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Abstract
Purpose.This study aims to develop and validate amulti-view learningmethod by the combination of
primary tumor radiomics and lymphnode (LN) radiomics for the preoperative prediction of LN status
in gastric cancer (GC).Methods.A total of 170 contrast-enhanced abdominal CT images fromGC
patients were enrolled in this retrospective study. After data preprocessing, two-step feature selection
approach including Pearson correlation analysis and supervised feature selectionmethod based on
test-time budget (FSBudget)was performed to remove redundance of tumor and LN radiomics
features respectively. Two types of discriminative features were then learned by an unsupervised
multi-view partial least squares (UMvPLS) for a latent common space onwhich a logistic regression
classifier is trained. Five repeated randomhold-out experiments were employed.Results.On20-
dimensional latent common space, area under receiver operating characteristic curve (AUC),
precision, accuracy, recall and F1-score are 0.9531±0.0183, 0.9260±0.0184, 0.9136±0.0174,
0.9468±0.0106 and 0.9362±0.0125 for the training cohort respectively, and 0.8984±0.0536,
0.8671±0.0489, 0.8500±0.0599, 0.9118±0.0550 and 0.8882±0.0440 for the validation cohort
respectively (reported asmean±standard deviation). It shows a better discrimination capability than
single-viewmethods, our previousmethod, and eight baselinemethods.When the dimensionwas
reduced to 2, themodel not only has effective prediction performance, but also is convenient for data
visualization.Conclusions.Our proposedmethod by integrating radiomics features of primary tumor
and LN can be helpful in predicting lymphnodemetastasis in patients of GC. It showsmulti-view
learning has great potential for guiding the prognosis and treatment decision-making inGC.

1. Introduction

Gastric cancer (GC) is thefifthmost commonmalignant tumor and the fourth leading cause of cancer-related
death globally (Sung et al 2021). Lymphnode (LN)metastasis (LNM)determines the extent of LNdissection and
is one of themain independent prognostic factors inGC (Forman andBurley 2006, Cho et al 2007, Lum et al
2020). Patients with occult LNMnot diagnosed by histological examination had a significantly poor prognosis
compared to thosewithout occult LNM (Huang et al 2013). Therefore, it is of great significance to evaluate the
LN status for the improvement of prognosis in patients withGC.

In clinic, postoperative factors represented by tumor size, histological types and lymphovascular invasion
have been identified as risk factors of LNMonGCpatients (Shang-Guan et al 2018, Lin et al 2019). However,
nearly half of patients who undergo surgical resectionwill experience relapse (Sada et al 2019). Another strategy
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for evaluating the LN status can be relied on the comprehensive characteristics of primary tumors, butmost of
themneed to be obtained frompostoperative pathological examination (Wang et al 2020). A noninvasive
medical strategy to avoid the risk and complications of operation is needed. Currently, computed tomography
(CT) is themostwidely used imagingmodality for the evaluation of LN inGC. Itmainly relies onmorphological
features, leading to unsatisfactory accuracy only at approximately 60% (Kim et al 2005a, 2005b, Lee et al 2010).
Thus, accurate preoperative prediction for LNMofGCpatients is still a great challenge.

Radiomics is a process that automatically extract high-dimensional quantitative features from imaging data,
followed by further data analysis for clinical decision support (Lambin et al 2012, Gillies et al 2016, Larue et al
2017, Traverso et al 2018). Several works have shown that CT radiomics could facilitate the preoperative
individualized prediction of LN status inGC (Feng et al 2019, Jiang et al 2019,Wang et al 2020, Gao et al
2020a, 2020b). For example, Gao et al (2020a) utilizedmultivariate logistic regression analysis to build aCT-
based radiomicsmodel for preoperative prediction of LNM in 463 early-stageGCpatients, indicting good
predictive power in the training and testing cohort withAUC values of 0.91 and 0.89, respectively.Wang et al
(2020) constructed a radiomics nomogram to predict the LNMbyusing a random forest (RF) algorithm. Its
AUCvalues also showed good discrimination in 247 consecutive GCpatients (training cohort, 0.886
(0.808–0.941); testing cohort, 0.881 (0.759–0.956)). These studiesmainly utilize tumor-only radiomics features
or integrate with a small amount of clinicopathologic features (e.g. CT-reported LN status, serumbiomarkers, T
andN stage) tofind non-invasive predictors of LNM.However, the occurrence of LN is accompanied by the
development and progression of primary tumor. Relying solely on tumor radiomics cannot thoroughly reflect
the heterogeneity underlying the complicated biological process of GC.

In addition to the above characteristics, our previous research found LN radiomics has the predictive power
for discriminatingGCpatients with orwithout LNM (Yang et al 2020). And the LNMof patients can be better
predicted by simply fusing primary tumors radiomics and LN radiomics.Wang et al (2021) also received
favorable predictive accuracy in predictingNo.3 LNM inT1-2GCpatients by integrating quantitative radiomics
features ofNo.3 LN and primary tumors. These results suggest that the combination of tumor radiomics
features and LN radiomics featuresmay capturemore information of heterogeneity and explain latent
relationship between imaging characteristics and LNMrisk inGCpatients. Unfortunately, directly combining
the two togethermay not comprehensively describe the information, thus limits the ability to accurately predict
LN status.

2. Previouswork andnovel contributions

For LNMclassification, tumor radiomics and LN radiomics could be considered as two views (data sources),
which can be complementary and redundant to each other. Considering different viewsmay have different
number of features and are not directly comparable, how to effectively integrate information coming from
different views becomes an urgent problem to be solved.

