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Abstract. This paper studies bilevel polynomial optimization. We propose a method to solve it
globally by using polynomial optimization relaxations. Each relaxation is obtained from the Karush—
Kuhn-Tucker (KKT) conditions for the lower level optimization and the exchange technique for
semi-infinite programming. For KKT conditions, Lagrange multipliers are represented as polynomial
or rational functions. The Moment—-sum-of-squares relaxations are used to solve the polynomial
optimization relaxations. Under some general assumptions, we prove the convergence of the algorithm
for solving bilevel polynomial optimization problems. Numerical experiments are presented to show
the efficiency of the method.
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1. Introduction. This paper considers the bilevel optimization problem in the

form
F* .= i F
xeﬂgglew (z,9)
(1.1) s.t. hi(z,y) =03 € &),
hj(z,y) > 0(j € Th),
y € S(2),

where S(z) is the set of optimizer(s) of the lower level problem

)

(Pr) st gi(z,2) =0(i € &),
gj(x,z) 2 0(] € IQ)

In the above, F(x,y) is the upper level objective function and h,(x,y), h;(z,y) are
the upper level constraints, while f(x,z) is the lower level objective function and
gi(z, 2), gj(x, z) are the lower level constraints. Here &1,Z1, Es,Zy are finite index sets
(some or all of them are possibly empty). For convenience, we denote the feasible set
of the lower level problem by

(1.2) Z(x) :={z€R”| gi(x,2) =0 (i € &), g;(z,2) 2 0(j € I)}.

We call (1.1) a simple bilevel optimization problem (SBOP) if Z(z) = Z is inde-
pendent of z, and call (1.1) a general bilevel optimization problem (GBOP) if Z(z)
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depends on x. When all defining functions are polynomials, we call (1.1) a bilevel
polynomial optimization problem. Throughout the paper, we assume that the solu-
tion set S(z) of the lower level problem (P;) is nonempty for all feasible z.

Bilevel optimization has broad applications, e.g., the moral hazard model of the
principal-agent problem in economics [36], electricity markets and networks [7], facility
location and production problem [8], meta learning and hyperparameter selection in
machine learning [18, 25, 32]. More applications can be found in the monographs [4,
13, 16, 48] and the surveys on bilevel optimization [12, 17] and the references therein.

Bilevel optimization is challenging both theoretically and computationally, be-
cause of the optimality constraint y € S(z). The classical (or the first order) approach
is to relax this constraint by the first order optimality condition for the lower level
problem. But solving the resulting single-level problem may not even recover a sta-
tionary point of the original bilevel optimization problem if the lower level problem
is nonconvex; see [36] and Example 6.1 for counterexamples. Moreover, even for the
case that the lower level optimization is convex, the resulting single-level problem
may not be equivalent to the original bilevel optimization problem if local optimality
is considered and the lower level multiplier set is not a singleton (see [14]).

For each y € Z(x), it is easy to see the following equivalence (without any as-
sumptions about the lower level optimization, e.g., convexity),

(1.3) y e S(x) <= f(z,y) —v(z) <0< f(z,2) — f(z,y) >0 Vz € Z(z),

where v(z) := inf,c z(5) (2, 2) is the so-called value function for the lower level prob-
lem. We call any reformulation using the first equivalence in (1.3) the value function
reformulation, while those using the second equivalence in (1.3) the semi-infinite pro-
gramming (SIP) reformulation. Using the value function reformulation results in an
intrinsically nonsmooth optimization problem which never satisfies the usual con-
straint qualification ([55]). Despite these difficulties, recent progress have been made
on constraint qualifications and optimality conditions for bilevel optimization prob-
lems, where the lower level optimization is not assumed to be convex; see the works
[3, 17, 51, 54, 56] and the references therein.

Solving bilevel optimization problems numerically is extremely hard, since even
when all defining functions are linear, the computational complexity is already NP-
hard [5]. Most prior methods in the literature are for mathematical programs with
equilibrium constraints (MPECs) [34, 45] and hence can be used only to solve the
reformulation of bilevel optimization by the first order approach. Recently, some
methods for solving bilevel programs that are not formulated as MPECs were proposed
in [26, 31, 37, 43, 50, 52, 53].

When all defining functions are polynomials, an optimization problem can be
solved globally by the Lasserre type Moment-sum of squares (SOS) relaxations [27,
28, 30, 40]. This motivates the usage of polynomial optimization techniques for solving
bilevel optimization problems globally [23, 42].

Contributions. Denote the set containing all upper and lower level constraints:

h,(l',y) = O(Z € 51)7 gi(xay) = O(z € 52)7 }
hj(xvy)zo(jezl)’ gj(l‘,y)ZO(jEIQ) .

Based on the second equivalence in (1.3), the bilevel optimization (1.1) is equivalent
to the following single-level optimization problem:

{ min  F(x,y)

14) U= {(x,y) €R" x RP

x

(P) »
st. (z,y)el, flz,z)— f(z,y) >0 Vze Z(x).
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Problem (P) belongs to the class of the so-called generalized semi-infinite programs
since the set Z(x) is typically infinite and depends on .

To solve (P), one could construct a sequence of polynomial optimization relax-
ations (Py) which have the same objective function as (P) and have the feasible set
Uy, satisfying the nesting containment:

Cc...C Cc...C C C
]:¢ ;éukyt ¢M1¢u0¢u’

where F is the feasible set of (P). Let (z®,y®*) be a global minimizer of (Py).
If y® ¢ S(x®), then (z*) y*)) is also a global minimizer of (P). Otherwise,
we can add new constraints to get a tighter relaxation (Pyi1). For the sequence
{(z®), )}°° 1 produced this way, we expect that its limit or accumulation point is
a global minimizer of (P). This is a kind of exchange technique from SIP [22]. In
each relaxation, if we only relax the infinitely many constraints

fl@,2) = f(z,y) 20 Vze Z(z)

by finitely many ones of them, then the convergence would be extremely slow. This
is because the set U typically has a much higher dimension than the feasible set F
of (P), since each (z,y) € F additionally satisfies the optimality condition y € S(x).
For instance, when the lower level optimization (P,) is unconstrained, every point in
F satisfies the first order optimality condition which is a system of p equations, and
hence the set U is generally p-dimensionally higher than F. To fasten the convergence
significantly, it was proposed in [42] to add the Jacobian representation for the Fritz
John conditions of the lower level problem into each relaxation. However, the usage of
a Jacobian representation is typically inconvenient, because it requires one to compute
minors of Jacobian matrices. Moreover, the convergence of the method in [42] is only
guaranteed for SBOPs. In this paper, we address these difficulties and give an efficient
method for solving GBOPs.

The major motivation for our new method is as follows. For each y € S(z), we
assume the Karush-Kuhn—Tucker (KKT) conditions hold,

{ vZf(ma y) - Z_jEEQUIg )\Jvzg](xa y) = 07

where the A;’s are Lagrange multipliers. This can be guaranteed if f and all the g;
are linear, or by imposing the LICQ/MFCQ (see section 2.2). In the initial relaxation
(Py), we relax the constraint y € S(z) to its KKT conditions. However, if we add the
KKT conditions to # and minimize F'(x,y) over the original variables (z,y) as well as
A;’s, the number of variables is significantly increased. This is not practical if there
are a large number of constraints. By using the technique called Lagrange multiplier
expression introduced in [41], we express A; as a polynomial (or rational) function,
say, Aj(z,y). Then, we choose the initial polynomial optimization relaxation to be

min F(x,y)
s.t. (x,y) (2651), hj(xay) ZO(]GIl),
(Po) 9i(z,y) = 0(i € &), gj(z,y) > 0(j € I»),
V f(.’L' ) Z]€$2ul'2 Aj ( y)vzgj(xay) =0,
Aj(,y) >0, Aj(x, y)gg(a? y)=0(j € Iz).

Suppose (¥, y(¥)) is a global minimizer of (Py). If ) € S(z(*), then (z*,y*))
must be a global minimizer for (P). Otherwise, we can find a point z¥) € Z(x(*))
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such that
F@®,209) = pa®),y0) <o,

Can we add the following constraint,

to Uy, to get a new relaxation (Pg11) whose feasible set is
(1.6) Uper = {(2,y) €Uy | f(,20) = f(a,y) 2 0}7

Since the point (z*),y*)) ¢ Z;k+17 the new relaxation (Pg1) given as above would be
tighter. For (Pj1) to qualify for a relaxation of (P), the feasible set U4, must contain
the feasible region F of (P). For SBOPs, ie., Z(x) = Z is independent of z, the
inequality (1.5) holds for all (z,y) satisfying y € S(z) and hence F C ij+1~ However,
for GBOPs, the condition y € S(x) may not necessarily imply f(z,2*)) — f(x,y) >
0 V(z,y) € U unless z(¥) € Z(z). Hence, the above Uy, may not contain the feasible
set F. To fix this issue, we propose to find a polynomial extension of the vector
2(®) which is a polynomial function ¢(*)(z,y) satisfying ¢® (z(®), y(¥)) = 2(¥) and
q¢®)(z,y) € Z(z) for all (z,y) € U. Such a polynomial extension ¢'*) (z,y) satisfies

(1.7) y € S(x) = f(z,q™(z,y)) — f(z,y) > 0.

