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Abstract. There has been much interest in novel models of dark matter that exhibit interest-
ing behavior on galactic scales. A primary motivation is the observed Baryonic Tully-Fisher
Relation in which the mass of galaxies increases as the quartic power of rotation speed. This
scaling is not obviously accounted for by standard cold dark matter. This has prompted
the development of dark matter models that exhibit some form of so-called MONDian phe-
nomenology to account for this galactic scaling, while also recovering the success of cold
dark matter on large scales. A beautiful example of this are the so-called superfluid dark
matter models, in which a complex bosonic field undergoes spontaneous symmetry breaking
on galactic scales, entering a superfluid phase with a 3/2 kinetic scaling in the low energy
e�ective theory, that mediates a long-ranged MONDian force. In this work we examine the
causality and locality properties of these and other related models. We show that the Lorentz
invariant completions of the superfluid models exhibit high energy perturbations that violate
global hyperbolicity of the equations of motion in the MOND regime and can be superlumi-
nal in other parts of phase space. We also examine a range of alternate models, finding that
they also exhibit forms of non-locality.
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1 Introduction

Modern cosmology is built on a rather simple model of the universe: contents of baryonic
matter (and radiation), a cosmological constant �, and cold dark matter, together known as
�CDM, with dynamics controlled by general relativity. These pieces are highly compelling,
since they are all allowed by general principles of (local) Lorentz symmetry and quantum
mechanics at low energies. A range of observations of large scale structure and the detailed
fluctuations of the CMB [1] support this �CDM model, establishing its place as the dominant
model of modern cosmology. Playing a critical role on large scales is cold dark matter, which
forms the cosmic web, galactic halos, and so forth. Dark matter is a priori a very reasonable
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idea — some new stable, massive particle beyond the Standard Model. Altogether the
proposal of dark matter seems highly compelling.

1.1 Galactic tension

While cosmological observations are in broad agreement with the �CDM model, there have
been a number of claims of possible tension between �CDM and galactic scale observations.
In particular, one of the strongest empirical correlations in extragalactic astronomy is the
Baryonic Tully-Fisher Relation [2], which relates the baryonic mass Mb of galaxies to their
asymptotic rotational velocities vr as Mb Ã v4

r . However, it has been argued that a simple
treatment of �CDM, namely in a simple collapse model, predicts that the scaling relation is
di�erent Mb Ã v3

r [3]. This discrepancy has been seen in some simulations as well [4]. It is
also the case that the observed relation has rather little scatter, while naive modeling of dark
matter suggests significant scatter. At this stage it would be premature to conclude that this
falsifies vanilla cold dark matter, as a full accounting for feedback e�ects from baryons, further
numerical modeling, etc., may alter this conclusion. But the current tension is intriguing.

Furthermore, there are possible other challenges to �CDM from observations of dwarf
satellite galaxies in the local group which show that the most massive dark matter subhalos in
our galaxy are too dense to host any of our most luminous dwarf satellites [5]. These dwarf
satellites also have been observed to be co-rotating in planar formations that are di�cult
to explain using vanilla �CDM [6, 7]. In addition there are observed to be cores at the
centers of galaxies, without an obviously compelling explanation [8]. Therefore there is some
motivation to seek a new theory which alleviates the issues of �CDM on galactic scales. At
this stage, the most reasonable null hypothesis is that �CDM will ultimately prevail, but it
is worthwhile having an open mind.

A radical alternative theory to dark matter is to modify gravity on large scales to so-
called MOdified Newtonian Dynamics (MOND) [9–12]. This postulates that at low velocities
and weak gravitational fields, Newtonian gravity is replaced by a modified Newtonian force
law: FG = m µ(a/a0) a where FG = GMencm/R2 is the standard gravitational force, and µ
is a function of the acceleration. This function is assumed to have the asymptotic behavior
of µ æ 1 for large a, while µ æ a/a0 for small a relevant to galactic halos. This means
that on galactic scales the acceleration is a =

Ô
a0GMenc/R, rather than the usual a =

GMenc/R2. Hence, for circular motion with a = v2
r/R, one has (v2

r/R)2 = a0GMenc/R2,
giving Menc Ã v4

r matching the observed Baryonic Tully-Fisher Relation. The observed
constant of proportionality is matched by taking a0 ¥ 10≠8 cm/s2.

Such a model is entirely phenomenological, without any known microscopic construction.
In fact, since general relativity is the unique local theory of massless spin 2 particles [13–22],
one might think there cannot be any Lorentz invariant formulation of MOND. However, that
is not true; by including one or more new scalar degrees of freedom, one can lift MOND
to be Lorentz invariant in various ways that we will discuss (e.g., [23–27]). One might also
think that these extra degrees of freedom imply that one is necessarily including dark matter
anyhow [28]. However, that is also not true; in the most standard formulations of MOND (as
opposed to the upcoming superfluid models we will analyze), the new scalar(s) are essentially
always o�-shell throughout the universe, acting as virtual force mediators, not dark matter.

On the phenomenological level, while MOND has been successful on galactic scales at
modeling rotation curves [29, 30] and the aforementioned dwarf satellite structures [31], it
faces severe observational problems on cosmological scales. On large scales, the universe is
almost homogeneous and isotropic, allowing for simple theoretical and semi-analytical work.

– 2 –



J
C
A
P
1
1
(
2
0
2
1
)
0
1
5

Here it is found that while �CDM works remarkably well, the MONDian models fail to
reproduce the observed CMB power spectra [32] or the observed fluctuations in the matter
power spectra [33]. There may be issues on smaller scales as well [34].

1.2 A unified framework
Hence MOND and �CDM seem to perform well on di�erent scales. An ideal solution may
therefore be a kind of hybrid model which behaves like MOND on galactic scales, but asymp-
totes to CDM on cosmological scales. This idea was developed in recent years in the very
interesting and novel work, known as SuperFluid Dark Matter (SFDM) [35–38], and acted
as motivation for the present study. The key idea is that the scalar(s) that are needed to
be introduced to mediate a new gravitational force can also be on-shell and act as dark
matter on cosmological scales. On galactic scales, it undergoes a phase transition to a new
superfluid phase, with a novel scaling in its e�ective theory, allowing it to mediate a type
of MONDian force between baryons. The superfluid phonons mediate a MONDian force by
coupling directly to the baryon density ‡B. Specifically, the idea is to build a theory with
some new massive complex scalar dark matter �.

On large scales, its relevant Lagrangian is that of a regular massive scalar minimally
coupled to gravity as (signature ≠ + ++)

LSFDM =
Ô

≠g
5
≠1

2gµ‹ˆµ�ˆ‹�ú ≠ 1
2m2|�|2 + . . .

6
(1.1)

ensuring that it reproduces the successes of �CDM on cosmological scales. On galactic scales,
one introduces some non-trivial dynamics that causes the field to organize into a condensate.
Then one decomposes the field in terms of its magnitude and phase as � = fl ei(◊+mt),
where the phase ◊ = ◊(x, t) is the Goldstone from the spontaneous breaking of a phase
symmetry. The dynamics need to be of a very special variety so that the e�ective non-
relativistic Lagrangian of the Goldstone is of the form:

LSFDM = – Y
Ò

|Y | + — ◊ ‡B + . . . (1.2)

where –, — are constants, ‡B is the baryonic mass density, and

Y = ◊̇ ≠ m „N ≠ 1
2m

(Ò◊)2 (1.3)

is a special combination of field derivatives and the Newtonian gravitational potential „N .
The reason this type of low energy Lagrangian is pivotal to get the requisite MONDian

dynamics can be explained as follows: consider the static limit and let us ignore ordinary
gravity for simplicity. Then Y ¥ ≠(Ò◊)2/(2m) (plus a small chemical potential correction
from ◊̇), which is evidently negative; we shall return to this point later in the paper. The
Lagrangian is then LSFDM ¥ ≠– ((Ò◊)2/(2m))3/2 + — ◊ ‡B, and the Euler-Lagrange equation
for ◊ is

≠ 3–

(2m)3/2
Ò·(Ò◊|Ò◊|) = — ‡B (1.4)

The nonrelativistic equation of motion for a baryon subject to this fifth force is that its
acceleration is a = — Ò◊. For a spherically symmetric mass density ‡B, we can solve this
pair of equations to obtain

a = ≠sign(–)
Û

|—|3(2m)3/2Menc

12fi|–|
r̂

R
(1.5)
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Hence so long as the coe�cient – of the fractional power in eq. (1.2) is positive, this
force produces attraction, with magnitude of acceleration of a =

Ô
a0GMenc/R, with a0 ≥

|—|3m3/2/(– G). This matches the desired MONDian behavior, as described above, by choos-
ing the quantity |—|3m3/2/– accordingly.

