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Abstract

In network analysis, how to estimate the number of communities K is a fundamental
problem. We consider a broad setting where we allow severe degree heterogeneity and a
wide range of sparsity levels, and propose Stepwise Goodness-of-Fit (StGoF) as a new
approach. This is a stepwise algorithm, where for m = 1, 2, . . ., we alternately use a
community detection step and a goodness-of-fit (GoF) step. We adapt SCORE [19] for
community detection, and propose a new GoF metric. We show that at step m, the GoF
metric diverges to ∞ in probability for all m < K and converges to N(0, 1) if m = K.
This gives rise to a consistent estimate for K. Also, we discover the right way to define
the signal-to-noise ratio (SNR) for our problem and show that consistent estimates for
K do not exist if SNR → 0, and StGoF is uniformly consistent for K if SNR → ∞.
Therefore, StGoF achieves the optimal phase transition.

Similar stepwise methods (e.g., [38, 34]) are known to face analytical challenges. We
overcome the challenges by using a different stepwise scheme in StGoF and by deriving
sharp results that are not available before. The key to our analysis is to show that
SCORE has the Non-Splitting Property (NSP). Primarily due to a non-tractable rotation
of eigenvectors dictated by the Davis-Kahan sin(θ) theorem, the NSP is non-trivial to
prove and requires new techniques we develop.

∗JJ and SL gratefully acknowledge the support of the NSF grant DMS-2015469. ZK gratefully acknowledges
the support of the NSF CAREER grant DMS-1943902.
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1 Introduction

Suppose A is the adjacency matrix for a symmetric and connected network with n nodes:

Aij =

 1, if node i and node j have an edge,

0, otherwise,
1 ≤ i 6= j ≤ n. (1.1)

As a convention, self-edges are not allowed so all the diagonal entries of A are 0. As usual,

we assume the network has K (unknown) communities N1, N2, . . . ,NK . Similar to that of

a cluster in multivariate analysis, the precise meaning a community is hard to formalize, but

frequently and intuitively, communities in a network are groups of nodes that have more edges

within than between (e.g., [42]).

Our primary goal is to estimate K. This is a fundamental problem in network analysis:

In many recent approaches, K is assumed as known a priori (e.g., [40, 39, 16] on community

detection, [22, 9] on mixed-membership estimation, [31, 18, 41] on dynamic networks, and

[43, 3, 15] on network regression analysis). Unfortunately, K is rarely known in applications,

so the performance of these approaches hinges on how well we can estimate K.

Real world networks have several noteworthy features. First, a network may have severe

degree heterogeneity. Take the Polblog network in Table 1 for example. The maximum

degree is 351 and the minimum degree is 1. Second, the network sparsity (e.g., measured by

the average degree) may range significantly from one network to another. Last, frequently,

the desired community structure is masked by strong noise, and the signal-to-noise ratio

(SNR) is usually relatively small. Motivated by these features, we adopt the widely-used

degree-corrected block model (DCBM) [25]. Recall that the network has K communities

N1, N2, . . . ,NK . For each 1 ≤ i ≤ n, we encode the community label of node i by a

vector πi ∈ RK where for i ∈ Nk, πi(k) = 1 and πi(m) = 0 for m 6= k. Moreover, for a

K ×K symmetric nonnegative matrix P which models the community structure and positive

parameters θ1, θ2, . . . , θn which model the degree heterogeneity, we assume the upper triangular

entries of A are independent Bernoulli variables satisfying

P(Aij = 1) = θiθj · π′iPπj ≡ Ωij, 1 ≤ i < j ≤ n, (1.2)

where Ω denotes the matrix ΘΠPΠ′Θ, with Θ being the n×n diagonal matrix diag(θ1, . . . , θn)
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and Π being the n×K matrix [π1, π2, . . . , πn]′. For identifiability, we assume

P is non-singular and all diagonal entries of P are 1. (1.3)

Write for short diag(Ω) = diag(Ω11,Ω22, . . . ,Ωnn), and let W be the matrix where for 1 ≤

i, j ≤ n, Wij = Aij − Ωij if i 6= j and Wij = 0 otherwise. In matrix form, we have

A = Ω− diag(Ω) +W, where we recall Ω = ΘΠPΠ′Θ. (1.4)

When θ1 = θ2 = . . . = θn, DCBM reduces to the stochastic block model (SBM).

We let n be the driving asymptotic parameter, and allow (Θ,Π, P ) to depend on n, so

DCBM is broad enough to capture the three features aforementioned. In detail, let θ =

(θ1, θ2, . . . , θn)′, θmax = max{θ1, . . . , θn}, and θmin = min{θ1, . . . , θn}. First, a reasonable

metric for the degree heterogeneity is θmax/θmin, so to allow severe degree heterogeneity, we

prefer not to put an artificial upper bound on θmax/θmin. Second, a reasonable metric for

network sparsity is ‖θ‖ (e.g., see [23, 19]). 1 To cover all sparsity levels of interest, and

especially the very sparse case (e.g., θi = O(
√

log(n)/n) for all 1 ≤ i ≤ n) and the very dense

case (e.g., θ1 = O(1) for all 1 ≤ i ≤ n), we assume (C > 0 is a constant)

C
√

log(n) ≤ ‖θ‖ ≤ C
√
n. (1.5)

Last, let λ1, λ2, . . . , λK be the K nonzero eigenvalues of Ω, arranged in the descending order

of magnitudes. We will soon see that the signal strength and noise level in our setting are

captured by |λK | and ‖W‖, respectively, where under mild conditions,

‖W‖ = a multi-log(n) term ·
√
λ1 with high probability, where λ1 � ‖θ‖2. (1.6)

Therefore, a reasonable metric for the signal to noise ratio (SNR) is |λK |/
√
λ1 (see Section 3

for more discussion). We consider two extreme cases (assuming n→∞).

• Strong signal case. |λ1|, |λ2|, . . . , |λK | are at the same magnitude, and so SNR �
√
λ1.

• Weak signal case. |λK |/
√
λ1 is much smaller than

√
λ1 and grows to ∞ slowly.

1An appropriate measure for sparsity is ‖Ω‖ (e.g.,[23]). In (1.3), we assume all diagonal entries of P are 1,
so if K is finite and some regularity conditions hold, ‖Ω‖ � ‖θ‖2. Also, di (degree of node i) is at the order of
θi‖θ‖1, which is O(nθ2i ) if all θi are at the same order. Therefore, the range of interest for θi is between 1/

√
n

and 1, up to some logarithmic factors (e.g., log(n)).
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For example, in a weak signal case, we may have λ1 = O(
√
n) and SNR = log log(n) and

λ1 =
√
n. Section 3.3 suggests that when SNR = o(1), consistent estimate for K does not

exist, so the weak signal case is very challenging. Motivated by the above observations, it is

desirable to find a consistent estimate for K that satisfies the following requirements.

• (R1) Allow severe degree heterogeneity (i.e., no artificial bound on θmax/θmin).

• (R2) Optimally adaptive to all sparsity levels of interest (e.g., see (1.5)).

• (R3) Attain the information lower bound. Consistent for both the strong signal case

where SNR is large and the weak signal case where SNR may be as small as log log(n).

Example 1. A frequently considered DCBM is to assume P = P0 and θi �
√
αn for all

1 ≤ i ≤ n, where αn > 0 is a scaling parameter and P0 is a fixed matrix. It is seen that

λ1, . . . , λK are at the same order, so the model only considers the strong signal case.

Example 2. Let e1, . . . , eK be the standard basis vectors of RK . Fix a positive vector

θ ∈ Rn and bn ∈ (0, 1). Consider a DCBM where each community has n/K nodes, and

P = (1−bn)IK+bn1K1′K . Here, (1−bn) measures the “dis-similarity” of different communities.

By basic algebra, λ1 � ‖θ‖2, λ2 = ... = λK � ‖θ‖2(1− bn), and SNR � ‖θ‖(1− bn); moreover,

‖θ‖ = O(
√

log(n)) in the very sparse case, and ‖θ‖ = O(
√
n) in the dense case. When bn ≤ c0

for a constant c0 < 1, |λK | ≥ C|λ1| and SNR � ‖θ‖; we are in the strong signal case if

‖θ‖ ≥ na for a constant a > 0. When bn = 1 + o(1) and ‖θ‖(1 − bn) = log log(n) (say),

SNR � log log(n) and we are in the weak signal case.

Example 3. An SBM can be identifiable even if P is singular (e.g., [37]). However, a

DCBM can be non-identifiable if P is singular. For example, consider an SBM with parameters

(Π̃, P̃ ) where P̃ ∈ R2,2, P̃11 = a, P̃22 = c, P̃12 = P̃21 = b, and ac = b2 (so the rank of P̃ is 1).

The model is an identifiable SBM with two communities. But if we treat it with a DCBM

with parameters (K,Θ,Π, P ), then we can either take (K,Θ,Π, P ) = (2, In, Π̃, P̃ ), or take

(K,Θ,Π, P ) = (1,Θ, Π̃, 1), so it is not identifiable. Here Θ = diag(θ1, . . . , θn) and θi =
√
a if

i is in community 1 and θi =
√
c if i is in community 2, 1 ≤ i ≤ n.

1.1 Literature review and our contributions

Exiting approaches for estimating K can be roughly divided into the spectral approaches,

cross validation approaches, penalization approaches, and likelihood ratio approaches.
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For spectral approaches, Le and Levina [28] proposed to estimate K using the eigenvalues

of the non-backtracking matrix or Bethe Hessian matrix. The approach uses interesting ideas

from graph theory, but unfortunately, it requires relatively strong conditions for consistency.

For example, their Theorem 4.1 only considers the very sparse SBM model where θ1 = θ2 =

. . . = θn = 1/
√
n and P = P0 for a fixed matrix P0. Liu et al. [33] proposed to estimate K

using the scree plot with careful theoretical justification, but the approach is unsatisfactory

for networks with severe degree heterogeneity, for it is hard to derive a sharp bound for

the spectral norm of the noise matrix W (e.g., [19]). Therefore, their approach requires the

condition of θmax ≤ Cθmin. The paper also assumed ‖θ‖ = O(
√
n) so it did not address the

settings of sparse networks (e.g., see (1.5)). For cross-validation approaches, we have [4, 30],

and among the penalization approaches, we have [36, 5, 27], where K is estimated by the

integer that optimizes some objective functions. For example, Salda et al. [36] used a BIC-

type objective function and [5, 27] used an objective function of the Bayesian model selection

flavor. However, these methods did not provide explicit theoretical guarantee on consistency

(though a partial result was established in [30], which stated that under SBM, the proposed

estimator K̂ is no greater than K with high probability).

For likelihood ratio approaches, Wang and Bickel [38] proposed to estimate K by solving

a BIC type optimization problem, where the objective function is the sum of log-likelihood

and model complexity. The major challenge is that the likelihood is the sum of exponentially

many terms and is hard to compute. In a remarkable paper, Ma et al. [34] extended the idea

of [38] by proposing a new approach that is computationally more feasible.

