenging
so we leave it to the future. Second, in this paper, we assume K is fixed. For diverging K,
the main idea of our paper continues to be valid, but we need to revise several things (e.g.,
definition of consistency and SNR, some regularity conditions, phase transition) to reflect the
role of K. The proof for the case of diverging K can be much more tedious, but aside from
that, we do not see a major technical hurdle. Especially, the NSP of SCORE continues to
hold for a diverging K. Then, with some mild conditions, we can show that 1™ has very
few realizations, so the analysis of StGoF is readily extendable. That we assume K as fixed
is not only for simplicity but also for practical relevance. For example, real networks may
have hierarchical tree structure, and in each layer, the number of leaves (i.e., clusters) is small
(e.g., [L7]). Therefore, we have small K in each layer when we perform hierarchical network
analysis. Also, the goal of real applications is to have interpretable results. For example, for
community detection, results with a large K is hard to interpret, so we may prefer a DCBM
with a small K to an SBM with a large K. In this sense, a small K is practically more
relevant. Last, while the NSP of SCORE largely facilitates the analysis, it does not mean
that StGoF ceases to work well once NSP does not hold; it is just harder to analyze in such
cases. Our study suggests that StGoF continues to behave well even when NSP does not hold

exactly. How to analyze StGoF in such cases is an interesting problem for the future.
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