Later we shall recapitulate concrete Lorentz invariant models in the literature that
achieve all these desired features (as well as develop some variations). Altogether this appears
to be very promising.

1.3 Outline of this work

The form of the low energy Lagrangian eq. (1.2) features some peculiarities, in particular
the fractional power of the kinetic term Y in LSFDM. In this work, we are driven by the
question if any Lorentz invariant version of the above SFDM construction exists that avoids
pathologies and that, furthermore, could arise from a sensible UV completion. In fact there
is a long history of addressing this kind of question on the space of e�ective theories that
can have a possible UV completion; for example, see ref. [39]. If some version of string-based
conjectures are correct, then most e�ective theories cannot be realized within string theory.
But here we focus on a much more well established consistency criteria: we would like to
know whether there are signs of inconsistency from causality breakdown within the e�ective
theory itself. This would mean they cannot have a UV completion in the usual sense of
Wilsonian e�ective field theory. Such an imposition makes sense without direct appeal to
any string-based conjectures, but are reinforced if the conjectures are true.

As a well known example, Lorentz invariant e�ective theories that at first sight appear
local, can sometimes turn out to exhibit some form of non-locality upon closer examination.
In particular, when certain inequalities are violated on the coe�cients of higher dimension
operators, the e�ective theory can exhibit superluminality around non-trivial backgrounds,
and cannot possess a regular Lorentz invariant UV completion [40]. Perhaps even more
seriously is the direct breakdown of the Cauchy initial value problem.

In this paper we will focus on a set of causality and locality constraints on a family of
Lagrangians involving various powers of some relativistic kinetic term X, so-called K-essence
theories, as these are relevant to the various superfluid models, and related models, that
are able to achieve some of the desired galactic phenomenology. For related work on using
constraints on pure MOND models, see refs. [41, 42]. The basic idea is as follows: suppose a
scalar field Ï sets up some condensate background Ïb, such as that from a superfluid. In that
case, high energy scalar particles will propagate along an e�ective metric Gµ‹

Ï that we can
derive from the K-essence Lagrangian. This propagation maintains a basic notion of causality
if this e�ective metric is globally hyperbolic [43], otherwise catastrophic instabilities ensue
and/or the initial value problem is compromised. A necessary condition of hyperbolicity
is that the signature of Gµ‹

Ï must match the Lorentzian signature of the spacetime metric.
We will utilize this constraint, as well as related constraints from subluminality and cluster
decomposition, to examine the causal structure of a range of theories including LSFDM. While
there has been previous work on identifying forms of superluminality in pure MOND models,
our work here on the general breakdown of hyperbolicity in SFDM, plus results in other
models, is new.

This paper is organized as follows: in section 2, we develop causality constraints for a
class of K-essence models. In section 3 we show how theories with a known UV completion
obey these conditions. In section 4, we present some very simplistic Lorentz invariant models
that exhibit MONDian behavior. In section 5, we describe the basic dark matter superfluid
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model and show explicitly how it behaves as MOND on small scales and asymptotes to
CDM on large scales. In section 6, we extend the constraints we developed in section 2 to a
model with a U(1) symmetry, which we then apply to the relativistic superfluid Lagrangian,
proving general results. In section 7 we examine alternative formulations of SFDM. Finally,
in section 8, we conclude.

2 Causality constraints on field theories

Let us consider a class of so-called K-essence models (e.g., see [44–46]), in which the kinetic
term for some scalar field can be a generic function, i.e., an action of the form

S = ≠
⁄

d4x
Ô

≠g [F (X, Ï)] (2.1)

where
X © 1

2gµ‹ˆµÏˆ‹Ï (2.2)

We will work in the ≠ + ++ signature. The classical equations of motion that follow from
this action are

#
F Õ(X, Ï)gµ‹ + F ÕÕ(X, Ï)ˆµÏˆ‹Ï

$
ˆµˆ‹Ï = ≠2X

ˆF Õ

ˆÏ
+ ˆF

ˆÏ
(2.3)

where primes mean derivatives with respect to X, and the spacetime derivatives can be lifted
to covariant derivatives in a curved spacetime. One may also include a potential for the field,
which will be unimportant to our discussion.

Now in order to access the causal structure of this classical equation of motion, let us
suppose that the field has some background solution Ïb, which may be a function of space
and/or time. Then let us study a small perturbation Á around this background solution as

Ï = Ïb + Á (2.4)

Even though Ïb may depend on space and/or time, we are interested in perturbations Á
that are much more rapidly changing. This is an essential diagnostic to learn about the
causal structure of the theory, since signal speeds are associated with the high energy limit
of particles on top of the background in a Lorentz invariant theory. Note that this is to be
contrasted to the low energy collective phonon excitations, which propagate at the sound
speed. In ref. [47] the focus was on ensuring the sound speeds were subluminal, but this
is only one requirement for consistency. The more general requirement is that high energy
particles exhibit subluminality too; we shall return to this discussion in section 7.3.

When we substitute eq. (2.4) into eq. (2.3) and work to O(Á) we only keep terms
that involve two derivatives acting on Á, since first derivative or zero derivative terms are
subleading in this limit. This leads to the equation for high energy perturbations

Gµ‹
Ï ˆµˆ‹Á = 0 (2.5)

where we have defined

Gµ‹
Ï = F Õ(Xb, Ïb)gµ‹ + F ÕÕ(Xb, Ïb)ˆµÏbˆ

‹Ïb (2.6)

From the point of view of the high energy perturbation Á, the tensor Gµ‹
Ï is playing the role

of an e�ective background metric.
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In order to ensure that perturbations on this e�ective metric exhibit standard causal
evolution, one demands that the metric maintains the same ≠ + ++ signature. One can
verify that two of the eigenvalues of Gµ‹

Ï are both F Õ, hence these must both be positive. In
addition, one finds that the determinant of the metric is

Det[Gµ‹
Ï ] = ≠F Õ(X, Ï)3(F Õ(X, Ï) + 2XF ÕÕ(X, Ï)) (2.7)

which needs to be negative. Altogether, in order to ensure global hyperbolicity, we need the
F function to obey the following pair of conditions

(A) A © F Õ > 0 (2.8)
(B) B © F Õ + 2XF ÕÕ > 0 (2.9)

which is in agreement with the work of ref. [41] (also, see ref. [48]). Relatedly, the correspond-
ing Hamiltonian exhibits a derivative instability if either of these conditions are violated. If
the background mainly depends on time, then the instability will be in the temporal direction,
indicating a ghost.

Another important condition for a theory to possess a sensible Lorentz invariant UV
completion is that it avoids superluminal signal propagation. To assess this, one first divides
the equation of motion by F Õ(Xb, Ïb) to obtain a more regular looking wave equation. Now to
illustrate the basic idea, consider a background Ïb that mainly depends on time t. Ultimately,
it is important that it also have some spatial dependence in order to produce a localized region
that asymptotes to the vacuum at infinity; this allows one to compare signal speed through
the medium Ïb to light speed in vacuum. But here we shall use a mainly time dependent
background to illustrate the idea; the spatially dependent case can be easily derived too,
with the same final result. On the other hand, we allow high energy perturbations to depend
on both space and time as usual. Furthermore, let us focus on flat space gµ‹ = ÷µ‹ . Then
eqs. (2.5), (2.6) become

≠
3

1 ≠ F ÕÕ

F Õ Ï̇2

b

4
Á̈ + Ò2Á = 0 (2.10)

Thus we see that the speed of propagation of the perturbation is c2
signal = 1/(1 ≠ (F ÕÕ/F Õ)Ï̇2

b).
Now since we already need to remain in the regime in which F Õ > 0 in order to ensure
hyperbolicity, and we have Ï̇2

b > 0, then the signal speed will be superluminal, c2
signal > 1, if

F ÕÕ > 0. Hence the condition for subluminality is

(C) C © ≠F ÕÕ Ø 0 (2.11)

We note that if one of (A) or (B) are violated, then there is no regular wave propagation,
and so this signal speed is no longer directly meaningful. However, if both (A) and (B) are
violated, then there is once again a notion of wave propagation as the entire metric has flipped
sign. In this case, the condition for subluminality is that condition (C) is also violated; we
shall return to this situation at the end of section 6.3. However, if (A) and (B) are both
violated, the corresponding Hamiltonian would pick up an overall minus sign, which means
a potential instability when coupling to matter.