On a high level, we can recast their methods as a stepwise testing or sequential testing

algorithm. Consider a stepwise testing scheme where for m = 1, 2, . . ., they construct a test

statistic `
(m)
n (e.g. log-likelihood) assuming m is the correct number of communities. They

estimate K as the smallest m such that the pairwise log-likelihood ratio (`
(m+1)
n − `(m)

n ) falls

below a threshold. Call m < K, m = K, and m > K the under-fitting, null, and over-fitting

cases, respectively. As mentioned in [38, 34], such an approach faces a two-fold challenge.

First, one has to analyze `
(m)
n for both the under-fitting case and the over-fitting case, but

there are no efficient technical tools to address either case. Second, it is hard to derive sharp

results on the limiting distribution of `
(m+1)
n − `

(m)
n in the null case, and so it is unclear

how to pin down the threshold. Ma et al. [34] (see also [38]) made interesting progress but

6



unfortunately the problems are not resolved satisfactorily. For example, they require hard-to-

check conditions on both the under-fitting and over-fitting cases. Also, it is unclear whether

their results are sharp in the over-fitting case and how to standardize `
(m+1)
n −`(m)

n in the under-

fitting case as the variance term is unknown (so it unclear how to pin down the threshold).

Most importantly, both papers focus on the setting in Example 1 (see above), where severe

degree heterogeneity is not allowed and they only consider the strong signal case.

We propose Stepwise Goodness-of-Fit (StGoF) as a new approach to estimating K. Our

idea follows a different vein, and is different both in the statistics we developed and in the

stepwise scheme we use. In detail, for m = 1, 2, . . ., StGoF alternately uses a community

detection sub-step (where we apply SCORE [19] assuming m is the correct number of com-

munities) and a Goodness-of-Fit (GoF) sub-step. We propose a new GoF approach and let

ψ
(m)
n be the GoF test statistic in step m. Assuming SNR→∞, we show that

ψ(m)
n

 → N(0, 1), when m = K (null case),

→∞ in probability, when 1 ≤ m < K (under-fitting case).
(1.7)

For a properly chosen threshold t, define the StGoF estimate by K̂ = minm{ψ(m)
n ≤ t}.

By (1.7), K̂ is consistent. Now, first, (1.7) shows that N(0, 1) is the limiting null. Such

an explicit limiting null is crucial in pinning down the threshold t. Second, a noteworthy

advantage of StGoF is that, we do not need to analyze the over-fitting case to prove the

consistency of K̂. In comparison, if we follow the approaches by [34, 38] and similarly define

K̂ by minm{`(m+1)
n −`(m)

n ≤ t}, then we have to derive the limiting distribution for `
(m+1)
n −`(m)

n

with m = K, which is an over-fitting case. In this case, how to derive tight bounds is an open

problem (even if the limiting distribution of `
(m+1)
n − `

(m)
n can be derived theoretically, it

contains unknown parameters, so it is hard to pin down the threshold t). For these reasons,

it is unclear how to derive sharp results with these approaches.

Fortunately, sharp results are possible if we use the StGoF approach. In Section 3.3,

we show that when SNR → 0, consistent estimates for K do not exist. Therefore, our

consistency result above is sharp in terms of the rate of SNR, so StGoF achieves the optimal

phase transition, in a broad setting (where we allow degree heterogeneity, flexible sparsity

levels, and weak signals). The phase transition is a well-known optimality framework. It is

related to the minimax framework but can be frequently more informative [7].
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Compared with the approaches in [34, 38], (a) they focused on more restricted settings,

with either strong signals, or strong eigen-gap conditions, or the more specific SBM model,

(b) they did not have an explicit limiting null, and (c) they have to analyze the over-fitting

case but it remains an open problem to derive sharp bounds. For these reasons, it is unclear

whether they are able to achieve the optimal phase transition.

To prove (1.7), the key is to show that when m ≤ K, SCORE has the so-called Non-

Splitting Property (NSP), meaning that with high probability all nodes in each (true) com-

munity are always clustered together. The proof of NSP is non-trivial. It depends on the

row-wise distances of the matrix Ξ consisting of the first m columns of [ξ1, . . . , ξK ]Γ, where

ξk is the k-th eigenvector of Ω and Γ is an orthogonal matrix dictated by the Davis-Kahan

sin(θ) theorem [6]. Γ is data dependent and hard to track, and when it ranges, the row-wise

distances of Ξ are the same if m = K but may vary significantly if m < K. This is why

SCORE is much harder to study in the under-fitting case than in the null case. To overcome

the challenge, we need new and non-trivial proof ideas; see Section 4.

While our paper uses SCORE, it is very different from [19]. The goal of [19] is community

detection where K is known, focusing on the null case (m = K). Here, the goal is to estimate

K: SCORE is only used as part of our stepwise algorithm, and the focus is on the under-

fitting case (m < K), where the property of SCORE is largely unknown, and our results on

the NSP of SCORE are new. Our contributions are two fold. First, we propose StGoF as a

new approach to estimating K. We show that StGoF has N(0, 1) as the limiting null, achieves

the optimal phase transition, and is uniformly consistent in broad settings (so it satisfies all

requirements (R1)-(R3) as desired). Second, we overcome the technical challenges for stepwise

algorithms of this kind by (a) developing a new stepwise scheme as in StGoF, (b) deriving

sharp results as in (1.7), and (c) developing new techniques to prove the NSP of SCORE.

1.2 Content

Section 2 introduces the StGoF algorithm, and Section 3 shows that StGoF is consistent for

K uniformly in a broad setting, and achieves the optimal phase transition. Section 4 shows

that SCORE has the Non-Splitting Property (NSP) for 1 ≤ m ≤ K, which is one of the keys

to our study in Section 2. Section 5 presents simulation results, and Section 6 contains real

data analysis. The supplementary material contains the proofs of all theorems and lemmas.

8



2 The stepwise Goodness-of-Fit (StGoF) algorithm

StGoF is a stepwise algorithm where for m = 1, 2, . . ., we alternately use a community detec-

tion step and a Goodness-of-Fit (GoF) step. We may view StGoF as a general framework,

where for either step, we can use a different algorithm. However, for most existing community

detection algorithms (e.g., [25, 35]), it is unclear whether they have the desired theoretical

properties (especially the NSP), so we may face analytical challenges. For this reason, we

choose to use SCORE [19], which we prove to have the NSP. For GoF, existing algorithms

(e.g., [14, 29]) do not apply to the current setting, so we propose Refitted Quadrilateral (RQ)

as a new GoF metric (a quadrilateral in a graph is a length-4 cycle [1]; see details below).

 
!A 

m = 1
Community  
Detection Refitting αn < Z Stop

Yes

No
m = m + 1

(m)

Figure 1: The flow chart of StGoF.

In detail, fix 0 < α < 1 (e.g., α = 1% or 5%). Let zα be the α upper-quantile of N(0, 1),

StGoF runs as follows. Input: adjacency matrix A (initialize with m = 1; see Figure 1).

• (a). Community detection. If m = 1, let Π̂(m) be the n-dimensional vector of 1’s. If

m > 1, apply SCORE to A assuming m is the correct number of communities and obtain

an n×m matrix Π̂(m) for the estimated community labels.

• (b). Goodness-of-Fit. Pretending Π̂(m) is the matrix of true community labels, we obtain

an estimate Ω̂(m) for Ω by refitting the DCBM, following (2.2)-(2.3) below. Obtain the

Refitted Quadrilateral test score ψ
(m)
n as in (2.5)-(2.8).

• (c). Termination. If ψ
(m)
n ≥ zα, repeat (a)-(b) with m = m + 1. Otherwise, output m

as the estimate for K. Denote the final estimate by K̂∗α.

We now fill in the details for steps (a)-(b). Consider (a) first. The case of m = 1 is trivial

so we only consider the case of m > 1. Let λ̂k be the k-th largest (in magnitude) eigenvalue of

A, and let ξ̂k be the corresponding eigenvector. For each m > 1, we apply SCORE as follows.

Input: A and m. Output: estimated community label matrix Π̂(m) ∈ Rn,m.
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• Obtain the first m eigenvectors ξ̂1, ξ̂2, . . . , ξ̂m of A. Define the n × (m − 1) matrix of

entry-wise ratios R̂(m) by R̂(m)(i, k) = ξ̂k+1(i)/ξ̂1(i), 1 ≤ i ≤ n, 1 ≤ k ≤ m− 1. 2

• Cluster the rows of R̂(m) by the k-means assuming we have m clusters. Output Π̂(m) =

[π̂
(m)
1 , . . . , π̂

(m)
n ]′ (π̂

(m)
i (k) = 1 if node i is clustered to cluster k and 0 otherwise).

Consider (b). The idea is to pretend that the SCORE estimate Π̂(m) is accurate. We then

use it to estimate Ω by re-fitting, and check how well the estimated Ω fits with the adjacency

matrix A. In detail, let di be the degree of node i, 1 ≤ i ≤ n, and let N̂ (m)
k be the set of nodes

that SCORE assigns to group k, 1 ≤ k ≤ m. We decompose 1n as follows

1n =
m∑
k=1

1̂
(m)
k , where 1̂

(m)
k (j) = 1 if j ∈ N̂ (m)

k and 0 otherwise. (2.1)

For most quantities that have superscript (m), we may only include the superscript when

introducing these quantities for the first time, and omit it later for notational simplicity when

there is no confusion. Introduce a vector θ̂(m) = (θ̂
(m)
1 , θ̂

(m)
2 , . . . , θ̂

(m)
n )′ ∈ Rn and a matrix

P̂ (m) ∈ Rm,m where for all 1 ≤ i ≤ n and 1 ≤ k, ` ≤ m,

θ̂
(m)
i = [di/(1̂

′
kA1n)] ·

√
1̂′kA1̂k, P̂

(m)
k` = (1̂′kA1̂`)/

√
(1̂′kA1̂k)(1̂′`A1̂`). (2.2)

Let Θ̂(m) = diag(θ̂). We refit Ω by

Ω̂(m) = Θ̂(m)Π̂(m)P̂ (m)(Π̂(m))′Θ̂(m). (2.3)

Recall that Ω = ΘΠPΠ′Θ and P has unit diagonal entries. In the ideal case where m = K,

Π̂(m) = Π, and A = Ω, we have (Θ̂(m), P̂ (m), Ω̂(m)) = (Θ, P,Ω). This suggests that the refitting

in (2.3) is reasonable. The Refitted Quadrilateral (RQ) test statistic is then

Q(m)
n =

∑
i1,i2,i3,i4(dist)

(Ai1i2 − Ω̂
(m)
i1i2

)(Ai2i3 − Ω̂
(m)
i2i3

)(Ai3i4 − Ω̂
(m)
i3i4

)(Ai4i1 − Ω̂
(m)
i4i1

), (2.4)

(“dist” means the indices are distinct). Without the refitted matrix Ω̂(m), Q
(m)
n reduces to

Cn =
∑

i1,i2,i3,i4(dist)

Ai1i2Ai2i3Ai3i4Ai4i1 = total number of quadrilaterals. (2.5)