Multi-view learning has been attracting broad attention for leveraging the data collected frommultiple views
to overcome the limitations of single-view analysis (Sun 2013, Zhao et al 2017). In thefield ofmedical image
processing,multi-view learning has been increasingly used to deal withmachine learning problems (such as
segmentation (Liang et al 2020, Xia et al 2020), recognition (Wei et al 2019, Zhou et al 2021), and classification
(Fratello et al 2017, Puyol-Anton et al 2019, Xie et al 2019, Thammasorn et al 2021)) of high-dimensional data
represented bymultiple distinct feature sets. There has been some relatedworkwithmulti-view learning
methods to establish statistically significant correlations between radiomics and clinical endpoints. Li et al (2020)
presented a radiomics approach to design amulti-view network architecture formammographic density
classification. Lee et al (2020) proposed amulti-view data analysis approach using radiomics and dosiomics
texture features in 388 patients with lung cancer radiotherapy to predict acute-phase weight loss. Nevertheless,
themethodological research ofmulti-viewCT radiomics aiming atGCpatients is still unclear.

To the best of our knowledge, there is no research studying in practical applications ofmulti-view learning in
GC at present. Herein, based on our previous study, we developed and validated amulti-view learningmethod
using both primary tumor radiomics and LN radiomics for the LNMprediction ofGCpatients. The specific
novel contributions of this work are as follows:

• Multi-view learning technology is introduced into the field ofGC radiomics for thefirst time. Amulti-view
subspace learningmethod is utilized to exploit the complementarity ofmulti-view data at the decision level. It
could find a latent subspace shared by each view and fuse them together in a shared view.

• Weextract radiomics features of primary tumor and LN and embed them into a unified framework. Two-step
feature selectionmethodwith an upper bound on the total cost used to access groups of features could remove
redundant information and retain relevant information betweenmulti-view radiomics features.
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• For the preoperative prediction of LNM inGC, ourmulti-view learningmodel could provide advantages
compared to processing the two branches separately.More useful informationwill bemined and the
heterogeneity could bewell represented. As a noninvasive prediction tool, it has the potential to be applied to
other diseases to solve different clinical tasks.

3.Materials andmethods

3.1. Patients
This studywas approved by the Institutional ReviewBoard of the AffiliatedHospital ofQingdaoUniversity
(Qingdao, China). The requirement for informed consent waswaived.One hundred and seventyGCpatients
whowere treated surgically and confirmed pathologically at the hospital betweenMay 2016 andApril 2019were
enrolled in this retrospective study. There are 113 LNpositive (GCpatients with LNM) and 57 LNnegative (GC
patients without LNM)patients with contrast-enhanced abdominal CT images. The inclusion criteria are as
follows: (1) the imaging examination performs<2weeks before surgical resection. (2)GCdiagnosis is
histologically confirmed. (3) Lymphadenectomy is performed. (4)There are complete contrast-enhanced
abdominal CT images, clinicopathologic characteristics, and tumormarker examination. (5)No combined
malignant neoplasm, no distantmetastasis, no preoperative neoadjuvant chemotherapy or radiotherapy are
permitted. (6)The data quality is satisfactory for analysis. The exclusion criteria are as follows: (1) patients
undergo preoperative treatments such as chemotherapy or radiotherapy. (2)Patients are diagnosedwith
advancedGCwhich has spread to other parts of the body (such as liver, lung, brain and bone). (3)No surgical
resection or complete clinicopathologic characteristics. (4)Unclear CT images or imperfect preparation before
CT.CT scanning protocol of all patients were derived.More details can be found in our previous study using this
dataset for the first time (Yang et al 2020).

3.2. Studyflowdiagram
Five repeated randomhold-out experiments were conducted in this study. In each hold-out experiment,
patients are randomly drawn from the dataset at a close to 7:3 ratio to form training cohort and validation
cohort. Theflowdiagramof the study for each hold-out experiment is shown infigure 1. The pipeline of this
study includes fourmain steps: data preprocessing, two-step feature selection,multi-view subspace learning,
and prediction. Data preprocessingmainly includes delineation of tumor volume of interest (VOI) and LNVOI,
interpolation, and feature extraction. Senior radiologists utilized an open-source imaging platform (ITK-SNAP,
version 3.6.0; www.itksnap.org) to delineate tumorVOI and LNVOI onCT scans. After interpolating into
isotropic voxel spacing of 1×1×1mm3, radiomics features of tumorVOI and LNVOIwere extracted using
PyRadiomics (vanGriethuysen et al 2017) (more details shown in the previous work (Yang et al 2020)). Then
two-step feature selection is performed in the training cohort. Redundant tumor radiomics features and LN
radiomics features are removed using Pearson correlation analysis. Discriminative features are selected using a
supervised feature selectionmethod to obtain tumor signature and LN signature. Next, amulti-view subspace
learningmethod takes patients with these two signatures and learns projectionmatrices for a latent common
space onwhich logistic regression classifier is trained. Finally, themodel is tested in the corresponding validation
cohort.

Figure 1.The flowdiagramof each hold-out experiment in the study.
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3.3. Two-step feature selection
Before feature selection, all tumor and LNVOI features were normalized using the Z-score normalization so that
all radiomics features have the same scale with zeromean and standard deviation via the formula
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where xi s, is the sth feature value of the ith patient, ms is themean of the sth feature of all patients in the training
cohort, ss is the deviation of the sth feature of all patients in the training cohort, and xi s,ˆ is the normalized sth
featrure value of the ith patient. The same formula is applied to the sth feature value of patients in the validation
cohort with thefixed ms and ss obtained on the training cohort. In the following steps of the experiment, the
normalized tumor and LN radiomics features were used unless specific statements have been provided.