Therefore, we replace the feasible set in (1.6) by

U1 = {(z,y) € Unlf (2, 4" (2, y)) — f(z,y) = 0}

and the next polynomial optimization relaxation is

min  F(z,y)
(Pie+1) { st (,y) €U, fz,q®) (2,y)) — f(x,y) > 0.

Continuing in this way, we either get an optimal solution of (P) for some k, or obtain
an infinite sequence {(2(®),y(*))}2° | such that each accumulation point is a global
minimizer of (P).

The paper is organized as follows. In section 2, we review some basic facts in poly-
nomial optimization as well as constraint qualifications for nonlinear optimization. In
section 3, we propose a general approach for solving bilevel polynomial optimization.
In section 4, we discuss how to get Lagrange multiplier expressions and the polyno-
mial function ¢®)(z,%). The numerical experiments are reported in section 5. Some
conclusions and discussions are given in section 6.

2. Preliminaries.

Notation. The symbol N (resp., R, C) denotes the set of nonnegative integers
(resp., real numbers, complex numbers). The R’} denotes the nonnegative orthant
of R™. For a set S and a positive integer n, S™ denotes the n Cartesian products
of S. For an integer n > 0, [n] := {1,...,n}. Let f(x,z) denote a continuously
differentiable function. We use V f to denote its whole gradient and V. f to denote
its partial gradient with respect to z. For a vector v := (v1,...,v,) in R", |jv]|
denotes the standard Euclidean norm and diag[v] denotes an n-by-n diagonal matrix
with the ith diagonal entry v; for all ¢ € [n]. For z := (z1,...,2,) € R" and
a:=(ay,...,a,) € N* denote the monomial

[}

=gt

n
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For a positive integer k, [z]x denotes the vector of all monomials of the highest degree
k ordered in the graded lexicographic ordering, i.e.,

[x}k = (1,%17 R xnaxfaxlx% s 7x]7€L)

The symbol R[z] := Rzy,...,2,] denotes the ring of polynomials in R[x] with real
coefficients. For a polynomial p € R[z], we use deg(p) to denote its degree, while for
a tuple of polynomial p = (p1,...,pr), pi € Rlz], i € [r], we use deg(p) to denote
the highest degree of p;, i.e., deg(p) = max{deg(p1),...,deg(p.)}. For k € N, Rz];
denotes the collection of all real polynomials in « with degrees at most k. For a given
p € R[z], define the set product p - R[z] := {pq|q € R[z]}. The symbol 1,, is used to
denote an all-ones vector in R™ and 1 denotes an all-ones vector with the dimension
omitted. Denote by I, the n-by-n identity matrix. For an optimization problem,
argmin denotes the set of its minimizers.

2.1. Moment-SOS relaxations. For a tuple p = (p1,...,p,) in R[z], Ideal(p)
denotes the smallest ideal containing all p;, i.e., Ideal(p) = p; - R[z] + - - - + p, - R[x].
The kth truncation of the ideal Ideal(p), denoted as Ideal(p)y, is the set

P1 - R[2]k—deg(pr) + -+ + Pr - Rlz]k—deg(p,)-

The real zero set of p is denoted as V(p) := {x € R"|p(z) = 0}.

A polynomial o € R[z] is said to be a sum of squares polynomial if ¢ = o+ - -+ 07
for some o1,...,05 € Rlz]. We use the symbol X[z] to denote the collection of all
SOS polynomials in z. Its mth truncation is given by X[z, := X[z] N Rx],,. We
define the quadratic module with respect to ¢ = (q1,...,q) € (R[z])! by

Qmod(q) :==X[x] +q1 - Z[z] + - - + ¢ - T[]
For k € N and 2k > deg(q), the kth truncation of Qmod(q) is

Qmod(q)ar = X[x]or + q1 - B[T]ok—deg(q) + -+ @ - lx]ok—deg(q,)-

For a tuple of polynomials ¢ = (¢1,...,¢:) in R[z], denote the basic semialgebraic set
W(q) := {x € R"| q(z) > 0}.

Given polynomial tuples p and ¢, if f € Ideal(p) + Qmod(q), then it is easy to see
that f(z) > 0 for all z € V(p)NW(q). To ensure f € Ideal(p)+ Qmod(q), we typically
need more than f(z) > 0 for all z € V(p) N W(gq). The sum Ideal(p) + Qmod(q) is
said to be Archimedean if there exists b € Ideal(p) + Qmod(q) such that W(b) =
{z € R" : b(x) > 0} is a compact set. It is shown that f € Ideal(p) + Qmod(q) if
f > 0on V(p)NW(q) and Ideal(p) + Qmod(q) is Archimedean [46]. This conclusion is
often referenced as Putinar’s positivstellensatz. When f is only nonnegative (but not
strictly positive) on V(p) N W(q), we still have f € Ideal(p) + Qmod(g) under some
generic conditions (cf. [40]).

We consider the polynomial optimization problem

(2.1) fuin: = min () st p(@) =0, a(x) 20,

where f € R[z] and p, ¢ are tuples of polynomials. The feasible set of problem (2.1)
is V(p) N W(q). It is obvious that a scalar v < fui, if and only if f —~ > 0 on
V(p) N W(q), which can be ensured by the membership f —« € Ideal(p) + Qmod(q).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/13/22 to 129.107.66.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

BILEVEL POLYNOMIAL OPTIMIZATION 2373

The Moment-SOS hierarchy of semidefinite relaxations for solving problem (2.1) is to
solve the relaxations

(2.2) fr:=max v st. f—~€ldeal(p)ar + Qmod(q)ax

for k = 1,2,.... The asymptotic convergence fr — fmin as kK — oo was shown
in [27]. Under the Archimedeanness and some classical optimality conditions, (i.e.,
LICQ, strict complementarity, and second order sufficiency conditions), it holds that
f& = fmin for all k big enough, as shown in [40]. The optimization problem (2.2) can
be solved as a semidefinite program and hence can be solved by software packages
such as SeDuMi [49] and GloptiPoly 3 [21]. Moreover, after obtaining solutions
for problem (2.2), we can extract an optimizer for (2.1) by using the so-called flat
truncation condition [39].

2.2. Constraint qualifications. Consider the optimization problem

min  b(z)
(2.3) st. ci(z)=0(i€f),
cj(x) = 0(j € 1),

where b, ¢;,¢; : R" — R are continuously differentiable. Let Z(z) := {j € Z|c¢;(z) = 0}
be the active index set of inequalities at a feasible point . The KKT condition is
said to hold at Z if there exist Lagrange multipliers A; such that

> AVe(@) = Vb(E), A >0, Njej(z) =0(j € I(z)).
JEEUT

A feasible point T is called a KKT point if it satisfies the KKT condition. A local
minimizer must be a KKT point if all functions are linear. For nonlinear optimization,
certain constraint qualifications are required for KKT points. The LICQ is said to
hold at Z if the gradient set {V¢;(Z)};csuz(z) is linearly independent. The MFCQ is
said to hold at z if the gradients Ve¢;(z) (j € £) are linearly independent and there
exists a vector d € R" satisfying

Ve (2)'d=0(i €€&), Vei(z)'d>0(i€I(z)).
The MFCQ is equivalent to the following statement:

> AVe(@) =0, X200 €Z(z) = A=0.
JEEUL(Z)

When the functions ¢;(z)(i € £) are linear and ¢;(z)(j € Z(Z)) are concave, Slater’s
condition is said to hold if there exists z¢ such that ¢;(xg) = 0(i € £),¢;i(zo) > 0(i €
7). Slater’s condition is equivalent to the MFCQ under the convexity assumption. If
the MFCQ holds at a local minimizer z, then Z is a KKT point and the set of Lagrange
multipliers is compact. If LICQ holds at Z, then the set of Lagrange multipliers is a
singleton. We refer to [6] for constraint qualifications in nonlinear programming. For
SBOPs, it is a generic assumption that each minimizer of the lower level optimization
(P;) is a KKT point (see [40]). When z is one-dimensional, this assumption is also
generic (see [24]). When the dimension of z is bigger than one, we do not know
whether or not this assumption is generic. However, in our computational experience,
this assumption is often satisfied.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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2.3. Lagrange multiplier representations. Consider the optimization prob-
lem (2.3) where b, ¢;, ¢; are real polynomials in € R™. For convenience, write that

EUuZ={1,....,m}, c=(c1,---,Cm)-

The KKT condition for (2.3) implies that

Vei(xz) Vea(z) -+ Vep(x) AL Vb()
c1(x) 0 e 0 s 0
(2.4) 0 coz) - 0 I
0 0 oo () Am 0

If there exists a polynomial matrix L(x) such that L(z)C(z) = I, then
Mx) = L(z)b(x).