In the null case of m = K, first, Var(Q
(m)
n ) can be well-approximated by 8Cn. Second,

while the mean of Q
(K)
n is 0 in the ideal case of Ω̂(K) = Ω, in the real case, it is comparable to

2As the network is connected, ξ̂1 is uniquely defined with all positive entries, by Perron’s theorem [19].
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[Var(Q
(K)
n )]1/2 and is not negligible, so we need bias correction. Motivated by these, for any

m ≥ 1, we introduce two vectors ĝ(m), ĥ(m) ∈ Rm where

ĝ
(m)
k = (1̂′kθ̂)/‖θ̂‖1, ĥ

(m)
k = (1̂′kΘ̂

21̂k)
1/2/‖θ̂‖, 1 ≤ k ≤ m. (2.6)

Write for short V̂ (m) = diag(P̂ ĝ) and Ĥ(m) = diag(ĥ). We estimate the mean of Q
(m)
n by

B(m)
n = 2‖θ̂‖4 · [ĝ′V̂ −1(P̂ Ĥ2P̂ ◦ P̂ Ĥ2P̂ )V̂ −1ĝ], (2.7)

where for matrixes A and B, A ◦ B is their Hadamard product [13]. Here, in the null case,

B
(m)
n is a good estimate for E[Q

(m)
n ], and in the under-fitting case, it is much smaller than the

leading term of Q
(m)
n and so is negligible. Finally, the StGoF statistic is defined by

ψ(m)
n = [Q(m)

n −B(m)
n ]/

√
8Cn. (2.8)

For each m, StGoF has a SCORE step (consisting of a PCA step and a k-means step) [19]

and a GoF step. The complexity of PCA step is O(n2m) if we use the power method, and the

complexity of the GoF step is O(n2d̄), where d̄ is the average node degree. In Section 3, we

show that under mild conditions, StGoF terminates in K steps with high probability. So aside

from running K times of k-means, the complexity of StGoF is O(n2K2 + n2Kd̄). Note that

many real networks are sparse, where the factor d̄ is relatively small. Similarly, [34] iterates

for m = 1, 2, . . . , kmax (kmax is a prescribed upper bound for K), where for each m, it runs

PCA once, k-means for (m+ 1) times, and then computes a quantity with a cost of O(n2m).

Therefore, aside from running k-means forO(k2
max) times, the cost isO(n2k2

max). The approach

by [38] also iterates for m = 1, 2, . . . , kmax, where for each m, they need an exhaustive search

step which is NP hard. To overcome the challenge, they use a spectral clustering approach

to approximate the solution, where the cost (aside from running k-means for kmax times) is

O(n2k2
max). In theory, as the complexity of k-means is relatively high, the main costs of three

algorithms come from the k-means part, and StGoF is less expensive (the times it runs for

k-means is fewer than those of the others). In practice, we usually implement the k-means

with the (relatively fast) Lloyd’s algorithm [12], so all three algorithms are reasonably fast.

For example, for a typical setting in Experiment 5a of Section 6 with (n,K) = (600, 6), the

computing time of three methods for 100 repetitions are 1, 10, 8 minutes, respectively, and for

a typical setting in Experiment 4b of Section 6 with (n,K) = (1200, 3), the computing time

of three methods for 100 repetitions are 2, 30, 40 minutes, respectively.
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Lemma 2.1. Suppose K = O(d̄), where d̄ is the average degree of the network. For each

m = 1, 2, . . . , K, the complexity for computing ψ
(m)
n by (2.2)-(2.5) is O(n2d̄).

Our StGoF procedure is new. Existing stepwise algorithms (e.g., those in [38, 34]) iterate

by comparing `
(m+1)
n − `(m)

n with a benchmark (which unfortunately has unknown parameters)

for m = 1, 2, . . . , K, and can not avoid the over-fitting case. StGoF iterates by comparing

ψ
(m)
n with N(0, 1) for m = 1, 2, . . . , K, and successfully avoids the over-fitting case. Such a

difference is crucial for obtaining sharp theoretical result; see Section 3.

Comparing with [19], though we use SCORE in the clustering step, but is for a different

purpose: The orthodox SCORE is for community detection in the null case of m = K. We

use SCORE to construct a low-rank matrix Ω̂(m) in the under-fitting case of m < K, where

the analysis is quite different and requires new technical tools; see Section 4.

The RQ test ψ
(m)
n is connected to the SgnQ test [23] (a recent idea for global testing, which

can be viewed as an improved version of the GC test by [21] and the EZ test by [10]), but

there are major differences. First, the SgnQ test is for global testing where we test K = 1

v.s. K > 1, and it is unclear how to use it for goodness-of-fit in each step of StGoF. Second,

SgnQ is not a stepwise algorithm and does not depend on any intermediate clustering results.

The RQ critically depends on the intermediate clustering results by SCORE, where the NSP

of SCORE plays a key role. Third, SgnQ does not need re-fitting, but RQ requires a re-fitting

step. The re-fitting errors cause a non-negligible bias in Q
(m)
n . To obtain a tractable limiting

null (where m = K), we need to figure out the right bias correction as in (2.7), with long and

careful calculations. At the same time, by similar proofs as in our main theorems, we can

show that ψ
(1)
n → N(0, 1) if K = 1 and ψ

(1)
n →∞ in probability if K > 1 and |λ2|/

√
λ1 →∞,

where λk is the k-th largest (in magnitude) eigenvalue of Ω. Comparing with the lower bound

in [23], ψ
(1)
n is optimal for global testing.

Remark 1. Existing GoF algorithms include [14, 29], but they only address narrower

settings (e.g., dense networks that follow SBM and have strong signals). As mentioned in

[14], it remains unclear how to generalize these approaches to the DCBM setting here. In

principle, a GoF approach only focuses on the null case, and can not be used for estimating

K without sharp results in the under-fitting case, or the over-fitting case, or both.

Remark 2. For SBM settings where P is singular (see Example 3), r < K (r = rank(Ω)).

In this case, StGoF can consistently estimate r. To estimate K, we may revise StGoF by

12



replacing the SgnQ test in the GoF step by a degree-based χ2-test (the success of which was

shown for global testing with SBM; e.g. [2, 20]). By the NSP of SCORE, we can show that

the new estimator is consistent under similar regularity conditions. Though the χ2-tests may

be powerful in some SBM settings, they usually lose power in more general DCBM settings,

as suggested by the following result on degree matching. Consider a DCBM setting where we

test K = 1 vs. K > 1 (i.e., global testing). It was shown in [23, 20] that for any alternative

(i.e., K > 1), we can pair it with a null such that for each node, the expected degrees under

the two models in the pair match with each other. Therefore, a naive degree-based test may

lose power in separating the two models in the pair.

3 The consistency and optimality of StGoF

In this section, we discuss the consistency and optimality of StGoF. The NSP of SCORE (one

of the key components in our proofs and a second part of our main results) is deferred to

Section 4. Consider a DCBM with K communities as in (1.4). We assume

‖P‖ ≤ C, ‖θ‖ → ∞, and θmax

√
log(n)→ 0. (3.1)

The first one is a mild regularity condition on the K × K community structure matrix P .

The other two are mild conditions on sparsity. See (1.5) for the interesting range of ‖θ‖. We

exclude the case where θi = O(1) for all 1 ≤ i ≤ n for convenience, but our results continue

to hold in this case provided that we make some small changes in our proofs. Moreover, for

1 ≤ k ≤ K, let Nk be the set of nodes belonging to community k, let nk be the cardinality of

Nk, and let θ(k) be the n-dimensional vector where θ
(k)
i = θi if i ∈ Nk and θ

(k)
i = 0 otherwise.

We assume the K communities are balanced in the sense that

min
{1≤k≤K}

{nk/n, ‖θ(k)‖1/‖θ‖1, ‖θ(k)‖2/‖θ‖2} ≥ C. (3.2)

In the presence of severe degree heterogeneity, the valid SNR for SCORE is

sn = a0(θ)(|λK |/
√
λ1), where a0(θ) = (θmin/θmax) · (‖θ‖/

√
θmax‖θ‖1) ≤ 1.

In the special case of θmax ≤ Cθmin, it is true that a0(θ) � 1 and sn � |λK |/
√
λ1. In this case,

sn is the SNR introduced in (1.6). We assume

sn ≥ C0

√
log(n), for a sufficiently large constant C0 > 0. (3.3)
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In the special case θmax ≤ Cθmin, (3.3) is equivalent to |λK |/
√
λ1 ≥ C

√
log(n), which is

mild. Define a diagonal matrix H ∈ RK,K by Hkk = ‖θ(k)‖/‖θ‖, 1 ≤ k ≤ K. For the matrix

HPH and 1 ≤ k ≤ K, let µk be the k-th largest eigenvalue (in magnitude) and ηk be the

corresponding eigenvector. By Perron’s theorem [13], if P is irreducible, then the multiplicity

of µ1 is 1, and all entries of η1 are strictly positive. Note also the size of the matrix P is small.

It is therefore only a mild condition to assume that for a constant 0 < c0 < 1,

min
2≤k≤K

|µ1 − µk| ≥ c0|µ1|, and
max1≤k≤K{η1(k)}
min1≤k≤K{η1(k)}

≤ C. (3.4)

In fact, (3.4) holds if all entries of P are lower bounded by a positive constant or P → P0 for a

fixed irreducible matrix P0. We also note that the most challenging case for network analysis

is when P is close to the matrix of 1’s (where it is hard to distinguish one community from

another), and (3.4) always holds in such a case. In this paper, we implicitly assume K is fixed.

Our method can be extended to the case where K diverges with n at a speed not too fast,

but the right hand side of (3.2) needs to be replaced by C/K. See Section 7 for discussions.

3.1 The null case and a confidence lower bound for K

In the null case, m = K, so if we apply SCORE to the rows of R̂(m) assuming m clusters, then

we have perfect community recovery with overwhelming probability, and StGoF provides a

confidence lower bound for K. The next theorem is proved in the supplement.

Theorem 3.1. Fix 0 < α < 1. Suppose we apply StGoF to a DCBM model where (3.1)-

(3.4) hold. As n → ∞, up to a permutation of the columns of Π̂(K), P(Π̂(K) 6= Π) ≤ Cn−3,

ψ
(K)
n → N(0, 1) in law, and P(K̂∗α ≤ K) ≥ (1− α) + o(1).

Theorem 3.1 allows for severe degree heterogeneity. If the degree heterogeneity is moderate,

sn � |λK |/
√
λ1, and we have the following corollary.

Corollary 3.1. Fix 0 < α < 1. Suppose we apply StGoF to a DCBM model where (3.1)-(3.2)

and (3.4) hold. Suppose θmax ≤ Cθmin and |λK |/
√
λ1 ≥ C0

√
log(n) for a sufficiently large

constant C0 > 0. As n → ∞, up to a permutation of the columns of Π̂(K), P(Π̂(K) 6= Π) ≤

Cn−3, ψ
(K)
n → N(0, 1) in law, and P(K̂∗α ≤ K) ≥ (1− α) + o(1).

