
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Density-Based Distance Preserving Graph: Theoretical and Practical Analyses
Li Wang , Haian Yin, and Jin Zhang

Abstract— This brief aims to provide theoretical guarantee and practi-
cal guidance on constructing a type of graphs from input data via distance
preserving criterion. Unlike the graphs constructed by other methods, the
targeted graphs are hidden through estimating a density function of latent
variables such that the pairwise distances in both the input space and the
latent space are retained, and they have been successfully applied to var-
ious learning scenarios. However, previous work heuristically treated the
multipliers in the dual as the graph weights, so the interpretation of this
graph from a theoretical perspective is still missing. In this brief, we fill
up this gap by presenting a detailed interpretation based on optimality
conditions and their connections to neighborhood graphs. We further
provide a systematic way to set up proper hyperparameters to prevent
trivial graphs and achieve varied levels of sparsity. Three extensions are
explored to leverage different measure functions, refine/reweigh an initial
graph, and reduce computation cost for medium-sized graph. Extensive
experiments on both synthetic and real datasets were conducted and
experimental results verify our theoretical findings and the showcase of
the studied graph in semisupervised learning provides competitive results
to those of compared methods with their best graph.

Index Terms— Density estimation, distance preservation, graph
construction and learning, sparse graph.

I. INTRODUCTION

Graphs as ubiquitous and informative structures have been exten-
sively employed to represent data. They play crucially important roles
in approximating intrinsic manifolds of data in feature extraction
[1], [2], semisupervised learning [3], and clustering [4]. However,
graphs are often unknown and improper graphs can degrade the
learning performance, so learning proper graphs from input data is
important.

For a given measure (distance, dissimilarity, or similarity) function
over any two data points, a fully connected weighted graph can
be directly constructed from a set of data points, such as Gaussian
kernel [3] and Pearson’s correlation coefficient [5]. Although the fully
connected weighted graphs have demonstrated great success in many
learning problems, sparse graphs are often more preferred due to their
robustness to data noise, efficiency, and interpretability [6].

The majority of graph construction and learning methods concen-
trate on generating a sparse graph from data. Based on the existence
of graph elements such as graph topology (node connectivity) and
edge weights, we can roughly classify the existing graph construction
methods into three categories: 1) generating a sparse graph topology;
2) estimating edge weights of a given graph topology; and 3) learning
both graph topology and edge weights.

In this brief, we are particularly interested in the latent sparse
graph constructed as a byproduct by maximum posterior manifold
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embedding (MPME) [7] for dimensionality reduction. MPME was
originally proposed to learn the posterior density function of embed-
ded points in a latent space from input data such that the pairwise
distances in both the input space and the latent space are retained.
Although MPME does not explicitly contain a graph as an optimized
variable, its dual problem is formulated with multipliers that are
heuristically regarded as the graph weights. We name this special
hidden graph as density-based distance preserving graph (DDPG).
Hence, MPME as a graph construction method belongs to category
3), and its resulting DDPG is equipped with various unique properties
compared to graphs constructed by other methods.

1) Different from other graphs, DDPG is hidden to preserve the
pairwise distances.

2) DDPG is flexible to be learned from data in terms of various
distance measures, while most existing methods, e.g., local
linear reconstruction (LLR)-related models [8]–[10], are inher-
ently modeled in the Euclidean space.

3) DDPG can be learned by MPME to naturally incorporate any
prior distribution of latent variables.

4) The dual problem with respect to DDPG is strongly convex,
so the global optimal graph is obtainable.

5) MPME and its variants have been successfully used for vari-
ous learning problems, including dimensionality reduction [7],
clustering [11], and feature selection [12].

Although DDPG enjoys the above-mentioned good properties, it is
heuristically regarded as a similarity graph, so the interpretation of
DDPG as a graph to approximate the intrinsic manifold of input data
is still missing. The lack of deep understanding prevents DDPG from
being used for other learning problems, such as semisupervised learn-
ing. Moreover, the sparsity of DDPG is simultaneously controlled
by multiple hyperparameters in MPME, which makes constructing
DDPG from input data impractical from model selection perspective,
especially for medium-size data. In this brief, we aim to provide the
theoretical analysis of DDPG, simplify the model selection process,
and further explore three extensions of DDPG constructed from
different settings. The contributions of this brief are summarized as
follows.

1) We provide the interpretation of DDPG as a similarity graph
from the perspective of optimality conditions for the pri-
mal and dual problems of MPME and build the connec-
tions to K -nearest neighbor (K -NN) graphs and uncover
ε-neighborhood (ε-N) graph as the extreme case.

2) We conduct hyperparameter analyses, including the prevention
of trivial solutions, the impact of graph sparsity, and reparame-
terizing parameters for simplification. With the help of these
analyses, we can safely tune a single hyperparameter instead
of three ones to reach different levels of sparsity in DDPG.

3) Three extensions for learning DDPG are explored, including
various measure functions, graph refinement, and scalability
consideration.

