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SRT technologies, such as 10X Visium, Slide-Seq1,2, high- 
definition spatial transcriptomics (HDST)3, Seq-scope4 and 
XYZeq5, have bloomed recently. SRTs provide gene expres-

sion data for the whole transcriptome at near- or sub-single cell 
resolution, in tandem with matching spatial information and, for 
many techniques, also matched pathology images stained by hema-
toxylin and eosin (H&E) or immunofluorescence (IF). The units 
of sequencing are called spots or beads in different techniques but 
are essentially a small cluster of cells (up to a few dozen), or even 
parts of a single cell for some newer techniques with higher spatial 
resolution, such as HDST. These powerful techniques have enabled 
researchers to localize cell types within tissues, characterize spatial 
expression patterns, define local cell ecosystems and resolve the spa-
tiotemporal order of cellular development.

However, such technologies suffer from severe noise in gene 
expression measurements. The noise comes from random variations 
due to the shallow nature of sequencing for each spot/bead, similar 
to standard single-cell RNA-sequencing (scRNA-seq), but is also 
further complicated by the extra and delicate experimental steps 
needed to preserve the spatial locations of sequencing. Thus, pre-
processing of SRT data to remove such noise is necessary before any 
downstream analyses. The methodologies developed for addressing 
scRNA-Seq drop-outs (loss of expression)6,7 are probably insuffi-
cient for this purpose, as expressional noise in SRTs can be different 
from that generated just by drop-outs. Moreover, such methods rely 
on only the expression data themselves to correct for drop-outs, so 
can be limited in the extent to which drop-outs can be corrected 
reliably. In other words, the methodologies used ignore the spatial 
and imaging features of the spots/beads provided by SRTs, which 

can potentially guide and improve the correction of SRT noise with 
useful external information.

In this work, we demonstrate the existence of extensive noise 
in SRT data. We developed Sprod, short for spatial profiling 
de-noising, to impute accurate gene expression by leveraging the 
location information of each measurement and the corresponding 
imaging data, which are available for many SRT techniques. By test-
ing on a variety of SRT datasets, we validated Sprod’s accuracy and 
robustness systematically. We also showed its superiority to existing 
drop-out removal methods for scRNA-seq data. Applying Sprod to 
several real SRT datasets revealed interesting biological features that 
were not discovered before due to noise in the data. Overall, using 
these example applications, we show that careful handling of techni-
cal noise in SRT data is a critical first step to the unbiased discovery 
of new biological knowledge.

Results
Extensive noise exists in SRT data. We first demonstrated the 
existence of extensive noise in SRT data. We investigated a 10X 
Visium ovarian cancer dataset, with matched IF images of CD45/
LCA (leukocyte common antigen), keratin and DNA. Figure 1a 
presents the CD45 protein expression obtained by IF staining and 
the RNA expression level of PTPRC (the gene encoding CD45) 
obtained from both the target panel and whole transcriptome 
sequencing by Visium. Strikingly, there is a very poor correlation 
between CD45 protein IF and PTPRC RNA expression. When 
the spots were subdivided, keeping only those with higher overall 
sequencing depth, which are potentially of higher quality, the cor-
relation improved by a large extent (Extended Data Fig. 1). One of 

Sprod for de-noising spatially resolved 
transcriptomics data based on position and  
image information
Yunguan Wang1,6, Bing Song   1,6, Shidan Wang1, Mingyi Chen   2, Yang Xie1,3, Guanghua Xiao1,3, 
Li Wang   4 ✉ and Tao Wang   1,5 ✉

Spatially resolved transcriptomics (SRT) provide gene expression close to, or even superior to, single-cell resolution while 
retaining the physical locations of sequencing and often also providing matched pathology images. However, SRT expres-
sion data suffer from high noise levels, due to the shallow coverage in each sequencing unit and the extra experimental steps 
required to preserve the locations of sequencing. Fortunately, such noise can be removed by leveraging information from the 
physical locations of sequencing, and the tissue organization reflected in corresponding pathology images. In this work, we 
developed Sprod, based on latent graph learning of matched location and imaging data, to impute accurate SRT gene expres-
sion. We validated Sprod comprehensively and demonstrated its advantages over previous methods for removing drop-outs in 
single-cell RNA-sequencing data. We showed that, after imputation by Sprod, differential expression analyses, pathway enrich-
ment and cell-to-cell interaction inferences are more accurate. Overall, we envision de-noising by Sprod to become a key first 
step towards empowering SRT technologies for biomedical discoveries.

Nature Methods | VOL 19 | August 2022 | 950–958 | www.nature.com/naturemethods950

mailto:li.wang@uta.edu
mailto:Tao.Wang@UTSouthwestern.edu
http://orcid.org/0000-0002-9905-410X
http://orcid.org/0000-0001-6754-0480
http://orcid.org/0000-0003-2658-4262
http://orcid.org/0000-0002-4355-149X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-022-01560-w&domain=pdf
http://www.nature.com/naturemethods


ArticlesNATuRE METHODS

the many possible sources of inaccuracies results from drop-outs, 
as in standard scRNA-seq6–8. In Fig. 1b, it is clear that a high level 
of drop-outs exists in the expression of PTPRC (excessive zeros at 
X = 0). We created a gene signature for PTPRC RNA expression by 
including genes highly correlated with PTPRC, which essentially 
removed drop-outs by ad hoc averaging. We found that this fur-
ther improved the correlation of the PTPRC RNA signature with 
CD45 protein IF intensity (Extended Data Fig. 1) compared with 
the single PTPRC gene.