In the following sections, we will examine these conditions (A), (B), (C) for a variety
of real scalar field theories. Collectively, we shall refer to any such violation as a form of
“acausality”; we are therefore using this as a generic name to include, superluminality, break-
down of standard hyperbolicity, and ghost behavior. We will generalize these conditions to a
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complex field in section 6.1 and then examine them in detail in the SFDM models. We em-
phasize that these are not merely “strong coupling” problems; they represent real breakdown
in aspects of the causal behavior of the purported Lorentz invariant theories. They strongly
suggest that the e�ective theories are not applicable in the relevant regimes of interest.

3 Examples of consistent causality

3.1 Canonical action
As a first very simple example, consider a theory with a canonical kinetic term and potential

Fcan = X + V (Ï) (3.1)

Then we trivially satisfy the above conditions. This represents the standard action for a
scalar. This can of course play the role of cold dark matter, but does not obviously give rise
to the correct galactic behavior.

3.2 DBI models
As another example, consider the rather more non-trivial action for the so-called DBI mod-
els (arising from extra dimensional models) which have been put forth as models of infla-
tion [49, 50]

FDBI = 2T
Ò

1 + X/T + V (Ï) (3.2)
where T is related to the tension and is allowed to be a function of Ï, i.e., T = T (Ï), or
just a constant. Note that in the small energy density regime X π T , this simplifies to
FDBI ¥ Fcan, and so is standard. However for values of X/T , the departures are significant.
This model is not especially relevant to the problem of galactic behavior; we are simply in-
cluding it here as a concrete example of a K-essence Lagrangian. Let us compute the above
values of A, B, and C. We find

A = 1


1 + X/T
> 0 (3.3)

B = 1
(1 + X/T )3/2

> 0 (3.4)

C = 1
2T (1 + X/T )3/2

> 0 (3.5)

As indicated, A, B, and C are evidently positive, satisfying the above constraints. Since the
DBI model has been argued to have an embedding in string theory, and therefore has a UV
completion, it was to be expected that it obeys all these causality conditions.

In this model, one might be concerned that the field evolves to obtain 1 + X/T < 0.
However, this is not actually a concern. To see this, we can compute the energy density, by
forming the Hamiltonian density H. In flat space, it is easy to show

H = 2T + (ÒÏ)2


1 + X/T

+ V (Ï) (3.6)

This shows it is unlikely for 1+X/T to pass through zero under time evolution, because then
the energy density is blowing up, which would likely increase the integrated energy and the
energy would not be conserved. Hence the phase space can be self-consistently restricted to
the regime 1 + X/T > 0, and conditions (A), (B), and (C) are always satisfied.
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3.3 Perturbative theories

Often when one is exploring an e�ective field theory, one stays within the domain in which
the higher dimension operators are small compared to the leading order operators. Of course
this is required for their contribution to the scattering of elementary particles, for otherwise
one would likely be beyond the cuto� of the e�ective theory. However, this is not a general
rule when expanding around some condensate background (as an example, inflation often
involves super-Planckian field values, even though it is a sensible e�ective field theory).
For the upcoming superfluid models, we will in fact need to enter the regime in which the
condensate background allows the higher dimension operators to be as large, or larger, than
the leading operators.

In any case, for the present discussion let us restrict our attention to the perturbative
regime, where higher dimension operators are small. We shall consider a pure kinetic model,
with a tower of operators of the form

F = X +
ÿ

n=nmin

gn Xn/�4(n≠1) (3.7)

where gn is a coe�cient of the nth term, with n an integer starting at nmin Ø 2, and � is
some mass scale that sets the standard cut o� on high energy scattering. The leading term X
represents the usual kinetic term, while the sum represents interaction terms in a theory with
a shift symmetry Ï æ Ï + Ï0. One could also include other terms, such as Galileons, which
we shall return to briefly in section 7.1; but we will not focus on those terms in the discussion
here. The natural value of n for the leading interaction is nmin = 2. However, as we shall
discuss in the upcoming superfluid models, it will be important to also consider a special
case where g2 = 0 or small and the leading behavior is instead provided by n = 3, or higher.

Working perturbatively and tracking only the leading order contributions we have

A ¥ 1 > 0 (3.8)
B ¥ 1 > 0 (3.9)
C = ≠

ÿ

n=nmin

n(n ≠ 1)gn Xn≠2/�4(n≠1) (3.10)

So by working perturbatively, the hyperbolicity conditions (A) and (B) are trivially satisfied
because the kinetic structure is dominated by the canonical kinetic term.

For the subluminality condition (C), we see that if the g2 term is significant, then we
immediately obtain the condition g2 Æ 0, which is the familiar sign theorem of ref. [40] (taking
into account �L = ≠F ). If, on the other hand, the g2 term is small, we can also turn our
attention to the g3 term. Together they say that the subluminality condition is

≠ g2 ≠ 3 g3 X/�4 Ø 0 (3.11)

For g3 > 0 (which will occur in the upcoming superfluid dark matter models), this condition
puts a bound on the value of X to be X Æ ≠g2 �4/(3 g3). For g2 = 0, this would restrict
X Æ 0, which would be immediately violated by almost all solutions. For g2 < 0, but small,
this puts a potentially tight bound on the regime of validity of the e�ective theory to avoid
superluminality. It is therefore an important question whether such an e�ective theory is
useful; we shall return to related issues when we discuss the superfluid model in section 6.3.
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4 Simplistic Lorentz invariant MOND models

4.1 Non-smooth Lagrangians

Arguably, the simplest and most naive way to build a Lorentz invariant theory that achieves
the MONDian dynamics is simply to start with the desired low energy Lagrangian eq. (1.2)
and by brute force lift it to be Lorentz invariant by replacing Y æ X and ‡B æ TB, where TB

is some Lorentz invariant source, such as the trace of the baryonic energy-momentum tensor.
Hence the simplest incarnation of a Lorentz invariant theory with some kind of MONDian
dynamics is that the scalar field Ï has Lagrangian

L = ≠–̃ X
Ò

|X| ≠ —̃ Ï TB + . . . (4.1)

Recall that X = gµ‹ˆµÏˆ‹Ï/2, hence in the limit in which we ignore gravity, it is X =
(≠Ï̇2 + (ÒÏ)2)/2, and so in the static limit it is X = (ÒÏ)2/2. This means X Ã ≠Y (up to
small corrections). Furthermore, since TB = ≠‡B in this limit, we recover the static limit of
eq. (1.2), by re-scaling –̃ and —̃ appropriately. This indicates the MONDian dynamics follows.

While this formally achieves both MONDian dynamics within a Lorentz invariant theory,
this Lagrangian is clearly highly peculiar. A fractional power in a Lorentz invariant theory is
very unusual. In the quantum theory, this does not possess a standard expansion in terms of
creation and annihilation operators that act on particle states, which fundamentally is what
defines quantum fields. Correspondingly, there will presumably not be a usual form of cluster
decomposition in order to maintain locality [51]. In addition, we know that on large scales,
this MONDian dynamics performs poorly observationally, as we outlined in the introduction.

We will fix all these problems shortly by turning to the novel superfluid dark matter
models in the following sections. However, for now, let us proceed and test the causal
structure of this theory against the above causality conditions. It is simple to check that
with the above action F = –̃ X


|X|, the conditions for hyperbolicity are

A = 3 –̃

2

Ò
|X| > 0 (4.2)

B = 3 –̃
Ò

|X| > 0 (4.3)

Since we know –̃ > 0, as required to achieve MONDian dynamics as in eq. (1.5), these first
two constraints are satisfied. Finally, the quantity relevant to signal speed propagation is

C = ≠ 3 –̃ X

4|X|3/2
(4.4)

In order to remain subluminal, C Ø 0, we therefore need X Æ 0. Since X = gµ‹ˆµÏˆ‹Ï
is a kinetic term, one normally cannot restrict its range of values, so this condition would
normally be violated. Furthermore, in the MONDian regime, we have X ¥ (ÒÏ)2/2 > 0,
meaning that the condition is definitely violated in this regime. So although this above simple
Lorentz invariant model obeys global hyperbolicity, it permits superluminality around non-
trivial backgrounds.