Extensive experiments on both synthetic and real datasets are con-
ducted to verify that: 1) the different levels of sparsity in DDPG can
be controllable by a single hyperparameter; 2) DDPG can be used
to refine a given graph or speed up the learning with a precomputed
graph; and 3) DDPG used in graph-based semisupervised learning
can achieve competitive results against the best graphs learned by
compared methods.
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The rest of this brief is organized as follows. We first briefly
review various existing graph construction methods in Section II and
then introduce MPME in detail as a graph construction method in
Section III. The interpretation of DDPG and its connections to neigh-
borhood graphs are presented in Section IV. In Section V, we conduct
a detailed analysis of hyperparameters and further simplify them into
one. Extensions are shown in Section VI. Extensive experiments are
conducted in Section VII. We conclude this work in Section VIII.

II. RELATED WORK

Existing sparse graph construction methods can be roughly divided
into three categories based on the existence of graph elements, i.e.,
graph topology and edge weights.

A. Generating a Sparse Graph Topology

Euclidean distance is often used to construct the K -NN graph
and ε-N graph [1]. Both types of graphs are studied in terms of
the influence on graph-based clustering [13]. However, ε-N graphs
are less used in label propagation methods due to its deteriorating
performance since it has a tendency to fragment the data into
many disconnected components [14]. Due to the greedy construction
process of connecting K closest points to one point, the K -NN
graph is formally directed. Postprocessing steps, such as mutual
K -NN, symmetric K -NN, and symmetry-favored K -NN, are gen-
erally used [15]. The b-matching (BM) method [6] can directly form
a regular graph with each node having b neighbors. Several other
approaches have been reviewed in [16].

B. Estimating Edge Weights of a Given Graph Topology

Given a graph topology, edge reweighing is more often used to
capture the varying similarity among different pairs of nodes. Certain
measure functions can be used to define the edge weights such as the
Gaussian kernel function [1] and the inverse of distance [17], which
can be different from the measure function used to learn the topology.
In addition to the predefined weight functions, learning edge weights
from data for a given graph topology has also been explored in the
literature [8]–[10]. LLR [8] aims to reconstruct each input data point
via a linear combination of its neighbors, and the combination coef-
ficients are used as graph weights. To prevent negative weights, the
nonnegative weights are enforced in LLR [9]. Parametric weighting
functions, such as automatic relevance determination kernel, are also
explored in LLR [10].

C. Learning Both Graph Topology and Edge Weights

Learning a weighted graph from data is generally formed as the
problem of optimizing a sparse matrix. The �1 norm on the graph is
popularly used to promote the sparsity of the learned graph including
sparse manifold clustering and embedding [18] and �1-graph [19].
As both methods are similar to �1 regularized LLR, the learned
graphs are directed and their weights can be negative, so additional
postprocessing is required to convert them to undirected similarity
graphs. Learning an undirected weighted graph from data has also
been explored [20]–[24]. In [20], a sparse precision matrix is opti-
mized by maximizing the likelihood of a Gaussian distribution with
�1 norm over the precision matrix. In [21], the precision matrix in
the Gaussian–Markov random fields is parameterized as a Laplacian
matrix on the graph of data points. Since graph Laplacian and the
graph matrix share the same sparse patterns, a sparse graph Laplacian
matrix is learned in [22]. Moreover, several special types of graphs
were studied, including spanning trees [23], low-rank graph [24],
and DDPG for preserving pairwise distances [7], [11], [12]. Learning

graphs for graph neural networks is also studied [25], [26]. A graph
generator with Bernoulli variables [25] is optimized specifically for
graph convolutional network, while the inference is done by randomly
drawing a sufficient number of graphs from the generator. Due
to the nonlinear transformations, there is no deterministic graph
to be obtained and the sparsities of these sampled graphs are not
controllable. The graph parameterized by the Mahalanobis distance
function [26] is dense and only applicable to graph data.

III. MPME AS A GRAPH CONSTRUCTION APPROACH

As discussed in Section I, DDPG learned by MPME has various
advantages compared to graphs by existing methods. In MPME [7],
preserving pairwise distances of input data in a latent space has
been explored to learn an undirected weighted graph for unsupervised
dimensionality reduction. In order to conduct theoretical and practical
analyses on DDPG, we need to introduce MPME in detail.