This gives an explicit expression for Lagrange multipliers as a function of x. When
does such a polynomial matrix L(z) exist? As showed in [41], it exists if and only
if the constraining tuple ¢ is nonsingular (i.e., the matrix C(z) has full column rank
for all complex vectors x). The nonsingularity is a generic condition in the Zariski
topology [41, Proposition 5.7].

3. General bilevel polynomial optimization. In this section, we propose a
framework for solving the bilevel polynomial optimization (1.1). It is based on solving
a sequence of polynomial optimization relaxations with the usage of KKT conditions
and Lagrange multiplier representations.

3.1. Lagrange multiplier expressions and polynomial extensions. For
convenience, assume the constraining polynomial tuple in the lower level optimization
(Py) is g := (g1(x, 2), ..., gms (, 2)), with [mg] := & UZ;. Then the KKT condition
for (P,) implies that

vzgl (l’, y) vzg2 (l‘, y) e vzgm (x, y)
2 A V. f(x,
91(z,y) 0 e 0 % f(() 2
(3.1) 0 g2(zy) - 0 2=
: : . : )\1;1 0
0 0 e 9m (.13, y) Wz_/

/\ f T

Glry) f(z,y)

with A\; > 0,5 € Z,. Because of the dependence on z, the above matrix G(z,y) is
typically not full column rank for all complex pairs (z,y). Hence, there may not exist
L(z,y) such that L(z,y)G(x,y) = I,. However, rational polynomial expressions
always exist for Lagrange multipliers. Therefore, we make the following assumption.

Assumption 3.1. Suppose the KKT condition (3.1) holds for every minimizer of
(1.1), there exist polynomials di(z,y),...,dm,(z,y)>0 on U, and there are non-
identically zero polynomials ¢y (x,y), ..., dm,(z,y) such that

(3-2) Ajdj(z,y) = ¢(x,y), =1, ,ma
for all KKT points (z,y) as in (3.1).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Suppose there is a polynomial matrix W (x,y) such that
W(IL‘, y)G(’l}, y) = dlag[d(x, y)]v d($, y) = (dl (Ia y)a ceey dm2 (Ia y))

Then we can get Lagrange multiplier expressions as in (3.2), since

(3.3) diagld(z, y)]A = W(z,y)G(z, y)A = W(z,y) f(z,y),
which is the same as
(3.4) dj(w,y)A; = (W(z,y) f(2,9)) .

(The subécript j denotes the jth entry.) The polynomial ¢;(x,y) in (3.2) is then
(W(z,y)f(z, y))j. Let D(x,y) be the least common multiple of dy (z,%), . . ., dm, (z,y)

and D;(xz,y) be the quotient polynomial D(z,y)/d;(z,y). Under Assumption 3.1, the
set of KKT points in (3.1) is contained in

¢j(xa y) Z 07 ¢j($, y)gj(xay) =0 (] S IQ)
Indeed, the equivalence holds when d(x,y) is positive on . If d;(Z, §) = 0 for some

jand (Z,9) € U, then D(&,7) = 0 and hence the equations in (3.5) are automatically
satisfied.

35 & ={@w)

Assumption 3.2. For every pair (&,9) € UNK and for every 2 € S(&), there exists
a polynomial tuple ¢(z,y) := (¢1(z,y),. .., gp(x,y)) such that

(3.6) q(@,9) =2, q(z,y) € Z(z) V(z,y) €U.

We call the function ¢(z,y) in the above a polynomial extension of the point Z at
(Z, ). More details about Lagrange multiplier expressions and polynomial extensions,
required in Assumptions 3.1 and 3.2, will be given in section 4.

3.2. An algorithm for bilevel polynomial optimization. Under Assump-
tions 3.1 and 3.2, we propose the following algorithm to solve the bilevel polynomial
optimization (1.1). Recall that Z(x) and U are the sets as in (1.2) and (1.4), respec-
tively. We refer to section 2.1 for the Moment-SOS hierarchy.

ALGORITHM 3.3. For the given polynomials F(x,y), hi(z,y), f(z, 2),g;(z,2) in
(1.1), do the following:
Step 0 Find rational expressions for Lagrange multipliers as in (3.2) for Assump-
tion 3.1. Let Uy :=UNK, where K is the set in (3.5). Let k := 0.
Step 1 Apply the Moment-SOS hierarchy to solve the polynomial optimization

Ff = min F(z,y
(3.7) (P) k zER™ yERP ( )
s.t. (z,y) € Uy.

If (Py) is infeasible, then either (1.1) has no optimizers, or none of its opti-
mizers satisfy the KKT condition (3.1) for the lower level optimization. If it
is feasible and has a minimizer, solve it for a minimizer (x(k), y(k)).
Step 2 Apply the Moment-SOS hierarchy to solve the lower level optimization
vp = min  f(z®),2) — fa®),y#),
(Qr) {

zERP

3.8
(38) s.t. ze Z(xW), () 2) e K,

for an optimizer z%) . If the optimal value vy = 0, then (x(k),y(k)) s an
optimizer for (1.1) and stop. Otherwise, go to the next step.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Step 3 Construct q(k)(x,y), a polynomial extension of the vector %), such that
gP(a®,y*) =20 ¢W(2,y) € Z(x) Y(z,y) €U
Update the set Ux41 as

U1 = {(z,y) € Unlf (2, 4" (@,9)) — f(z,y) = O}

Let k:=k+1 and go to Step 1.

In Algorithm 3.3, the polynomial optimization problems (Py), (Qr) need to be
solved correctly. This can be done by using the Lasserre type Moment-SOS hierarchy
of semidefinite relaxations. We refer to section 2.1 for the details. To solve (Py), the
Moment-SOS hierarchy produces a sequence of convergent lower bounds for F}¥, say,
{pi}72,, such that

pr<-<pp << Fy, limopp = B
l—o00

where the subscript [ is the relaxation order. For generic polynomial optimization
problems, it has finite convergence, i.e., p; = F} for some [. To check the convergence,
we need to extract a feasible point (&, ¢) such that p; = F(&,9) = F}}. It was shown in
[39] that the flat truncation condition is a sufficient (and almost necessary) criterion
for detecting the convergence. When the flat truncation condition is met, the Moment-
SOS relaxation is tight and one (or more) minimizer (z*),y®*)) can be extracted for
(Pg). The lower level polynomial optimization (Qg) can be solved in the same way
by the Moment-SOS hiearchy.

It was shown in [40] that the hierarchy of Moment-SOS relaxations has finite con-
vergence, under the Archimedeanness and some classical optimality conditions (i.e.,
the LICQ), strict complementarity, and second order sufficiency condition). As a spe-
cial case, this conclusion can also be applied to the suboptimization problem (Pj)
in Algorithm 3.3, in particular when the lower level optimization has no inequality
constraints (i.e., Zo = @), to ensure the finite convergence. However, when Zp # 0,
there is a complementarity constraint, so the problem (Pj) is a mathematical program
with complementarity constraints. It is known that the usual constraint qualification
such as MFCQ and LICQ will never hold for such problems (see [57, Proposition 1.1])
and hence the current theory is not applicable to guarantee the finite convergence.
Therefore, we are not sure whether or not the Moment-SOS hierarchy has finite con-
vergence for solving (Py), when (1.1) is given by generic polynomials. We remark that
it is possible that the Moment-SOS hierarchy fails to have finite convergence for some
special cases of (Py). For instance, this is the case if F' is the Motzkin polynomial and
(1.1) has a ball constraint and all f,g;, g; are zero polynomials (see [40]). However,
in our computational experience, the suboptimization problem (Py) is almost always
solved successfully by the Moment-SOS hierarchy. In contrast, the suboptimization
problem (Qy) is easier to solve by the Moment-SOS hierarchy. This is because La-
grange multiplier expressions for (P,) are used to formulate (Qx). The Moment-SOS
hierarchy has finite convergence for almost all cases. This is implied by results in
[41].

In addition to the Lasserre type Moment-SOS relaxations, there exist other types
of relaxations for solving polynomial optimization. For instance, the second order cone
programming (SOCP) relaxations based on scaled diagonal (SDSOS) polynomials [1],
the bounded degree SOS relaxations (BDSOS) [29], or a mixture of them [10]. In
principle, these relaxation methods can also be used in Algorithm 3.3. However, we
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would like to remark that the performance of these relaxations is much worse than
the classical Lasserre type Moment-SOS relaxations. Such a comparison is made in
Example 6.2. A major reason is that these other types of relaxations cannot solve the
suboptimization problems (Pj) or (Qy) accurately enough. Note that Algorithm 3.3
requires that global optimizers of (Py) and (Qy) are computed successfully.

3.3. Convergence analysis. We study the convergence of Algorithm 3.3. First,
we show that if the problem (P,) is convex for each x, then Algorithm 3.3 will find a
global optimizer of the bilevel optimization (1.1) in the initial loop.