Indeed, we observed that drop-outs are a severe issue in both 
Visium and Slide-seq datasets. In Fig. 1c, we showed the per-
centages of zero counts of all captured genes as a function of the 
average expression of each individual gene across all beads/spots, 
for expression measurements from Visium, Slide-seq, standard 
scRNA-seq and standard bulk RNA-seq (from the TCGA breast 
cancer cohort). In all techniques, the percentages of zero counts 
increased with lower average gene expression levels, as expected. 
The drop-outs rates for Visium are lower than those of standard 
scRNA-seq, as each spot of Visium sequencing usually contains a 
group of cells. Slide-seq has a much higher resolution (very close 

to single-cell resolution), and a much higher rate of drop-outs 
than standard scRNA-seq, possibly due to its lower per-cell 
sequencing depth.

Noise from SRT data can also stem from inflation of gene 
expression, rather than only a loss of expression (extreme cases 
are drop-outs). We examined another 10X Visium dataset of 
human benign reactive lymph nodes. In normal lymph nodes, fol-
licles and perifollicular ‘ring-like’ structures exist (darker rings in 
H&E-stained tissue images in Fig. 1d and Extended Data Fig. 2), 
which represent reactive germinal centers (GCs) surrounded by 
well-defined mantle zones9–11. However, examination of the expres-
sion of IgD, a marker of mantle zone, in this Visium dataset shows 
only a weak correlation with the ring-like mantle zone structures 
on H&E-stained tissue sides. In one example, mantle zone (Fig. 1d), 
the green color, which stains immunoglobulin D (IgD) expression, 
correlates only weakly with the purple staining, which indicates 
the mantle zone. More importantly, drop-outs cannot completely 
explain the weak correlation observed, as it seems that IgD expres-
sion is strong in some places (such as the GC in the center of this 
mantle zone) where they should not be.
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Fig. 1 | Extensive noise in spatially resolved transcriptomics data. a, Spatial expression levels of CD45 (IF), PTPRC (targeted panel sequencing) and PTPRC 
(whole transcriptomic sequencing) of the 10X Visium Ovarian Cancer dataset. b, Severe drop-outs in PTPRC gene expression for both targeted sequencing 
and whole transcriptomic sequencing. The x axis shows the PTPRC RNA expression level (unit = log2(CPM+1)). c, Severe drop-outs in scRNA-seq, Slide-Seq, 
Visium and bulk RNA-Seq. The x axis shows average RNA expression levels for each gene profiled by each technique/dataset, and the y axis shows the 
percentages of counts of exactly 0 for each gene. d, Example mantle zone structure with poor agreement with IgD expression from the 10X Visium human 
lymph node dataset. The red lines mark the borders of the mantle zone. e, Cartoon describing the calculation of the percentage of sequencing spots with 
expression larger than a given cutoff in the subset of spots with non-zero expression (adjusted exp.%). Prob, probability. f, Adjusted exp.% of beads in the 
four bins of different sequencing qualities in the mouse Slide-Seq dataset and with the cutoffs to define the adjusted exp.% shown on the x axis.
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Slide-Seq data were also investigated. Slide-Seq data do not have 
the matched imaging data for us to cross-reference as a gold stan-
dard. Therefore, we investigated another aspect of the Slide-Seq 
data. Slide-Seq has a much shallower sequencing depth compared 
with Visium and standard scRNA-Seq. This could result in severe 
noise in gene expression measurement, where the measured expres-
sion could be either artificially higher or lower than the true value. 
Here, we focused on the problem of inflated high expression (false 
positive), as the problem of drop-outs has already been investi-
gated. We hypothesized that beads with lower sequencing quality 
are more likely to demonstrate overly inflated expression. As we 
could show (Extended Data Fig. 1) that the total sequencing depth 
of each bead can be used as a surrogate of bead sequencing quality, 
we divided all beads into four bins, based on the total sequencing 
depth. Then, for each gene, we investigated the probability that the 
beads would show a higher expression than a given cutoff in each of 
the bins, among the beads that have the nonzero expression of this 
gene (Fig. 1e). Since bead sequencing quality is a technical issue, we 
expected the beads in different bins to follow similar distributions 
of gene expression. However, as we show in Fig. 1f, there is a dra-
matic difference between beads in different quality bins in terms of 
their gene expression distribution. Bins with lower quality are more 
likely, for all cutoffs employed (x axis), to yield expression counts 
that are larger than the cutoffs (y axis). This unexpected distribution 
difference among bins of different technical qualities could confer a 
high level of bias in analyses.

Sprod for de-noising SRT data based on latent graph learning. 
To remove the substantial level of noise in SRT expression data, we 
developed Sprod (Fig. 2a), which corrects the noise in expression 
data guided by location and imaging information. Sprod operates 
in two stages. In the first stage, Sprod leverages the spatial locations 
of the beads/spots to determine the neighborhoods of the spots/
beads to borrow information. However, it is imperative to consider 
the cell type heterogeneity of the spots/beads in this neighborhood. 
Therefore, borrowing information is restricted only to the cells of the 
same type and/or similar expression profiles. For the Visium plat-
form, SRT data are provided with matched pathology images, from 
which textures and channel intensities can be derived to inform cell 
type heterogeneity. On other hand, for the Slide-Seq platform, no 
matched images are provided. We leverage the fact that the overall 
transcriptomic profiles of the beads should be sufficient for a simple 
cell type clustering task (as shown in Extended Data Fig. 3), which 
essentially averages out noise from individual genes in an ad hoc 
manner. Therefore, we use the overall gene expression profiles of 
the beads to perform unsupervised clustering to detect different 
types of cells. Sprod then creates a ‘pseudoimage’, the ‘image chan-
nels’ of which are the detected cell clusters/types and their assign-
ment probabilities. In the second stage of the model, denoised gene 
expression is generated by capturing the local information on the 
manifold of the learned similarity graph, namely by borrowing 
information from expression data across beads/spots through the 
graph edges. The technical details of Sprod are specified in Methods 
and Supplementary Note 1.