It follows that K̂∗α is a level-(1 − α) confidence lower bound for K. If α depends on n and

tends to 0 slowly enough, these results continue to hold. In this case, P(K̂∗α ≤ K) = 1− o(1).
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When perfect community recovery is impossible but the faction of misclassified nodes is small

with high probability (e.g., for a slightly smaller SNR), the asymptotic normality continues

to hold. Similar comments apply to Theorem 3.3 and Corollary 3.2. As far as we know, this

is the first time in the literature that we have derived a (completely) explicit limiting null.

The result can be used to derive p-values in settings such as Goodness-of-Fit [14, 29]. If the

assumed model in GoF is DCBM with K communities, then by Theorem 3.1, we can apply

StGoF with m = K and derive an approximate p-value as P(N(0, 1) ≥ ψ
(K)
n ). The proof of

Theorem 3.1 is non-trivial and tedious. The main reason is that Ω is unknown and we must

estimate it with refitting (see Ω̂(K) in (2.3)). The refitting errors are non-negligible even when

Π is given: we must choose a bias correction term as in (2.4) and analyze Q
(K)
n carefully.

3.2 The under-fitting case of m < K and consistency of StGoF

Fixing an m such that 1 < m < K (the case of m = 1 is trivial), suppose we apply SCORE to

the rows of R̂(m) assuming m is the correct number of communities. Let Π̂(m) be the matrix of

estimated community labels. In this case, we underestimate the number of clusters, so perfect

community recovery is impossible. Fortunately, SCORE satisfies the Non-Splitting Property

(NSP). Recall that Π is the matrix of true community labels.

Definition 3.1. Fix K > 1 and m ≤ K. We say that a realization of the n ×m matrix of

estimated labels Π̂(m) satisfies the NSP if for any pair of nodes in the same (true) community,

the estimated community labels are the same (i.e., each community in Π is contained in a

community in the realization of Π̂(m)). When this happens, we write Π � Π̂(m).

Theorem 3.2. Consider a DCBM where (3.1)-(3.4) hold. With probability at least 1−O(n−3),

for each 1 < m ≤ K, Π � Π̂(m) up to a permutation in the columns.

By Theorem 3.2, SCORE has the NSP (with high probability). Theorem 3.2 is the key to our

upper bound study below. In Section 4, we explain the main technical challenges for proving

Theorem 3.2, and present the key theorems and lemmas required for the proof.

Theorem 3.3. Fix 0 < α < 1. Suppose we apply StGoF to a DCBM model where (3.1)-(3.4)

hold. As n→∞, min1≤m<K{ψ(m)
n } → ∞ in probability and P(K̂∗α 6= K) ≤ α + o(1).
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Theorem 3.3 allows for severe degree heterogeneity. When the degree heterogeneity is moder-

ate, SNR � |λK |/
√
λ1 and we have the following corollary.

Corollary 3.2. Fix 0 < α < 1. Suppose we apply StGoF to a DCBM model where (3.1)-(3.2)

and (3.4) hold, θmax ≤ Cθmin, and |λK |/
√
λ1 ≥ C0

√
log(n) for a sufficiently large constant

C0 > 0. As n→∞, min1≤m<K{ψ(m)
n } → ∞ in probability and P(K̂∗α 6= K) ≤ α + o(1).

Now in Theorem 3.3 and Corollary 3.2, if we let α depend on n and tend to 0 slowly enough,

then we have P(K̂∗α = K) → 1. Theorem 3.3 is proved in the supplement. The proof is

non-trivial and long, so for instruction, we explain (a) what are the technical challenges and

especially why the NSP is critical, and (b) why StGoF provides a consistent estimate.

Consider (a) first. The main technical challenge is how to analyze ψ
(m)
n where we not only

need sharp row-wise large deviation bounds for the matrix R̂(m), but also need to establish

the NSP of SCORE, where we note m ≤ K. To see why NSP is important, note that Q
(m)
n

depends on Ω̂(m) (see (2.4)), where Ω̂(m) is obtained by refitting using the SCORE estimate

Π̂(m), and depends on A in a complicate way. The dependence poses challenges for analyzing

Q
(m)
n , to overcome which, a conventional approach is to use concentrations. However, Π̂(m)

has exp(O(n)) possible realizations, and how to characterize the concentration of Π̂(m) is a

challenging problem (e.g., [38, 34]). 3 Fortunately, if SCORE has the NSP, then Π̂(m) only

has
(
K
m

)
possible realizations. In fact, Π̂(m) may have even fewer possible realizations if we

impose some mild conditions. Therefore, for each 1 ≤ m ≤ K, Ω̂(m) only concentrates on a few

non-stochastic matrices. Using this and union bound, we can therefore remove the technical

hurdle for analyzing ψ
(m)
n in the under-fitting case.

The proof of NSP is non-trivial, partially due to the intractable rotation of eigenvectors

dictated by the Davis-Kahan sin(θ) theorem. See Section 4 for detailed explanations.

Consider (b). Fix 1 ≤ m ≤ K. By the NSP of SCORE, except for a small proba-

bility, the estimated membership matrix Π̂(m) ∈ Rn,m only has finitely many realizations.

Fixing a realization Π̂(m) = Π0, let N (m,0)
1 , · · · ,N (m,0)

m be the clusters defined by Π0. Let

θ(m,0), Θ(m,0) and P (m,0) be constructed similarly as in (2.1)-(2.2), except that (A, Π̂(m))

and the vector d = (d1, d2, . . . , dn)′ are replaced by (Ω,Π0) and Ω1n, respectively. Let

Ω(m,0) = Θ(m,0)Π0P
(m,0)Π′0Θ(m,0). Then, on the event Π̂(m) = Π0, Ω(m,0) is a non-stochastic

3To shed light on why Π̂(m) has so many possible realizations, suppose we wish to group n iid samples
from N(0, 1) into two clusters with the same size. We have exp(O(n)) possible clustering results.
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proxy of the refitted matrix Ω̂(m). Recall that Ω is a non-stochastic proxy of the adjacency

matrix A. We thus expect the RQ statistic in (2.4) to satisfy that

Q(m)
n ≈

∑
i1,i2,i3,i4(dist)

(Ωi1i2 − Ω
(m,0)
i1i2

)(Ωi2i3 − Ω
(m,0)
i2i3

)(Ωi3i4 − Ω
(m,0)
i3i4

)(Ωi4i1 − Ω
(m,0)
i4i1

)

≈ tr((Ω− Ω(m,0))4), on the event of Π̂(m) = Π0. (3.5)

Now, when m = K, it can be shown that Π̂(m) = Π except for a small probability. Note also

that when Π0 = Π, our re-fitting procedure guarantees that θ(m,0) = θ, P (m,0) = P , and so

Ω(m,0) = Ω. It follows that tr((Ω − Ω(m,0))4) = 0. When m < K, Ω(m,0) has a rank m < K

and Ω has a rank K. Recall that λ1, . . . , λK are the nonzero eigenvalues of Ω (arranged in

the descending order of magnitudes). By Weyl’s theorem, the kth largest absolute eigenvalue

of Ω − Ω(m,0) is always lower bounded by |λk+m|, for all 1 ≤ k ≤ K − m. It follows that

tr((Ω− Ω(m,0))4) =
∑K−m

k=1 |λk(Ω− Ω(m,0))|4 ≥
∑K−m

k=1 λ4
m+k. In summary,

tr((Ω− Ω(m,0))4) = 0 if m = K, and tr((Ω− Ω(m,0))4) ≥
∑K

k=m+1 λ
4
k if m < K. 4 (3.6)

Recall that ψ
(m)
n is the standardized version of Q

(m)
n , and that except for a small probability,

Π̂ has only one possible realization for Π̂ in the null case and has only finite realizations in

the alternative case. Using the above and union bounds, we can show that ψ
(m)
n → N(0, 1), if m = K,

E[ψ
(m)
n ] � (

∑K
k=m+1 λ

4
k)/λ

2
1 and so ψ

(m)
n →∞ in prob., if 1 ≤ m < K,

(3.7)

where (
∑K

k=m+1 λ
4
k)/λ

2
1 ≥ (λK/

√
λ1)4 when m < K. Therefore, with a proper threshold on

ψ
(m)
n , StGoF stops at m = K with an overwhelming probability and outputs a consistent

estimate for K. The proofs for the NSP and (3.6)-(3.7) are technically demanding. See

Section 4 and Section A of the supplement for detailed explanations and proofs.

4This explains why in StGoF we do not use the refitted triangle (RT) T
(m)
n =

∑
i1,i2,i3(dist)

(Ai1i2 −
Ω̂

(m)
i1i2

)(Ai2i3 − Ω̂
(m)
i2i3

)(Ai3i1 − Ω̂
(m)
i3i1

), which is comparably easier to analyze. While we may similarly derive

T
(m)
n &

∑K
k=m+1 λ

3
k with large probability, λm+1, . . . , λK may have different signs and so may cancel with

each other. We can not use B
(m)
n =

∑
i1,i2(dist)

(Ai1i2 − Ω̂
(m)
i1i2

)(Ai2i1 − Ω̂
(m)
i2i1

) either. The variance of B
(m)
n is

unappealingly large so the resultant procedure can not achieve the optimal phase transition; see Section 3.3.

Also, see [23] for discussion on statistics similar to T
(m)
n and B

(m)
n .

17



3.3 Information lower bound and phase transition

In Theorem 3.3 and Corollary 3.2, we require the SNR, |λK |/
√
λ1, to tend to ∞ at a speed of

at least
√

log(n). We show that such a condition cannot be significantly relaxed. There are

relatively few studies on the lower bound for estimating K, and our results are new.

We say two DCBM models are asymptotically indistinguishable if for any test that tries to

decide which model is true, the sum of Type I and Type II errors is no smaller than 1+o(1), as

n→∞. Given a DCBM with K communities, our idea is to construct a DCBM with (K+m)

communities for any m ≥ 1, and show that two DCBM are asymptotically indistinguishable,

provided that the SNR of the latter is o(1).

Fixing K0 ≥ 1, we consider a DCBM with K0 communities that satisfies (1.1)-(1.3). Let

(Θ, Π̃, P̃ ) be the parameters of this DCBM, and let Ω̃ = ΘΠ̃P̃ Π̃′Θ. When K0 > 1, let (β′, 1)′

be the last column of P̃ , and let S ∈ RK0−1,K0−1 be the sub-matrix of P̃ excluding the last

row and the last column. Given m ≥ 1 and bn ∈ (0, 1), we construct a DCBM model with

(K0 +m) communities as follows. We define a (K0 +m)× (K0 +m) matrix P :

P =

 S β1′m+1

1m+1β
′ m+1

1+mbn
M

 , where M = (1− bn)Im+1 + bn1m+11
′
m+1. (3.8)

When K0 = 1, we simply let P = m+1
1+mbn

M . Let ˜̀
i ∈ {1, . . . , K0} be the community label of

node i defined by Π̃. We generate labels `i ∈ {1, . . . , K0 +m} by

`i =


˜̀
i, if ˜̀

i ∈ {1, . . . , K0 − 1},

uniformly drawn from {K0, K0 + 1, . . . K0 +m}, if ˜̀
i = K0.