Let {(xi)}ni=1 be the n input data points with xi ∈ R
d . Define by

X = [x1, . . . , xn] ∈ R
d×n the input dataset. MPME looks for a density

function over latent representations of the input data by preserving
pairwise distances of input data in a latent space. The latent repre-
sentations of the input data X are represented by a matrix of random
variables Z = [zr,i ] ∈ R

m×n, r = 1, . . . ,m, i = 1, . . . , n, following
some unknown density p(Z), where m is the dimension of the latent
space. Define by fr =[zr,1, . . . , zr,n ]T ∈ R

n and zi =[z1,i , . . . , zm,i ]T ∈
R

m , the r th row of Z and the i th column of Z , respectively. Thus,
we have the following relationships Z = [z1, . . . , zn] = [f1, . . . , fm]T,
and zi is the latent counterpart to xi , ∀i = 1, . . . , n. As {fr }mr=1 are the
bases of the latent representations, independence is often assumed,
that is, p(Z) = ∏m

r=1 p(fr ). The pairwise distance of two random
variables zi and z j can be calculated as the expectation of their
Euclidean distance over p(Z), given by, ∀i, j = 1, . . . , n

E
[‖zi − z j‖2

] =
m∑

r=1

∫ (
zr,i − zr, j

)2
p(fr )dfr . (1)

The density-based pairwise distance takes the density p(Z) into
account in the framework of Bayesian averaging [27], so it is more
robust to data noise and outliers compared to the deterministic
approach. The pairwise distance in a latent space is analogous to
the distance of its counterpart in the input space, for example, the
Euclidean distance

φi, j = ‖xi − x j‖ ∀i, j = 1, . . . , n. (2)

Given a prior distribution π(Z) = ∏m
r=1 π(fr ), MPME aims

to obtain the optimal p(Z) by minimizing Kullback–Leibler (KL)
divergence between p(Z) and its prior π(Z) under the constraints of
preserving the pairwise distance but allowing a small violation

min
p(Z),{ζi, j } λKL(p(Z)||π(Z)) +

n∑
i=1

n∑
j=1

ζi, j

s.t. E
[‖zi − z j‖2

] ≤ φi, j + ζi, j , ζi, j ≥ 0 ∀i, j (3)

where λ is the regularization parameter and the KL divergence is fur-
ther written as KL(p(Z)||π(Z)) = ∑m

r=1

∫
p(fr ) log(p(fr )/π(fr ))dfr .

Apparently, it is difficult to directly solve (3) with respect to p(Z),
so we seek its dual problem according to its convexity.

By introducing multipliers {αi, j ≥0} and {τi, j ≥ 0}, the Lagrangian
function is

g
({p(fr )}, {ζi, j }, {αi, j

}
,
{
τi, j

})
= λ

m∑
r=1

∫
p(fr ) log

p(fr )
π(fr )

dfr +
∑
i, j

ζi, j −
∑
i, j

αi, j τi, j

+
∑
i, j

αi, j

(
m∑

r=1

∫ (
zr,i −zr, j

)2
p(fr )dfr −‖xi −x j‖2−ζi, j

)
.
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We have the following Karush–Kuhn–Tucker (KKT) conditions:
λ(1 + log p(fr ) − log π(fr ))

+
∑
i, j

αi, j

(
zr,i − zr, j

)2 = 0 ∀r = 1, . . . ,m, (4)

1 − αi, j − τi, j = 0 ∀i, j = 1, . . . , n, (5)

τi, j ζi, j = 0 ∀i, j = 1, . . . , n, (6)

αi, j

(
E

[‖zi − z j‖2
]−φi, j − ζi, j

) = 0 ∀i, j = 1, . . . , n, (7)

E
[‖zi − z j‖2

] ≤ φi, j + ζi, j , ζi, j ≥ 0 ∀i, j = 1, . . . , n. (8)

According to (4), we have

p(fr ) ∝ π(fr ) exp
(− 2

λ
fT
r Lfr

) ∀r = 1, . . . ,m (9)

where graph Laplacian L = diag(A1) − A and A = [αi, j ] ∈ R
n×n is

the matrix representation of the learned undirected weighted graph.
The dual problem is

max
A∈A

−λ

m∑
r=1

ur −
n∑

i=1

n∑
j=1

αi, jφi, j (10)

where the log partition term is

ur = log

{∫
π(fr ) exp

(
− 2

λ
fT
r Lfr

)
dfr

}
∀r (11)

and the feasible set of A is

A = {[
αi, j

]|A = AT, 0 ≤ αi, j ≤ 1, αi,i = 0, ∀i, j}. (12)

Note that φi,i = 0 and L is irrelevant to the diagonal part of A,
so we set αi,i = 0, ∀i = 1, . . . , n. This means that the self-connected
edges of the learned graph are ignored. Moreover, the pairwise
distance constraints are symmetric, so the matrix A of multipliers
is symmetric too.

Specifically, we assume that π(fr ) is a normal distribution with
mean 0 and covariance σ 2 In . The log partition term has an explicit
expression as

ur = −1

2
log det

(
1

σ 2
In + 4

λ
L

)
(13)

and multivariate normal distribution according to (9)

p(fr ) ∼ N
(

0,

(
1

σ 2
In + 4

λ
L

)−1
)

. (14)

In MPME [7], A is heuristically regarded as a graph, which
is obtained by solving convex problem (10) with (13) using the
L-BFGS-B method [28]. The latent embeddings of the input data
are then obtained by the maximum posterior estimation.

According to [7], solving problem (10) takes approximately
O(n2.37) for computing logdet and an inversion of matrix (1/σ 2)In +
(4/λ)L at each iteration of the L-BFGS-B solver. Kernel principal
component analysis (KPCA) for obtaining the latent embeddings
takes O(n3). Thus, the time complexity of MPME takes O(n3).