We performed simulation analysis to evaluate and showcase 
the performance of Sprod. We simulated a dataset of 5,000 spots 
(Supplementary Note 2). The spots were divided into three cell 
types: A, B and C. We applied Sprod to this simulation dataset. 
We first checked the graph of spatial/image similarity constructed 
by Sprod and found that the graph generally correctly connected 
spots of the same cell types that are also in spatial proximity (see 
example in Fig. 2b). We evaluated the de-noising performance using 
the sum of absolute error (SAE) between the denoised/raw expres-
sion and the clean expression (with no simulated noise). The metric 
for our evaluation is defined as de-noising% = 1 – SAE(denoised)/
SAE(raw). We tried combinations of all tuning parameters on this 

dataset (all tested parameters described in Methods). Figure 2c 
shows that Sprod can remove noise in the SRT data reasonably well 
across a wide range of parameter combinations. Our exploration 
of these parameter combinations shows that three tuning param-
eters, R (the radius defining the neighborhood of the spots), K 
(the dimension of the latent space) and Lambda (a scaling param-
eter to control clustering sparsity), make a critical contribution to 
the de-noising%, while the other tuning parameters (such as the 
t-distributed stochastic neighbor embedding (t-SNE)-type per-
plexity for building the similarity graph) have minimum influence. 
Overall, K = 10 works the best. In Fig. 2d, we show a surface plot of 
the performances of Sprod (de-noising%) with respect to choices of 
R and Lambda, given K = 10, which stably exceeds 80%. We arrived 
at a set of optimal tuning parameters for this simulation dataset 
(Supplementary Table 1), which serves as a reference for the appli-
cation of Sprod on the real datasets below.

In practice, the simulation data are still different from the real 
datasets, and real datasets also differ from each other, inevitably 
calling for tuning of parameters. We recommend that users start 
from the optimal parameter set in our simulation dataset above, and 
use the two sets of diagnostic plots that we provide with the Sprod 
software (Fig. 2e; 10X breast cancer dataset shown as an example) to 
choose the optimal parameter set. The first diagnostic plot displays 
the spots/beads and the edges of the similarity graph on the physical 
x–y coordinates, which can inform whether the graph has captured 
the pattern of tissue organization correctly. With a good parameter 
set, the pattern of the similarity graph edges should be reflective 
of the pattern of the pathological images. The other two diagnostic 
plots display the spots/beads and the similarity graph in the imag-
ing feature space (dimension reduction performed through t-SNE 
and uniform manifold approximation and projection (UMAP); see 
UMAP result in Fig. 2e). With a good parameter set, the similar-
ity graph edges will connect the spots/beads that are close to each 
other in the imaging feature t-SNE/UMAP plots. We also showed 
in Supplementary Note 2 some example diagnostic plots of ‘bad’ 
parameters, to help users understand how to choose tuning param-
eters for Sprod.

Validation of Sprod shows its capability to remove noise. 
Sprod was first applied to the 10X Visium ovarian cancer data-
set. For the matched images, we included the keratin and 
4,6-diamidino-2-phenylindole (DAPI) IF channels and left out 
the CD45 IF channel for independent validation. Figure 3a shows 
the denoised PTPRC expression on the slide. The ‘discrete’ appear-
ance of the original PTPRC expression (Fig. 1a) disappeared and 
the adjusted PTPRC expression demonstrates a more continuously 
changing pattern and, more importantly, is more consistent with the 
pattern of CD45 IF (Fig. 1a). A scatterplot of CD45 IF intensities 
and denoised PTPRC expression for all spots showed good overall 
correlation (Fig. 3b; Spearman correlation = 0.7 and Pearson cor-
relation = 0.42), in contrast to the original expression (Fig. 1b). 
We also overlaid the differences between CD45 IF and PTPRC 
gene expression for each spot with respect to their physical loca-
tions. As shown in Extended Data Fig. 4, Sprod has indeed largely 
reduced the deviance between CD45 IF intensities and PTPRC gene 
expression for most spots. For comparison, we performed the same 
analyses with SAVER and scImpute6,7, which are software tools for 
drop-out removal in scRNA-seq data. Figure 3c shows that SAVER 
and scImpute achieved only modest improvement in terms of cor-
relation. In addition, another control analysis with Sprod was per-
formed by randomly permuting the image/spatial information. This 
‘scrambled’ control resulted in a very low correlation between CD45 
IF intensities and the ‘denoised’ PTPRC (Fig. 3c). This confirms that 
Sprod removed the noise through correctly borrowing information 
from external image/location information, rather than through 
merely smoothing of the expression data.
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We next investigated a Visium human lymph node dataset. After 
correction by Sprod, the adjusted IgD expression demonstrates a 
spatial pattern more concordant with the H&E-stained images (IgD 
counts shown in Extended Data Fig. 5 and H&E-stained image in 
Extended Data Fig. 2). We highlighted one mantle zone in Fig. 3d 
(red circle in Extended Data Fig. 5 and yellow circle in Extended 
Data Fig. 2). The Sprod-corrected IgD expression formed a more 
distinctive ring-like pattern compared with the original IgD expres-
sion (Fig. 3d), and is more consistent with the structures of mantle 
zones. To quantify the improvement of de-noising by Sprod, we 
computed the expression correlations of IgD with several other 
genes. CD1c and CD20/MS4A1 are also markers of mantle zones 

and should be correlated positively with IgD2. In contrast, CD3 
spans the perifollicular/interfollicular T cell regions and should be 
correlated negatively with IgD3. For Sprod-corrected expression, 
CD1c/CD20 showed a much stronger positive correlation with 
IgD, and CD3 also showed a clearer negative correlation with IgD, 
compared with the original expression data (Fig. 3e and Extended  
Data Fig. 6).

