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Abstract 
Student discussions have been shown to be beneficial to student learning (Chi & Wylie, 2014), 
however the impact of prior knowledge on these discussions is not fully understood. In this 
research, we analyze students’ synchronous spoken discussions to study how prior knowledge 
impacted group discussions and knowledge construction while constructing computational 
models of 1D and 2D motion. We present a method for evaluating the impact of prior knowledge 
on student discussions and individual work. We illustrate this method through a case study 
analysis of two groups with students across a spectrum of prior knowledge. Our exploratory 
findings suggest that students with low prior knowledge greatly benefit from group discussions 
followed by individual model construction. 

1. Introduction 
Student-to-student interactions during learning scenarios have been shown to be 

beneficial to student learning (Chi & Wylie, 2014). The benefits of student interactions during 
learning include communication skills (Dallimore, Hertenstein, and Piatt, 2008) as well as critical 
thinking skills (Garside, 1996). During student interactions, students externalize their current 
understanding, shaped by their prior knowledge and it is internalized by the other group members 
to form a base of shared knowledge (Beers et al., 2005). While prior knowledge has been 
regarded as a critical factor in student learning (e.g., Tobias, 1994), limited research has 
examined the impact of prior knowledge on group discussions. In this work, we attempt to extend 
the research on student discussions by performing an exploratory analysis of how students’ prior 
knowledge may affect group discussions and the impact of these synchronous, spoken 
discussions. 

We adopt a constructivist approach that requires students to construct their knowledge at 
the same time they are trying to solve a problem, specifically building a computational model of a 
science phenomenon. The symbiotic relationship of STEM (Science, Technology, Engineering, 
and Mathematics) and computational thinking (CT; Grover & Pea, 2018) and the learning benefits 
when students actively construct and generate learning outputs (Chi & Wylie, 2014), support 
computational model building as an effective vehicle for learning. Our approach combines the 



learning of STEM and CT concepts and practices through learning-by-modeling. Students learn 
by building, simulating, testing and refining their own computational models using a block-
structured programming environment, instead of exploring existing models. This approach has 
been shown to be effective in supporting students’ knowledge of  STEM and CT concepts (Basu 
et al., 2017; Basu et al., 2016b; Hutchins et al., 2018).  However, research has identified student 
difficulties such as problems translating their STEM knowledge to CT constructs (e.g., Basu et 
al., 2016a), compounding challenges with introductory programming concepts (Basu et al., 2016; 
Chi, 2005) and an inability to identify relevant objects in the simulation and specify how these 
physical phenomena interact (Basu et al., 2016a). Such difficulties may be mitigated by allowing 
students to work on the models collaboratively or by giving students the opportunity to discuss 
their individual models in groups like we do in this work. The opportunity to discuss their model 
construction in groups gives students a chance to construct knowledge as a group and address 
possible misconceptions.Through discussion students come to a shared knowledge state (Beers 
et al., 2005) from which they can negotiate, ask questions and provide constructive feedback in 
order to construct knowledge as they discuss their construction processes of computational 
models.  

In this paper, we examine videos of students’ online discussions of computational models 
in order to gain insights into how students’ prior knowledge impacted their discussions and 
knowledge construction by analyzing three final constructed models over four sessions. This 
study was conducted entirely over Zoom, because the pandemic prevented us from having in 
class meetings with students. Students, their instructors, and all of the researchers conducted the 
instruction and discussions remotely using Zoom. We present an approach for evaluating the 
impact of prior knowledge in multiple domains on discussions and individual work. We illustrate 
the impact of our approach through an exploratory analysis of two groups. 

2. Study Description 
Our work utilizes the Collaborative, Computational STEM (C2STEM) learning environment 

(as seen in the task images in Table 1). C2STEM is a visual, block-based coding environment 
developed on top of Netsblox (Broll et al., 2017), an extension of Snap! 
(http://snap.berkeley.edu/), that leverages a domain-specific modeling language (DSML) to 
support students' construction of scientific computational models (Hutchins et al., 2020). 
 We studied 22 high school students who worked on three C2STEM modules that covered 
1D motion and 2D motion with gravitational forces over a five week period. The modeling 
assignments can be seen in Table 1. Students had 10-15 minutes of instruction and 15-20 minutes 
of group discussion every week, with the exception of week 3 that consisted of a full 30 minutes 
of instruction. Instruction occurred online, over Zoom, and group discussions took place online in 
individual group breakout rooms. Students were instructed to work on their models individually for 
homework but discussed ideas or started the model as a group. The group discussions all had a 
group supervisor in the Zoom breakout room the entire time for questions and comments.  