IV. GRAPH INTERPRETATION

The interpretation of the learned latent graph in (10) is not well
explored in the existing work [7]. To fill up this gap, we will provide
some explanation for the learned graph from various perspectives,
including the optimality conditions and the relationships to neigh-
borhood graphs.

A. Optimality Conditions

According to KKT conditions (4)–(8), we can study the relation-
ships between the pairwise distance φi, j and its latent counterpart
E[‖zi − z j‖2] in terms of the optimal αi, j . As τi, j ≥ 0, we consider
the following four cases.

1) τi, j ∈ (0, 1). According to (5), αi, j ∈ (0, 1). According to (6),
ζi, j = 0. Combining with (7), we have E[‖zi − z j‖2] = φi, j .

2) τi, j = 0. According to (5), αi, j = 1. According to (6), we have
E[‖zi − z j‖2] − φi, j − ζi, j = 0. Since ζi, j ≥ 0, thus, E[‖zi −
z j‖2] ≥ φi, j .

3) τi, j = 1. According to (5), αi, j = 0. According to (6), ζi, j = 0.
Thus, we have αi, j (E[‖zi − z j‖2]−φi, j ) = 0. As the constraint
E[‖zi − z j‖2] ≤ φi, j + ζi, j is required, and we have E[‖zi −
z j‖2] ≤ φi, j .

4) τi, j > 1. According to (5), τi, j =1−αi, j ≤ 1, which leads to a
contradiction.

In summary, we have the following optimality conditions:

φi, j − E
[‖zi − z j‖2

]
⎧⎪⎨
⎪⎩

≥ 0, αi, j = 0

= 0, 0< αi, j < 1

≤ 0, αi, j = 1.

(15)

As a result, we have recovered the relationships between the
pairwise distances in latent space and their corresponding pairwise
dissimilarities of the input data points.

B. Multipliers Interpreted as Pairwise Similarity

According to (10), the objective term
n∑

i=1

n∑
j=1

αi, jφi, j =
∑

(i, j):αi, j 	=0

αi, jφi, j (16)

is minimized. At the optimum, αi, j is expected to be smaller if φi, j

is bigger. Thus, αi, j can be interpreted as certain similarity between
xi and x j when αi, j 	= 0 and φi, j ≤ E[‖zi − z j‖2]. For αi, j = 0,
we have φi, j > E[‖zi − z j‖2] from the optimality condition (15).
Combining all together, we can see that A is a similarity matrix to
characterize the pairwise relations of input data points and αi, j = 0
for the two input points of large distance. However, this interpretation
is not strictly true since each αi, j reaches its optimum based on the
rest of others since they are coupled in (10) in the logdet term. In the
following, we will explore the relationships of the graph matrix A
learned by model (10) to two popularly used graphs: ε-N graph and
K -NN graph.

C. Connection to the K-NN Graph

In [6], BM graph can be considered as a proper replacement of
the K -NN graph for semi-supervised learning (SSL). It solves the
following integer programming:

min{gi, j ∈{0,1}}
n∑

i=1

n∑
j=1

gi,iφi, j

s.t.
n∑
j=1

gi, j = b, gi,i = 0, gi, j = gj,i ∀i, j (17)

where integer b is a parameter. In the following, we uncover its
connection to our proposed model (10).

With the normal prior and (13), problem (10) can be rewritten as

min
A∈A

−mλ

2
log det

(
1

σ 2
In + 4

λ
L

)
+

n∑
i=1

n∑
j=1

αi, jφi, j . (18)

Suppose that
∑n

j=1 αi, j = b. Thus, we have L = bI − A and

log det

(
1

σ 2
In + 4

λ
L

)

≈ n log
4

λ
+ log det

((
λ

4σ 2
+ b

)
In

)
− tr

((
λ

4σ 2
+b

)−1

A

)

= n log
4

λ
+ n log

(
λ

4σ 2
+ b

)
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where the first-order approximation of logdet with respect to A at A =
0 is used [29]. Since the self-connected edges are ignored by setting
αi,i = 0, ∀i = 1, . . . , n, tr(A) = 0. With the above approximation of
logdet term, our model (18) reduces to

min
A

n∑
i=1

n∑
j=1

αi, jφi, j

s.t.
n∑
j=1

αi, j = b, 0 ≤ αi, j ≤ 1, αi, j = α j,i , αi,i = 0 ∀i, j.

(19)

As a result, the approximate solution of (18) is a relaxation of
the BM problem (17). On the other hand, the equivalence requires
special parameters m, σ , and λ such that

−mλ

2
log det

(
1

σ 2
In + 4

λ
L

)
=

{
const,

∑n

j=1
αi, j = b ∀i

∞, otherwise

with the constraints in (18).