Finally, we applied Sprod in the Slide-Seq mouse brain dataset 
used in Fig. 1. As in Fig. 1f, we calculated whether the overinflation 
of highly expressed genes still persists after Sprod correction from 
beads of lower sequencing quality. Unlike the original Slide-Seq 
data (Fig. 1f), the Sprod-corrected data have almost equal  
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probabilities of observing highly expressed genes across the whole 
range of cutoffs for the four bins of beads (Fig. 3f). We performed 
the same analysis with SAVER (scImpute fails due to large data size), 
and observed a poorer performance in terms of removing artificial 
differences between the four bins (Supplementary Note 2).

Spatially varying gene detection is more accurate with Sprod. 
The detection of spatially variable genes (that is, genes whose 
expression demonstrates certain spatial patterns) is one of the most 
prevalent analyses carried out on SRT data. Mouse hippocampal 
Slide-Seq data1 were examined once again. The hippocampus com-
prises several regions, including Cornu Ammonis (CA) 1, CA2, 
CA3 neurons and dentate gyrus (DG). Stickels et al.1 found several 
clusters of genes enriched in the dendritic region of CA1 by com-
paring beads in the proximal neuropil with the soma of neurons1. 
We tested whether the detection of spatially variable genes after 
Sprod correction is more meaningful. Due to the higher resolu-
tion of Slide-Seq and the nature of the neuronal cells in the mouse 
hippocampus regions, the Slide-Seq beads in this study captured 
different parts of the neurons, rather than different individual 
neurons. We normalized the expression data from of each bead by 
per-bead library size, with the understanding that the normalized 

gene counts reflect the relative enrichment of mRNA transcripts 
within different neuronal regions.

In Fig. 4a, the Slide-Seq beads that correspond to the soma, 
proximal neuropil and basal neuropil of the hippocampus neu-
rons are highlighted in different colors, where these regions were 
identified using the same methods by Stickels et al.1. In Fig. 4b,  
the spatial expression of the Camk2a gene is displayed in the 
order of basal neuropil, soma and proximal neuropil on the x axis. 
Figure 4b shows that there are severe drop-outs in the expression 
of Camk2a (dots concentrated at y < 0.1, 27.2% of all sequencing 
beads), and the beads unnaturally break into two groups by expres-
sion of Camk2a. Camk2a expression in beads without drop-outs 
demonstrates a spatial gradient pattern of lower expression in the 
soma and higher expression in the neuropils. This spatial gradient 
reflects the fact that Camk2a is actively transported from the soma 
to the neuropils for local translation12. The other group of beads has 
Camk2a expression being strictly zero and confounds the interpre-
tation of the Camk2a expression pattern. To remove the drop-outs, 
we first used SAVER. However, as shown in Fig. 4b, SAVER only 
minimally recovered the nonzero expression of those beads with 
drop-outs (still concentrated close to y < 0.1, 27.1% of all beads), 
and the expression of Camk2a remains unnaturally dichotomized. 
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In contrast, Sprod-corrected Camk2a expression has nearly com-
pletely eliminated the drop-out effects (3.5% of beads with expres-
sion <0.1) and the beads now demonstrate an overall consistent 
pattern of high expression of Camk2a in the neuropils and lower 
expression in the soma.

We also examined expression of another gene, Hpca, whose 
expression is higher in the soma but lower in neuropils. Expression 
of this gene also demonstrated a severe artificial dichotomization 
caused by drop-outs (Fig. 4b). SAVER is still unable to sufficiently 
remove the drop-outs. In contrast, in the Sprod-corrected data, 
drop-outs have been mostly removed. Finally, we also found that 
the genes whose expression showed positive or negative correla-
tions with Camk2a and Hpca in the raw data now have enhanced 
positive or negative correlations in the Sprod-corrected data 
(Supplementary Note 2). These results prove that Sprod has indeed 
addressed drop-outs and corrected noises in the SRT expression 
data in a biologically meaningful way, rather than merely numeri-
cally removing zero counts.