PROPOSITION 3.4. Suppose that Assumptions 3.1 and 3.2 hold and all d;(z,y) > 0
on U. For every given x, assume that f(x,z) is convex with respect to z, g;(x,z) is
linear in z for i € &, and g;j(x,z) is concave in z for j € I,. Assume that Slater’s
condition holds for Z(x) for all feasible x. Then, the bilevel optimization (1.1) is
equivalent to (Py) and Algorithm 3.3 terminates at the loop k = 0.

Proof. Under the given assumptions, y € S(z) if and only if y is a KKT point
for problem (P,), which is then equivalent to (x,y) € K, since all d;(z,y) > 0 on
U. Then, the feasible set of (1.1) is equivalent to & N K. This implies that (1.1) is
equivalent to (Py) and Algorithm 3.3 terminates at the initial loop k = 0. |

Second, if Algorithm 3.3 terminates at some loop k, we can show that it produces
a global optimizer for the bilevel optimization (1.1).

PROPOSITION 3.5. Suppose that Assumptions 3.1 and 3.2 hold. If Algorithm 3.3
terminates at the loop k, then the point (x®) y(*)) is a global optimizer of (1.1).

Proof. By Assumption 3.1, the KKT condition (3.1) holds at each (x,y) € U N
{(x,y) :y € S(z)} = F and hence F C Uy := UN K. By the construction of ¢ (z,y)
as required for Assumptions 3.2, we have shown F C Uy for each k, by virtue of
(1.7). Hence we have Fjf < F* for all k, where F** denotes the optimal value of (1.1).
According to the stopping rule, if Algorithm 3.3 terminates at the kth loop, then
y*®) € S(x®). This means (z*),y*)) € F. Consequently F; = F(2®) y*)) > F*.
Hence (z*),4*)) is a global optimizer of (1.1). 0

Last, we study the asymptotic convergence of Algorithm 3.3. To prove the conver-
gence, we need to assume that the value function v(z) is continuous at an accumulation
point z*. under the so-called restricted inf-compactness (RIC) condition (see e.g., [20,
Definition 3.13]) and either Z(x) is independent of z or the MFCQ holds at some
z € Z(x*); see [19, Lemma 3.2] for the upper semicontinuity and [11, page 246] for
the lower semicontinuity. The RIC holds at «* for v(x) if the value v(x*) is finite and
there exist a compact set 2 and a positive number ¢g, such that for all ||z — z*|| < €
with v(z) < v(z*) 4 €o, there exists z € S(x) N . For instance, v(x) satisfies the RIC
at x* (see [11, section 6.5.1]) under one of the following conditions.

e The set Z(z) is uniformly compact around z* (i.e., there is a neighborhood
N (x*) of x* such that the closure of Uycn(y+)Z(2) is compact).

e The lower level objective f(z,z) satisfies the growth condition, i.e., there
exists a positive constant § > 0 such that the set

(-

is bounded for all real values 1.

—~

gi(z*,2) = a;(i € &), gj(x

f(x*,z) S 197 ZieEQLjIQ «@

>=%oe@x}

*,Z
<

S
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e The objective f(z,z) is weakly coercive in z with respect to Z(x) for all x
sufficiently close to z*, i.e., there is a neighborhood N(z*) of z* such that

flz,2z) =00 Va € N(z%).

im
2€Z(x),||z|| =00

The following is the asymptotic convergence result for Algorithm 3.3.

THEOREM 3.6. For Algorithm 3.3, we assume the following:

(a) All optimization problems (Py) and (Qg) have global minimizers.

(b) The Algorithm 3.3 does not terminate at any loop, so it produces the infinite
sequence {(zF), y(*) 2 (k)y}eo

(c) Suppose (z*,y*,2*) is an accumulation point of {(z®),y*) 2(k))}2 " and the
value function v(x) is continuous at x*.

(d) The polynomial functions ¢™*) (x,y) converge to ¢ (z*,y*) uniformly for k €
N as (z,y) = (=*,y*).

Then, (x*,y*) is a global minimizer for the bilevel optimization (1.1).

Proof. Since (z*,y*) is an accumulation point of the sequence {(z*) y(¥))}
there is a subsequence {k;} such that ky — oo and

(ke yhe, 28) = (2%, 5", 2%).

Since each z(*¢) € Z(2(k)), we can see that z* € Z(x*). The feasible set of (Py,)
contains that of (1.1), so

F(z*,y*) = lim F(x(k’f),y(kf)) < F~,
{— 00
where F* is the optimal value of the bilevel optimization (1.1). (The polynomial

F(z,y) is a continuous function.) To prove F(z*,y*) > F*, we show that (z*,y*) is
feasible for problem (1.1). Define the functions

(39) H(xvyvz) = f(il’,Z) - f(xay)’ ¢(xay) = zEHZlf$) H(l’,y,Z)

Observe that ¢(z,y) = v(z) — f(x,y) < 0 for all (z,y) € U and ¢(z*,y*) = 0 if
and only if (z*,y*) is feasible for (1.1). Since v(z) is continuous at x*, we have
o(x*,y*) < 0. Next, we show that ¢(x*,y*) > 0. For an arbitrary ¥’ € N, and for all
ky > k', the point (k) y(*)) is feasible for (Py), so
k/
H(z®0) 4k 2) >0 Vze V,g[ ),
where V,if/) is the set defined as
VD o= {0 @0,y 0, O (@0 y®0) | ¥ D(a0 k0]
As { — oo, we can get
(3.10) H(z*,y*,2) >0 Vze Vik/),

where the set Vik/) is

V:Ek ) = {q(O) ($*7y*)7 q(l)(x*a y*)v cee 7q(k/_1) (x*’y*)} ’
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The inequality (3.10) holds for all ¥, so
(3.11) H(z*,y*,2) >0 VzeT:={¢™ (@ y")}ren

It follows that
H(z*,y*,¢") (2%, y%)) > 0.

In Algorithm 3.3, each point z(*) € Z(x(k)) satisfies
¢(x(ke)7y(ke)) — H(x(ke),y(kz)7 Z(ke))_
Therefore, we have

d(a*,y*) = p(a®),y*)) + p(a*, y*) — p(a*), y*0))
(3.12) > (H(Qj(kE),y(ke), Z(ke)) _ H(l‘*,y*, q(k“)(x*,y*)))

+ (60", y") = (a0, y*0)).
Since z(ke) = g(ke) (z(ke) y(ke)) by the condition (d), we know that

Zlim ) = lim q(k’f)(x(k’f),y(k”) = lim q(kw(x*7y*)»
—00 {—00 £— 00

H(z® gk kY _ fe* y* ¢ (2" y*) =0 as € — oo,

by the continuity of the polynomial function H(z,y,z) at (z*,y*,2*). By the as-
sumption, v(x) is continuous at z*, so ¢(z,y) = v(z) — f(z,y) is also continuous
at (z*,y*). Letting ¢ — oo in (3.12), we get ¢(x*,y*) > 0. Thus, (z*,y*) is feasi-
ble for (1.1) and so F(z*,y*) > F*. Earlier, we already proved F(z*,y*) < F*, so
(z*,y*) is a global optimizer of (1.1), i.e., (z*,y*) is a global minimizer of the bilevel
optimization (1.1). |

Remark 3.7. To ensure that the sequence {(z*), y*®) 2(?))} has an accumulation
point, one may assume it is bounded. A sufficient condition for this is that the set
U is bounded or the the upper level objective F'(x,y) satisfies the growth condition,
i.e., the set

{(J;,y) eUNK : F(zx,y) Sﬂ}

is bounded for all values . The condition (d) in Theorem 3.6 can be either checked
directly on ¢(*) (z,y) or implied by that the degrees and coefficients of polynomi-
als ¢ (x,y) are uniformly bounded. For instance, if the polynomial sequence of
¢"®)(z,y) has bounded degrees and bounded coefficients, then ¢*)(z,y) must con-
verge to ¢ (z*,y*) uniformly as (z,y) — (z*,3*). As shown in subsection 4.2, when
the lower level optimization (P,) has the box, simplex, or annular type constraint,
the q(k)(x, y) can be constructed explicitly, and the resulting polynomial sequence of
q(k)(:n, y) has bounded degrees and bounded coefficients. Therefore, the convergence
of Algorithm 3.3 is guaranteed for these cases of (P,), when the conditions (a), (b),
(¢) hold.

4. Constructions of polynomials. In Algorithm 3.3, we need Lagrange multi-
plier expressions as in (3.2), required for Assumption 3.1, and the polynomial function
q(z,y), required in Assumption 3.2. This section discusses how they can be obtained.
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4.1. Lagrange multiplier expressions. Lagrange multiplier expressions
(LMESs) are discussed in [41]. For the classical single level polynomial optimization
(2.3), the existence of a polynomial matrix L(z) satisfying L(z)C(x) = I, is equiva-
lent to that the constraining polynomial tuple ¢ is nonsingular. If the feasible set Z(z)
of the lower level optimization (P,) does not depend on z, i.e., (1.1) is an SBOP, the
matrix G(z,y) does not depend on z, and then there exists a polynomial matrix W (y)
satisfying W (y)G(y) = I,n, for generic g [41]. If Z(x) depends on z, there typically
does not exist W (z,y) such that W(z,y)G(x,y) = Ln,. This is because the matrix
G(z,y) in (3.1) is typically not full column rank for all complex = € C", y € CP. We
generally do not expect polynomial expressions for Lagrange multipliers of (P,) for
GBOPs.