D. Extreme Case: The ε-N Graph

Let us consider an extreme case λ = ∞ for applying the above
optimality conditions. According to (9), the density p(fr ) = π(fr ).
Suppose that the prior π(fr ) is a normal distribution with mean 0
and covariance σ 2 In . We can compute the pairwise distance of latent
variables zi and z j as

E
[‖zi − z j‖2

] = E
[‖zi‖2

] + E
[‖z j‖2

] − 2E
[
zT
i z j

]
=

m∑
r=1

(
E

[
z2
r,i

] + E
[
z2
r, j

] − 2E
[
zr,i zr, j

])
= 2mσ 2.

Now, we have the following rule to construct the graph A:

αi, j = 0 if φi, j > 2mσ 2 else αi, j 	= 0. (20)

Let ε = √
2mσ . Equation (20) is analogous to the ε-N graph,

which means that if the pairwise distance of two input data is larger
than ε, the edge weight is set to zero. The two graphs become
equivalent if αi, j = 1 for all αi, j 	= 0. However, the covariance of
p(fr ) is not simply an identity matrix for λ > 0, so the learned graph
via (10) can be very different from the ε-N graph, i.e., the extreme
case λ = ∞.

V. HYPERPARAMETER ANALYSIS

Denote Q = (1/σ 2)In + (4/λ)L . The dual problem (18) can be
rewritten as a convex optimization with box constraints

min
0≤a≤1

g(a) := −mλ

2
log det(Q) +

∑
i, j

αi, jφi, j (21)

where a is a vector of upper triangular part of A, e.g., {αi, j : ∀i, j > i}
due to the symmetry of A and αi,i = 0, ∀i . As g(a) is continuously
differentiable, for the global minimizer a∗ of (21), we have the
following optimality conditions [30]:

∂g(a∗)
∂αi, j

⎧⎪⎨
⎪⎩

≥ 0, α∗
i, j =0

= 0, 0< α∗
i, j <1

≤ 0, α∗
i, j = 1.

∀i, j > i (22)

According to the optimality conditions (22), we analyze the behav-
iors of hyperparameters in (18) for the practical use.

A. Prevention of a Trivial Solution

Intuitively, a∗ = 0 is a trivial solution since all nodes of the graph
are disconnected. From (22), this trivial solution can be obtained in

the condition of
∂g(0)

∂αi, j
≥ 0 ∀i, j > i. (23)

To prevent the trivial solution, we can impose the following
condition that:

∃(i, j > i),
∂g(0)

∂αi, j
< 0. (24)

The gradient of g(a) with respect to αi, j can be written as

∂g(a)

∂αi, j
= tr

({
−mλ

2
Q−1

}
4

λ
Si, j

)
+ 2φi, j

= 2φi, j − [
Ui,i +Uj, j −Ui, j −Uj,i

] ∀i, j > i (25)

where

Si, j (s, t) =

⎧⎪⎨
⎪⎩

1, s = i = j = t

−1, s = i 	= j = t

0, otherwise

∀, s, t (26)

U = 2mQ−1. (27)

We have g(0) =2φi, j − 4mσ 2 since Q−1 = σ 2 In at A = 0. The
condition (24) becomes

∃(i, j > i), 2φi, j − 4mσ 2 < 0. (28)

Fortunately, this condition can be easily satisfied by letting

σ >

√
mini, j φi, j

2m
. (29)

This is consistent with the analysis in Section IV-D for the ε-N
graph with ε = √

2mσ . If ε = mini, j

√
φi, j , the ε-N graph has no

edges, that is A = 0.
According to (14), we have

E
[‖zi − z j‖2

] = m
(
Q−1(i, i) + Q−1( j, j) − 2Q−1(i, j)

)
= 1

2
tr
(
USi, j

)
which is different from the extreme case ε-N. Hence, we have

∂g(a∗)
∂αi, j

= 2φi, j − 2E
[‖zi − z j‖2

]
(30)

for the optimal A and p(Z). This verifies that the optimal condi-
tions (22) and (15) are equivalent.

B. Impact on Graph Sparsity

Another important factor is the sparsity of A. According to (22),
the number of zeros depends on the number of positive gradients
at optimum. To investigate the impact of hyperparameters on the
sparsity of A, we further rewrite the gradient

∂g(a)

∂αi, j
= 2φi, j − 2meT

i, j Q
−1ei, j

= 2φi, j − 2meT
i, j V diag

([
1

1
σ 2 + 4

λ
γi

])
V Tei, j

where ei, j ∈ R
n with ei, j (i) = 1 and ei, j ( j) = −1 and 0 for

other entries, and L = V
V T are eigenvalue decomposition with
eigenvalues 
 = diag(γ1, . . . , γn) and eigenvectors as the columns of
V . Denote V T = [vk,i ] = [v1, . . . , vn], and we have V Tei, j = vi −v j .
As a result, we have

∂g(a)

∂αi, j
= 2φi, j − 2m

n∑
k=1

1
1

σ 2 + 4
λ
γk

(
vk,i − vk, j

)2
. (31)

This implies that the smaller m, σ , or λ is, the sparser the A is.
However, they control the graph sparsity at different levels. Our graph
Laplacian matrix L is analogous to the regularized graph Laplacian,
which has also been explored in [31].
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C. Reparameterization

To facilitate the setup of the hyperparameters λ and σ , we introduce
two parameters φ > 0 and λ∗ > 0 such that

σ 2 = φ

2m
, λ = 4σ 2λ∗ = 2φλ∗

m
.