Next, we evaluated the effect of Sprod correction on the 
detection of spatially variable genes in a genome-wide man-
ner. SpatialDE13, which was developed specifically for this pur-
pose, was used to detect the genes with stronger expression in the 
proximal neuropil regions than the soma (Supplementary Note 2). 
SpatialDE yielded 28 genes in the uncorrected data with differ-
ential expression at a false discovery rate (FDR)-adjusted P value 
cutoff of 0.05, and identified 124 genes in the Sprod-corrected data 
and 222 genes in the SAVER-corrected data. To validate whether 
these genes show consistency with those previously reported, we 
cross-referenced Tushev et al.14 and Ainsley et al.15, who identi-
fied dendritically localized transcripts via microdissection and 
ribosomal-RNA enrichment, respectively. In Fig. 4c, we showed 
that the Sprod correction has increased the sensitivity of differen-
tial expression analyses greatly, while also retaining good specific-
ity characteristics. The overlap between the differentially expressed 

gene set from Sprod-corrected data and Tushev et al.14 and Ainsley 
et al.15 achieved a Hypergeometric P value of 6.98 × 10–57 and a log 
odds ratio (logOR) = 2.98). This is in comparison with the raw data  
(P value = 2.72 × 10–19, logOR = 4.14), and SAVER-adjusted data  
(P value = 1.8 × 10–5, logOR = 0.57), which indicates that SAVER 
correction has introduced too many false positives. Overall, Sprod 
correction achieved the best balance of sensitivity and specificity for 
differential expression analyses.

We further evaluated the pathways in which these spatially vari-
able genes are enriched. Examination of enriched gene ontology 
(GO) pathways in the spatially variable genes from Sprod shows 
that the corrected data lead to the discovery of more genes/path-
ways (compared with the raw data) that are indicative of synapse 
functions (for example, ‘neurotransmitter uptake’) or molecular 
transport in neurons (for example, ‘axo-dendritic protein transport’) 
(Fig. 4d), consistent with the enrichment of these mRNA transcripts 
in the proximal neuropil regions. For the SAVER-corrected data, 
none of these pathways reached statistical significance.

Sprod facilitates inferring spatial cellular communications. We 
further tested whether Sprod’s de-noising improved the accuracy of 
detection of cell-to-cell interactions. The breast cancer Visium data-
set previously used (Fig. 2e) was examined. We performed expres-
sion clustering of the spots and defined four tumor cell regions 
(Extended Data Fig. 7), with the remaining areas filled with stromal/
immune (SI) cells. Given that each Visium sequencing spot usually 
contains more than one cell, we removed the ‘contamination’ from 
SI cells in the tumor region spots. To do this, we calculated an SI 
‘contamination score’ for each spot in the tumor region using the 
combined SI gene signature from Wang et al.16,17. We removed spots 
with high ‘contamination scores’ and, for the remaining spots, we 
also removed genes in this signature.

CellChat18 was used to examine the interactions between tumor 
cells and SI cells. We further divided tumor and nontumor regions 
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into four sections: region A (tumor cells not adjacent to SI cells), 
region B (tumor cells adjacent to SI cells), region C (SI cells adjacent 
to tumor cells) and region D (SI cells not adjacent to tumor cells) 
(Fig. 5a). The classification procedure is described in Methods. 
Cellchat was deployed to infer cellular communications among 
the cells in these four regions. We hypothesize that long-distance 
tumor–SI cellular communications (B→D or C→A) should be 
substantially less active than the cellular communications at the 
boundaries of the tumor regions (B→C or C→B). Indeed, in the 
Sprod-corrected data, the number of significant ligand–receptor 
pairs inferred by CellChat is higher for B→C communication than 
for B→D and higher for C→B than for C→A (Fig. 5b). In contrast, 
the raw expression data yields a notably reduced number of inter-
acting pathways overall and more B→D than B→C interactions, 
which is less interpretable.

In particular, we noted that the pathway of PD-L1 and PD-1 in 
the significantly interacting pathways detected from the denoised 
expression data, but not in the original expression data. The role of 
the antagonizing interactions between PD-L1 and PD-1 in breast 
cancers has been well established19–21. In the denoised data, this 
pathway was observed to be significant in the A→C and B→C 
direction, but with stronger confidence in B→C (CellChat prob-
ability score = 2.21 × 10–8, P value <1 × 10–10) than in A→C (prob-
ability score = 1.72 × 10–8, P value <1 × 10–10). We visualized the 
expression of the ligand PD-L1/CD274 in the tumor cells and the 
receptor PD-1/PDCD1 in the SI cells in Fig. 5c, for both the raw 
and denoised data. Overall, the denoised data demonstrated a 
more obvious coexpression of PD-L1 and PD-1 around the inter-
faces of the tumor–SI regions compared with the raw expression. It 
is also evident that the expression of PD-L1/PD-1 is not uniformly 
high along the interfaces, but rather possesses a local enrichment 
pattern. To objectively quantify the coexpression of PD-L1/PD-1 
in the B/C regions, we defined close pairs of spots, with one spot 
in the B region and the other in the C region (Fig. 5d). In the pairs 
from the Sprod denoised data, the expression of tumor region 
PD-L1 becomes much higher when neighboring SI regions dem-
onstrate higher PD-1 expression (Fig. 5e; t test P value = 5.6 × 10–6).  
But when PD-L1 becomes higher in the tumor cell regions, the 
expression of PD-1 is only minimally higher in the SI regions  
(t test P value = 6.1 × 10–5; no difference in median values). This 
unidirectional observation is intriguing and also very reasonable, 
as we anticipate that tumor cells will upregulate PD-L1 expres-
sion in response to the cytotoxic pressure from PD-1+ T cells, but 
not the other way around. In other words, this analysis revealed a 
causal relationship between the interactions of the PD-L1/PD-1 
pathway. With the raw expression data, however, we do not make 
this observation (Fig. 5e; P value = 0.005 and 0.007; no differ-
ence in median value in either test). Overall, our above analy-
ses indicated that Sprod also enabled more accurate inference of 
cell-to-cell communications.