http://snap.berkeley.edu/


3. Analysis 
 The research presented in this paper is guided by the following questions: How does 
students’ prior knowledge affect group discussions and the impact of such discussions? How do 
students’ group discussions impact their computational modeling? To answer these questions, 
we analyzed three data sources: (1) students’ pretest scores, (2) group discussions and (3) 
students’ final models. We graded the students’ pretest and final model scores according to 
rubrics (see an example of the truck task rubric in Table 2). We present a method to analyze the 
content of students’ discussions through coding transcribed utterances according to physics and 
CT concepts, seen in Table 3, with a secondary code that identifies the correctness of the 
utterance, as seen in Table 4. Two coders coded the utterances with almost perfect agreement 
(κ = 0.83). With these codes, we calculated the normalized difference between correct (COR) and 
incorrect (INC) utterances for all the physics and CT concepts, i.e., (𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐼𝐼𝐼𝐼𝐶𝐶)/ (𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐼𝐼𝐼𝐼𝐶𝐶). 
Thus, the difference range is {-1, 1} with a score of -1 indicating all incorrect utterances in a given 
category and 1 indicating all correct utterances. An NA indicates that there were no utterances 
for a given category. 

We illustrate the use of this coding method through a case study analysis of two groups 
with three and four students each. We examine their individual pretest and model scores, their 
group discussion characteristics and dialogue segments. We selected the groups for case study 
analysis to have a representative mixture of prior knowledge, measured through a pretest, in both 
STEM and CT.  The physics portion of the test had a total score of 17 points, and the students 
averaged 12.5 points (σ = 2.35). The CT portion of the test had a total score of 16 points, and the 
students averaged 9.25 points (σ = 2.81). We categorized students as high or low prior knowledge 
based on whether their physics and CT scores were above or below the two averages, 
respectively. In addition to the prior knowledge distinction representation, the two groups selected 
for analysis each had the same group supervisor, thus mitigating the effect different supervisor 
styles may have on the students’ discussions and model construction. 

4.1 Group Results 
Table 5 shows the pretest scores of each group and their prior knowledge designation.  
 
Group 1 
G1 has four students, two with high prior knowledge in both CT and physics and two with low prior 
knowledge in both domains. As seen in Table 6, the majority of utterances on most days are by 
the high prior knowledge students, S1 and S2. D4 is the exception where S4 says more than S2 
(0.28 to 0.17, respectively). With the exception of D2, the normalized difference of correct and 
incorrect utterances is higher with CT utterances in comparison to physics utterances. This 
implies that the students in G1 may be more knowledgeable in their discussion of CT concepts.  
 
Group 2 
G2 has three students, one for each configuration of CT and physics prior knowledge, with the 
exception of a student with high CT, high physics prior knowledge. As seen in Table 7, S5 and 
S6 contribute to the conversation much more than S7, with the exception of D5. S6’s participation 
was mixed but on days D1 and D4 they contributed more to the discussion (proportions of 0.44 



and 0.48 respectively) as opposed to days D2 and D5 where their contributions were much less 
(proportions of 0.17 and 0.07 respectively). On the days where S6 contributes less to the 
discussion (D2 and D5), the group makes more incorrect than correct utterances as a whole, as 
seen by the negative total normalized differences. 
 
4.2 Individual Student Results 
Table 8 shows the normalized difference between correct and incorrect utterances over the entire 
four days. This includes the normalized difference over all the utterances as well as the physics 
and CT utterances. Table 9 shows their model scores broken down into scores for the CT and 
Physics components.  
 