According to (29), we have

φ > min
i, j

φi, j . (32)

With this setup, we can rewrite the weighting
2m

1
σ 2 + 4

λ
γk

= φ

1 + γk
λ∗

. (33)

Given an m, the smaller φ and λ leads to sparser A. In general,
we can set a large φ, such as the maximum value of {φi, j }, and then
tune λ∗ to get different levels of sparsity. And σ 2 is the variance of
the prior normal distribution, so it is preferred to be large, so that
the density value on the real space is more flat or uniform. This is
preferred for the data without strong assumptions available. Given
φ, m can be large to allow a smaller σ 2. Suppose that σ 2 = 106,
we have m = (φ/2σ 2) and λ = 4σ 2λ∗. In this setup, λ∗ is the
only hyperparameter for DDPG learning. We will use and verify this
hyperparameter setup throughout all our experiments in Section VII.

VI. EXTENSIONS

In this section, we will explore three simple extensions of (3) for
DDPG construction based on the theoretical analyses in Section IV,
including: 1) the choice of distance metric to be preserved; 2) the
graph refinement; and 3) scalability concern.

A. Transformation of Pairwise Dissimilarity to a Metric

Model (3) is built on pairwise dissimilarities {φi, j } derived from
the input data X and transforms them to the expectation of pair-
wise Euclidean distance of two random variables. The Euclidean
distance (2) is used in [7]. Any dissimilarity function between two
input data can be used. Some dissimilarity functions used for various
purposes are showcased.

1) Minkowski distance with parameter p ≥ 1 is defined as φi, j =
(
∑d

r=1 |xr,i −xr, j |p)2/p, where p = 2 for the Euclidean distance.
2) Kernel distance. Let κ(xi , x j ) = 〈ψ(xi), ψ(x j )〉H be the kernel

function over xi and x j with induced map ψ(xi) and ψ(x j) in
the reproducing kernel Hilbert space H. The Euclidean distance
between xi and x j in the space H is defined as φi, j = ‖ψ(xi)−
ψ(x j)‖2

H = κ(xi , xi )+κ(x j , x j )−2κ(xi , x j ). This metric is the
key in maximum variance unfolding (MVU) [32] for nonlinear
kernel learning in dimensionality reduction.

3) Cosine distance between xi and x j is defined as
φi, j =1−(xT

i x j/(‖xi‖2‖x j‖2)), which is often used for
text data.

4) χ2 distance is useful to compute the distance between
two histograms, defined as φi, j = ∑d

r=1((xi(r) − x j (r))2/
(xi (r) + x j (r))), which is a special measure for histogram data.

It is worth noting that the model (3) takes φi, j as the input and
output of a weighted graph, so it is not related to how these dissim-
ilarities are computed. More complicated measures, e.g., geodesic
distance [33] and conditional probability [34] involving a significant
amount of computations can be used to learn DDPG, but they
are infeasible to be used in other graph learning methods such as
LLR [8]. Given a dissimilarity function, K -NN, BM, and ε-N can
be constructed, but their outputs are connectivity graph, so they need
additional reweighting step with the choice of weighting function to
get a weighted graph.

B. Graph Refinement

Given an initial graph G and its node features X , we can refine the
graph and its edge weights by learning a new weighted graph. Let
Ni be the index set of the neighbors of node i in G. The extension
of model (3) to include an initial graph is formulated as

min
p(Z),{ζi, j } λKL(p(Z)||π(Z)) +

∑
i, j∈Ni

ζi, j

s.t. E
[‖zi −z j‖2

] ≤ φi, j +ζi, j , ζi, j ≥ 0 ∀i, j ∈ Ni . (34)

With the normal prior and (13), the dual problem of (34) can be
rewritten as

min
A

−mλ

2
log det

(
1

σ 2
In + 4

λ
L

)
+

n∑
i=1

n∑
j=1

αi, jφi, j

s.t. 0 ≤ αi, j ≤ 1 ∀i, j ∈ Ni

αi,i = 0 ∀i, j 	∈ Ni , . . . , n

L = diag(A1) − A, A = AT. (35)

The optimal p(Z) in (9) remains as well as the optimality con-
ditions in (15) for αi, j ,∀i, j ∈ Ni hold. In other words, model (34)
prefers to learn a sparser weighted graph according to (15).