Higher resolution and 3-dimensional SRT datasets. Although 
the current study focused on Visium and Slide-Seq, Sprod is also 
applicable to newer techniques such as HDST3 and Seq-scope4. It 
is important to note that HDST and Seq-scope (and most probably 
future SRT techniques as well) achieve much higher resolution than 
Visium and Slide-seq. Noise in the SRT data is likely to be more 
prevalent, necessitating even more cautious preprocessing before 
drawing any conclusions. We provide our results on one Seq-scope 
dataset in Supplementary Note 2, which proves that Sprod is appli-
cable for such super-resolution SRT data. In addition, 3-dimensional 
(3D) spatial transcriptomics technologies are also emerging, such 
as STARmap22. With little modification, the graph building model 
employed by Sprod was easily extended to consider spatial depen-
dency in the 3D space. We provide our results on one example 3D 
SRT dataset in Supplementary Note 2.

Discussion
We developed Sprod to impute accurate gene expression in SRT 
data. The existence of extensive noise in SRT data can impact 
downstream analysis severely and result in substantial bias and 
misleading conclusions. Sprod took an approach of leveraging the 
physical location and matched imaging data of SRT to remove 
such noise, rendering analysis and interpretation of SRT data 
more robust and accurate. Technically, the location/imaging simi-
larity graph is obtained by an innovative sparse graph construc-
tion method based on a probabilistic density-based approach. 
This modeling strategy can tolerate high-dimensional data  
noise, preserve the pairwise metric and integrate the imaging 
and positional features in a unified framework23. We system-
atically validated Sprod and its performance was demonstrated 
to be superior to algorithms designed solely for the removal of 
drop-outs in scRNA-seq data. Sprod is user-friendly and is capa-
ble of readily handling data generated from a wide variety of  
SRT technologies.

Drop-outs, as in standard scRNA-seq data, can be one source 
of the inaccuracies in the SRT data. Concerns have been raised 
in the field that drop-out correction methods for scRNA-seq data 
may introduce oversmoothing and thus erroneous signals in the 
scRNA-seq data24,25. Since standard scRNA-seq data only provide 
the gene expression of individual cells, these drop-out removal 
methods inevitably have to rely on only this information to correct 
the drop-outs, which may lead to the oversmoothing among cells. 
For SRT data, Visium, Slide-seq or similar technologies provide 
the spatial locations and often imaging features associated with the 
spots/beads. Sprod took the approach of leveraging such external 
information for reliable imputation, which can avoid oversmooth-
ing. In addition, the latent graph building process in Sprod enforces 
a neighborhood constraint (R) in de-noising, further preventing the 
potential problem of oversmoothing.

Sprod is designed as a universal application that can be used with 
SRT technologies other than those demonstrated in the current 
study. However, there are differences between SRT technologies, so 
considerations should be given to how to best apply Sprod for each 
technology. This study focused on Slide-Seq and 10X Visium data, 
between which one distinction is the level of resolution. Each bead 
in Slide-seq likely profiles a 10 μm × 10 μm region, whereas each 
spot in Visium profiles a 55 μm × 55 μm region. The sequenced cells 
and the multicellular structures of the tissues, on the other hand, 
are also of various size scales depending on the tissue and cell types. 
These factors together determine the degree of spatial dependency 
between spots/beads. The R parameter (physical scope to exam-
ine for spatial dependency) should be set larger for tissue types 
and SRT technologies that impart a weaker spatial dependency, to  
introduce fewer constraints on spatial dependency in the graph 
building process.

An important limitation of our work is that our image feature 
extractor is based on simple statistics of image features such as 
channel density or texture. We made this choice, as we want readers 
to focus on the de-noising of SRT expression data, and also because 
we already achieved decent performances with this design. Future 
works can expand the image feature extractor to consider those 
newer deep learning-based approaches to extract image features, 
which might lead to better performance. In fact, our Sprod software 
was engineered to take external image features provided by users, 
making this choice possible.

Despite the great advancements of SRT technologies, the 
field must pay close attention to the quality issues of SRT data, 
which are more challenging than standard scRNA-seq. We envi-
sion that Sprod, which has been developed specifically for impu-
tation of accurate SRT gene expression, will become a key first 
step to empower SRT technologies for biomedical discoveries  
and innovations.
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Methods
Overview of Sprod. Sprod takes the positional and image features as input, 
calculates a latent graph from these features, and finally uses the latent graph 
to smooth out noise in the original SRT expression matrix. In our study, the 
SRT expression matrices were transformed to the CPM (or CPK) scales and 
log-transformed. For future users, preprocessing of expression matrices (use 
of either counts/CPM/RPKM/TPM, normalization, batch correction, log 
transformation) is assumed to be the responsibility of the users and is conducted 
before Sprod analysis, as necessary. The Sprod model will use only the expression 
matrices as is. The final output includes the denoised expression matrix, and 
the graph of spatial/location similarity of the spots/beads. The core Sprod 
model was implemented in the R language, and image manipulation and input/
output interfaces were implemented in the Python language. The detailed model 
description was provided in Supplementary Note 1.

Image processing and feature extraction. The Python ‘skimage’ package (v.0.18) 
was used for all image processing and feature extraction operations. IF and H&E 
images were first normalized into an eight-bit format. For H&E images, additional 
steps including stain separation (skimage.colors.separate_stains) and adaptive 
histogram equalization (skimage.exposure.equalize_adapthist) were used to ensure 
the channels in the normalized image are minimally correlated.