4.2 Smooth Lagrangians

On the other hand, studying the above theory perturbatively is not particularly meaningful,
because it does not have a regular kinetic term and so does not behave well in the standard
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vacuum. In this case, any conclusions about superluminality can be taken with a note of
caution. In any case, the fractional power in the Lagrangian means this simple theory fails
all sorts of standard tests for sensible quantum field theories, such as cluster decomposition.
One can improve the situation by lifting the action to various smooth forms. An example
that we can consider is

F = X + –̃ X3/�6

(1 + X6/�24)1/4
+ 1

2m2Ï2 (4.5)

which now has a well defined expansion around the vacuum. This recovers the above action
in the � æ 0 limit. At small energy densities, this theory recovers the canonical form
for a massive scalar F = X + m2Ï2/2, while at large energy densities it asymptotes to F =
–̃ X


|X|+m2Ï2/2. The kinetic term appears to give the desired MONDian phenomenology.

Some related examples are given in ref. [52].
We will not repeat it, but it should be clear that subluminality again breaks down here

in the MONDian regime. Furthermore, this theory can also violate hyperbolicity, depending
on the value of –̃ �2. We find that this hyperbolicity problem can be avoided for all X, so
long as the following inequality is obeyed

–̃ �2 > 0.1041 to obey (A) (4.6)
–̃ �2 > 1.6191 to obey (B) (4.7)

Now, since this theory possesses a power series expansion around the vacuum X = 0,
we can treat this as a kind of e�ective theory. However, when operating in the high energy
density regime relevant to MOND, X ∫ �4, one may be beyond the cut o� of the e�ective
theory, thus entering a non-unitary regime. So this is not clearly a well behaved model in
the usual sense of e�ective field theory. It would be advantageous to have a model that could
avoid this potential breakdown in unitarity.

Moreover, there is a pressing phenomenological problem with this theory, and that is
related to the mass m. In order for the MONDian force to be long-ranged, one would require
m to be extremely small, presumably no larger than 1/Lgal, where Lgal is the size of a galaxy.
However, this also presents a potential problem if this is to simultaneously act as dark matter
on large scales, because various analyses, such as Lyman – forest, etc., suggest that the dark
matter mass cannot be so tiny [53–57]. This motivates one to find another model in which
the mass m can be appreciable in order to act as cold dark matter on large scales, and yet
simultaneously mediate a long-range MONDian force despite this mass. This leads us to the
discussion of the SFDM models in the next section.

5 Superfluid model

A useful idea would be to introduce a massive complex field that undergoes spontaneous
symmetry breaking, with a massless Goldstone that can mediate the desired long-range
force. This leads us to the novel superfluid dark matter models from the literature, as
we now describe.

5.1 Complex field

In the very interesting ref. [36], a model of dark matter was introduced that exhibits MOND
behavior on galactic scales, while relaxing to standard CDM behavior on cosmological scales.
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This model involves a complex scalar field �. A fully relativistic version of the theory is
given by

F = 1
2

1
X + m2|�|2

2
+ �4

6(�2
c + |�|2)6

1
X + m2|�|2

23

(5.1)

where we have updated the definition of X to that which is appropriate to a complex field
with a U(1) symmetry, namely

X = gµ‹ˆµ�ˆ‹�ú (5.2)
In addition there are assumed to be terms that couple � to baryons, such as �L =
≠“ � ◊ Tb/MPl, where Tb is the energy-momentum tensor of the baryons, ◊ is the phase
of � (see ahead to eq. (5.4)), and “ is a dimensionless coupling. This is essential for ◊ to
mediate a new long-ranged force. Such a term introduces a small explicit breaking of the
U(1) symmetry, which is a shift symmetry in ◊, although it may be technically natural.

A curious feature of the above Lagrangian is that the same mass m appears both in
the first term and the cubic term. This appears fine-tuned from the top down point of view,
although somehow natural from the bottom up point of view as it will lead to a scaling
regime. In any case, we will not address this issue further here.

Note that this form of the action avoids any fractional powers, so it may be thought of
as some kind of e�ective theory, and furthermore we can enter an interesting scaling regime
for |�| ∫ �c. This action is missing a natural operator, which is the quadratic power Ã X2.
However, we will reinstate this later in section 6.3, finding qualitatively similar results. Then
in section 6.4 we will generalize this to all possible models with the desired scaling.

The CDM regime occurs for small values of � and X. In this regime, the action
simplifies to

F ¥ 1
2

1
X + m2|�|2

2
(CDM regime) (5.3)

which is a Lagrangian for a standard massive scalar, and therefore behaves as CDM (at least
for length scales larger than its de Broglie wavelength). It is of the form of eq. (3.1) and to
this leading order analysis would appear to obey conditions (A–C); however, we shall return
to this issue later.

5.2 Phase transition
If we were to treat the higher dimension operators in eq. (5.1) perturbatively, then the
hyperbolicity conditions (A) and (B) would still be satisfied because the extra terms would
be small in this regime (although the subluminality condition (C) would still be a potential
issue). But this is not the MOND regime. The point of the extra terms is that they become as
important as the other terms in some new regime, giving rise to the MOND phenomenology.
In such a regime, it is less clear that the hyperbolicity conditions are obeyed.

In this other regime, we decompose the field into modulus fl and phase ◊ as

� = fl ei(◊+mt) (5.4)

The extraction of the phase factor mt in the exponent allows for an identification of the
non-relativistic regime, since the fast oscillations are extracted, and then we can assume that
the remaining functions fl and ◊ are slowly varying in space and time.

In order to determine the resulting low energy e�ective action, it is useful to express X
in terms of fl and ◊. By writing the metric in the nonrelativistic limit as

ds2 = ≠(1 + 2„N )dt2 + dx2 + dy2 + dz2 (5.5)
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and working only to linear order in „N , dropping all two-derivatives terms, since the fields
fl, ◊ are slowly varying in the low energy regime, it is readily found the following relation

X + m2|�|2 = (Òfl)2 ≠ 2 m fl2 Y (5.6)

where

Y © ◊̇ ≠ m „N ≠ (Ò◊)2

2m
(5.7)

which is the same function we reported earlier in the introduction. One can check that this
expansion is valid for �2

c < � m.
In the MOND regime, the field fl is heavy and can be integrated out. At tree-level

(classical) it can be shown that it is linked to the value of the phase field to leading order in
a gradient expansion as

fl2 = �
Ò

2m|Y | (5.8)

Then by self-consistently dropping spatial gradients acting on fl, we can insert eq. (5.8) into
eqs. (5.6) for X and then into eq. (5.1) to obtain the e�ective action

F = ≠2�(2m)3/2

3 Y
Ò

|Y | (MOND regime) (5.9)

which achieves the desired kinetic part of the MONDian low energy action eq. (1.2) with
– = 2�(2m)3/2/3 and — = “ �/MPl. The corresponding value for the turnover acceleration
is a0 ≥ “3�2/MPl. This is all in agreement with the work of ref. [36].

One can check that in the MOND regime it is indeed self-consistent to ignore the
gradient terms acting on fl as follows: as we mentioned earlier, the acceleration is related to
the gradient of ◊ by Ò◊ = a/— ≥

Ò
— m3/2Menc/– r̂/R ≥


“Menc/MPl r̂/R. Hence we can

estimate Y as

Y ¥ ≠(Ò◊)2

2m
≥ ≠ “ Menc

MPl m R2
(5.10)

So if we compare the gradient term to the non-gradient term in eq. (5.6) we have

(Òfl)2

2m fl2 Y
≥ 1

mR2Y
≥ ≠ MPl

“ Menc
(5.11)

For any reasonable value of the dimensionless coupling “, this ratio is minuscule because
there is a factor of the mass of the galaxy on the denominator. Hence the strategy of
ignoring spatial derivatives of fl is indeed justified in the MONDian regime.

As an aside, we note that this model predicts the polytropic equation of state P Ã fl3,
which does not accurately describe the cores of galaxies, as shown in ref. [58]. But we shall
not focus on that issue further here.