(3.9)

Let Π be the corresponding community label matrix. This gives rise to a DCBM model with

(K0 + m) communities, where Ω = ΘΠPΠ′Θ. Though P does not have unit diagonals, we

can re-parametrize so that it has unit diagonals: Let D be the (K0 +m)× (K0 +m) diagonal

matrix with Dkk =
√
Pkk, 1 ≤ k ≤ K0 + m. Now, if we let P ∗ = D−1PD−1, θ∗i = θi‖Dπi‖1,

and Θ∗ = diag(θ∗1, . . . , θ
∗
n), then P ∗ has unit-diagonals and Ω = Θ∗ΠP ∗Π′Θ∗.

Here some rows of Π are random (so we may call the corresponding model the random-

label DCBM), but this is conventional in the study of lower bounds. Let λk be the kth largest

eigenvalue (in magnitude) of Ω. Since Ω is random, λk’s are also random (but we can bound

|λK |/
√
λ1 conveniently). The following theorem is proved in the supplement.
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Theorem 3.4. Fix K0 ≥ 1 and consider a DCBM model with n nodes and K0 communities,

whose parameters (θ, Π̃, P̃ ) satisfy (3.1)-(3.2). Let (β′, 1)′ be the last column of P̃ , and let S

be the sub-matrix of P̃ excluding the last row and last column. We assume |β′S−1β − 1| ≥ C.

• Fix m ≥ 1. Given any bn ∈ (0, 1), we can construct a random-label DCBM model with

K = K0 +m communities as in (3.8)-(3.9). Then, as n→∞, |λK |/
√
λ1 ≤ C‖θ‖(1−bn)

with probability 1 − o(n−1). Moreover, if (1 − bn)/|λmin(S)| = o(1), where λmin(S) is

the minimum eigenvalue (in magnitude) of S, then |λK |/
√
λ1 ≥ C−1‖θ‖(1 − bn) with

probability 1− o(n−1). Here C > 1 is a constant that does not depend on bn.

• Fix m1,m2 ≥ 1 with m1 6= m2. As n→∞, if ‖θ‖(1−bn)→ 0, then the two random-label

DCBM models associated with m1 and m2 are asymptotically indistinguishable.

Here, the condition |β′S−1β−1| ≥ C is used to bound the last diagonal entry of P̃−1, which

is 1/(β′S−1β−1). By Theorem 3.4, starting from a (fixed-label) DCBM with K0 communities,

we can construct a collection of random-label DCBM, with K0 + 1, K0 + 2, . . . , K0 +m com-

munities, respectively, where (a) for the model with (K0 + m) communities, |λK0+m|/
√
λ1 �

‖θ‖(1− bn), with an overwhelming probability, and (b) each pair of models are asymptotically

indistinguishable if ‖θ‖(1− bn) = o(1). Therefore, for a broad class of DCBM with unknown

K where SNR = o(1) for some models, a consistent estimate for K does not exist.

Fixing m0 > 1 and a sequence of numbers an > 0, let Mn(m0, an) be the collection of

DCBM for an n-node network with K communities, where 1 ≤ K ≤ m0, |λK |/
√
λ1 ≥ an,

and (3.1)-(3.2) hold. In Section 3.2, we show that if an ≥ C0

√
log(n) for a sufficiently large

constant C0, then for each DCBM in Mn(m0, an), StGoF provides a consistent estimate for

K. The following theorem says that, if we allow an → 0, then Mn(m0, an) is too broad, and

a consistent estimate for K does not exist.

Theorem 3.5. Fix m0 > 1 and letMn(m0, an) be the class of DCBM as above. As n→∞, if

an → 0, then infK̂
{

supMn(m0,an) P(K̂ 6= K)
}
≥ (1/6 + o(1)), where the probability is evaluated

at any given model in Mn(m0, an) and the supremum is over all such models.

Combining Theorems 3.1, 3.5, and Corollary 3.2, we have a phase transition result (phase

transition is a recent theoretical framework (e.g., [7, 24]). It is closely related to the classical

minimax framework but can be more informative in many cases).
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• Impossibility. If an → 0, then Mn(m0, an) defines a class of DCBM that is too broad

where some pairs of models in the class are asymptotically indistinguishable. Therefore,

no estimator can consistently estimate the number of communities for each model in the

class (and we say “a consistent estimate for K does not exist” for short).

• Possibility. If an ≥ C0

√
log(n) for a sufficiently large C0, then for every DCBM in

Mn(m0, an), StGoF provides a consistent estimate for the number of communities if the

model only has moderate degree heterogeneity (i.e., θmax ≤ Cθmin). StGoF continues to

be consistent in the presence of severe degree heterogeneity if the adjusted SNR satisfies

that sn ≥ C0

√
log(n) with a sufficiently large C0.

The case of C ≤ an < C0

√
log(n) is more delicate. Sharp results are possible if we consider

more specific models (e.g., for a scaling parameter αn > 0, (θi/αn) are iid from a fixed

distribution F , and the off-diagonals of P are the same). We leave this to the future.

Comparing with existing works, we have the following comments: (a) StGoF is the first

method that is proved to achieve the optimal transition, (b) StGoF is the first method that is

proved to have a (completely) explicit limiting null, (c) we prove the NSP of SCORE, and use

it to derive sharp results that are not available before, (d) our settings are much broader and

our regularity conditions are much weaker, and (e) we overcome the challenges of stepwise

algorithms of this kind by using the sharp results we derive and by using a different stepwise

scheme (so to avoid the analysis of the over-fitting case where the NSP does not hold). We

now compare with [38, 34] with more details.

First, their approaches require a signal strength much stronger than ours, and so do not

achieve the phase transition. When θmax ≤ Cθmin, our result requires |λK |/
√
λ1 ≥ C0

√
log(n),

which matches the lower bound in Section 3.3. However, [38] needs |λK |/
√
λ1 � n1/4

√
log(n)

(see their Section 2.5), which is non-optimal. Also, [34] proves consistency under the condition

of λ1 ≥ C log(n). Recall that they assume P = ρnP0. In their setting, |λ1|, . . . , |λK | are at

the same order, and λ1 ≥ C log(n) indeed translates to |λK |/
√
λ1 ≥ C0

√
log(n). However, for

general settings where |λ1|, · · · , |λK | are at different orders, it is unclear whether their method

is optimal (because the SNR is captured by |λK |/
√
λ1, not

√
λ1). In comparison, our result

matches with the lower bound for all settings. Second, [38] only studies the SBM where θi’s

are all equal, and [34] assumes that θmax ≤ Cθmin and P = ρnP0, for a fixed matrix P0; in this
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setting, the degree heterogeneity is only moderate, and |λ1|, · · · , |λK | are at the same order.

This excludes many practical cases of interest. Last, besides the very mild condition of (3.2),

we do not need any hard-to-check conditions on Π. In contrast, [38, 34] impose stringent

conditions. For example, [34] defines a quantity QK(k) by applying spectral clustering to Ω

and then evaluating the change of residual sum of squares by further splitting one cluster.

They impose conditions on QK(k) for every 1 ≤ k ≤ K − 1 (see their Assumption 3). These

conditions are hard to check in practice. Moreover, when P = ρnP0 does not hold for a fixed

P0, the conditions on {QK(k)}1≤k≤K−1 are easy to violate (e.g., in our Example 1).

The advantage of our theory partially comes from the way our algorithm is designed.

StGoF only assesses one candidate of K in each step, instead of comparing two adjacent values

of K. It helps avoid the analysis of the over-fitting case, and it also avoids imposing stringent

conditions on Π. Another advantage comes from our new proof ideas. We do not need Π̂(m)

to converge to a non-stochastic matrix, because our proof is not based on Taylor expansion.

For example, a key component of our analysis is the NSP of SCORE. We develop the NSP

under very weak conditions where Π̂(m) can be non-tractable, non-unique, and depending on

a data-driven rotation matrix (see Section 4).

4 The non-splitting property (NSP) of SCORE

To prove the NSP of SCORE, we face technical challenges. In the SCORE step of StGoF, for

each 2 ≤ m ≤ K, we cluster n rows of the matrix R̂(m) into m clusters. We find that for any

two rows of R̂(m), the distance critically depends on a non-tractable data-dependent rotation

matrix Γ̂ dictated by the David-Kahn sin(θ) theorem [6], and it may vary significantly as Γ̂

changes from one realization to another. This poses an unconventional setting for clustering.

To overcome the challenge, we first discover a new distance-based quantity that is semi-

invariant with respect to Γ̂: the quantity remains at the same order of O(1) as Γ̂ varies from

one realization to another. We then develop a new k-means theorem (Theorem 4.1) and use

it to prove the NSP. The proof of Theorem 4.1 is non-trivial: our setting is an unconventional

clustering setting and we do not want to impose unrealistic and strong conditions. Note that

the literature on SCORE has been focused on the null case of m = K, but our primary interest

is in the under-fitting case of m < K.
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4.1 Row-wise large-deviation bounds and Ideal polytope

Recall that for 2 ≤ m ≤ K, R̂(m) is an n× (m− 1) matrix constructed from the eigenvectors

ξ̂1, ξ̂2, . . . , ξ̂m by taking entry-wise ratios between ξ̂2, . . . , ξ̂m and ξ̂1; see Section 2. Let λk be

the k-th largest (in magnitude) eigenvalue of Ω and let ξk be the corresponding eigenvector.

Under our assumptions (e.g., see condition (3.4)), there exists a (K− 1)× (K− 1) orthogonal

matrix Γ̂ such that [ξ̂1, ξ̂2, . . . , ξ̂K ] ≈ [ξ1, ξ2, . . . , ξK ] · diag(1, Γ̂). The rotation matrix Γ̂ is

dictated by the Davis-Kahan sin(θ) theorem in spectral analysis. It is well-known that the

matrix is data dependent and hard to track. Even if λ1, . . . , λK are distinct (so each vector

in {ξ1, . . . , ξK} is unique up to a ±1 factor), Γ̂ can still take arbitrary values on the Stiefel

manifold and does not concentrate on any non-stochastic rotation matrix on the manifold. 5

Therefore, we must consider all possible realizations Γ̂ = Γ. This not only poses analytical

challenges (see Section 4.2) but also makes notations more complicate. Fix a (non-stochastic)

orthogonal matrix Γ. For 2 ≤ k ≤ K, let ξk(Γ) be the kth column of [ξ1, ξ2, . . . , ξK ]·diag(1,Γ),6

and let ξk(j,Γ) be the jth entry of ξk(Γ), 1 ≤ j ≤ n. Define R(m)(Γ) ∈ Rn,m−1 by

R(m)(i, `; Γ) = ξ`+1(i; Γ)/ξ1(i), 1 ≤ i ≤ n, 1 ≤ ` ≤ m− 1. (4.1)

Comparing (4.1) with the definition of R̂(m) in Section 2, it is seen that R(m)(Γ) is the pop-

ulation counterpart of R̂(m) on the event of Γ̂ = Γ. Lemma 4.1 provides a sharp row-wise

large-deviation bound for R̂(m) −R(m)(Γ) and is proved in the supplemental material.