In the training cohort, we applied the two-step feature selection approach to both tumorVOI features and
LNVOI features to remove redundance for each type of inputs. Our goal is to selectminimal number of features
that are discriminative without degradation of classification performance. These selected features are considered
as the radiomics signature for tumor and LN, respectively. To reach this goal, high correlated tumorVOI
features were first filtered out using Pearson correlation analysis (Meng et al 2019,Wang et al 2019). Then a
supervised feature selectionmethod based on test-time budget (namely FSBudget)was designed to select tumor
radiomics signature for the differentiation between LNpositive and LNnegative patients. The same process was
conducted for LNVOI features and LN radiomics signaturewas also obtained.

Pearson correlation coefficient can be calculated for each pair of two radiomics features over either tumor or
LNVOI features. The larger the coefficient is, the higher the positive correlation of the two features will be.
Features with coefficients larger than a certain threshold are considered as redundant features andwill be
eliminated. Pearson correlation analysis is an unsupervised learning approach, so it cannot differentiate
discriminative and non-discriminative features.

To select discriminative features, we took the FSBudget algorithmwhich learns a linear predictor by
introducing binary indicator variables for selecting groups of features with an explicit budget constraint to
upbound the total cost when the cost is available for each group. In our previous research (Wang et al 2018), a
general and efficient algorithmhad been proposed to solve the relaxation problemby leveraging the existing
support vectormachine (SVM) solvers with various loss functions. The FSBudget algorithm is a targeted
modification on the basis of the previous algorithm to focus onmedical radiomics research.Mathematically,
FSBudget solves the following optimization problem
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1( ) is the training cohort with n patients and d features, xi is the feature vector of the ith patient
with the sth feature x ,i s, =y 1i formetastasis and 0 for non-metastasis, q is an indicator vector with entry as
either 0 or 1 for not selected or selected, respectively. In this study, each feature is treated as a groupwith uniform
cost 1, that is =c 1.s The total budget B becomes the expected number of features to be selected. As FSBudget is
formulatedwith a general loss function L, it is easy to be adapted for different learning problems such as
classification and regression. Our study aims tofinddiscriminative features for binary classification, so the hinge
loss is used. Given a training cohort, five-fold cross validation is conducted to select the optimal hyper-
parameter C in the grid 0.01, 0.1, 1, 10, 100{ }with respect to the classification accuracy.

3.4.Multi-view subspace learning and prediction
Our proposed unsupervisedmulti-view partial least squares (UMvPLS) (Wang and Li 2020)was utilized to learn
one function tomodel tumor signature and LN signature.Without loss of generality, let XLN be the viewLNwith
LN signature and XTU be the view of tumorwith tumor signature. Each column represents one patient in the
training cohort. PLS aims to solve the following optimization problem

= =x P X X P P P P P Ima trace : s.t. , 3P P LN
T

LN TU
T

TU LN
T

LN TU
T

TU k,LN TU ( ) ( )

where P P,LN TU are the projectionmatrix from the number of features to the dimension k of the latent common
space. Both inputs need to be centered so that themean of n columns in XLN and XTU are zeros. To solve
problem (3), theUMvPLS algorithm is used since it can guarantee the orthogonality constraints, and
simultaneouslymaximize the covariance in the common space by relying on proven numerical linear algebra
techniques, while existingmethods often encounter numerical instabilities and offer no orthogonality guarantee
on view-specific projectionmatrices. Orthogonal projections not only possess the nice property ofmetric
preservation, but also provide a natural representation for data visualization similar to principal component
analysis (PCA), but on two views.
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In training phrase, we solve (3) usingUMvPLS for the optimal PLN and P .TU For any given patient, the LN
and tumor signatures (x xand ,LN TU respectively) are projected to the common latent space via the following
formulas:

=z P x , 4L LN
T

LNN ( )

=z P x . 5TU TU
T

TU ( )

Although two signatures are located in different feature spaces, both projected points reside in the same space.
For classification performance, the concatenation of two projected points (i.e. =z z z;LN TU[ ]) often shows better
performance, while the average value of two projected points (i.e. = +z z z 2LN TU( )/ ) can be used for data
visualization. The logistic regression classifier is built on the common latent spacewith the concatenation of two
views using the training cohort.

3.5. Performance evaluation
In the validation phrase, both tumor signature and LN signature of the validation cohort werefirst projected to
the same latent common space via the learned projectionmatrices, and then the predictionwasmade by the
learned classifier. Finally, the performances on the training and validation cohorts were evaluated. The
discrimination performancewas quantified by receiver operating characteristic (ROC) curve and area under the
curve (AUC). Various performancemetrics including precision, accuracy, recall and F1-score, were also used to
measure the quality of the learned binary classifier.Here the evaluation indices are given by

=
+
TP

TP FP
Precision , 6( )

=
+

+ + +
TP TN

TP TN FP FN
Accuracy , 7( )

=
+
TP

TP FN
Recall , 8( )

=
´

´ + +
TP

TP FP FN
F1

2

2
, 9( )

whereTP is the number of the true positive, TN is the number of the true negative, FP is the number of the false
positive and FN is the number of the false negative.

4. Results

4.1.Dataset
A total of 170 patients were enrolled in this retrospective study, including 112men (mean age, 61.61 years; age
range, 33–90 years) and 58women (mean age, 58.76 years; age range, 37–80 years). In each experiment, there
were 118 patients in the training cohort (consisting of 79 LNpositive and 39 LNnegative patients) and 52
patients in the validation cohort (consisting of 34 LNpositive and 18 LNnegative patients). After data
preprocessing andZ-score normalization, 1561 tumor radiomics features and 833 LN radiomics features were
obtained for each patient. These radiomics featuresmainly include three classes: shape,first order statistics and
texture features. Texture features contain gray level cooccurencematrix (GLCM), gray level run lengthmatrix
(GLRLM), gray level size zonematrix (GLSZM), neigbouring gray tone differencematrix (NGTDM), and gray
level dependencematrix (GLDM) features.