Importantly, we see that this clever idea is achieving the MONDian dynamics from a rea-
sonable type of Lorentz invariant starting point, along with CDM on large scales, rather than
the simplistic fractional power starting point of section 4.1, or even the smooth version of sec-
tion 4.2 which didn’t explain why there is a mode light enough to mediate a long-ranged force.
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6 Test for causality in superfluid model

6.1 Causality constraints in models with U(1) symmetry
In this case we have a complex scalar. This can be broken up into a pair of real scalars „j ,
with j = 1, 2, as

� = („1 + i „2)/
Ô

2 (6.1)
We can then decompose X = X1 + X2, with Xj = 1

2
(ˆ„j)2 (with this definition, the leading

order kinetic and mass terms in eq. (5.1) will have a factor of 1/4 when written in terms of
these real fields, which is unconventional). Each scalar obeys the full relativistic equation of
motion

2ÿ

j=1

C
ˆF

ˆXj
÷µ‹”ij + ˆ2F

ˆXiˆXj
ˆµ„iˆ

‹„j

D

ˆµˆ‹„j = ≠
2ÿ

j=1

ˆ2F

ˆXiˆ„j
ˆµ„iˆµ„j + ˆF

ˆ„i
(6.2)

The U(1) symmetry of the model ensures that ˆF/ˆXj = F Õ and ˆ2F/ˆXiˆXj = F ÕÕ. Hence
this simplifies to

2ÿ

j=1

Ë
F Õ÷µ‹”ij + F ÕÕˆµ„iˆ

‹„j

È
ˆµˆ‹„j = ≠

2ÿ

j=1

ˆF Õ

ˆ„j
ˆµ„iˆµ„j + ˆF

ˆ„i
(6.3)

which generalizes eq. (2.3) to a two-field model organized by a U(1) symmetry.
We again decompose the field into a background piece „b

j and a high energy perturbation
Áj as

„j = „b
j + Áj (6.4)

The linear equation for Áj is easily obtained by keeping only the terms that involve two-
derivatives on Áj

2ÿ

j=1

Ë
F Õ÷µ‹”ij + F ÕÕˆµ„b

iˆ
‹„b

j

È
ˆµˆ‹Áj = 0 (6.5)

(with F Õ and F ÕÕ both evaluated on the background values). To solve a set of linear di�erential
equations, one would normally take a Fourier transform. However, the dependence on space
and time in the background „b

i complicates this. Nevertheless, we can proceed by again using
the fact that „b

i varies slowly, while Áj varies rapidly. To proceed lets identify the normal
modes by decomposing Áj as an approximate plane wave as

Áj(t, x) = Á̃j(t, x) ei kµ(t,x) xµ + c.c (6.6)

where Á̃i and kµ are assumed to be slowly varying. By inserting this in to eq. (6.5), we self
consistently only allow derivatives to act on the xµ in the exponent and ignore the other
derivatives; this is usually known as the “geometric optics” limit. Since there are a pair of
fields, this becomes a 2 ◊ 2 matrix problem

A
F Õk2 + F ÕÕ(ˆµ„b

1kµ)2 F ÕÕˆµ„b
1kµˆ‹„b

2k‹

F ÕÕˆµ„b
1kµˆ‹„b

2k‹ F Õk2 + F ÕÕ(ˆµ„b
2kµ)2

BA
Á̃1

Á̃2

B

= 0 (6.7)

where k2 = ÷µ‹kµk‹ . In order for this to possess nontrivial solutions, we require the deter-
minant of the matrix to vanish. The determinant is easily found to be

F Õk2[(F Õ÷µ‹ + F ÕÕ(ˆµ„b
1ˆ‹„b

1 + ˆµ„b
2ˆ‹„b

2))kµk‹ ] = 0 (6.8)
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This gives the dispersion relations for each of the two normal modes of the system. The
first normal mode arises from setting the first factor here to zero, i.e., k2 = 0. This is the
standard relation for a massless degree of freedom. We recover this here since the theory has
a Goldstone which moves on a null light ray.

More interesting is the second normal mode, which arises from setting the term in the
square brackets [. . .] to zero. If we form the linear combination

Â = ˆµ„b
1ˆµÁ1 + ˆµ„b

2ˆµÁ2 (6.9)

then we obtain the normal coordinate for this second mode. It obeys the corresponding
di�erential equation

Gµ‹
„ ˆµˆ‹Â = 0 (6.10)

where we have again introduced a kind of e�ective metric

Gµ‹
„ = F Õgµ‹ + F ÕÕ(ˆµ„b

1ˆ‹„b
1 + ˆµ„b

2ˆ‹„b
2) (6.11)

This generalizes eqs. (2.5), (2.6) to the second normal mode of this two-field model. The
corresponding hyperbolicity and subluminality conditions are then immediately the same
conditions (A–C) in eqs. (2.8), (2.9), (2.11), where the prime now means a derivative with
respect to the full X.

6.2 Application to superfluid model

Let us take the derivatives that are relevant to the tests for consistency with causality. To
express the results for A, B, C it is useful to rescale them as

A = Ã

’(�) , B = B̃

’(�) , C = C̃

’(�) (6.12)

where ’(�) © (�2
c + |�|2)6 is manifestly positive. So checking on the signs of A, B, C is

equivalent to checking on the signs of the numerators Ã, B̃, C̃. These numerators are given by

Ã = (�2

c + |�|2)6/2 + �4(X + m2|�|2)2/2 (6.13)
C̃ = ≠�4(X + m2|�|2) (6.14)

with B̃ conveniently given in terms of these as

B̃ = Ã ≠ 2XC̃ (6.15)

Clearly we have A > 0, so condition (A) is satisfied. However, there is ambiguity in the signs
of B and C, so it is unclear whether the other two conditions are satisfied. Nevertheless,
this can readily be determined, as follows.

Since we wish to take the non-relativistic limit, it is important to note that factors like

◊̇,
(Ò◊)2

2m
(6.16)

are both relevant and both contribute to Y . To make this manifest, one can rescale spatial
co-ordinates as x = xÕ/

Ô
m, and then the above pair of terms scale as ◊̇, (ÒÕ◊)2/2. So even

in the non-relativistic limit, where m is large compared to the spatial variation in these fields,
both of these terms can play a role.
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When we are in the MONDian regime, we can use the smallness of (Òfl)2 as established
in eq. (5.11) to simplify eq. (5.6) to

X + m2|�|2 ¥ ≠2 m fl2 Y (6.17)

This allows one to readily estimate C̃. Furthermore, one can check that the F Õ contributions
to B are sub-dominant to the 2XF ÕÕ contributions in this regime. Hence we easily obtain
B̃ ¥ ≠2XC̃. Then to the most leading order, we have the even simpler estimate X ¥ ≠m2fl2.
Putting this altogether, we find that in the MONDian regime we have

B̃ = 4 m3 �4fl4 Y (6.18)
C̃ = 2 m �4fl2 Y (6.19)

where fl is given by eq. (5.8). Hence we see that the signs of both B and C are determined
by the sign of Y . But this is a serious problem, as we explain: recall that we earlier said that
in the MONDian regime, we have

Y ¥ ≠(Ò◊)2

2m
(6.20)

which is evidently negative (there can be a chemical potential contribution too, but the
MOND regime still corresponds to Y < 0). This ensures that B is negative. Thus the
relativistic perturbations about the superfluid model of eq. (5.1) fails the condition of hyper-
bolicity. Since the background mainly depends on time due to the fast varying eimt factor
in eq. (5.4), this hyperbolicity breakdown is in the temporal direction, meaning the theory
carries a ghost.

Since C is also negative, it suggests a potential breaking of subluminality also. However,
once hyperbolicity is broken there is no longer a meaningful signal speed that can be defined.
Nevertheless, we can also identify a breakdown of superluminality in the usual sense: suppose
we have yet to fully enter the above MOND regime, but are in the transition region from
CDM towards the MOND regime. When we are deeply in the CDM regime, we have B ¥
F Õ ¥ 1/2 > 0, and hyperbolicity is obeyed, and we have regular wave propagation. However
there can be regions of phase space in which C = ≠F ÕÕ is still negative, so there will be
superluminality. For example, consider a semi-relativistic region of space in which X =
≠|�̇|2 + |Ò�|2 happens to be small, then B ¥ F Õ can be positive, while C can be negative.
Altogether, in some intermediate regime with C < 0 and superluminality, or deeply in the
MOND regime with B < 0 and hyperbolicity breakdown, this is all in tension with standard
notions of causal propagation and consistency.

This is in contrast to some of the earlier examples, such as the DBI models, which obey
the hyperbolicity and subluminality conditions at every point in space and time in all of phase
space. It is also in contrast to the earlier examples of “simplistic Lorentz invariant MOND
models” of section 4 which obey the hyperbolicity conditions (although they disobeyed the
subluminality condition).