Lemma 4.1 (Row-wise bounds). Consider a DCBM model where (3.1)-(3.4) hold. Let sn =

a0(θ)(|λK |/
√
λ1), where a0(θ) is as in Section 3. For each 1 < i ≤ n, let (r

(m)
i (Γ))′ and

(r̂
(m)
i )′ denote the i-th row of R(m)(Γ) and R̂(m), respectively. As n → ∞, with probability

1 − O(n−3), for all 1 ≤ m ≤ K and 1 ≤ i ≤ n and all (K − 1) × (K − 1) orthogonal matrix

Γ, ‖r̂(m)
i − r(m)

i (Γ)‖ ≤ ‖r̂(K)
i − r(K)

i (Γ)‖ ≤ Cs−1
n

√
log(n) over the event Γ̂ = Γ.

Under our assumptions, s−1
n

√
log(n) is upper bounded by a sufficiently small constant. It

implies that each r̂
(m)
i is sufficiently close to r

(m)
i (Γ) on the event Γ̂ = Γ.

It remains to study the geometry underlying {r(m)
i (Γ)}1≤i≤n for an arbitrary rotation ma-

trix Γ ∈ RK−1,K−1. Recall that H ∈ RK,K is the diagonal matrix with Hkk = ‖θ(k)‖/‖θ‖,
5Γ̂ is tractable only if we impose a strong eigen-gap condition. However, this excludes many practical

settings of interest, especially when the signals are weak and |λ1|, . . . , |λK | are at different orders.
6By Perron’s theorem, ξ1 is uniquely defined and a strictly positive vector. Vectors ξ2, . . . , ξK are not

necessarily unique, but we can select an arbitrary candidate of ξ2, . . . , ξK to define ξ2(Γ), . . . , ξK(Γ).
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Figure 2: An example (K = 4). From left to right: m = 4, 3, 2. Red dots: the 4 distinct rows

of R(m), which are v
(m)
1 , v

(m)
2 , v

(m)
3 , v

(m)
4 . Blue crosses: the rows of R̂(m). The red dots are the

vertices of a tetrahedron when m = 4, vertices of a quadrilateral when m = 3, and scalars
when m = 2. For each m, the n rows of R̂(m) form K clusters, each corresponding to a true
community. The figure is only for illustration, and we should not have the wrong impression
that the K clusters are always well-separated.

1 ≤ k ≤ K. For each 1 ≤ k ≤ K, let µk be the k-th largest (in magnitude) eigenvalue of

HPH and let ηk ∈ RK be the associated (unit-norm) eigenvectors, respectively. By Lemma

B.1 of the supplement, η1 is unique and all entries are strictly positive. Also, while (η2, . . . , ηK)

may be non-unique, there is a one-to-one correspondence between the choice of (η2, . . . , ηK)

and the choice of (ξ2, . . . , ξK); see the paragraph above (4.1). Fix Γ. For each 2 ≤ k ≤ K,

let ηk(Γ) be the (k − 1)-th column of [η2, η3, . . . , ηK ]Γ, and let ηk(i,Γ) denote the i-th entry

of ηk(Γ), 1 ≤ i ≤ K. Define a K × (m− 1) matrix V (m)(Γ) by

V (m)(k, `; Γ) = η`+1(k; Γ)/η1(k), 1 ≤ k ≤ K, 1 ≤ ` ≤ m− 1. (4.2)

Let (v
(m)
k (Γ))′ be the k-th row of V (m)(Γ). Lemma 4.2 is proved in the supplement.

Lemma 4.2 (The ideal polytope). Consider a DCBM model where (3.4) holds. Fix 1 < m ≤

K. We have that r
(m)
i (Γ) = v

(m)
k (Γ) for all i ∈ Nk and 1 ≤ k ≤ K.

Combining Lemmas 4.1-4.2 gives the following claim. Viewing {r̂(m)
i }1≤i≤n as a point cloud

in Rm−1, we have that with overwhelming probability, for any realization of Γ̂ = Γ and each

1 < m ≤ K, there are K clusters in the point cloud, corresponding to K true communities,

where v
(m)
1 (Γ), . . . , v

(m)
K (Γ) are the cluster centers (see Figure 2).

4.2 Challenges in proving NSP and our approach

Given the results in previous section, one may think that NSP is easy to prove. Unfortunately,

this is not the case: even with the results in the previous section, how to prove NSP remains

a non-trivial problem, especially when m < K. We now provide a detailed explanation.
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Recall that Γ̂ is data dependent and hard to track, so we have to consider all realizations

of Γ̂ = Γ. Therefore, to prove the claim, we need to show that the NSP holds uniformly for all

Γ in the Stiefel manifold OK−1. Given a realization of Γ̂ = Γ, let B̂(m) and B(m) be the sub-

matrices of Γ̂ and Γ, consisting of the first (m− 1) columns. Introduce a matrix V0 ∈ RK,K−1

by V0(i, k) = ηk+1(i)/η1(i), 1 ≤ i ≤ K, 1 ≤ k ≤ K − 1, where ηk’s are as in the previous

section. For each 1 < m ≤ K, by our notations, the K cluster centers in Lemma 4.2 are the

K rows of the matrix V (m)(Γ) ∈ RK,m−1, and V (m)(Γ) is related to V0 by V (m)(Γ) = V0B
(m).

For any K × (m − 1) matrix M , let dK(M) be the minimum pairwise Euclidean distance of

the K rows of M . In [19], it was shown that dK(V0) ≥
√

2. We now discuss the null case and

the under-fitting case separately.

In the null case, m = K, and B(m) = Γ is a rotation matrix. Since the Euclidean distances

remain unchanged for rotation, the relative position of the K cluster centers is invariant with

respect to Γ, and especially, dK(V (m)(Γ)) = dK(V0) ≥
√

2. Combining this with Lemmas

4.1-4.2, we have: (a) With high probability, the n rows of R̂(m) split into K clusters; for each

row, the distance to the closest cluster center is ≤ O(sn
√

log(n)) = o(1). (b) The K cluster

centers are well-separated by a distance of
√

2. (c) m = K, so the number of clusters assumed

in k-means matches the number of true clusters. In this case, the cluster labels estimated by

k-means match with the true cluster labels (up to a permutation) so the NSP follows.

The under-fitting case is unfortunately much harder to prove. For m < K, B(m) is not a

square matrix (it is not a rotation matrix even in the simplest case where Γ is the identity

matrix). Compared to the null case, we have some major differences. First, even in the case

where Γ is the identity matrix, we may have dK(V (m)) = 0 so the K cluster centers are not

well-separated. Second, for any two rows of V (m)(Γ) (each is one of the K cluster centers), the

Euclidean distance critically depends on Γ. As Γ varies continuously in the Stiefel manifold,

the distance may vary from O(1) to 0. Therefore, the relative positions of the K cluster

centers critically depend on Γ, and may vary significantly from one case to another (we may

have dK(V (m)(Γ)) ≥ C for one Γ and dK(V (m)(Γ)) = 0 for another Γ). Note also that since

m < K, the number of clusters fed into the k-means algorithm is smaller than the number of

true clusters. Seemingly, this is an unconventional clustering setting, especially as our goal is

to show that when we apply k-means, the NPS holds uniformly for all Γ. To overcome the

challenges, (1) we propose a new metric for the relative positions of the K cluster centers,
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and (2) we develop a new k-means theorem specifically for the setting we have. Here, (1) is

motivated by the observation that, the main reason NSP is easier to prove in the null case

is that dK(V (m)(Γ)) (minimum pairwise distance of the K cluster centers) is invariant to Γ

and so the K clusters are always well-separated, uniformly for all Γ. In the under-fitting case,

dK(V (m)(Γ)) is not invariant to Γ, but there may exist a different measure that is invariant

to Γ. This motivates us to define dm(V (m)(Γ)) as a new measure for the relative positions of

the K cluster centers, which is semi-invariant to Γ (i.e., there are constants c2 > c1 > 0 such

that c1 ≤ dm(V (m)(Γ)) ≤ c2 for all Γ in the Stiefel manifold). In detail, for any 1 < m ≤ K

and any given K points in Rm−1, we have the following definition, which is an extension of

the minimum pairwise distance.

Definition 4.1 (Distance-based metrics defined by bottom up pruning). Fixing K > 1 and

1 < m ≤ K, consider a K× (m−1) matrix U = [u1, u2, . . . , uK ]′. First, let dK(U) be the min-

imum pairwise distance of all K rows. Second, let uk and u` (k < `) be the pair that satisfies

‖uk − u`‖ = dK(U) (if this holds for multiple pairs, pick the first pair in the lexicographical

order). Remove row ` from the matrix U and let dK−1(U) be the minimum pairwise distance

for the remaining (K − 1) rows. Repeat this step and define dK−2(U), dK−3(U), . . . , d2(U)

recursively. Note that dK(U) ≤ dK−1(U) ≤ . . . ≤ d2(U).

For each fixed Γ, dK(V (m)(Γ)) is the minimum pairwise distance between the K cluster

centers v
(m)
1 (Γ), . . . , v

(m)
K (Γ), and dm(V (m)(Γ)) is the minimum pairwise distance of the m

remaining cluster centers after we prune (m−K) cluster centers in the bottom-up fashion as

above. When Γ ranges continuously in OK−1, dK(V (m)(Γ)) may range continuously from O(1)

to 0, but fortunately dm(V (m)(Γ)) remains at the same order of O(1), and so is semi-invariant.

This is the following lemma, which is proved in the supplement.

Lemma 4.3. Consider a DCBM model where (3.2) and (3.4) hold. Fix 1 ≤ m ≤ K. There

is a constant C > 0 (which may depend on m), such that minΓ∈OK−1

{
dm(V (m)(Γ))

}
≥ C.

We now discuss (2). To prove that NSP holds uniformly for all Γ, it remains to develop a

new k-means theorem. We can have two versions of the k-means theorem: a “weaker” version

where we assume dK(V (m)(Γ)) ≥ C, for a constant C > 0, and a “stronger” version where we

only require c1 ≤ dm(V (m)(Γ) ≤ c2, and dK(V (m)(Γ)) may be as large as O(1) or as small as 0.

As dK(V (m)(Γ)) = 0 for many Γ, the “weaker” version is inadequate for our setting. Theorem
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4.1 is a “stronger” version of the k-means theorem, and is proved in the supplement. The

“weaker” version is implied by Theorem 4.1 and so the proof is skipped.

Theorem 4.1 (The “stronger” version of the k-means theorem). Fix 1 < m ≤ K and let n

be sufficiently large. Consider the non-stochastic vectors x1, . . . , xn that take only K values in

u1, . . . , uK. Write U = [u1, . . . , uK ]′. Let Fk = {1 ≤ i ≤ n : xi = uk}, 1 ≤ k ≤ K. Suppose

for some constants 0 < α0 < 1 and C0 > 0, min1≤k≤K |Fk| ≥ α0n and max1≤k≤K ‖uk‖ ≤

C0 · dm(U). We apply the k-means clustering to a set of n points x̂1, x̂2, . . . , x̂n assuming ≤ m

clusters, and denote by Ŝ1, Ŝ2, . . . , Ŝm the obtained clusters (if the solution is not unique, pick

any of them). There exists a constant c > 0, which only depends on (α0, C0,m), such that, if

max1≤i≤n ‖x̂i − xi‖ ≤ c · dm(U), then #
{

1 ≤ j ≤ m : Ŝj ∩ Fk 6= ∅
}

= 1, for each 1 ≤ k ≤ K.