However, we can always find a matrix polynomial W (z,y) such that

(4.1) W (z,y)G(z,y) = diag[d(z, y)]
for a denominator polynomial vector

d(z,y) := (d1 (,y)y ..y dmy (2, y))

which is nonnegative on . This ensures the Assumption 3.1. The W (x,y),d(x,y)
satisfying (4.1) are not unique. In computation, we prefer that W(x,y), d(z,y) have
low degrees and d(x,y) > 0 on U (or d(z,y) has as few as possible zeros on U). We
would like to remark that there always exist such W(z,y),d(x,y) satisfying (4.1).
Note that H(x,y) := G(z,y)TG(z,y) is a positive semidefinite matrix polynomial. If
the determinant det H(z,y) is not identically zero (this is the general case), then the
adjoint matrix adj(H (z,y)) satisfies

adj(H (x,y)) H(z,y) = det H(z,y) L,
Then the equation (4.1) is satisfied for
W (z,y) = adj(H (z,y))G(z,y)", d(z,y) = det H(z,y)1m,.

The above choice for W(z,y),d(x,y) may not be very practical in computation, be-
cause they typically have high degrees. In applications, there often exist more suitable
choices for W(z,y), d(z,y) with much lower degrees.

Ezxample 4.1. Consider the lower level optimization problem
min =« T
mhy + Tay2
st. (2y1 — Y2, 1 — Y1, Y2, 02 — y2) > 0.

The matrix G(z,y) and f(z,y) in (3.1) are

2 -1 0 0 X1

-1 0 1 -1 T2

_ | 20— 0 0 0 2 |0
G(Jf,y) - 0 1 — Y1 0 0 ) f(‘ray) - 0
0 0 Yo 0 0

0 0 0 T2 — Y2 0

Equation (4.1) holds for the denominator vector

d(z,y) = (2z1 — ya, 221 — Y2, 22(231 — Y2), T2(221 — ¥2))
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and the matrix W (x,y) which is given as follows:

1 — Y1 0 1 1 0 0

Y2 — 2:1/1 0 2 2 0 0
(2 —y2)(w1 —y1) (v2—w2)(221 —92) @2 —Y2 X2 —Y2 2% —y2 2T — Y2
Ya(y1 — 1) Yo (y2 — 221) —Y2 —Y2  2r1—Yy2 2T1— Y2

Note that d(z,y) > 0 for all feasible (z,y).

In numerical computation, we often choose W (x,y),d(x,y) in (4.1) to have low
degrees and d(x,y) > 0 on U (or d(z,y) has as few as possible zeros on U). Although
we prefer explicit expressions for W(x,y) and d(z,y), it may be too complicated to
do that for some problems. In the following, we give a numerical method for finding
W(z,y) and d(z,y). Select a point (Z,7) € U. For a priori low degree ¢, we consider
the following convex optimization in W(z,y), d(z,y):

max Y1+ -+ Ym,
st. Wz, y)G(z,y) = diag[d(z,y)],
(4.2) A(2,9) = Loy, 71 >0, Ymy > 0,

ma X (p+m2)

W(z,y) € (R[‘rﬂy]Qé—dcg(G) )
dj(z,y) —j € Ideal(®)ar + Qmod(W¥)a (j € [m2]).

In the above, the polynomial tuples ®, ¥ are

(43) = {hi}i€51 U {gi}i€527 U= {hj}jezl U {gj}jGIz'

The first equality constraint in (4.2) is (4.1), which gives a set of linear constraints
about coefficients of W (x,y), d(x,y). The last constraint implies that each d;(z,y) >
v; > 0V(z,y) € U. The equality d(&,y) = 1,,, ensures that d(x,y) is not identically
zero. As commented on earlier in this subsection, we have shown that (4.2) must
have a solution if the degree ¢ is large enough, when G(z,y)T G(z,y) is not identically
singular. In practice, we always start with a low degree ¢. If (4.2) is infeasible, we
then increase the value of ¢ until it becomes feasible.

4.2. The construction of polynomial extensions. We can construct a poly-
nomial extension, required in Assumption 3.2, for many bilevel optimization prob-
lems. If (P,) has linear equality constraints, we can get rid of them by eliminating
variables. If (P,) has nonlinear equality constraints, generally there is no polynomial
q(z,y) satisfying Assumption 3.2, unless the corresponding algebraic set is rational.
So, we consider cases in which (P,) has no equality constraints, i.e., the label set
&y = (). Moreover, we assume the polynomials g;(z, z) are linear in z for each j € &,.
Recall the polynomial tuples ®, ¥ given in (4.3). For a priori degree ¢ and for given
Z,9, Z, we consider the following polynomial system about ¢:

q(&,9) = 2,
(4.4) gj(z,q) € Ideal(®)2r + ngd(@)gg (j € Iv),
q= <q17"'aQP) € (R[.’E,y]) :
The second constraint in (4.4) implies that g;(z,q(x,y)) > 0 V(z,y) € U,j € I.

Hence g obtained as above must satisfy Assumption 3.2. The above program can be
solved using the software Yalmip [33].
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Ezxample 4.2. Consider Example 4.1 with
t=(1,0), §=(1,0), £=(0,0),
h(z,y) = (31 — 22, 22,02 — 71 + 1),
9(x,y) = (241 — y2, 1 — Y1,Y2, T2 — Y2).
For ¢ = 2, a satisfactory ¢ := (¢q1,¢2) for (4.4) is

Q1(xay) :1'2/37 QZ(xvy) :2x2/3a
because g(l’ q) %(O’ hl(xa y)7 2h2 (.’E, y)v hz(fE, y)) and
hl(xa y)a hZ(‘T; y) € Ideal(¢)2[ + QmOd(\II)2Z

For computational convenience, we prefer explicit expressions for ¢(z,y). In the
following, we give explicit expressions for various cases of bilevel optimization prob-
lems.

4.2.1. Simple bilevel optimization. If the feasible set Z(x) of the lower level
optimization (P,) is independent of z, i.e., Z(x) = Z, then we can just simply choose
q(z,y) =z

in Assumption 3.2 for all z € Z and all (z,y) € U. It is a constant polynomial func-
tion. Therefore, Assumption 3.2 is always satisfied for all simple bilevel optimization
problems.

4.2.2. Box constraints. A typical case is that the lower level problem (FP,) has
box constraints. Suppose the feasible set Z(x) of (P;) is given as

l(z) <z <u(x),
where I(z) = (l1(2),...,p(2)), u(z) = (ui(z),...,up(z)). For every (Z,9) eUNK
and Z € S(&), we can choose ¢ := (q1,...,qp) as
4 (@,y) = p;li(@) + (1 — pj)u;(x), j=1,....p,

where each scalar p; := (u; (&) —2; /( ;(&)—1;(z)) € [0,1]. (For the special case that
u;j(Z) = 1;(&), we have Z; = u;(& ) = (“) and simply choose p; = 0.) Then, for each
Js
(2, 9) = psli () + (1 — py)u; (2) = 2.
Clearly, q(x,y) € Z(x) for all (z,y) € U. The following is a more general case.
Ezample 4.3. Suppose the feasible set Z(x) of (P,) is given as

l(z) < Az < u(x),

where A := [a1,...,am,]T € R™2*P is a full row rank matrix and ms < p. Let
Qmot1, - - -5 ap De vectors such that the matrix
T
B = [al,...,amQ,am2+1,...,ap] € RP*P

is invertible. Then the linear coordinate transformation z = B~!w makes the con-
straints become the box constraints I;(z) < w; < u(x);, j € [m2]. Hence we can
choose ¢ = B~1¢/, where ¢/ := (¢}, .. -5 qp) as

H(z,y) = il (@) + (1 — pj)us(x), §=1,...,ma,
J (By),]7 j:77«L2_’__17...’I)7
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where each scalar

py = (u (&) = (B2);)/ (u; (%) — 1;(2)) € [0,1].

For the special case that u;(Z) — () = 0, we just set u; = 0. One can similarly
verify that ¢(z,y) € Z(x) for all (z,y) € U.

4.2.3. Simplex constraints. We consider the case that the lower level opti-
mization (P,) has the simplex type constraints

Iz) <z, 1Tz <u(z),

where () is a p-dimensional polynomial function, 1 is the vector of all ones, and
u(z) is a scalar polynomial function in x. For every (Z,9) € U and 2 € S(&), we can

choose ¢ := (q1,...,qp) as

where each scalar ¢; := (2, — ;(2))/(u(2) — 171(&)) > 0. (For the special case that
u(2) —1T1(2) = 0, we just simply set all ¢; = 0.) Note that

(2, 9) = ¢ (u(@) = 17U(®)) + 1;(2) = 2.