Sprod relies on two types of image features based on the input data type. For 
datasets with matching IF or H&E images, two sets of features were extracted. 
For both sets of features, the image region from which the features were extracted 
can be the spot itself (‘spot’) or a box covering both the spot and its neighboring 
regions (‘block’). We calculated the 20th, 30th, 40th, 50th, 60th, 70th and 80th 
percentiles of intensity values among all the pixels in each sequencing spot/block in 
each channel. These values were used as the intensity features for Sprod.  
We also calculated six sets of Haralick’s texture features26, including contrast, 
dissimilarity, homogeneity, ASM, energy and correlation, for each sequencing 
spot/block in each channel. Specifically, ‘skimage.feature.greycomatrix’ was used 
to extract the texture features with ‘offset=[1]’ and ‘angles=[0, π/4, π/2, 3π/4]’. We 
enabled the option of choosing block- versus spot-level and intensity versus texture 
image features to the user. For the datasets used in our study, our choices were 
shown in Supplementary Table 1.

For datasets without matching images, such as those generated by the 
Slide-Seq, pseudoimages were created. These features were generated in 
the following steps. Highly variable genes were selected using the ‘scanpy.
preprocessing._highly_variable_gene’ method (https://github.com/theislab/scanpy/
blob/f7279f6342f1e4a340bae2a8d345c1c43b2097bb/scanpy/preprocessing/_
highly_variable_genes.py). UMAP transformation was applied on the normalized 
dataset with only the highly variable genes, and beads in the transformed data were 
partitioned into clusters using the Dirichlet process27,28. The pseudoimage features 
were then assigned by the possibility of each bead belonging to each cluster.

Scaling up in large datasets. Sprod is fast for datasets of thousands of spots/beads. 
However, for large datasets with tens of thousands of spots, special operations 
must be performed so that Sprod can run smoothly. In this work, we employed 
a splitting-stitching scheme to facilitate large dataset processing. Each Slide-Seq 
dataset was randomly (not dependent on spatial location) divided into n (ten by 
default) equal-sized subsets, and this process was repeated b (ten by default) times. 
Sprod de-noising was performed on each of the n × b subsets and the denoised 
results were concatenated. Each spot was exactly denoised b times, and the 
concatenated denoised data from the n sampling batches were averaged so that the 
randomness resulting from the subsampling was averaged out.

Generation of simulation data. In the simulation analyses (Fig. 2), three matrices 
were simulated as the input data: the ‘Expression matrix’ (E), ‘Spots_metadata’ (C) 
and ‘Image features’ (IF). E had 100 genes and 5,000 spots and comprised 282 spots 
of cell type A (3 clusters), 232 spots of cell type B (2 clusters) and 4,486 spots of cell 
type C. C is the x/y coordinates of the spots. A Dirichlet process clustering of the 
expression matrix was performed on the expression data to detect the cell types, 
and the cell type labels and their assignment probabilities formed the IF matrix, in 
the same way as Sprod created the ‘pseudoimages’.

In particular, the expression matrix, E, was a sum of three parts: (1) 
expressional variation of cell types, E1. This was generated from a multivariate 
normal distribution with three different means corresponding to the three cell 
types, and the covariance matrix was chosen such that three clusters of cells are 
visually discernible in the first two components of a principal component analysis 
transformation. (2) Expressional variation of spatial dependency, E2. Here, we 
reasoned that spots of the same cell types that were nearby should have more 
similar expression. We simulated E0 from a multivariate normal distribution with 
mean of zero and the covariance matrix calculated based on the exponential of 
the negative of the Euclidean distances between all spots. The covariance among 
different cell types is set to zero so spatial dependency happens only for spots of 
the same cell types. E2 was scaled so that its variation was comparable with that of 
E1. (3) White noise in expression, N. N was a matrix of white noise generated from 
independent normal distributions with a mean of zero and equal variance, which 
is controlled at several different levels (Fig. 2c). We admit that the white noise 

approach could be overly simplistic, which is a potential caveat of the simulation, 
but it is hard to obtain the real distribution of the noises. The summed expression 
matrix is then E = E1 + E2 + N. Finally, the E matrix was transformed by an 
exponential function and scaled such that its distribution mimics the distribution 
of typical SRT data.

The details of our simulation, especially all the numeric settings, can be found 
in our simulation script, made available at: https://github.com/yunguan-wang/
SPROD.

Hyperparameter optimization. We employed grid search for determining 
an optimal set of tuning parameters for the simulated dataset. We evaluated 
combinations of these possible values: R (0.04–0.24, step size = 0.01), K (3–10, step 
size = 1), U (250, 500 and 1,000), Lambda (0.1–1, step size = 0.1, plus 5 and 20) 
and L_E (0.3125, 0.625, 1.25 and 2.5). R is the radius to define the neighborhood 
of the spots. K is the dimension of the latent space. Lambda is a scaling parameter 
to control clustering information. U is the perplexity of the t-SNE-like distance 
function of the input image data. L_E is a penalty parameter adjusting for the 
relative weight between the original expression matrix and the information from 
the spots in the neighborhood on the graph. In the real data applications, the 
parameters were selected by referring to the best parameter set according to the 
simulation dataset, which was determined by grid search, and adjusted based on 
the diagnostic plots (Fig. 2e). The parameters used in all datasets involved in this 
work are listed in Supplementary Table 2.