To prove the NSP of SCORE, we apply Theorem 4.1 with U = V (m)(Γ), xi = r
(m)
i (Γ),

and x̂i = r̂
(m)
i , and the main condition we need is c1 ≤ dm(V (m)(Γ)) ≤ c2 uniformly for all

Γ. But by Lemma 4.3, this is implied, so we do not need extra conditions to show the NSP.

If however we use a “weaker” version of the k-means theorem, then we need conditions such

as dK(V (m)(Γ)) ≥ C for all Γ (as explained above, the condition can be violated easily). The

formal proof of the NSP (i.e., Theorem 3.2) is given in Section B.1 of the supplement, where

we combine Lemmas 4.1-4.3, Theorem 4.1, and some elementary probability.

Theorem 4.1 is quite general and may be useful for many other unsupervised learning

settings (e.g., [11]). The proof of the theorem is non-trivial and we now briefly explain the

reason. As the objective function of the k-means is nonlinear and we do not have an explicit

formula for the k-means solution, we prove by contradiction. Let ˆ̀ be the estimated cluster

label vector by k-means and RSS(ˆ̀) be the associated objective function, we aim to show

that, when NSP does not hold for ˆ̀, we can always find a cluster label vector ` such that

RSS(`) < RSS(ˆ̀) (a contradiction). The key is finding such an ` and evaluating RSS(`).

However, except for a lower bound on dm(U), we have little information about the K true

cluster centers. Since dK(U) can take any value in [0, dm(U)], a pair of true cluster centers may

be well-separated, moderately close, sufficiently close, or exactly overlapping (correspondingly,

their distance is much larger than, comparable with, or much smaller than max1≤i≤n ‖x̂i−xi‖,

or exactly zero). With the infinitely many configurations of true cluster centers, the main

challenge in the proof is pinning down a strategy of constructing ` that guarantees a decrease
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of RSS for every possible configuration. One might think that the oracle k-means solution

`∗ (k-means applied to x1, x2, . . . , xn) can help guide the construction of `, but unfortunately

this does not work: first, we do not have an explicit form of `∗; second, in some of our settings,

ˆ̀ can be significantly different from `∗. The way we construct ` and evaluate RSS(`) subtly

utilizes the definition of dm(U) and properties of k-means objective, which is highly non-trivial

(see the supplemental material). Note that while [38, 34] proved special cases of the “weaker”

version of the k-means theorem, they used assumptions (i) true cluster centers are mutually

well separated, (ii) the oracle solution `∗ is mathematically tractable, and (iii) ˆ̀ is exactly the

same as `∗. As none of (i)-(iii) holds in our setting, it is unclear how to generalize their proofs.

We deal with a much harder setting (the “stronger” version), and our proof is different.

We conjecture that Theorem 4.1 (and so the NSP of SCORE) continues to hold if we

replace the k-means step in SCORE by (say) the ε-approximation k-means (e.g., [26]). Let

ˆ̀ be the ε-approximate k-means solution. We have RSS(ˆ̀) ≤ (1 + ε) min`RSS(`). For an

appropriately small ε, if the NSP does not hold, then by a similar proof as that of Theorem 4.1,

we can first construct an ˜̀ such that RSS(˜̀) < RSS(ˆ̀)−O(dm(U)), and then use it to deduce

a contradiction. For reasons of space, we leave this to future.

5 Simulations

In Experiments 1-3, we compare StGoF with the BIC approach [38],7 the ECV approach

[30], and the NCV approach [4]. We use the R package “randnet” to implement these other

methods. In Experiment 4, we compare StGoF with the RPLR approach [34]. In Experiment

5, we consider settings with comparably larger values of K. In all simulations, we fix α = 0.05

in StGoF. Given (n,K), a scalar βn > 0 that controls the sparsity, a symmetric non-negative

matrix P ∈ RK×K , a distribution f(θ) on (0,∞), and a distribution g(π) on the standard

simplex of RK , we generate the adjacency matrix A ∈ Rn,n as follows: First, generate θ̃1, ..., θ̃n

iid from f(θ). Let θi = βnθ̃i/‖θ̃‖ and Θ = diag(θ1, ..., θn). Next, generate π1, ..., πn iid from

g(π), and let Π = [π1, ..., πn]′. Last, let Ω = ΘΠPΠ′Θ and generate A from Ω, for 100 times

independently. For each algorithm, we measure the performance by the fraction of times it

7[38] primarily focused on the SBM model. Their algorithm has an ad-hoc extension to DCBM, which has
no theoretical guarantee. We use this extension, instead of the original BIC approach.
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Figure 3: Experiment 1a (left), 1b (middel) and 1c (right), where from 1a to 1c, the degree
heterogeneity is increasingly more severe. For all three panels, x-axis is ‖θ‖ (sparsity level),
and y-axis is the estimation accuracy over 100 repetitions ((n,K) = (600, 4)).

correctly estimates K (i.e., accuracy). Note that ‖θ‖ = βn, and SNR � ‖θ‖(1− bn). For the

experiments, we let βn range so to cover many different sparsity levels, but keep ‖θ‖(1− bn)

fixed (so the problem of estimating K is not too difficult or too easy; see details below).

Experiment 1. We study how degree heterogeneity affect the results and comparisons.

Fixing (n,K) = (600, 4), we let P ∈ R4,4 be a Toeplitz matrix with P (k, `) = 1− [(1−bn)(|k−

`|+ 1)]/K in the off-diagonal and 1 in the diagonal. Let g(π) be the uniform distribution over

e1, e2, e3, e4 (standard basis vectors). We consider three sub-experiments, Exp 1a-1c. In these

sub-experiments, we keep (1− bn)‖θ‖ fixed at 9.5 so the SNR’s are roughly at the same level.

We let βn range from 10 to 14 so to cover both the more sparse and the more dense cases.

Moreover, for the three sub-experiments, we take f(θ) to be Unif(2, 3), Pareto(8, .375) (8 is

the shape parameter and .375 is the scale parameter), and two point mixture 0.95δ1 + 0.05δ2

(δa is a point mass at a), respectively (from Exp 1a to Exp 1c, the degree heterogeneity gets

increasingly more severe). See Figure 3. StGoF consistently outperforms other approaches.

Experiment 2. We study how the relative sizes of different communities affect the results

and comparisons. Given bn > 0, we set (n,K) = (1200, 3), f(θ) as Pareto(10, 0.375), and let

P be such that P (k, `) = 1 − |k−`|(1−bn)
2

, for 1 ≤ k, ` ≤ 3. We let βn range in {12, 13, ..., 17}

and keep (1− bn)‖θ‖ fixed at 10 so the SNR’s are roughly at the same level. We take g(π) as

the distribution with weights a, b, and (1− a− b) on vectors e1, e2, e3, respectively. Consider

three sub-experiments, Exp 2a-2c, where we take (a, b) = (.30, .35), (.25, .375), and (.20, .40),

respectively, so three communities are slightly unbalanced, moderately unbalanced, and very

unbalanced, respectively. See Figure 4. First, StGoF consistently outperforms NCV, ECV and
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Figure 4: Experiment 2a (left), 2b (middle), and 2c (right), where from 2a to 2c, the commu-
nities sizes are more and more unbalanced. For all three panels, x-axis is ‖θ‖ (sparsity level),
and y-axis is the estimation accuracy over 100 repetitions ((n,K) = (1200, 3)).
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Figure 5: Experiment 3a (left) and 3b (right), where 3a allows for mixed memberships and
3b allows for outlier nodes. For both panels, x-axis is ‖θ‖ (sparsity level), and y-axis is the
estimation accuracy over 100 repetitions ((n,K) = (600, 4)).

BIC. Second, when three communities get increasingly unbalanced, all methods become less

accurate, suggesting that estimating K gets increasingly harder. Last, the performances of

ECV and NCV are close to that of StGoF when communities are relatively balanced (e.g., Exp

2a), but is more unsatisfactorily when communities are more unbalanced (e.g., Exp 2b-2c).

Experiment 3. We study robustness of the algorithms under model misspecification. Fix

(n,K) = (600, 4). Let P have unit diagonals and P (k, `) = 1− (1−bn)(|k−`|+1)
K

as off-diagonals.

Let f(θ) be Unif(2, 3). We consider two sub-experiments, Exp 3a-3b. For sparsity, we let βn

range from 11 to 16 in Exp 3a and from 11 to 18 in Exp 3b, while fixing (1−bn)‖θ‖ = 10.5. In

Exp 3a, we allow mixed-memberships. Let g(π) to be the mixing distribution with probability

.2 on each of e1, e2, e3, e4 and probability .2 on Dirichlet(14). Once we have θi, πi, and P ,

let Ωij = θiθjπ
′
iPπj, similar to that in DCBM. In Exp 3b, we allow outliers. Let g(π) be

the mixing distribution with a point mass .25 on each of e1, e2, e3, e4, and obtain Ω as in

29



13 14 15 16 17

|| ||

0.6

0.8

1
A

c
c
u
ra

c
y

ECV

RPLR

NCV

BIC

StGoF

18 20 22

|| ||

0.6

0.8

1

A
c
c
u
ra

c
y

ECV

RPLR

NCV

BIC

StGoF

12 14 16

|| ||

0

0.5

1

A
c
c
u
ra

c
y

ECV

RPLR

NCV

BIC

StGoF

Figure 6: Experiment 4a (left), 4b (middle), and 4c (right), where (n,K) =
(600, 3), (1200, 3), (1200, 4) respectively. For all three panels, x-axis is ‖θ‖ (sparsity level),
and y-axis is the estimation accuracy over 100 repetitions.

DCBM. Let ρn = 1
n

∑
1≤i,j≤n Ωij. We then randomly select 10% of nodes and re-set Ωij = ρn

if either of (i, j) is selected. ECV and NCV are not model based so should be less sensitive

to model misspecification; we use their results as benchmarks to evaluate StGoF and BIC.

Figure 5 shows that StGoF is not sensitive to model misspecification, and that BIC behaves less

satisfactory here than in Experiment 1-2, and so is more sensitive to model misspecification.

Experiment 4. We compare StGoF with RPLR [34] (and also BIC, ECV, and NCV).