For all (z,y) € U, it is clear that g(z,y) > l(x). Moreover, we also have

17g(x,y) =111(x) [ 1 - ch + ch u(z) < ulx),

since 171(x) < u(z) and ¢; +---+¢, < 1. Therefore, g(x,y) € Z(x) for all (z,y) € U.
In the above, 1 can be replaced by a nonnegative vector. The following is the more
general case.

Ezample 4.4. Suppose that the feasible set Z(z) of (P,) is given as
a'z<u(x), 22l (G=1....p),

where a := (ay,...,a,) € RE, u(z) and all [;(x) are polynomials in . We can choose
q:=(q1,...,qp) as

gi(z,y) =c¢; - (u(x) — aTl(x)) +1(x),

where each c; := (2; — 1;(£))/(u(£) — aTl(£)) > 0. In particular, we set all ¢; = 0 if
u(#) — a'l(z) = 0. Note that

For all (z,y) € U, it is clear that ¢(z,y) > I(x). In addition, we have

alq(z,y) =a®l(z) |1 - Zajcj) Zajcj u(x) < u(x)
j=1
<

since a’l(x) < w(x) and ajc; + -+ + ape, < 1. Therefore, q(z,y) € Z(x) for all

(z,y) €U.
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4.2.4. Annular constraints. Suppose the lower level feasible set is

Z(z) = {y eRP

r(2) < ly - a(@)lla < B(x) |},

where ||z]|q := ¢/>.7_; |z|¢ and a(z) = [a1(x), ..., ap(z)] is a polynomial vector, and
r(x), R(x) are polynomials such that 0 < r(xz) < R(x) on U. We can choose

q(z,y) = a(x) + ¢'(z)s,
where ¢'(x) := pir(x) + puoR(x), p1, pe are scalars such that

HZ - a(i)”d = :ulr(:%) + /‘QR(L%)a M1y B2 > 07 p1+ pe = 17

and s := (s1,...,8p) is the vector such that
Si 1= S a7A(x) ) ? 17 . » D
12— a(2)l|a

(For the special case that 2 = a(&), we just set all s; = p~1/¢.) Then,

since ¢'(%) = ||2 — a(Z)||q- Moreover,
lg(z, y) — a(@)lla = ll¢'(x)slla = l¢'(x)] - [Islla = |¢'(x)].
Because 0 < r(z) < R(x) on U, we must have
r(x) < llg(z,y) — a(z)]la < R(z).

This means that ¢(z,y) satisfies Assumption 3.2.

5. Numerical experiments. In this section, we report numerical results of ap-
plying Algorithm 3.3 to solve bilevel polynomial optimization problems. The compu-
tation is implemented in MATLAB R2018a, on a Laptop with CPU 8th Generation
Intel R CoreTM i5-8250U and RAM 16 GB. The software GloptiPoly 3 [21] and
SeDuMi [49] are used to solve the polynomial optimization problems in Algorithm 3.3.
In this section, we use the following notation.

e The matrix G(z,y) and vector f(x,y) are given as in (3.1). The polynomials
¢j(x,y),d;(z,y) for LMEs in Assumption 3.1 are given by (3.3), i.e., ¢;(z,y)
is the jth entry of W (z,y) f(z,y), for a matrix polynomial W (z,y) satisfying
(4.1). In our examples, such W(z,y) is determined by symbolic Gaussian
elimination on (4.1).

e The notation (P) denotes the bilevel optimization (1.1). Its optimal value
and optimizers are denoted by F* and (z*,y*), respectively.

e The (P;) denotes the relaxed polynomial optimization in the kth loop of
Algorithm 3.3. Its optimal value and minimizers are denoted as Fj and
() y*)) respectively.
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TABLE 1
Computational results for some SBOPs.

min x4y

z,yER F* = —1.2380- 1078,
st.  (z+1,1—z) >0, v* = —3.9587 - 1078,
y € arg min %122 - %z3 z* = —1.0000,
=R y* = 1.0000.
st.(z4+1,1—2)>0
min2 x% — 2z +x% — 2x9 +y%+y%
@, y€eR F* = —1.0000,
s.t. (w17x27y17y27g—$1) 20, o* — —1.3113 . 10—9
yCargmin 2y —2r121 + 25 — 2222 #* = (0.5000, 0.5000),
s.t.0.25 — (z1 — 1)2 > 0, y* = (0.5000,0.5000).
0.25 — (22 — 1)2 > 0.
mi?@ 2z1 + w2 — 2y1 + Y2
©ye F* = —5.0000,
s.t. (1€+ xl,lfxl,TlJra:Q,fO.?Sf:):g) >0, vt = —1.4163 - 10-8,
ycarg T T2 a* = (—1.0000, —1.0000),
st. (221 — 22,2 — 21) > 0, y* = (2.0000, 2.0000).
(22,2 — 22) > 0.
ceRbyega TILT TRV mITI2YS F* = —1.7095,
s.t. (1—22,1—22,22 —y1y2) > 0, v* = —1.3995- 1079,
Yy € arg miI}} xlz% + :c%zzzg — zlz§ x* = (—1.0000, —1.0000),
=eR * = (1.1097,0.3143, —0.8184).
sit. (2T2—1,2—2T2) >0. y ( ’ ’ )
i —30)2 —20)2 -2 2
Lo, (@1 =307 + (22 — 20)7 — 2041 + 20y F* = 225.0000,
s.t. (1 + 222 — 30,25 — 1 — 22,15 — x2) > 0, v* = —1.6835-1079,
y € arg min (z1 — 21)2 + (22 — 22)2 x* = (20.0000, 5.0000),
Z€ER * = (10.0000, 5.0000).
st. (10 — 21,10 — 23, 21, 22) > 0. yr=( ' )

e The (Qf) denotes the lower level optimization problem (3.8) in the kth loop
of Algorithm 3.3. Its optimal value and minimizers are denoted as vy and
(k)
z )
e We always have vj, < 0. Note that y*) is a minimizer of (3.8) if and only if
v = 0. Due to numerical roundoff errors, we cannot have vy = 0 exactly. We
view y*) as a minimizer of (3.8) if vj, > —e for a tiny scalar ¢ (e.g., 107).

Example 5.1. First, we apply Algorithm 3.3 to solve SBOPs. The displayed prob-
lems are, respectively, from [31, Example 5.2], [2, Example 3|, [15, Example 3.8], [42,
Example 5.2], and [47, Example 2]. All but the first problem are solved successfully
in the initial loop & = 0. The computational results are shown in Table 1, where
argmin denotes the set of minimizer(s). In Table 1, we use v* to denote the value
of v in the last loop. Algorithm 3.3 computed global optimizers for all of them.
In Table 2, we compare Algorithm 3.3 with some prior methods for solving SBOPs
in existing references, for the quality of computed solutions and the consumed CPU
time (in seconds). For the SBOP in [2, Example 3] and [15, Example 3.8], no CPU
time was given in the work, so we implement their methods with the MATLAB function
fmincon. For [2, Example 3], the method requires one to choose starting points. The
performance depends on the choice. We chose 100 random starting points. For some
of them, the method converges; for the others, it does not. We report the minimum
CPU time for cases that it converges in Table 2. In [47, Example 2], it was mentioned
that 225 is the true optimal value but the method there cannot compute it accurately.
There is no publicly available code for implementing that method, so its CPU time is
not reported.
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TABLE 2
Comparison with prior methods for some SBOPs.

Prior methods Algorithm 3.3
F* time F* time
31, Example 5.2] | 4.7260- 1078  47.48 —1.2380-10%  0.89
2, Example 3] —1.0000 0.05 —1.0000 0.34
15, Example 3.8 —5.0000 0.06 —5.0000 0.27
42, Example 5.2 —1.7095 13.45 —1.7095 6.43
47, Example 2] 228.7000 not available | 225.0000 0.27
TABLE 3

Computational results for Example 5.2.

(Po) Fy = —0.7688,

z(® = (0.6819, 1.7059), y(©) = (0.3997, 0.6819),
(Qo) vo = —3.3569 - 10~7 — stop.
Time 0.31 seconds,

Output F* = Fg, o* =20, y* = y(0),

Ezample 5.2. Consider the GBOP

min zly% + :c2y§’ — x%x%
z,yER?
2 2 2 2
st. (1w —1, 21, 29, 4 — 27 — 25 —y7 —y3) >0,

y € S(x),
where S(z) is the optimizer set of
min z% + z% — 2X921 — T1T929
z€ER?
s.t. (21, 22 — w221, 201 — T221 — 22) > 0.

The polynomial matrix W (z,y) satisfying (4.1) is

201 — 2x0y1 22179 — 2wy 220 29 229
—Y1 2x1 — Y2 1 1 1
— —Y2 1 1 1

for the denominators
dl(w7y) = dg(l’,y) = d3($,y) = 2:L'l >0 V(l',y) eu.

The lower level optimization is convex for given z. According to Proposition 3.4,
we get the optimizer for this bilevel optimization in the initial loop & = 0 by Algo-
rithm 3.3. The computational results are shown in Table 3.