High Physics, High CT Prior Knowledge: S1, S2 
Although S1 is categorized as having high prior knowledge in both physics and CT, S1 is one of 
the three students that made more incorrect than correct physics utterances over the course of 
the four days as seen in the normalized difference of -0.33. S1 has difficulty understanding the 
relationship between velocity and acceleration during the truck task and introduced an error by 
setting velocity to the 15 m/s speed limit, explaining to the group that it goes from “zero to 15 like 
really quickly”. They required help to recognize that they must update velocity using the 
mathematical formula representing the relationship between velocity, acceleration and time 
(derived from Newton’s first and second laws) in order to get a steadily increasing velocity. While 
they struggled with physics, S1 made more correct CT statements (0.14 difference value). This is 
notable, given that S1’s physics pretest (76%) was higher than their CT pretest (69%). When 
looking at the final model scores, we see that S1 had higher CT scores except for the Drone 2 
package task. S2, in contrast, only made correct physics utterances and mostly correct CT 
utterances. Despite a strong initial performance on the first two tasks, with scores of 1.00 and 
0.98, respectively, S2 also struggled on the Drone 2 package task. Similar to S1, S2’s CT score 
was worse than the physics score for this task.  
 
Low Physics, Low CT Prior Knowledge: S3, S4, S5 
When S3 did contribute to the conversation, none of the utterances about either physics or CT 
were correct statements, as seen by the -1 normalized difference in both categories. However, 
S3 improved in their model construction as seen by the initial score of 0.65 and the final score of 
0.76. Although S3’s contributions were rare and often incorrect, S3 often questioned the other 
group members saying, during the truck task, “Why do you guys think velocity changed, but the 
acceleration didn't? Like it stayed constant through the whole thing. Although the velocity kept 
increasing”. S2 and S4 answer S3, explaining that they “set the exact value for acceleration”, and 
thus it stayed constant but the velocity was updated each time step and resulted in the velocity 
value being  “adding on and adding on and then got bigger”. When S3 did contribute, it gave the 
other group members an opportunity to address misunderstandings and come to a more shared 
understanding. S4 and S5 were very successful in the final model with scores of 0.90 and 0.92 
respectively. They both contributed more to the discussions than S3 and had more correct than 
incorrect statements. 
 
High Physics, Low CT Prior Knowledge: S6 

Gautam Biswas
Observation: Response to S3 is very computational (makes sense because the students are focused on building the model), but a more Physics explanation based on Newton's laws would have been more useful here. It may be useful to discuss this in the Conclusions section.Maybe instructor intervention, as we did in the in-person study in the Fall, would have resulted in more synergistic learning) ....Another reason why the inquiry task is so useful ..... [may take a note of this as we revise the ICLS paper and write our journal papers ...]



Similar to S1, a higher physics pretest score (82%) than CT pretest (38%) did not translate to 
more correct utterances in physics than CT for S6 as seen by the normalized CT difference of 
0.42 and physics difference of 0.20. We hypothesize this may be due to the fact S6’s lack of 
knowledge in CT led to more contributions focused on this knowledge gap. However, while they 
were able to contribute correct CT focused statements to the group, S6 was not able to translate 
this to their model construction, particularly seen in the CT component of their model scores. An 
example of this can be seen while the group is discussing how to model the truck cruising at a 
constant velocity once it hits the speed limit. S6 correctly conceptualizes the conditional statement 
saying “If you say x velocity equal 15, I think there may be a block that you could use that will limit 
[the speed]” but is not confident in their understanding of how it will impact the simulation saying 
“but that might just make it stop moving in general, I’m not really sure.” S6 then continues and 
gives a different idea that involves a misconception about how to update variables. A lack of 
confidence in S6’s original correct statements leads to incorrect implementations in their model.  
 
Low Physics, High CT Prior Knowledge: S7 
Similar to S3, S7 rarely contributed to the group discussion and made a majority of incorrect 
statements as seen by the total normalized difference of -0.67. The model scores for the first two 
tasks reflect the higher CT prior knowledge compared to physics, however, in the last task S7 
does particularly well on the physics components of the model. We hypothesize this may be due 
to their increased participation on the last day.  

4. Conclusions and Next Steps 
From these exploratory results, we can see that high prior knowledge in a domain does 

not necessarily translate to correct externalized knowledge as seen in S1 and S7 who made more 
incorrect than correct statements in the domain that they had high prior knowledge in. Similarly, 
low prior knowledge did not predict discussion contributions as seen by S6 who more successfully 
externalized knowledge in their low prior knowledge domain compared to the domain they had 
high prior knowledge in. 