C. Learning a Sparse Graph in Medium Scale

Motivated by (34), we can construct an initial graph using K -NN
or ε-N graph from X if no graph is available as a prior. Then,
we solve (35) for a refined weighted graph. It is reasonable since the
optimal αi, j = 0 for the case that φi, j is larger than the expected
distance in latent space. A K -NN graph means that the edges
corresponding to a large distance are removed. This is consistent
with setting αi, j = 0 in model (35). Another merit of this approach
is that the number of variables to optimize reduced to O(

∑n
i=1 |Ni |)

from O(n(n − 1)/2). If K -NN with k � n is used, the number
of variables is about O(kn) linear with the number of data points.
Hence, this approach can be scaled to a medium size of data for
weighted graph learning. The bottleneck of computing logdet term
makes it infeasible for large-scale graph, although the L-BFGS-B
method can be scaled to millions of variables. However, the hybrid
approach might be used to combine DDPG with a bipartite graph as
did in [35].

VII. EXPERIMENTS

In this section, we conduct extensive experiments on both synthetic
and real datasets to verify that: 1) the different levels of sparsity in
DDPG can be controlled by a single parameter λ∗; 2) DDPG can be
used to refine a given graph provided by attributed graph data or speed
up the learning with a precomputed graph constructed by K -NN; and
3) DDPG applied to the local and global consistency (LGC) model
for semisupervised learning can achieve competitive results to the
best graphs learned by compared methods.

A. Learning Sparse Graph From a Dense Dissimilarity Matrix

In Section V, we have theoretically analyzed the impact of hyper-
parameters on the sparsity of the learned graph of (18). In this section,
we conduct experiments to empirically illustrate the capability of
learning graphs in various sparsity levels by varying λ∗ ∈ [10−4, 105]
with σ 2 = 106, φ = maxi, j φi, j , m = (φ/2σ 2), and λ = 4σ 2λ∗.
Two datasets are used in the experiments: synthetic three-moon data
of 1500 points in 2-D space with appended 98 noisy features i.i.d.
drawn from a normal distribution with mean 0 and standard deviation
0.14, and real-world teapot data of 400 images consisting of 76 ×
101 red green blue (RGB) pixels. The Euclidean distance between xi

and x j is used to calculate φi, j .
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Fig. 1. Weighted undirected graphs learned by the proposed model with varied λ∗ on three-moons (top row) and teapot (bottom row).

Fig. 2. Sparsity of the learned graph by varying λ∗ on (a) three-moons and
(b) teapot datasets.

Fig. 1 shows the learned graph A in terms of λ∗ ∈ [1, 103] on
three-moon and teapot datasets. It is observed that all learned graphs
can properly capture the manifold structure of two data: three half
circles and one circle. In Fig. 2, we present the sparsity ratio as
the number of zero entries divided by n2 with λ∗ varied in a large
range [10−4, 105]. From the experimental results on two datasets,
we observed that the smaller λ∗ is, the sparser the learned graph A
is. For example, the sparsity ratio can reach 99.5% if λ∗ = 10−4 and
0.3% if λ∗ = 105. Hence, tuning only λ∗ would be enough to get
various sparsity levels.

B. Graph Refinement and Scalability Analysis

We conduct two different experiments for graph refinement: 1) the
input data are graph data with node attributes and 2) a preconstructed
graph from input data.

To demonstrate the graph refinement capability of our model,
Wiki data are used as an attributed graph data, which contains 2405
documents from 17 classes and 17 981 links, and each document is
represented by term frequency–inverse document frequency (TFIDF)
features [36] of 4973 words. The cosine distance is used due to
its good performance for learning from text data. Fig. 3 shows the
input data with link connections and the cosine similarity between
any two documents, and the graph learned by the proposed method
with λ∗ = 1 and others as the setting used in Section VII-A.
By the comparison, it is observed that most connections between two
documents of different classes in the input graph are removed after
graph refinement; the major connections remained are the connections
of documents within the same class, even though quite an amount of
connections in the same class are removed too. The refined graph is
consistent with the cosine similarity matrix.

The graph refinement can be considered as a strategy of learning a
sparse graph with side information, such as the cannot-link priors

Fig. 3. Graph refinement on Wiki data with (a) link connectivity, (b) cosine
distance on TFIDF features of any two documents, (c) learned graph with
λ∗ = 1, and (d) removed edges from G after graph refinement.

in clustering methods. For nongraph input data, learning a graph
from a preconstructed neighborhood graph (such as K -NN graph)
can not only capture the local manifold structure of the input data
in high-dimensional space but also speed up the learning process
with a fewer number of optimized variables. This strategy has been
widely used in locally linear embedding (LLE) and MVU. In Fig. 4,
we report the sparsity and central processing unit (CPU) times of
the proposed methods on data letter, which contains 20 000 samples
with 16 features. First, we show that our model is feasible for learning
sparse graphs on 20 000 data points with fixed k = 10. Second, the
sparser the learned graph is, the more CPU time our model will take.
On 10 000 subsamples, we also vary the parameter K in the K -NN
graph to form different predefined graphs. A large K decreases the
sparsity linearly in the predefined graph, but a small λ∗ can promote
more sparsity while sacrificing the convergence speed.