Ezample 5.3 (see [38, Example 2]). Consider the general bilevel optimization
- 2., .2
— yrys — Ay — Txy + 4
Zeﬂ{gl,lynew Y1 + Y3 —Y1y3 Y2 r1 +4xzg
s.t. (1,22, 1 —x1 —22) >0,y € S(x),
where S(x) is the optimizer set of
{mgé 22 40.525 +0.525 + 2120 + (1 — 321)21 + (1 4+ 22) 20
ze

st. (=221 — 204+ 23 — 21 + 229 — 2, 21, 29, 23) > 0.
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TABLE 4
Computational results for Example 5.3.

(Po) Fy = 0.6389,

z(©) = (0.6111, 0.3889), ¥(® = (0.0000, 0.0000, 1.8332),
(Qo) v = —6.7295 - 109 — stop.
Time 1.09 seconds,

Output F* =Fg, z* =20, y* = y(0),

The polynomial matrix W (z,y) satisfying (4.1) is

Y1 Y2 Y3 -1 -1 -1 -1
2+ x1 + 2y1 — 2$2 2y2 2y3 -2 =2 -2 =2

Y1 2+1’1 +y2—2x2 Ys -1 -1 -1 -1

-1 —1Yo 2411 — 220 —ys 1 1 1 1

for the denominators (i = 1,2,3,4)
di(z,y) = 2+ x1 — 229 = 3h1(z,y) + 2h3(z,y) > 0 V(z,y) € U.

By Algorithm 3.3, we get the optimizer for this bilevel optimization in the initial loop
k = 0. The computational results are shown in Table 4.

Ezample 5.4 (see [42, Example 5.8]). Consider the general bilevel optimization

min  (z1+x2 + 25+ 4) (Y1 + Y2 + Y3 + ya)
z,yERL

st. (1—aTe xq —y2 21 —y2ys) >0, y € S(x),
where S(z) is the set of optimizer(s) of
min 121 + 2229 + 0.123 + 0.524 — 2324
z€R4
st (x] 423 Fwgday — 27 — 225 — 325 — 423, 2023 — 2124) > 0.
The matrix polynomial W (z,y) satisfying (4.1) is

" —Y1Ya —YoYs  —Y3Ys —Yi 2ys  2us
207 —2(2f + a3+ a2+ xa) 20y 201ys 20ya —dy —4dn

for the denominators

di(,y) = da(z,y) = 2u% (a7 + 23 + 22 + 24)
> 2y (yF + 203 +3y5 + 4yi) > 0V(w,y) €U
By Algorithm 3.3, we get the optimizer for this bilevel optimization in the initial loop
k = 0. The computational results are shown in Table 5.
Ezample 5.5. Consider the GBOP

min  23ys — 2w3x4 + 1.20123 — 23 (y3 + 2y4)
z,yceR*

st. (1T2,8 =17z, 4z29 — y? —92) >0,

(z1—y1,2 — Y2,4 — 1 — 29,4 — 23 — 73) >0,

y € S(z),
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TABLE 5
Computational results for Example 5.4.

(Po) Fy = —3.5050,
z(0) = (0.5442,0.4682, 0.4904, 0.4942),
y(© = (=0.7791, —0.5034, —0.2871, —0.1855),
(Qo) vo = —1.6143 - 1079 — stop.
Time 49.08 seconds,
Output F* = FJ, =* = (0 y* = y(0)

TABLE 6
Computational results for Example 5.5.

(Po) Fy = —24.6491,
z(©) = (0.0000, 0.0000, 0.3204, 1.9742),
y(©® = (0.0000, —0.0000, 0.0000, 3.0000),
(Qo) vy = —2.5204 - 108 — stop;
Time 2.90 seconds
Output F* = F§, o* = (0 y* = 40,

where S(z) is the set of optimizer(s) of

min xlz% + xgzg + T323 — X424
zER4
st. (21— 22 —X9,x1 — 21+ 22,21 + 22+ @1 +22) >0,

(4$1 — 2.232 —Z1 — 22,Z3,Z4,3 — 23 — Z4) Z 0.

The matrix polynomial W (z,y) satisfying (4.1) is

r1 — Y1+ Y2 Y1 — Y2 — T1 0 0 2 2 0 0 0 0 O
T2 — Y1+ Y2 Y1 — Y2 — T2 0 6 2200000
4$1—2I2—y1—y2 41‘1—2332—y1—y2 0 0 00 2 2 0 0O
Y1+ y2 +x1 + T2 Y1+ Y2 +x1 + T2 0 0 00 2 2 0 0O
0 0 vi —ya 00 0 0 0 1 0

0 0 “ys ys 0000 1 00

0 0 -y3 —y4 0 0 O O 1 1 1

for the denominator vector

d(z,y) = (2x1 — 2x9, 221 — 2xs, 1027 — 229, 10217 — 229, Y4, Y3, 3)
= (2(g1(z,y) + g2(x,9)) - 12, 2(g3(x, y) + ga(x,y)) - L2, g6(2,y), g5(x,y), 3).

The denominators are all nonnegative on {. By Algorithm 3.3, we get the optimizer
of this bilevel optimization in the initial loop k¥ = 0. The computational results are
shown in Table 6.

Ezxample 5.6. Consider the general bilevel optimization

: 2 2
min - Y17 + Y25 — Yzx3z — Yalg
z,y€R?

s.t. ($1—1,$2—1,4—l‘1—$2)20,
(v3— 1,2 — 24,23 — 224,8 —2T2) > 0,
y € S(z),
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where S(z) is the set of optimizer(s) of

min  —z129 + 23+ 24
z€ER4

s.t. (2’1,22,2’3 — X4, 24 —$3) > O7
(4I’1$2 — L1121 — T222, 3— z3 — Z4) Z 0.

The polynomial matrix W (z,y) satisfying (4.1) is

r1(472 + Y2) — T1Y1 — T2y2 —T1Y2 0 0
—T1Y1 4331%‘2 — X2Y2 0 0
0 0 3—x3—ys3 T3 — Y4
0 0 Ty—Ys 3Ty — Y
=1 —Y2 0 0
0 0 T4 — Y3 T3 — Ya
r1 X1 0 0 X1 0
r1 X1 0 0 1 0
o O 1 1 0 1
o O 1 1 0 1
1 1 0 0 1 O
o o0 1 1 0 1

for the denominator vector d(z,y) as follows:
d(z,y) = (4172 + T1y2 — Tayo, 42122 + T1Y2 — T2Y2,
3— 23— 4,3 — 23 — 24,42122 + T1Y2 — T2Y2,3 — T3 — T4).

It is clear that d(z,y) > 0 for all feasible (z,y). As in the subsection 4.2.3, the
polynomial function ¢ := (q1, ¢2, 43, ¢4) in Assumption 3.2 can be given as

(5.1) @1 = p1w2, g2 = p2r1, g3 = Ta + p3(3 + 23 + 4), qa = T3 + pa(3 + 3 + 74),
where (see subsections 4.2.3 for the notation Z, g, 2)

21 2 Z3 — Iy 24— a3

3+ Ty + 24

for given (Z,¢) € U. Since x1, 22,3 > 1 and x4 > —21/2, the above 1, iz, i3, (14 are
well defined. Applying Algorithm 3.3, we get the optimizer for this bilevel optimiza-
tion in the loop k£ = 1. The computational results are shown in Table 7.

Example 5.7. Consider the GBOP

s 2,2 2
min - x7Y; — T2Y3 + T3Y1 — T4Y2

z,yE€R4
st. (4—a2?—23 —x —23, y — 2, 1T2) >0,
(x3+24—3, 1+ 23— 4, 3— 23, 24) >0,
y € S(z),

where S(z) is the optimizer(s) set of

min (x; — 21)2 + (29 — 22)2 + 23 — 24
z€R4

s.t. 4$§ — x% — x% + 22121 + 22020 — 27 2 > 0,

(23, 3 — 23, 24, Ta —24) > 0.
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TABLE 7
Computational results for Example 5.6.

(Po) Fy = —4.4575,
2(0) = (1.1548, 1.1546, 1.6458, 1.3542),
y(© = (0.0000, 0.0000, 1.3542, 1.6458),
(Qo) vp = —5.3362 — next loop;
2(0) = (2.3093, 2.3096, 1.3542, 1.6458),
q© = (2x2, 221, x4, x3) as in (5.1).
(P1) Fy = —0.4574,
=M = (1.0000, 1.0000, 1.6458, 1.3542),
vy = (2.0000, 2.0000, 1.3542, 1.6458),
(Q1) v; = —1.9402 - 10~9 — stop.
Time 102.21 seconds,
Output F* =F}, z* = z(), y* = y(l),

The matrix polynomial W (z,y) satisfying (4.1) is

-1 0 0 0
—(r3—y3)ys 0 (x3—y3)(y1 — 1) 0
Y3 0 —y3(y1 — 1) 0
—(r4 —ya)ys O 0 (4 — ya)(y1 — 21)
vi 0 0 —ya(y1 — 1)
0 0 0 0 0
0 0 Y1 — X1 0 0
0 y1—m 0 0 0
0 0 0 0 Y — 1
0 0 0 Y1 — T 0

for the denominator vector

d(z,y) = (y1 —21) - (2, 23 — Y3, Y3, T4 — Ya, Ya).