Students with low prior knowledge in one or both domains benefited the most from the 
group discussions, as seen by the higher final model scores of S3, S4, S5 and S7. These group 
discussions supported low prior knowledge students’ ability to translate conceptual knowledge to 
computational form. The benefits of group discussion exist even when the students rarely 
contribute to the discussion, as seen in S3 and S7. We hypothesize these students, while not 
actively contributing to the conversation, may be actively listening and are able to gain a shared 
knowledge understanding that they then use in their individual model building. While low prior 
knowledge students benefited from this type of structure, the students with high prior knowledge 
in both domains, S1 and S2, did worse on their final model than their first model. Due to the many 
variables that may have impacted these students with high prior knowledge, such as a ceiling 
effect or boredom, further research is necessary to fully understand the impact of group 
discussion on students with high prior knowledge.  

While this analysis is limited in its small sample size, we hope it provides a starting place 
for analysis of group discussions that focuses on the knowledge externalized by students during 
their knowledge construction process. In future work, we will expand upon our sample size as 



well as mapping the specific utterances made in group discussions about STEM and CT concepts 
to the students’ individual model construction processes. In this way, we will be able to better 
identify characteristics of the discussion and externalized knowledge that had the most impact on 
students with low prior knowledge. Future work will also investigate how a groups’ composition of 
prior knowledge impacts individual and group knowledge construction.  

 

Table 1: Task Description 

Task Image 

 
 
Simulate a truck speeding 
up to a speed limit of 15 
m/s, cruising at that speed 
and then slowing down to 
a stop at a stop sign 

 

Simulate a drone dropping 
a package onto a target 

 



Simulate a drone dropping 
two packages onto two 
individual targets. 
 

 
 
 
Table 2: Truck Task Rubric 

Item Points 

Expressing physics relations in a computational model 

Program initializes x position to the correct starting value 1 

Program initializes x velocity to the correct starting value 1 

Program initializes x acceleration to the correct starting value 1 

Program expresses correct relations among velocity, position and time, and correct 
units for each 

1 

Program expresses correct relations among acceleration, velocity, and time, and 
correct units for each 

1 

Program expresses correct values for updating acceleration  1 

Program accuracy - (1) accelerates to the speed limit, (2) cruises at the speed limit 
and (3) slows to a stop at the stop sign 

3 

Using CT concepts to model physics phenomena 

Program makes the distinction between actions that need to happen once during 
initialization and actions that need to be repeated in the simulation step 

1 

Program initializes variables (except delta t) that are utilized in the updating of the 
simulation behavior 

1 

Program initializes delta t for use in modeling desired relationships  1 

Program sets initialized variables in the correct fashion 1 



Program updates variables with correct function 1 

Program updates variables with correct operators/expressions 1 

Program updates initialized variables in the correct sequence 1 

Program updates / sets initialized variables under the correct conditions - (1) Sets 
acceleration to 0 when the speed limit is hit and (2) decelerates at a distance far 
enough from the stop sign to come to a stop 

2 

No duplicate code 1 

Simulation ends based on stopping logic 1 

 
 
Table 3: Physics and CT concept codes 

First Code Description Example 

PHY.VEL_ACC Referencing velocity explicitly or how 
fast a physical object or sprite is 
moving in addition to acceleration 
explicitly or the slowing down or 
speeding up of a physical object or 
sprite 

“Why did the velocity change? 
It just kept increasing.” 

PHY.VEL_POS Referencing velocity explicitly or how 
fast a physical object or sprite is 
moving in addition to the position of a 
physical object or sprite; Not the 
position of blocks or components in the 
environment 

“[Velocity] is going to be 
negative without that code so 
then it is going to start going 
backward.” 

PHY.EQU Referencing the physics equations 
(given as a reference for the students) 

“It says that position change 
equals velocity times delta t.” 

CT.DELTA_T Referencing delta t explicitly  “What does delta t need to 
be?” 

CT.INIT_VAR Referring to initializing variables 
explicitly or what variables should start 
as 

“Once I added the set x 
velocity block it worked.” 

CT.UPD_VAR Referring to updating variables 
explicitly, how variables should change 

“Set acceleration to negative 4”  

CT.OPR_EXP Referring to operator blocks or 
expressions 

“Use greater than 15 instead of 
equal to 15.” 