4.2. Two-step feature selection
After removing redundant radiomics features,more than 200 tumor radiomics features (mean number, 255.2;
number range, 246–273) andmore than 100 LN radiomics features (mean number, 190.2; number range,
187–194)were retained using Pearson correlation analysis with threshold 0.9. The numbers of these radiomics
features are shown in tables S1 and S2 (available online at stacks.iop.org/PMB/67/055007/mmedia). FSBudget
with budget 40was applied to these tumor and LN radiomics features to obtain∼40 optimal tumor radiomics
features and∼40 optimal LN radiomics features as tumor signature and LN signature individually. Details of the
tumor signature and the LN signature are given in tables S3 and S4.Note that FSBudget does not return exactly
40 tumor radiomics features (mean number, 40.6; number range, 40–41) or LN radiomics features (mean
number, 40.8; number range, 40–42), but very close to the budget cost. Further observation of each feature class
indicates that there are great differences atfive hold-out experiments. Tumor-onlymodel or LN-onlymodel
with logistic regression classifierwas constructed using the radiomics signature of tumor or LN. In the training
cohort, the overall AUCvalues (reported asmean±standard deviation), are 0.8522±0.0242 and
0.9109±0.0317 for the tumor-only and LN-onlymodels respectively. The overall AUC values of the validation

5

Phys.Med. Biol. 67 (2022) 055007 J Yang et al

http://stacks.iop.org/PMB/67/055007/mmedia


cohort in the tumor-only and LN-onlymodels are 0.8127±0.0941 and 0.8121±0.0291, respectively. Detailed
performance of the two single-view radiomicsmodels is shown in tables S5 and S6.

4.3.Multi-view subspace learning
In this section, UMvPLSwas used to explore the complementary information between LN and tumor signatures
by projecting them into a latent common space. TheUMvPLS radiomicsmodel with the dimension of the latent
common space set to 20 is code-namedUMvPLSR_20. The space dimensionwas determined by our previous
study (Yang et al 2020). ROC curves andfive performancemetrics of theUMvPLSR_20model are described in
figure 2 (more details are shown in table S7). The overall AUC values of the training cohorts and the validation
cohorts are 0.9531±0.0183 and 0.8984±0.0536 respectively. The other four performancemetrics also show
the good predictive power for discriminating patients with andwithout LNM in patients of GC (training cohort:
precision, 0.9260±0.0184; accuracy, 0.9136±0.0174; recall, 0.9468±0.0106; F1-score, 0.9362±0.0125;
validation cohort: precision, 0.8671±0.0489; accuracy, 0.8500±0.0599; recall, 0.9118±0.0550; F1-score,
0.8882±0.0440).

We further reduced the dimension of the latent common space from20 to 2, in order to demonstrate the
capability of our proposedmethod for data visualization. The proposedmethod for an intuitive 2-dimensional
latent common space is code-namedUMvPLSR_2.We show the projected points ofUMvPLSR_2with both
training and validation cohorts infigure 3. Infive hold-out experiments, training-0 and training-1mean LN
negative and LNpositive patients in training cohort, respectively. Similarly, validation-0, and validation-1mean
LNnegative and LNpositive patients in validation cohort, respectively. UMvPLSR_2’s ROC curves byfive
repeated randomhold-out experiments are shown infigures 4(a)–(e), and compared usingDelong test in table
S10. There is no significant difference in ROCcurves between any two experiments (allP values> 0.05). Five
performancemetrics of theUMvPLSR_2model in the training and validation cohorts are described in
figures 4(f) and (g). The overall AUC, precision, accuracy, recall and F1-score are 0.8593±0.0226,
0.8583±0.0320, 0.8220±0.0247, 0.8810±0.0212 and 0.8691±0.0163 for the training cohort respectively.
As for the validation cohorts, AUCof 0.8660±0.0573, precision of 0.8615±0.0605, accuracy of
0.8308±0.0534, recall of 0.8882±0.0483 and F1-score of 0.8732±0.0376 are obtained infive experiments.

Figure 2.Performances of theUMvPLSR_20model byfive repeated randomhold-out experiments. (a) to (e) are the ROC curves of
Experiment 1 to Experiment 5. (f) and (g) are the boxplots offive performancemetrics in the training and validation cohorts.
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More details are provided in table S8. Results demonstrate ourmulti-view radiomicsmodel, whether in 20-
dimensional space or 2-dimensional space, has good predictive power for LNMonGCpatients.

4.4. Performance comparison
4.4.1.Multi-viewmethod versus single-viewmethod
Compared to the tumor-onlymodel and the LN-onlymodel, theUMvPLSR_20model’AUC is better in each
experiment except for the validation cohort of Experiment 3 (table 1). Infive validation cohorts, the overall
precision, accuracy, recall and F1-score increases by 4%, 13%, 17%, and 10% for the tumor-onlymodel
respectively, and 10%, 13%, 8%, and 9% for the LN-onlymodel respectively (tables S5–S7). All performance
metrics of theUMvPLSR_20model are globally better than those of single-viewmethods, which designating the

Figure 3.Data visualization in 2D common latent space learned by theUMvPLSR_2model of Experiment 1 (a) to Experiment 5(e).
Note: training-0 and training-1mean LNnegative and LNpositive patients in training cohort, respectively. Similarly, validation-0,
and validation-1mean LNnegative and LNpositive patients in validation cohort, respectively.
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performance on concatenated features outperforms that of individual view. It implies that LN and tumor could
contain complementary information for the LNMprediction inGC.