Defining tumor and SI spots/regions that are close neighbors. In the breast 
cancer 10X Visium dataset, the spots were clustered based on gene expression, 
examined manually and merged to the tumor and SI regions. Four tumor regions 
were defined (left, mid, mid-right, top-right) based on the cluster and spatial 
information. The tumor spots and their gene expression were cleansed for SI 
cell contamination. Specifically, a stromal gene module and an immune gene 
module were defined by the union of the gene signatures for SI cells defined by 
Wang et al.16,17. Each spot was given a score for the stromal cells and a score for 
the immune cells, based on the average normalized expression levels of the genes 
in each module. The tumor region spots with the top 5% of the module scores 
were then filtered out. For the remaining tumor region spots, these immune- and 
stromal-related genes were also filtered out.

In Fig. 5a, we further split the tumor regions into two subsets: tumor regions 
not close to SI cells (A) or close to SI cells (B). For each spot in the tumor region, 
we draw a circle based on a radius of twice the size of the spacing between two 
neighboring spots in the Visium spot lattice. We count the number of SI region 
spots in this circle. This spot will be classified as ‘B’ if its closest neighboring spots 
in the SI regions are more than a given cutoff. The cutoff is 15 for the left region, 25 
for the mid region, 20 for the top-right region and 15 for the mid-right region. This 
cutoff is adjusted slightly to ensure a smooth appearance of the classified ‘A’ and ‘B’ 
tumor regions. The SI region spots were classified similarly into ‘C’ (close to tumor 
region) and ‘D’ (not close to tumor region).

In Fig. 5d, we examined all pairwise connections between the type B spots and 
type C spots and calculated their distances. When the distance between a type B 
spot and a type C spot is smaller than three times the minimum of all distances, the 
two spots were counted as a close pair.

Statistical analyses. All computations were conducted in the R or Python 
programming languages. UMAP and t-SNE were conducted by the UMAP v.0.2.7.0 
or Rtsne v.0.15R packages. Drop-out removals were conducted by SAVER v.1.1.2 and 
scimpute v.0.0.9. For all boxplots appearing in this study, box boundaries represent 
interquartile ranges, whiskers extend to the most extreme data point (no more than 
1.5 times the interquartile range) and the line in the middle of the box represents 
the median. All figures were made using the Python ‘matplotlib’ and ‘seaborn’ 
packages or the R ‘ggplot2’ package. In Fig. 4, functional enrichment analysis using 
hypergeometric tests was performed using the ‘gseapy’ package in Python. In Fig. 5, 
cell-to-cell communications were inferred by the CellChat v.1.1.3 package.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The Visium datasets are obtained from the public 10X resources/
datasets website: https://www.10xgenomics.com/resources/datasets. 
The IDs of the datasets are: human-lymph-node-1-standard-1-1-0, 
Human-ovarian-cancer-whole- transcriptome-analysis-stains-dapi- 
anti-pan-ck-anti-cd-45-1- standard-1-2-0, human-ovarian-cancer-targeted- 
pan-cancer-panel-stains- dapi-anti-pan-ck-anti-cd-45-1- standard-1-2-0 and 
human-breast- cancer-block-a-section-1-1- standard-1-1-0. The ID of the standard 
10X scRNA-seq dataset used in Fig. 1c is 10-k-peripheral-blood-mononuclear- 
cells-pbm-cs-from-a-healthy-donor- single-indexed-4.0.0. The Slide-Seq data are 
available from the publicly archived data by Stickels et al.1. Specifically, we used the 
Puck_200115_08 data from https://singlecell.broadinstitute.org/ single_cell/study/
SCP815/highly- sensitive-spatial-transcriptomics- at-near-cellular-resolution-with- 
slide-seqv2.
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Code availability
The Sprod software is available at: https://github.com/yunguan-wang/SPROD. The 
doi is https://doi.org/10.5281/zenodo.604775229.
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Extended Data Fig. 1 | Correlation between PTPRC RNA expression (targeted) and CD45 protein expression (IF). Red arrows mean that the results are 
limited to spots of higher quality. Yellow arrows mean that the single gene of PTPRC is replaced by a signature of PTPRC by including correlated genes.
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Extended Data Fig. 2 | Overlaying the un-corrected IgD gene expression on the H&E stained image in the 10X Visium human lymph node dataset. The 
whole slide is shown, with the three examples of Fig. 1d picked from this slide. The yellow circle marks the mantle zone to be highlighted in Fig. 3d.
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Extended Data Fig. 3 | Gene expression clustering of the beads in the mouse brain Slide-Seq dataset. Gene expression clustering of the beads in the 
mouse brain Slide-Seq dataset reflects the multi-cellular structures of mouse brain hippocampus. a, Slide-seq dataset puck 200306_03 and b puck 
200115_08 by Stickels et al.1.
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Extended Data Fig. 4 | Deviances between CD45 IF intensities and the expression levels of PTPRC (left: original, right: denoised). CD45 IF intensities 
and PTPRC expression values were normalized and distributionally warped to the same scale so they can be directly compared. The differences between 
CD45 IF and PTPRC on each spot are denoted by color. Red refers to small differences and green refers to larger differences.
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Extended Data Fig. 5 | Spatial IgD expression of the raw Visium data (left) and the Sprod-adjusted data (right). The red circles mark the mantle zone to 
be highlighted in Fig. 3d.
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Extended Data Fig. 6 | Spearman correlations between IgD and CD3/CD20/CD1c for the human lymph node Visium dataset. Results are shown for 
the original expression data, SAVER/scImpute-corrected data, the Sprod-corrected data, and the Sprod-corrected data with image/location information 
scrambled.
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Extended Data Fig. 7 | Extraction of four tumor regions. The four tumor regions (blue, green, orange and red) that were extracted, according to 
expressional clustering and concordance with the H&E stained slide.
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