CT.COND Referring to what control structure 
blocks(if, if-else, repeat, repeat while, 
etc.) to use or what conditions 
something should change 

“Update velocity inside the if 
instead of outside” 

CT.GF_SIM Referring to the green flag or 
simulation step structure 

“That should go under the 
green flag” 

 

Table 4: Secondary correctness codes 

Seconda
ry Code 

Description Example (VEL_ACC) 

INC Statement that is conceptually 
incorrect about concept x 

“Set acceleration to a negative 
number so that it will stow down to 
the stop sign” 

COR Statement that is conceptually 
correct about concept x  

“To get velocity to stay at 15, just set 
it to 15, you don’t need to do 
anything with acceleration.” 

No 
Secondar
y Code 

Statement about something related 
to concept x but it is a neutral or 
unclear statement 

“The velocity block is right there”  

 

 
Table 5: Pretest scores 

Group Student Pre-Phy Pre-CT Prior knowledge 

G1 S1 76% 69% High Phy, High CT 

S2 82% 59% High Phy, High CT 

S3 65% 34% Low Phy, Low CT 

S4 72% 50% Low Phy, Low CT 

G2 S5 53% 41% Low Phy, Low CT 

S6 82% 38% High Phy, Low CT 



S7 71% 81% Low Phy, High CT 

 
Table 6: Group 1 proportion of total utterances for discussion contributors and normalized 
difference between correct and incorrect statements 

Description Day 1 Day 2 Day 4 Day 5 

Supervisor utterances 0.36 0.22 0.14 0.07 

S1 utterances 0.24 0.26 0.41 0.39 

S2 utterances 0.23 0.34 0.17 0.41 

S3 utterances 0.03 0.06 0.00 0.00 

S4 utterances 0.13 0.13 0.28 0.11 

Total COR-INC 0.50 0.10 0.43 0.58 

PHY COR-INC NA 0.20 0.23 0.33 

CT COR-INC 0.50 0.05 0.52 0.60 

 
Table 7: Group 2 proportion of total utterances for discussion contributors and normalized 
difference between correct and incorrect statements 

Description Day 1 Day 2 Day 4 Day 5 

Supervisor utterances 0.21 0.37 0.24 0.26 

S5 utterances 0.34 0.46 0.56 0.40 

S6 utterances 0.44 0.17 0.48 0.07 

S7 utterances 0.00 0.00 0.02 0.28 

Total COR-INC 0.38 -0.15 0.58 -0.18 

PHY COR-INC 1.00 -0.20 1.00 -1.00 

CT COR-INC 0.33 -0.13 0.48 0.06 

 
Table 8: The normalized difference between correct and incorrect utterances over all four days 

Group Student Prior knowledge ALL COR-
INC 

PHY 
COR-INC 

CT COR-
INC 



G1 S1 High Phy, High CT 0.04 -0.33 0.14 

S2 High Phy, High CT 0.87 1 0.82 

S3 Low Phy, Low CT -1 -1 -1 

S4 Low Phy, Low CT 0.44 0.50 0.43 

G2 S5 Low Phy, Low CT 0.12 0 0.14 

S6 High Phy, Low CT 0.37 0.20 0.42 

S7 Low Phy, High CT -0.67 -1.00 -0.60 

 
 
Table 9: Student model scores   

Stude
nt 

Truck - 
Total 

Drone 
1 - 
Total 

Drone 
2 -
Total 

Truck - 
Phy 

Drone 
1 - Phy 

Drone 
2 - Phy 

Truck - 
CT 

Drone 
1 - CT 

Drone 
2 - CT 

S1 0.80 0.85 0.78 0.78 0.70 0.82 0.82 1.00 0.73 

S2 1.00 0.98 0.78 1.00 0.95 0.82 1.00 1.00 0.73 

S3 0.65 0.58 0.76 0.56 0.45 0.79 0.73 0.70 0.73 

S4 0.70 0.80 0.90 0.56 0.60 1.00 0.82 1.00 0.77 

S5 0.60 0.50 0.92 0.44 0.35 1.00 0.73 0.65 0.82 

S6 0.90 0.65 0.62 0.89 0.70 0.75 0.91 0.60 0.45 

S7 0.70 0.68 0.80 0.67 0.55 0.96 0.73 0.80 0.59 
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