ForUMvPLSR_2, it is clear that 2D space loses certain information in comparisonwith theUMvPLSR_20
model sinceUMvPLSR_2’s overall performance decreases by 3% at theworst. However, the average value of
each performancemetric inUMvPLSR_2 is still higher than that of the tumor-onlymodel and the LN-only
model atfive validation cohorts (tables S5, S6, S8). Even if the dimension of the latent common space is 2, the
classification performance does not degrade toomuch, and the visualization results demonstrate that two classes
can be separated by a linear classifier with decent performance. In short, the proposedmulti-view radiomics
strategy provide advantages compared to single-view radiomics strategy in our validation cohorts.

Figure 4.Performances of theUMvPLSR_2model by five repeated randomhold-out experiments. (a) to (e) are the ROC curves of
Experiment 1 to Experiment 5. (f) and (g) are the boxplots offive performancemetrics in the training and validation cohorts.

Table 1.TheAUCvalues of the tumor-onlymodel, the LN-onlymodel, theUMvPLSR_20model, and the
UMvPLSR_2model by five repeated randomhold-out experiments.

Model 1 2 3 4 5 Mean Std

Training cohort

Tumor-only 0.8588 0.8711 0.8121 0.8488 0.8702 0.8522 0.0242

LN-only 0.8952 0.9588 0.9228 0.8750 0.9030 0.9109 0.0317

UMvPLSR_20 0.9318 0.9799 0.9516 0.9422 0.9598 0.9531 0.0183

UMvPLSR_2 0.8744 0.8893 0.8510 0.8497 0.8319 0.8593 0.0226

Validation cohort

Tumor-only 0.7582 0.8284 0.9542 0.8203 0.7026 0.8127 0.0941

LN-only 0.8431 0.8105 0.7859 0.8399 0.7810 0.8121 0.0291

UMvPLSR_20 0.9395 0.8660 0.9444 0.9216 0.8203 0.8984 0.0536

UMvPLSR_2 0.8660 0.9118 0.9281 0.8382 0.7859 0.8660 0.0573

Std is the abbreviation of standard deviation.

The highest AUC value of each experiment in the training or validation cohort is in a bold.
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4.4.2. Ourmethod versus previously proposedmethod
The performance of theUMvPLSR_20model was then comparedwith that of the previously proposed
radiomicsmodel (Yang et al 2020). The previous radiomics signature was obtained by a four-step feature
selectionmethod on the same dataset as ours. The radiomics signaturemodel was constructed by the radiomics
signature based on logistic regression classifier (Yang et al 2020). Table 2manifests that the average performance
of theUMvPLSR_20model (training cohort, 0.9531; validation cohort, 0.8984) is superior to that of our
previousmodel (training cohort, 0.9319; validation cohort, 0.8546). For a comprehensive comparison, we then
focused on the performance of the training and validation cohorts in each experiment. In addition to the
validation cohort of Experiment 5, theAUC value of theUMvPLSR_20model outperforms that of the previous
radiomicsmodel in all training and validation cohorts. As for theUMvPLSR_2model, the average AUCvalue of
validation cohorts slightly surpasses that of the previousmodel (UMvPLSR_2model, 0.8660; previous
radiomicsmodel, 0.8546). Taken together, our proposedmethod shows better predictive power than the
previously proposedmethodwith a simple fusion strategy for discriminating patients with orwithout LNM
inGC.

4.4.3. Ourmethod versus other baselinemethods
In this section, we compared our proposedUMvPLSR_20methodwith other baselinemethods using eight
classifiers includingDecisionTree (Breiman et al 2017), RF (Breiman 2001), Adaboost (Freund and
Schapire 1997), Gradient Boosting (Friedman 2001), Naïve Bayes (Zhang 2004), SVM-Recursive Feature
Elimination (SVM-RFE) (Guyon et al 2002), L1-Logistic regression (Fan et al 2008) andMulti-layer Perceptron
(MLP) (Hinton 1990) in terms of three different settings: tumor-only, LN-only and the combination of tumor
and LN radiomics features. As eight baselinemethods do not take two set of features as input, so the

Table 2.TheAUCvalues of theUMvPLSR_20model, theUMvPLSR_2model and the previously proposed radiomics signature
model by five repeated randomhold-out experiments.

Model 1 2 3 4 5 Mean Std

Training cohort

UMvPLSR_20 0.9318 0.9799 0.9516 0.9422 0.9598 0.9531 0.0183

UMvPLSR_2 0.8744 0.8893 0.8510 0.8497 0.8319 0.8593 0.0226

Radiomics signature [(Yang et al 2020)] 0.9296 0.9523 0.9400 0.9195 0.9179 0.9319 0.0129

Validation cohort

UMvPLSR_20 0.9395 0.8660 0.9444 0.9216 0.8203 0.8984 0.0536

UMvPLSR_2 0.8660 0.9118 0.9281 0.8382 0.7859 0.8660 0.0573

Radiomics signature [(Yang et al 2020)] 0.8742 0.8627 0.8088 0.8824 0.8448 0.8546 0.0261

Std is the abbreviation of standard deviation.

The highest AUC value of each experiment in the training or validation cohort is in bold.

Figure 5.Examples of clinical images. (a1)–(a4) are from a 58 year old female patient without LNM.TheTNMstaging of this patient is
T3N0M0. (b1)–(b4) are from a 47 year old female patient with LNM.Her TNMstaging is T3N1M0. Figures with the number 1 and 2
are themiddle slice of the tumor on transverse section (red line is the contour of tumor). Figures with the number 3 and 4 are the
middle slice of the largest LN visible on transverse section (green line is the contour of LN).
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concatenation of two sets of features is used for comparisons. The validation results are reported in terms offive
metrics (table 3). Results show that ourmethod generally outperformothers exceptMLPworks the best for
precision (5%higher than ours). The performance of theUMvPLSR_20model and eight baselinemethods on
tumor-only or LN-only radiomics signatures are shown in tables S11 and S12. Tables S11 and S12 are results
with our single-view data, so their performancewill not be that important even though either does not show the
best results, but ourUMvPLSR_20model still outperform their concatenation of two sets of features aswell as
the single-view baselines.