C. Graph-Based Semisupervised Learning

We previously have demonstrated in [7] that the graph learned
by the proposed model can work well for dimensionality reduction
and clustering problems. In these experiments, we will show that our
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Fig. 4. Sparisty and CPU time of the proposed methods on data letter with
respect to varied sizes of samples, predefined K -NNs, and λ∗ ∈ [0.1, 1, 10].

TABLE I

OUR GRAPH LEARNING USING DIFFERENT TYPE OF INPUT
DISSIMILARITY FUNCTIONS AND THE NORMALIZED AND

UN-NORMALIZED LAPLACIAN MATRICES ON THESE GRAPHS

learned graph can also be well used for graph-based semisupervised
learning. We compare the graphs learned by the proposed model with
the other graph construction methods, including K -NN, BM, and
LLR graph in terms of graph-based semisupervised learning. LGC [3]
as the representative method serves as the base learning model to
demonstrate the usefulness of the graphs learned by the proposed
model. Following the same experimental settings in [6], we run
our graph learning model on two datasets USPS and TEXT [37]
to get the learned graphs, and then, LGC is evaluated on both 10
and 100 labeled samples with the learned graphs. Four different
dissimilarity functions as shown in Section VI-A were evaluated with
both normalized and un-normalized graph Laplacian matrices. The
shorthand notations for these variants are shown in Table I. In our
experiments, we apply the Gaussian kernel as the function to compute
kernel distance. As our graph learning model learns a weighted graph,
we do not need to construct a connectivity graph and then apply
weighting schema such as Gaussian kernel or LLR. For the bandwidth
of the Gaussian kernel, we use the average of the pairwise Euclidean
distance matrix. The other three dissimilarity functions in Table I do
not have any parameters. The same setting of our graph learning
model in Section VII-A is applied, where λ∗ ∈ [10−2, 102] with
σ 2 = 106. The mean and standard deviation of error rates over 12
random splits provided in the datasets are reported in percentage.

In Table II, we compared LGC with graphs constructed by our
method to those with K -NN and BM method, as well as the five
best performers reported in [37]. Note that the Euclidean distance
and kernel distance are applied to USPS, while cosine distance and
χ2 for TEXT due to the properties of their features. Also, LGC-BM
and LGC-KNN take the Euclidean distance and χ2 distance for USPS
and TEXT, respectively [6]. From Table II, we have the following
observations.

1) LGC with our graphs sometimes can achieve the best
results such as local and global consistency–density-based
distance preserving graph- Gaussian kernel–normalized

TABLE II

ERROR RATE IN PERCENTAGE OF COMPARED METHODS ON TWO
BENCHMARK DATASETS AND LGC USING DIFFERENT

GRAPH CONSTRUCTION METHODS

Fig. 5. Sensitivity analysis of our method with respect to parameter λ∗ on
two datasets with both 10 and 100 labels on four distance functions.

(LGC-DDPG-GK-N) on USPS with 100 labels and obtain
very competitive results to the best performer.

2) With the base learner LGC, our graph is consistently better
than K -NN and comparable to the best one local and global
consistency-b-matching-Gaussian kernel (LGC-BM-GK) of the
three different BM graphs.

We also conduct the sensitivity analysis of our learned graphs in
LGC in terms of error rate with respect to λ∗. The results are shown
in Fig. 5. On USPS, the learned graphs with different metric functions
behave similarly in LGC, that is, the larger the lambda is, the bigger
the error rate becomes, especially λ∗ > 10 for both normalized
and un-normalized graph Laplacian matrices. However, LGC with
learned graphs using cosine and χ2 demonstrate completely different
behaviors: LGC with cosine distance prefers large λ∗, while LGC
with χ2 performs robustly on a large range of small λ∗ but becomes
worse for λ∗ > 10. From the graph sparsity point of view, LGC
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with χ2 distance is more robust than that of cosine distance on
sparser graphs. Although they behave very differently, both models
can achieve competitive results on TEXT with the best baseline
method.

All the above observations imply that the graphs learned by our
model with different settings can be directly applied to graph-based
semisupervised learning models to produce competitive results. Also,
it has the advantage of learning graph connectivity and the edge
weights simultaneously based on a single hyperparameter after the
input distance metric is selected.

VIII. CONCLUSION

We propose to explore the hidden graph encoded in the dual prob-
lem of the density-based distance preservation method for embedding
learning as a new approach to construct a sparse similarity graph
for various learning problems. Unlike existing methods, our graph
learning model aims to learn an undirected graph with nonnegative
weights. Also, it can be interpreted as the similarity in analogy to
neighborhood graphs from any given dissimilarity metric. Our model
takes one single hyperparameter after reparameterization to facilitate
the control of the sparsity levels. Besides, our model can be used to
refine and reweigh a given graph. The encouraging results obtained in
semisupervised learning are showcased. The optimization problem is
strongly convex, so the solution is globally optimal, and it facilitates
a joint optimization of the graph learning and other learning criteria.
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