6.3 Including quadratic term

In the above model, there is an omission of another natural operator, namely a quadratic
term (X + m2|�|2)2. For completeness, let us also include this term. It can potentially be
quite important from the point of view of causality, because if it enters the Lagrangian with
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a positive coe�cient, then it can help to avoid problems of superluminality [40]. This was
also included briefly in the work of ref. [36]. The full action is

F = 1
2

1
X + m2|�|2

2
+ �4

6(�2
c + |�|2)6

1
X + m2|�|2

23

≠ g �2

2(�2
c + |�|2)3

1
X + m2|�|2

22

(6.21)

where g is a new coe�cient that sets the size of this new term. We now find that the
coe�cients Ã, C̃ controlling the causality constraints are altered from eqs. (6.13), (6.14) to

Ã = (�2

c + |�|2)6/2 + �4(X + m2|�|2)2/2 ≠ g �2(�2

c + |�|2)3(X + m2|�|2) (6.22)
C̃ = ≠�4(X + m2|�|2) + g �2(�2

c + |�|2)3 (6.23)

with eq. (6.15) still applicable to obtain B̃. So by choosing g > 0 one can hope to satisfy the
second and third conditions as it may help to ensure that C̃ > 0. On the other hand, g > 0
may introduce a problem with the first condition. As we shall see, in the superfluid regime,
no value of g will succeed in avoiding the causality problems.

By again decomposing the field � in terms of modulus fl and phase ◊ in the superfluid
regime, one can again solve for fl to leading order. The result in eq. (5.8) can be found to be
altered to1

fl2 = �
Ú

g m Y +
Ò

4 + g2 m |Y | (6.24)

Note that the argument under the square root is always positive for any value of g or Y ,
both positive or negative; so this is well defined. The corresponding values of Ã, B̃, C̃ are
found to be

Ã = m2 �4 fl4 ã(g, y) Y 2 (6.25)
B̃ = 2 m3 �4fl4 b̃(g, y) |Y | (6.26)
C̃ = m �4fl2 b̃(g, y) |Y | (6.27)

where the functions ã, b̃ are defined as

ã(g, y) = (4 + 3g2) + 3g
Ò

4 + g2 y (6.28)

b̃(g, y) = (2 + g2)y + g
Ò

4 + g2 (6.29)

where y © Y/|Y | = ±1 is the sign of Y . From the form of eqs. (6.25), (6.26), (6.27), we see
that all other factors are positive, and hence causality is determined by the signs of these
dimensionless functions ã and b̃.

The two branches of the functions ã and b̃ are plotted in figure 1. Note that if b̃ > 0
on both branches it would help to allow the theory to avoid causality problems by ensuring
B̃ > 0, C̃ > 0. However, we see that for the lower branch y = ≠1 (i.e., for Y < 0), we have
b̃ < 0. Although for larger values of g this function rises, it never crosses zero. In addition, we
see that the function ã is positive for |g| < 2/

Ô
3; we therefore must remain in this regime to

avoid breaking the first hyperbolicity condition (A). Altogether, since Y ¥ ≠(Ò◊)2/(2m) < 0
in the MOND regime, we once again have that B < 0 and the theory violates hyperbolicity.

Interestingly, for g > 2/
Ô

3, we violate both hyperbolicity conditions on the Y < 0
(magenta) curves. This means that the e�ective metric alters its entire sign. In such a regime

1In ref. [36] there appears to be a sign error in the first term under the square root in their eq. (96).
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Figure 1. A plot of the functions ã(g, y) and b̃(g, y) as a function of coe�cient g; see eqs. (6.28), (6.29).
Dashed curves are ã(g, y) and solid curves are b̃(g, y). Orange curves are y = +1 (i.e., for Y > 0) and
magenta curves are y = ≠1 (i.e., for Y < 0).

there is again some kind of causal evolution with all A, B, C negative (although there are
potential problems when coupling to ordinary matter due to a negative Hamiltonian for Áj).
However, one can show that this is precisely the regime in which one loses the MONDian
phenomenology, as the e�ective action then carries the wrong sign (F = ≠– Y


|Y | with

– < 0) and the force becomes repulsive (see eq. (1.5)). So this shows that the MONDian
regime is precisely at odds with causality.

6.4 General analysis
In fact we can prove the violation of hyperbolicity in the most general theory of this form. In
particular, consider the most general form of F for the SFDM by allowing for any arbitrary
sum over terms as

F = (X + m2|�|2)
ÿ

n=0

gn
�2n

!
X + m2|�|2

"n

(�2
c + |�|2)3n

(6.30)

Note that with g0 = 1/2, g1 = ≠g/2, g2 = 1/6, g4 = g5 = . . . = 0, we recover the model
studied above. Each term here carries precisely the scaling that is needed to achieve the
e�ective action F = ≠– Y


|Y | in the MONDian limit. Also by taking g0 > 0 we can recover

CDM on large scales.
Now what is important to notice is that inside the sum is a function of only one variable.

We can express this in a general way by summarizing this as

F (X, �) = (X + m2|�|2) F
A

�2(X + m2|�|2)
(�2

c + |�|2)3

B

(6.31)

where F is some dimensionless function of its dimensionless argument

Z © �2(X + m2|�|2)
(�2

c + |�|2)3
(6.32)
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As an example, the model studied above is the function F(Z) = 1/2 ≠ Z/2 + Z2/6. In fact
we will be able to make a general proof for any F , regardless of whether or not it possesses
the above regular series expansion (i.e., we can even allow for fractional powers or various
other non-analytic functions in this discussion).

With this decomposition, we can use the chain rule to readily obtain the A and C
parameters that determine causality as

A = ˆF

ˆX
= F + Z FZ (6.33)

C = ≠ ˆ2F

ˆX2
= ≠ �2

(�2
c + |�|2)3

(2 FZ + Z FZZ) (6.34)

where FZ © ˆF/ˆZ and FZZ © ˆ2F/ˆZ2 indicates derivates with respect to the argument
Z. Combined with B = A ≠ 2XC, we obtain all three parameters.

Now in the MOND regime we always have eq. (6.17) and |�| = fl ∫ �c, this allows us
to simplify F as

F ¥ ≠2 m fl2 Y F
A

≠2�2 m Y

fl4

B

(6.35)

Now recall that in the MOND regime we need this to become F = ≠– Y


|Y |, with – > 0
to ensure attraction. So we immediately see that we need

F > 0 (Attractive Force) (6.36)

Furthermore, eq. (6.35) shows that F is acting as an e�ective potential for fl; so we need
fl to sit at its minimum. This means its derivative with respect to fl must vanish, i.e.,

ˆF

ˆfl
= ≠4 m fl Y F ≠ 16 m2 �2 Y 2

fl3
FZ = 0 (6.37)

Since Y ¥ ≠(Ò◊)2/(2m) < 0 in the MOND regime, the prefactor in front of F in this
equation is positive. Since we already learnt that F must be positive for an attractive force,
this equation tells us that the derivative must be positive too

FZ > 0 (Attractive Force) (6.38)

Note that Z = ≠2�2mY/fl4 > 0 in MOND regime and hence we see from eq. (6.33) that

A > 0 (6.39)

So the first hyperbolicity condition is always obeyed whenever we have an attractive MOND
force. Conversely, if we had a situation in which A < 0, then we must have a negative value of
F , and hence a negative – giving a repulsive force; as we saw occur in the previous subsection
with g > 2/

Ô
3.

Now in order to have a heavy massive fl that we can reliably integrate out, we need that
the second derivative of F with respect to fl is positive (if it were negative, we would have a
tachyonic instability). The second derivative is readily found to be

ˆ2F

ˆfl2
= ≠4mY F + 16m2�2Y 2

fl4
FZ ≠ 128m3�4Y 3

fl8
FZZ (6.40)
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Let us now use eq. (6.37) to solve for F in favor of FZ and re-arranging, leads to

ˆ2F

ˆfl2
= 128m2�2Y 2

fl4

A
1
4FZ ≠ m�2Y

fl4
FZZ

B

(6.41)

By demanding that this is positive, so that perturbations in fl are stable, we obtain the
inequality

m�2Y

fl4
FZZ <

1
4FZ (Stability) (6.42)

Now let us see what this implies for the causality parameter C. In the MOND regime
eq. (6.34) is

C = ≠2�2

fl6

A

FZ ≠ m�2Y

fl4
FZZ

B

(6.43)

Using the stability requirement eq. (6.42) to bound the second term here, leads to an upper
bound on C of

C < ≠3�2

2fl6
FZ (6.44)

Since we earlier derived that we must have FZ > 0 in order to have an attractive force (as it
is enforced by F > 0), we see from eq. (6.44) that we must have C < 0.

Finally, we can always estimate B ¥ 2m2fl2C, using ≠X ¥ m2fl2 ∫ X + m2|�|2 in the
MOND regime. Hence we obtain that B must also obey

B < 0 (6.45)

Thus proving that the second hyperbolicity condition is broken for this entire class of models;
ensuring ghost behavior of high energy perturbations (and C < 0 means superluminality can
occur in phase space in some intermediate transition regions that happen to have X small,
as we mentioned earlier).