5.Discussion

Radiomics features of primary tumors and LN showpositive role in predicting LNM inGC, yet only a simple
combination of the two has been used in previous research. In this study, we developed and validated amulti-
view learning radiomicsmethod to discriminate between LNpositive and LNnegative onGCpatients. To the
best of our knowledge, this is the first time that amulti-view learning technology to study patients withGC.

The scope and number of LNMdetermine the extent of LNdissection in surgery, and directly affect the
prognosis in patients withGC (Forman andBurley 2006, Cho et al 2007, Lum et al 2020). LNMoccurs with the
progression of primary tumor, which is a complex and continuous process (figure 5). Only relying on primary
tumor radiomics without considering LN radiomicsmay not thoroughly discriminate patients with orwithout
LNM. It urges that radiomics features extracted fromLN is coming into our view.We found that both primary
tumor radiomics and LN radiomics have the predictive power for differentiating GCpatients with orwithout
LNM,which is consistent with previous studies (Yang et al 2020,Wang et al 2021) (table 1). It is worth noting
that the AUC value of the LN-onlymodel is greater than that of the tumor-onlymodel in three out of five
validation cohorts. Our findings point to the potential benefit of imaging characteristics of LN, showing the
traditional strategy solely based on imaging characteristics of primary tumors is not comprehensive for the LNM
prediction inGC.

Sincemultiple views of radiomics features are jointly consideredwhen performing classification prediction
inmedical tasks, themulti-view learning strategy has been involved in recent researches. Puyol-Anton et al
proposed twomulti-viewmachine learning algorithms, using amultimodal cardiacmotion atlas from
3-dimensionalmagnetic resonance and 3-dimensional ultrasound data, for the classification of dilated
cardiomyopathy patients. Themulti-view Laplacian support vectormachines algorithm achieved the best
performance (global approach: 92.71%; regional approach: 94.32%), illustrating the automated diagnostic
pipeline is an important aid in the quantification of the contractility and function of the left ventricular
myocardium (Puyol-Anton et al 2019). Thammasorn et al developed a novel nearest-neighbor validation
strategy based on small-samplemedical imaging data to optimizemulti-view triplet network for classification.
The strategywas superior to other commondeep representation learning baselines in dealingwith several
medical tasks, such as radiation therapy delivery error prediction and sarcoma survival prediction
(Thammasorn et al 2021). These studies show great potentials ofmulti-view learning technologies in
classification of clinical tasks. In this study, we explored the application of amulti-view learning technique to
the prediction of LN status onGCpatients.

Themajor contribution of ourwork is to exploit the complementarity of different views and seek the
consensus among them to fusemulti-view data on a feature level. After data preprocessing, all tumor and LN
radiomics features were selected by two-step feature selectionmethods including Pearson correlation analysis
and FSBudget algorithm, respectively. Comparing to sequential forward floating selection (SFFS) algorithm
(Pudil et al 1994) used in our previous study (Yang et al 2020), FSBudget has the following advantages: (i)
FSBudget is a supervised feature selection approachwith a global objective, but SFFS is a greedy approach; (ii)
FSBudget can select varying number of features with a proper budget B,while SFFS often gets stuck for selecting
moderate number of features due to its inclusive and exclusive operations with no convergence guarantee; (iii)
FSBudget is scalable for high-dimensional data, while SFFS can be extremely slow on a large number of features.
ThenUMvPLS, one ofmulti-view subspace learningmethods, was utilized to fuse the information of tumor
radiomics and LN radiomics to disambiguate the resultmade by one single view. Among variousmulti-view
learningmethods,multi-view subspace learning is awidely studied approach that learns a latent common space
such that the projected data points of each viewpreserve certain properties. For example, canonical correlation
analysis (CCA) (Hardoon et al 2004) aims tomaximize the correlation of two views and partial least squares
(PLS) (Wold et al 1984) aims tofind themaximum covariancewith orthogonal projectionmatrices. In this
study, we have two considerations: (i) the cross-view covariance/correlation is important to explore the
complementary information provided by each other; (ii) data visualization is important for exploratory analysis
inmedical domain.With the two considerations, our recently proposedUMvPLS algorithmbased on PLSwas
chosen for our subspace learning since itmaximizes the cross-covariance and learns orthogonal projection
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Table 3.The performance of theUMvPLSR_20model and eight baselinemethods on the combination of tumor and
LN radiomics byfive repeated randomhold-out experiments.