It is clear that d(x,y) > 0 for all feasible (z,y). The lower level feasible set Z(z) is a
mixture of separable and annular constraints:

0<23<23, 0< 24 <4

Z(x) = {z cR?

(21 — 21)% + (22 — 22)2 + z§ +22 < 4:r§, }

As in subsections 4.2.2 and 4.2.4, the polynomial function q := (q1, ¢2,¢3,¢4) in As-
sumption 3.2 can be given as

(5.2) 1 =1+ 13, g2 = T2 + Ho¥3, 3 = U3T3, G4 = {44,

where (for a given value (Z,7, 2) of (z™*), y(®) 2(K)) ¢ satisfies q(&, ) = 2)

21— 2o — To Z3 24
’LLl: ~ 9 /1’2: ~ ) /4L3:A77 ,u4:/\7~
I3 T3 I3 T4

Since 1 < 23 < 3 and 0 < 24 < 1+ 23, we have uy = 0 for the special case when
T4 = 0, thus the above ¢ is well defined. This bilevel optimization was solved by
Algorithm 3.3 in the loop k£ = 1. The computational results are shown in Table 8.
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TABLE 8
Computational results for Example 5.7.

(Po) Fp = —41.7143,
z(®) = (—-1.5616, 1.2496, 3.0000, 4.0000),
y(© = (—1.5616, 6.4458, 3.0000, 0.0008),
(Qo) vo = —33.9991,
2(0) = (—1.5615,1.2496, 0.0000, 4.0000),
q® = (z1,22,0,24) as in (5.2).
) F¥ = —6.0000,
z(1) = (—2.0000, 0.0001, 3.0000, 0.0001),
y) = (—2.0000,0.0001, —0.0000, 0.0001),
(Q1) v = —2.7612 - 1072 — stop.
Time 3.42 seconds,
Output F* = Fy, z* =21, y* =y,

6. Conclusions and discussions. We propose a new method for solving gen-
eral bilevel polynomial optimization problems, which consists of solving a sequence of
polynomial optimization relaxations. Each relaxation is obtained by using KKT con-
ditions for the lower level optimization. For KKT conditions, the Lagrange multipliers
are represented as a polynomial or a rational function. The Moment-SOS relaxations
are used to solve each polynomial relaxation, which is then refined by the exchange
technique from SIP. Under some suitable assumptions, we prove the convergence for
both simple and general bilevel polynomial optimization problems. Numerical exper-
iments are presented to show the efficiency of the method. In all of our numerical
experiments, the algorithm converges to optimizers in a few loops. An interesting
future work is to explore the complexity of the algorithm.

We would like to emphasis that when the lower level optimization (P,) is replaced
by its KKT system, the resulting new optimization may not be equivalent to the
original bilevel optimization (1.1) in the sense that optimal solutions (1.1) may not
be recovered by solving the the initial polynomial optimization relaxation (FPp). There
exists such an example of exponential functions as in [36]. In the following, we provide
a new example of polynomial functions.

Example 6.1. Consider the SBOP
. _ 1,2
seliger YT YT 2Y
s.t. 1—-22>0,1—-y2>0,
y € S(z),

where S(z) is the optimizer set of

z€R?
st. 1—22>0.

{ min —zz? + %alcz‘1
The KKT condition V. f(x,2) — AV.g(z) = 0 for the lower level optimization is
—2xz + 2x2° +2\2 = 0.
Therefore, the initial polynomial optimization relaxation (FPp) is equivalent to
. i 1,2
i, Ty
s.t. 1—m220,1—y220,
—zy+zy> + Ay =0, A >0, \(1—y?) =0.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/13/22 to 129.107.66.6 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2392 JIAWANG NIE, LI WANG, JANE J. YE, AND SUHAN ZHONG

TABLE 9
Computational results for Example 6.1.

(Po) F§ = —1.5000,
(2(9),4(9)) = (=1.0000, 1.0000),
(Qo) vg = —0.5000 — next loop;
2(0) =1.1385.10717, ¢(®O = 2(9) as in section 4.2.1.
P) F} = —0.5000,
(M), y (1)) = (2.4099 - 102, 1.0000),
(Q1) vl = —3.5197 - 10712 — stop.

Time 0.75 second,
Output F* = Fy, z* =21, y* =y,

By a brute force computation, the above optimization has the optimal value and
minimizer, respectively,

Fr=-15 (zfy:)=(-1,1).
However, (2, y*) is not even feasible for the original bilevel optimization, since y* &
S(z%) = {0}. We can apply Algorithm 3.3 to solve this SBOP, with the LME A(xz,y) =

x — zy?. It terminated in the loop k = 1. The computational results are shown in
Table 9.

One may consider solving the suboptimization problems (Py) and (Qy) in Algo-
rithm 3.3 by methods other than the classical Lasserre type Moment-SOS relaxations,
e.g., the BDSOS relaxations [29], and the bounded degree SOCP (BDSOCP) relax-
ations [10] that is a mixture of both BDSOS and SDSOS polynomials [1]. As requested
by referees, we give a computational comparison in the following example. We remark
that Algorithm 3.3 fails when these two new relaxations are used to solve (Py).

Ezample 6.2 (see [44, Example 3.1]). Consider the GBOP

z€R! yeR?

min _ 0.5(y1 — 3)2 + 0.5(ys — 4)2
s.t. (,10 —x) >0, y € S(x),

where S(z) is the optimizer set of

m]iRI% 0.5(1 4 0.22)22 + 0.5(1 + 0.12)23 — (3 + 1.333x) 21 — 722
ze
st (0.33321 — 22 — 0.1z + 1, 9+ 0.1 — 27 — 23, 21, 22) > 0.

The polynomial matrix W (z,y) satisfying (4.1) is

6.006y1y2  —6.006y3y2 0 0 —6.006%3 6.006y7
—3.003y1y2 —Y1Y2 0 0 3.003y2 Y1

0 0 0 0 6.006y;y2 + 2y3 0

0 0 00 0 6.006y7 + 212

with the denominators
dl (SE, y) = dQ(Ia y) = GOOGy%yZ + 2y1y§ Z 0 V(I, y) € u.

When the classical Lasserre type Moment-SOS relaxations are used to solve (Py) and
(Qr) in Algorithm 3.3, we get the correct solution successfully in the initial loop k& = 0.
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TABLE 10
Computational results for Example 6.2.

(Po) Fy = 3.2077,
z(0) =4.0604, y(© = (2.6822,1.4871),
(Qo) vo = —3.7906 - 106 — stop.

Time 1.031 seconds,
Output F* = FJ, =* =z, y* = y;-

TABLE 11
Computational results for Example 6.2 with BDSOCP and BDSOS on suboptimization problem
(Po)-

BDSOCP BDSOS
M d| F;,  Time | F;,  Time
I [ 26011 040 | 2.6011 0.27
10 2 | 35516 1.03 | 56719 0.92
3 | 58476  51.17 | 8.4647 51.01
I [ 26011 0.6 | 2.6011 0.09
100 | 2| 3.2121 0.86 | 3.5696 0.63
3 | 37170 5045 | 5.8199  48.30
I [ 26012 0.16 | 2.6011 0.09
1000 | 2 | 2.7375 0.72 | 3.7937  0.95
3 | 37297  41.52 | 7.9497  39.33

The computational results are shown in Table 10, which are the same as in [44]. Now
we apply BDSOCP [10] and BDSOS [29] to solve (Py). We implement these two new
relaxation methods in SPOT [35] and solve the resulting SOCP and SDP by MOSEK.
Both BDSOCP and BDSOS require one to use a parameter M at the beginning. A
scale factor 1/M will be multiplied to each inequality constraint, to ensure that the
constraining function value is always between 0 and 1. We remark that estimating
such an M exactly is quite difficult, which is equivalent to solving another polynomial
optimization problem [10]. Here, we tune the parameter M. Let d be the relaxation
order for both BDSOCP and BDSOS Denote by Fd v and Fd s the objective values
that are computed by BDSOCP and BDSOS, respectively. The computational results
are shown in Table 11. The time there is measured in seconds. None of these two
methods solved the initial optimization (Pp) well, so Algorithm 3.3 fails to continue.
This GBOP was not solved accurately by either BDSOCP or BDSOS relaxations.

In this paper, we assumed the KKT conditions are satisfied at global optimizers
of the lower level optimization (P,). When the KKT conditions fail to hold for (P,),
we do not know how to apply our proposed method. For such a case, we may consider
to use Fritz John conditions and Jacobian representations as in the work [42]. The
KKT approach has advantages, as well as potential drawbacks, for solving bilevel
optimization. We refer to the work [9] for this issue. It is important future work to
solve BOPs when the KKT conditions fail for (P,).
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