6.5 Mass scales and regime of validity

Let us discuss in some more detail, the specific parameters of the above theory. It is suggested
in ref. [36] that the mass may take on the value m ≥ eV. Regarding � and �c it is suggested
that these scales may be comparable on galactic scales, with �c smaller. However, beyond
that there is some ambiguity in their values; it is suggested that their value depends sensitively
on the state of the system. The proposal is that on cosmological scales, one has � ∫ m,
while on galactic scales, one has � π m. In order to achieve such a dramatic change in
values, it is suggested that � is an extremely sensitive function of temperature, such as
� = �0/(1 + Ÿ (T/Tc)1/4). The idea is that in the superfluid phase, the system thermalizes,
heats up, and then � drops appreciably.

If one takes this seriously (though to our knowledge, there is no concrete evidence
that this actually occurs) then one might question the high energy analysis of the above
subsections, where we assumed the perturbation Á could be relativistic. One might think one
could avoid this regime by assuming that on galactic scales the scale �c, which may act as a
cut o� on the e�ective theory, takes on low values, preventing any treatment of relativistic
perturbations and thus avoiding any concerns about acausality. In fact concerns of instability
were already claimed in ref. [36] to be avoided due to thermal e�ects; but this was all done
at the level of the low energy non-relativistic theory.
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However, we do not think this is actually a problem with our analysis of high energy
(relativistic) perturbations for the following reasons: one is always allowed to consider any
classical field configurations, and study high energy perturbations above it. The fact that
such a configuration may try to thermalize seems to be a separate issue. What one can say
is that if one sets up a non-thermal background Ïb, as we have done here, it should not
thermalize quicker than the speed of its relativistic perturbations. In fact the perturbations
were shown to allow for regions of hyperbolicity breakdown (deep in MOND-like regime)
and superluminality (in transition region). Hence it would be potentially problematic for the
theory if thermal fluctuations were even faster and altered this analysis. This would seem to
require another form of acausal behavior to explain away another.

Moreover, if one were to insist that the cut o� is always much lower than m, then the so-
called relativistic completion is not really a full completion at all, as most reasonable Lorentz
invariant e�ective theories should make sense to energies above the particle mass; else one
is appealing to the breakdown of unitarity to save the theory, which is another potential
problem.2 Hence we conclude that the acausality demonstrated in this section is in fact a
property of the theory itself, even if the proposed MOND regime involves somewhat di�erent
parameters. Nevertheless, a further study of relativistic perturbations in thermal states, and
a more complete analysis of state space, is desirable.

7 Other models in the literature

In this section, we briefly discuss a few other interesting formulations of SFDM and their
various features from the point of view of causality and locality.

7.1 Higher derivative model
In ref. [37], another approach was taken to extend the superfluid model of ref. [36]. The full
relativistic Lagrangian there includes the terms

L = M2

Pl

3R
2 + ⇤X

m2

4 A
1

1 + ‰2
+ (ˆX)2

9m4a2
0

‰2

B

+ �4

n

3
≠ X

m2
≠ 1

2

4n

+ . . . (7.1)

where a0 is the MOND parameter, R is the Ricci scalar, MPl is the Planck mass, and

X = 1
2(ˆ�)2 (7.2)

is the kinetic term of some Lorentz invariant Goldstone field � (in ref. [37] they use nota-
tion Y © ≠X). Also, ‰ is another scalar field that acquires a vacuum expectation value
in the MOND regime, engineered such that the model reproduces the desired MOND phe-
nomenology. This model is somewhat more complicated than that of eq. (5.1), noting the
non-minimal coupling of X and ‰ to gravity in eq. (7.1) and the spontaneous Z2 symmetry
breaking (and that we are writing only terms that are relevant to our discussion here).

A potential problem we wish to comment on is that the theory contains a term of the
form

�L = ⁄⇤X (ˆX)2 (7.3)
2In ref. [59], it was argued that the model of eq. (5.1) has a non-Wilsonian UV “self-completion”, which is

an attempt to handle the presence of higher dimensional operators, which could otherwise lead to unitarity
violation in high energy scattering. If true, this would reinforce our claims, because then we could certainly
perform a high energy computation. Note that the analysis of that paper does not address the issues of
acausality found here.
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where ⁄ = M2

Pl
‰2/(9 m6a2

0) > 0. In this model, ‰ is typically slowly varying; we will treat it
as a constant here for simplicity, and focus on the dynamics of X. We shall expand around
a background, as we did earlier, by writing � = �b + Á. For a simple analysis, let us take
the background to be a function of time only, while allowing Á to depend on both space and
time. We work to quadratic order in the perturbation Á, and find the Lagrangian for these
perturbations is

�L2 = 2⁄ �̇2

b

1
�̈2

b + �̇b

...
� b

2
(ÒÁ̇)2 (7.4)

We see that the only term that appears is a term with a mixed time and spatial derivatives
acting on Á. Hence, whether the perturbations are well behaved or not is determined by the
sign of �̈2

b + �̇b

...
� b; if it is positive, then it is standard, while if it is negative, then it violates

hyperbolicity and is a ghost.
In the MOND regime, one has � = m t+◊, where ◊ is slowly changing. This means that

if we say that ◊ changes with a characteristic rate �, then � π m. This allows us to estimate
�̈2 = ◊̈2 ≥ �4◊ and �̇

...
� ¥ m

...
◊ ≥ m �3◊, and hence this second term dominates. This means

the sign of the Lagrangian eq. (7.4) is determined by the sign of
...
◊ . So if

...
◊ < 0, then there is

a breakdown of hyperbolicity. Note that this is evidently not a heavy ghost mode, as it arises
from a massless ◊ mode in a second order in time equation of motion. Instead it is a light
ghost mode, and so cannot be easily ignored. To our knowledge, there is no consistent way to
restrict phase space to always forbid

...
◊ < 0, and therefore this hyperbolicity breakdown can

occur within the theory. By coupling Á to other degrees of freedom, there can be a ghost-like
instability due to the corresponding inverted Hamiltonian.

One may wish to first rewrite eq. (7.1) in the Einstein frame, which will lead to some
potential for the fields V = V (X, ‰) in the Lagrangian with the canonical Einstein-Hilbert
term. However, this rewriting of (7.1) is anticipated to necessarily still contain terms ≥
⇤X (ˆX)2; whatever Weyl transformation and redefinition we e�ect to make the gravitational
kinetic term canonical will not disrupt the presence of this term. This suggests that while
such a theory may be an alternative to the model in eq. (5.1), it includes further problems.

A second potential problem we would like to comment on, arises from the term on the
second line of eq. (7.1). For integer powers n, we can expand this around the vacuum, giving
the leading terms

F = (≠1)n+1�4

2n≠1m2
X + (≠1)n+1�4

2n≠1(n ≠ 1) m4
X2 + . . . (7.5)

We see that if n is even (which includes the n = 2 case that is highlighted in ref. [37]),
then the first term here is a ghost. While if n is odd, then the second term here violates
the condition for subluminality, i.e., the leading interaction has ≠F ÕÕ < 0. Finally, if n is
non-integer (which includes the n = 5/2 case that is also highlighted in ref. [37]), then this
term in the second line of eq. (7.1) would not be well defined for X/m2 + 1/2 > 0. To avoid
this problem in all of phase space, one would require an absolute value in order to avoid
problems when studying fluctuations around the vacuum. Note that this is very di�erent
to the DBI models studied earlier, due to a di�erent overall sign inside the square root in
eq. (3.2), and so those are well behaved around the vacuum. (As pointed out in ref. [37], the
MOND regime obeys the inequality X/m2 +1/2 < 0, but we are examining the plausibility of
embedding such theories into microphysics, for which one cannot normally restrict the phase
space in this way.) If one were to then include an absolute value, the Lagrangian would have
a singular structure and would fail basic locality tests, such as cluster decomposition.
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7.2 Inverse operators

In ref. [38] another interesting class of models was developed. In this case the authors needed
to include a term of the form

�L Ã ≠�ú
1�2 + �ú

2�1

|�1||�2| (7.6)

in order to obtain the desired MONDian phenomenology. This is certainly a peculiar inter-
action. Since it involves inverse operators, it is anticipated to fail the cluster decomposition
principle for a basic notion of locality [51]. We can be more concrete about this as follows:
usually one should form an e�ective field theory in order to track its regime of validity. We
can alter this theory in the following way to define a kind of e�ective theory

�L Ã ≠ �ú
1�2 + �ú

2�1
(|�1|2 + �2)(|�2|2 + �2)

(7.7)

where we have introduced a new energy scale �. This theory now permits a regular series
expansion around the vacuum �1 = �2 = 0. The cuto� of this e�ective theory is now ≥ �.
In order to recover the model with MONDian dynamics of eq. (7.6) one would need to send
the cuto� � æ 0. This reflects the idea that it carries a kind of non-locality as follows: for
non-zero �, we have a cuto� length scale Lc ≥ 1/�. In some sense, any e�ective theory is
not strictly local because one cannot localize particles on scales smaller than this scale Lc.
If one now sends � æ 0, then the cuto� length scale Lc æ Œ, which means that one cannot
define locality on any finite scale in the usual sense.