Method 1 2 3 4 5 Mean Std

AUC

RandomForest 0.9281 0.9069 0.8611 0.8922 0.8562 0.8889 0.0305

DecisionTree 0.6250 0.7941 0.7606 0.7230 0.7459 0.7297 0.0640

Adaboost 0.9134 0.7288 0.8627 0.7794 0.8219 0.8212 0.0716

GradientBoosting 0.8987 0.9036 0.8660 0.8578 0.8848 0.8822 0.0199

NaiveBayes 0.7876 0.6993 0.7647 0.7467 0.6716 0.7340 0.0476

SVM-RFE 0.8922 0.7345 0.9101 0.7516 0.6569 0.7891 0.1086

L1-LogisticRegression 0.9346 0.7533 0.8333 0.8660 0.8203 0.8415 0.0663

MLP 0.4779 0.4975 0.5613 0.5123 0.4575 0.5013 0.0393

UMvPLSR_20 0.9395 0.8660 0.9444 0.9216 0.8203 0.8984 0.0536

Precision

RandomForest 0.7857 0.8378 0.8378 0.8250 0.7778 0.8128 0.0290

DecisionTree 0.7097 0.8611 0.8485 0.8182 0.7879 0.8051 0.0604

Adaboost 0.8421 0.7143 0.7632 0.8000 0.7442 0.7727 0.0497

GradientBoosting 0.8378 0.8378 0.8485 0.8158 0.8205 0.8321 0.0136

NaiveBayes 0.8462 0.8000 0.8333 0.7895 0.7368 0.8012 0.0428

SVM-RFE 0.8611 0.8182 0.8378 0.7879 0.7241 0.8058 0.0530

L1-LogisticRegression 0.8611 0.8276 0.8438 0.8000 0.8286 0.8322 0.0226

MLP 0.6458 0.6538 0.6400 0.6400 0.6538 0.6467 0.0069

UMvPLSR_20 0.8649 0.9063 0.8919 0.8889 0.7838 0.8671 0.0489

Accuracy

RandomForest 0.8077 0.8269 0.8269 0.8462 0.7308 0.8077 0.0451

DecisionTree 0.5962 0.8462 0.7885 0.7500 0.7115 0.7385 0.0938

Adaboost 0.8462 0.6346 0.7308 0.8077 0.7500 0.7538 0.0809

GradientBoosting 0.8269 0.8269 0.7885 0.8077 0.8269 0.8154 0.0172

NaiveBayes 0.5192 0.4615 0.5000 0.5577 0.5192 0.5115 0.0349

SVM-RFE 0.8462 0.7500 0.8269 0.7115 0.5962 0.7462 0.1003

L1-LogisticRegression 0.8462 0.7115 0.7692 0.7500 0.7885 0.7731 0.0498

MLP 0.6154 0.6538 0.6154 0.6154 0.6538 0.6308 0.0211

UMvPLSR_20 0.8654 0.8462 0.9038 0.8846 0.7500 0.8500 0.0599

Recall

RandomForest 0.9706 0.9118 0.9118 0.9706 0.8235 0.9176 0.0603

DecisionTree 0.6471 0.9118 0.8235 0.7941 0.7647 0.7882 0.0962

Adaboost 0.9412 0.7353 0.8529 0.9412 0.9412 0.8824 0.0907

GradientBoosting 0.9118 0.9118 0.8235 0.9118 0.9412 0.9000 0.0446

NaiveBayes 0.3235 0.2353 0.2941 0.4412 0.4118 0.3412 0.0847

SVM-RFE 0.9118 0.7941 0.9118 0.7647 0.6176 0.8000 0.1220

L1-LogisticRegression 0.9118 0.7059 0.7941 0.8235 0.8529 0.8176 0.0761

MLP 0.9118 1.0000 0.9412 0.9412 1.0000 0.9588 0.0395

UMvPLSR_20 0.9412 0.8529 0.9706 0.9412 0.8529 0.9118 0.0550

F1-score

RandomForest 0.8684 0.8732 0.8732 0.8919 0.8000 0.8614 0.0355

DecisionTree 0.6769 0.8857 0.8358 0.8060 0.7761 0.7961 0.0780

Adaboost 0.8889 0.7246 0.8056 0.8649 0.8312 0.8230 0.0635

GradientBoosting 0.8732 0.8732 0.8358 0.8611 0.8767 0.8640 0.0168

NaiveBayes 0.4681 0.3636 0.4348 0.5660 0.5283 0.4722 0.0793

SVM-RFE 0.8857 0.8060 0.8732 0.7761 0.6667 0.8015 0.0882

L1-LogisticRegression 0.8857 0.7619 0.8182 0.8116 0.8406 0.8236 0.0451

MLP 0.7561 0.7907 0.7619 0.7619 0.7907 0.7723 0.0170

UMvPLSR_20 0.9014 0.8788 0.9296 0.9143 0.8169 0.8882 0.0440

Std is the abbreviation of standard deviation.

The highest AUCvalue of each experiment in the training or validation cohort is in a bold.
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matrices for better data visualization, simultaneously. Finally, theUMvPLSR_20model was built by the logistic
regression classifier on the 20-dimensional latent common space.

In the training and validation cohorts, each performance index of theUMvPLSR_20model exceeds 0.91 and
0.85 respectively (table S7). The overall performance of theUMvPLSR_20model (table S7) is higher than that of
the tumor-onlymodel (table S5) or the LN-onlymodel (table S6). These results show that comparedwith single-
view radiomicsmodel,multi-view inputs have obviously benefits in increasing performance, demonstrating that
the advanced features of theUMvPLSR_20model could provide robust expression of the input images.
Meanwhile, table 2 shows the overall performance ofUMvPLSR_20 is better in contrast to the previously
proposed radiomicsmethod (Yang et al 2020). It is obvious that the features selected by our proposedmethod
aremore informative, which confirms that the effectiveness of ourmethod to predict the LN status onGC
patients. This is probably attributed to its ability to implicitly account for 3D information by fusing tumor view
and LNview into a common latent common space rather than simple fusion.We then reduced the dimension of
the latent common space to 2 for generating theUMvPLSR_2model. ForUMvPLSR_2, tumor view and LN view
are directly comparable and can easily bemerged together. It forms a 2-dimensional common space that is
supposed to preserve the information from each view, facilitating the visualization of the classification results
(figure 3). The overall performance ofUMvPLSR_2 has slightly worse thanUMvPLSR_20, but it is still greater
than two single-view radiomicsmodels and is conducive to doctors’ judgment (figure 4 and table S8). In
addition, ourUMvPLSR_20method also outperforms othermethodswith eight commonly usedmachine
learning classifiers (table 3). In general, our proposedmulti-view radiomics analysis strategy could significantly
improve performance for predicting LNM inGCpatients, compared to the traditional radiomics analysis
strategy.