RPLR has tuning parameters (Kmax, cη, hn). Following [34], we set (Kmax, cη, hn) = (10, 1, d̄−1/2),

where d̄ is the average node degree. Consider three sub-experiments, Exp 4a-4b, covering dif-

ferent combinations of (n,K,Θ, P ). In Exp 4a, (n,K) = (600, 3), P (k, `) = 1− (1−bn)(|k−`|+1)
K

if k 6= ` and 1 otherwise. We let ‖θ‖ vary and select bn such that (1− bn)‖θ‖ = 9, and let f(θ)

be Unif(2, 3). In Exp 4b, (n,K) = (1200, 3), P (k, `) = 1 if k = ` and bn otherwise. We let ‖θ‖

vary while keeping (1−bn)‖θ‖ = 4.75, and let f(θ) be Unif(3, 4). In Exp 4c, (n,K) = (1200, 4),

and P is the same as in Exp 4a. We let ‖θ‖ vary while keeping (1 − bn)‖θ‖ = 10.5, and let

f(θ) be Pareto(10, .375). We take g(π) to be the mixing distribution which puts probability .2

on each of e1, e2, e3, e4 and .2 on Dirichlet(14) (the model does not satisfy DCBM so we have

a model misspecification). See Figure 6. RPLR underperforms StGoF, especially in Exp 4b

(where the first two eigenvalues of Ω have a relatively large gap). This is because RPLR tends

to estimate K as the index that has the largest eigen-gap. If the largest eigen-gap happens at

an index smaller than K, RPLR tends to underestimate (see Section 6 for more discussion).

Experiment 5. We study two sub-experiments, Exp 5a-5b, for settings with a larger K.

In Exp 5a, (n,K) = (600, 6). We let P have 1 in the diagonal and P (k, `) = 1− (1−bn)(|k−`|+K−1
2K
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Figure 7: Experiment 5a (left) and 5b (right), where (n,K) = (600, 6) for 5a and (n,K) =
(600, 8) for 5b. For both panels, x-axis is ‖θ‖ (sparsity level), and y-axis is the estimation
accuracy over 100 repetitions.

in the off-diagonal, and take f(θ) as the two-point mixture 0.95δ1 + 0.05δ2. We vary ‖θ‖ and

select bn such that (1− bn)‖θ‖ = 15.5. In Exp 5b, (n,K) = (600, 8), P has unit diagonals and

bn in the off-diagonal, and f(θ) is the same as in Exp 5a. As ‖θ‖ vary, we select bn such that

(1− bn)‖θ‖ = 10.5. See Figure 7. Note that ECV and NCV are cross-validation approaches,

which may be less satisfactory for larger K.

Remark 3. StGoF may estimate K incorrectly if some regularity conditions are violated.

If this happens, we may either underestimate or overestimate K, depending on the data set.

E.g., if the network has very weak signals (i.e., |λK |/
√
λ1 is small), StGoF may underestimate

K, and if the model is misspecified (say, due to many outliers), StGoF may overestimate K.

6 Real data analysis

In theory, a good approximation for the null distribution of ψ
(m)
n is N(0, 1) (see Theorem 3.1),

but such a result requires some model assumptions, which may be violated in real applications

(e.g., outliers, artifacts). We thus propose a modification of StGoF using the idea of empirical

null [8]. Under model misspecification, a good approximation for the null distribution of

ψ
(m)
n is no longer N(0, 1) (i.e., theoretical null), but N(u, σ2) (i.e., empirical null) for some

(u, σ) 6= (0, 1). Efron [8] argued that due to artifacts or model misspecification, the empirical

null frequently works better for real data than the theoretical null. The problem is then how

to estimate the parameters (u, σ2) of the empirical null.

We propose a bootstrap approach to estimating (u, σ2). Recall that λ̂k is the k-th largest

eigenvalue of A and ξ̂k is the corresponding eigenvector. Fixing N > 1 and m > 1, letting
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M̂ (m) =
∑m

k=1 λ̂kξ̂kξ̂
′
k and let Ŝ(m) = A − M̂ (m). For b = 1, 2, . . . , N , we simultaneously

permute the rows and columns of Ŝ(m) and denote the resultant matrix by Ŝ(m,b). Truncating

all entries of (M̂ (m) + Ŝ(m,b)) at 1 at the top and 0 at the bottom, and denote the resultant

matrix by Ω̂(b). Generate an adjacency matrix A(b) such that for all 1 ≤ i < j ≤ n, A
(b)
ij are

independent Bernoulli samples with parameters Ω̂
(b)
ij (we may need to repeat this step until

the network is connected). Apply StGoF to A(b) and denote the resultant statistic by Q
(b)
n .

We estimate u and σ by the empirical mean and standard deviation of {Q(b)
n }Nb=1, respectively.

Denote the estimates by û(m) and σ̂(m), respectively. The bootstrap StGoF statistic is then

ψ
(m,∗)
n = [Q

(m)
n − û(m)]/σ̂(m), m = 1, 2, . . ., where Q

(m)
n is the same as in (2.8). Similarly, we

estimate K as the smallest integer m such that ψ
(m,∗)
n ≤ zα, for the same zα in StGoF. We

recommend N = 25, as it usually gives stable estimates for û(m) and σ̂(m). We call this method

the bootstrap StGoF (StGoF*).

We consider 6 data sets as in Table 6, which can be downloaded from http://www-personal.

umich.edu/~mejn/netdata/. We now discuss the true K. For the dolphin network, it was ar-

gued in [32] that both K = 2 or K = 4 are reasonable. For UKfaculty network, we symmetrize

the network by ignoring the directions of the edges. There are 4 school affiliations for the

faculty members so we take K = 4. For the Football network, we take K = 11. The network

was manually labelled as 12 groups, but the 12th group only consists of the 5 “independent”

teams that do not belong to any conference and do not form a conference themselves. For

the Polbooks network, Le and Levina [28] suggest that K = 3, but it was argued by [22] that

a more appropriate model for the network is a degree corrected mixed-membership (DCMM)

model with two communities, so K = 2 is also appropriate.

We compare StGoF and StGoF* with the BIC [38], BH [28], ECV [30], NCV [4] and RPLR

[34]. The first 4 methods are implemented via the R package “randnet”. Among them, ECV

and NCV are cross validation (CV) approaches and the results vary from one repetition to

the other. Therefore, we run each method for 25 times and report the mean and SD. The

StGoF* uses bootstrapping mean and standard deviation and is also random, but the SDs are

0 for five data sets. Most methods require a feasible range of K a priori (say, {1, 2, . . . , kmax},

where kmax is a prescribed upper bound for K. For the 6 data sets considered here, the largest

(true) K is 11, so we take kmax = 15.

In Section 5, we mention that RPLR tends to underestimate K if the largest eigen-gap
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Name n K BIC BH ECV NCV RPLR StGoF StGoF*
Dolphins 62 2, 4 2 2 3.08(.91) [2,5] 2.20(2.71) [1,15] 2 2 3
Football 115 11 10 10 11.28(.61) [11,13] 12.36(1.15) [11,15] 2 10 10
Karate 34 2 2 2 2.60(1.0) [1,6] 2.56(.58) [2,4] * 2 2
UKfaculty 81 4 4 3 5.56(1.61) [3,11] 2.40(.28) [2,3] 4 4 4
Polblogs 1222 2 6 8 4.88(1.13) [4, 8] 2(0) [2, 2] 2 2* 2
Polbooks 105 2, 3 3 4 7.56(2.66) [2,15] 2.08(.71) [2,5] 3 5 2.4(.25) [2,3]

Table 1: Comparison of estimated K. Take ECV for Dolphins for example: for 25 independent
repetitions, the mean and SD of estimated K are 3.08 and 0.91, ranging from 2 to 5 (the SDs
of StGoF* are 0 for the first 5 data sets). For Karate, RPLR (with kmax = 15) reports an
error message without an estimated K; the error messages disappear if we take kmax = 5,
where the estimated K is 2. See the text for more discussion.

of Ω happens at an index smaller than K. This seems to be the case for Football, where

RPLR significantly underestimates. RPLR also has a (seemingly fixable) coding issue: the

code (generously shared by the authors) may report an error message and does not output an

estimate for K (e.g., if we apply it to the Dolphins, Karate, and UKfaculty with kmax = 15

for 500 times, then in 63%, 100%, and 96% of the times respectively, the code reports an error

and does not output an estimate for K). If we take kmax = 10 for Dolphins and UKfaculty

and take kmax = 5 for Karate, then the error messages disappear and the estimated K are

2, 4, 2 for Dophis, UKfaculty, and Karate, respectively.

The Polblogs network is suspected to have outliers, so most methods do not work well.

For this particular network, the mean of StGoF is much larger than expected, so we choose

to estimate K by the m that minimizes ψ
(m)
n for 1 ≤ m ≤ 15 (for this reason, we put a ∗

next to 2 in the table). Note that StGoF* correctly estimates K as 2. The Polbooks network

is suspected to have a signifiant faction of mixed nodes [22], which explains why StGoF

overestimates K. Fortunately, for both data sets, StGoF* estimates K correctly, suggesting

that the bootstrapping means and standard deviations help standardize Q
(m)
n .

7 Discussions

How to estimate K is a fundamental problem in network analysis. We propose StGoF as a

new stepwise algorithm for estimating K, which (a) has N(0, 1) as its limiting null, (b) is

uniformly consistent in a setting much broader than those considered in the literature, and

(c) achieves the optimal phase transition. The results, especially (a) and (c), do not exist

before. Analysis of stepwise algorithms of this kind is known to face challenges. We overcome
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them by using a different stepwise scheme and by deriving sharp results, where the key is to

prove the NSP of SCORE; we prove the NSP with new ideas and techniques.

We discuss some open questions. First, in this paper, we are primarily interested in DCBM,

but the idea can be extended to the broader DCMM, where mixed-memberships exist. To

this end, we need to replace SCORE by Mixed-SCORE [22] (an adapted version of SCORE

for networks with mixed memberships), and modify the refitting step accordingly. In this

case, whether NSP continues to hold is unclear, but we may have a revised version of NSP

that holds for all pure nodes (i.e., nodes without mixed-memberships) and we can then use it

to study the mixed nodes. The analysis of the resultant procedure is much more challenging

so we leave it to the future. Second, in this paper, we assume K is fixed. For diverging K,

the main idea of our paper continues to be valid, but we need to revise several things (e.g.,

definition of consistency and SNR, some regularity conditions, phase transition) to reflect the

role of K. The proof for the case of diverging K can be much more tedious, but aside from

that, we do not see a major technical hurdle. Especially, the NSP of SCORE continues to

hold for a diverging K. Then, with some mild conditions, we can show that Π̂(m) has very

few realizations, so the analysis of StGoF is readily extendable. That we assume K as fixed

is not only for simplicity but also for practical relevance. For example, real networks may

have hierarchical tree structure, and in each layer, the number of leaves (i.e., clusters) is small

(e.g., [17]). Therefore, we have small K in each layer when we perform hierarchical network

analysis. Also, the goal of real applications is to have interpretable results. For example, for

community detection, results with a large K is hard to interpret, so we may prefer a DCBM

with a small K to an SBM with a large K. In this sense, a small K is practically more

relevant. Last, while the NSP of SCORE largely facilitates the analysis, it does not mean

that StGoF ceases to work well once NSP does not hold; it is just harder to analyze in such

cases. Our study suggests that StGoF continues to behave well even when NSP does not hold

exactly. How to analyze StGoF in such cases is an interesting problem for the future.
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