7.3 Split role model

Finally, we mention an attempt to reconcile what ref. [47] describes as a tension between a
superfluid in equilibrium and a significant superfluid energy density by splitting these two
roles between two di�erent fields. This paper studied another K-essence theory of the form

L = 1
2

Ë
Xfl≠ + fl2

≠

1
X≠ ≠ m2

2È
≠ ⁄4

4 fl4

≠ + F
1
X+ + X≠ ≠ m2

2
≠ ⁄◊+‡B (7.8)

where X± © ˆµ◊±ˆµ◊± for two real scalars ◊±, fl≠ is a canonical real scalar component
and F (X) = 2 � X


|X|/3. The shift symmetry of ◊≠ is identified as corresponding to the

chemical potential of the superfluid in the shift ◊̇≠ æ ◊̇≠ + µ. Only ◊+ is coupled to baryonic
matter ‡B, separating these two roles of the superfluid (we note that the energy density ‡B

is not Lorentz invariant, but it was the choice of ref. [47]).
By perturbing around a background solution, the sound speed of ◊+ propagations were

found to be superluminal,
c2

+ = 1 + “2 Ø 1 (7.9)

where “ is the cosine of the angle between the gradients of the background field and the
perturbation. However, by modifying the theory to include mixing between ◊±

F
1
X+ + X≠ ≠ m2

2
æ F

1
X+ + X≠ ≠ m2 + C [ˆµ◊+ˆµ◊≠]2

2
(7.10)

ref. [47] found the sound speed becomes

c2

+ = 1 + “2

1 + Cµ2
(7.11)
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While the sound speeds are still superluminal in some region of parameter space, the author
points out one can choose C and truncate to some parts of phase space where the sound
speeds are always subluminal.

However, we would like to emphasize that this is only addressing the sound speeds
of the theory, which are collective excitations of the superfluid. This does not address the
issue of the structure of propagation of elementary high energy particles on the superfluid
background; these are in fact acausal, as shown earlier in our paper.

Furthermore, this theory prevents standard cluster decomposition as it is a singular
action. So modifying (7.8) with (7.10) fails to fix the major problems of this class of models.
Ref. [47] includes an appendix which describes a way to lift eq. (7.8) to a smooth Lagrangian,
but the form of the theory arrived at by this process is simply of the form of a multi-field
version of eq. (5.1). So it again fails the conditions for global hyperbolicity (in MOND regime)
and subluminality (in transition regime) as we have shown in section 6.

8 Conclusions

We have studied several models that exhibit MONDian phenomenology on galactic scales.
We focussed on the so-called superfluid dark matter models that also relax to standard CDM
on larger scales. We found that, while such an approach provides a novel dark matter model
that can conform to the observed galactic velocity dispersion, each Lorentz invariant model
contained some form of acausal behavior that could not easily be resolved.

We found that the most basic types of Lorentz invariant models in eqs. (4.1), (4.5), which
exhibit the MONDian behavior, violate the condition (C) for subluminality of high energy
perturbations, eq. (2.11). One might have hoped that the superfluid dark matter models,
which seem to be built on more reasonable Lagrangians, would be better behaved. However,
the superfluid dark matter models share their own potential problems. The primary model
we considered was that of eq. (5.1). In section 6, we began by generalizing the causality
conditions to a complex field. We then applied these to this class of models. We found that
this theory in fact violates condition (B) for hyperbolicity, eq. (2.9), leading to ghost behavior
of relativistic perturbations. The corresponding Hamiltonian of perturbations indeed has a
flipped sign of its temporal derivative terms. This is a breakdown in some forms of causal
propagation. Formally condition (C) was violated too, although the speed of propagation
becomes undefined in this regime. Nevertheless, it can lead to superluminal behavior in parts
of phase space in intermediate transition regions from CDM to MOND (such as a region of
space that happens to be semi-relativistic). We then generalized the basic model, establishing
a general proof that they all violate these basic conditions for causal propagation.

Altogether we note that in the transition from CDM towards MOND, the sound speed
can become large, leading to superluminality and a regular form of acausality. Then deeper
into the MOND regime, hyperbolicity is broken. This means that Lorentz invariant e�ective
theory is failing even before we enter the MOND regime, and so this regime does not appear
to be present with any standard e�ective theory.

In this class of models, there is a subtlety associated with the scales and the regime
of validity of the e�ective theory. Normally a consistent Lorentz invariant e�ective theory
has a cut o� well above the particle mass, allowing for the study of high energy (relativistic)
perturbations, as we have done here. However, one might try to (i) lower the cut o� or (ii)
appeal to thermal corrections to avoid potential problems. Either option can be problematic,
as we discuss:
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(i) Lowering the cut o� to below the particle mass means severely restricting the use of the
Lorentz invariant completion and thereby appealing to very low energy new physics.
Furthermore if the cut o� is so low, then for all intents and purposes, these purported
Lorentz invariant theories do not exist as reliable theories in the first place. Indeed as
we have shown, the Lorentz invariant formulations su�er various forms of acausality.
So in that sense, precisely because of this work, they don’t possess sensible Lorentz
invariant completions. Finally, one might consider higher derivative corrections to the
e�ective action. Since again we only need moderately relativistic perturbations, then
if these terms were important it would mean an extremely low cut o� and likely to
lead to other ghosts through the higher derivative terms becoming active at such low
scales. Altogether it seems unlikely that higher derivatives could cure the problem. Let
us furthermore note that the present theories fail some of the “sign theorems” of the
literature, and it is generally agreed that higher derivatives cannot cure this problem.

(ii) A thermalization process that avoids the existing non-thermal (relativistic) ghosts and
superluminality seems di�cult to achieve in a consistent way, without producing new
problems in the underlying quantum field theory. Let us note that the superfluid regime
is really already the low temperature phase of the theory. So it does not seem at all clear
that one can appeal to finite temperature corrections to alleviate the problems of the
theory. Again perturbations in the theory that are relativistic are either superluminal or
violate hyperbolicity. Appealing to thermal e�ects to avoid this seems rather unlikely.
All these topics deserve further consideration.

In section 7 we commented on some other related models. In particular, we mentioned
the model in eq. (7.1), which we see contains higher derivative terms, which we found can
exhibit a kind of hyperbolicity breakdown, and other terms that can also feature ghosts
or superluminality. We stress that the problem is not that the low energy non-relativistic
e�ective theory carries fraction powers, but that some of the corresponding Lorentz invariant
completions do too; this would cause problems with cluster decomposition, but smoothing the
theories to avoid this did not alleviate the superluminality breakdown. We also considered a
theory with inverse interaction operators, as in eq. (7.6). While the theory without this term
is taken to be standard, this interaction term violates a basic notion of locality as the cluster
decomposition principle and is not part of a standard consistent e�ective field theory. Again
the non-local character seems essential to achieve the MONDian phenomenology. Finally we
mentioned a two-field model that splits the roles of dark matter and the MONDian force
carrier, eq. (7.8). In this work it was pointed out that superluminality of the sound speeds
could be cured by deforming the theory. However, this did not at all address the issue of
acausality in the high energy (relativistic) perturbations.

In summary, if one can accept such novel theories, they can provide various desired
phenomenological results on galactic and cosmological scales. This is very interesting at the
phenomenological level. However, with the forms of acausality, including ghost instabilities,
superluminality, and other kinds of non-locality established in our work, it brings into doubt
whether one can embed such e�ective theories within microphysics. Furthermore, they would
resist having a (standard) Lorentz invariant UV completion. On the other hand, an observa-
tional confirmation of these models would therefore be a spectacular discovery of completely
new behavior in nature, never encountered in standard quantum field theory, and would have
profound consequences.
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