Futureworkwill focus on incorporating non-imaging information (such as genomics,metabolic and
semantic features) and othermodality data (when the LN images are not available), in order to form amore
comprehensivemulti-view learning strategy. Furthermore, we are collectingmore gastric cancer data fromother
clinical centers. Amulti-center gastric cancer database is being developed to providemore clinical decision
support. Other abdominal tumor datawill also be considered to test the same predictive pipeline formore
clinical tasks in the future.

6. Conclusions

In summary, this study proposed amulti-view learningmethod to learn radiomics features of primary tumor
and LN.Comparedwith single-view radiomicsmodel, the previous radiomicsmethod, and other baseline
methods, our predictive pipeline can bemore effective for the LNMprediction inGC. It providesmedical
professionals with an effective noninvasive strategy to pick a choice forGCpatients’ therapy, and has potential to
be applied to other clinical tasks.

Acknowledgments

Thisworkwas supported by Supported by BeijingNatural Science Foundation (Z210008), Natural Science
Foundation of China (NSFCGrantNo. 81871351, 81827804, 81972849).We thank the staff in the Affiliated
Hospitals ofQingdaoUniversity for their technical assistance.

Conflict of interest

The authors declare no conflicts of interest.

ORCID iDs

TianyeNiu https://orcid.org/0000-0003-4181-3641

References

Breiman L 2001Random forestsMach. Learn. 45 5–32
Breiman L, Friedman JH,OlshenRA and StoneC J 2017Classification andRegression Trees (NewYork: Routledge)
ChoBC, JeungHC,ChoiH J, Rha S Y,HyungW J, Cheong JH,Noh SHandChungHC2007 Prognostic impact of resectionmargin

involvement after extended (D2/D3) gastrectomy for advanced gastric cancer: a 15-year expereince at a single institute J. Surg. Oncol.
95 461–8

12

Phys.Med. Biol. 67 (2022) 055007 J Yang et al

https://orcid.org/0000-0003-4181-3641
https://orcid.org/0000-0003-4181-3641
https://orcid.org/0000-0003-4181-3641
https://orcid.org/0000-0003-4181-3641
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1002/jso.20731
https://doi.org/10.1002/jso.20731
https://doi.org/10.1002/jso.20731


FanR-E, ChangK-W,HsiehC-J,WangX-R and LinC-J 2008 LIBLINEAR: a library for large linear classification J.Mach. Learn. Res. 9
1871–4

FengQ-X, LiuC,Qi L, Sun S-W, SongY, YangG, Zhang Y-D and LiuX-S 2019An Intelligent clinical decision support system for
preoperative prediction of lymph nodemetastasis in gastric cancer J. Am. Coll. Radiol. 16 952–60

FormanDandBurley V J 2006Gastric cancer: global pattern of the disease and an overview of environmental risk factorsBest Pract. Res.
Clin. Gastroenterol. 20 633–49

FratelloM,CaiazzoG, Trojsi F, RussoA, Tedeschi G, Tagliaferri R andEsposito F 2017Multi-view ensemble classification of brain
connectivity images for neurodegeneration type discriminationNeuroinformatics 15 199–213

FreundY and Schapire R E 1997Adecision-theoretic generalization of on-line learning and an application to boosting J. Comput. Syst. Sci.
55 119–39

Friedman JH 2001Greedy function approximation: a gradient boostingmachineAnn. Stat. 29 1189–232
GaoX,MaT, Cui J, Zhang Y,Wang L, LiH andYeZ 2020aACT-based radiomicsmodel for prediction of lymph nodemetastasis in early

stage gastric cancerAcad. Radiol. 28E155-E164
GaoX,MaT, Cui J, Zhang Y,Wang L, LiH andYeZ 2020bA radiomics-basedmodel for prediction of lymph nodemetastasis in gastric

cancerEur. J. Radiol. 129 109069
Gillies R J, Kinahan PE andHricakH2016Radiomics: images aremore than pictures, they are dataRadiology 278 563–77
vanGriethuysen J JM, FedorovA, ParmarC,HosnyA, AucoinN,NarayanV, Beets-TanRGH, Fillion-Robin J-C, Pieper S and

AertsH JWL 2017Computational radiomics system to decode the radiographic phenotypeCancer Res. 77E104–7
Guyon I,Weston J, Barnhill S andVapnikV 2002Gene selection for cancer classification using support vectormachinesMach. Learn. 46

389–422
HardoonDR, Szedmak S and Shawe-Taylor J 2004Canonical correlation analysis: an overviewwith application to learningmethodsNeural

Comput. 16 2639–64
HintonGE 1990Machine Learning (Amsterdam: Elsevier) pp 555–610
Huang J-Y, XuY-Y, LiM, SunZ, ZhuZ, Song Y-X,Miao Z-F,Wu J-H andXuH-M2013The prognostic impact of occult lymph node

metastasis in node-negative gastric cancer: a systematic review andmeta-analysisAnn. Surg. Oncol. 20 3927–34
Jiang Y et al 2019Radiomics signature on computed tomography imaging: associationwith lymph nodemetastasis in patients with gastric

cancer Frontiers Oncol. 9 340
KimAY,KimH J andHaHK2005aGastric cancer bymultidetector rowCT: preoperative stagingAbdominal Imaging 30 465–72
KimH J, KimAY,Oh ST, Kim J S, KimKW,KimPN, LeeMGandHaHK2005bGastric cancer staging atmulti-detector rowCT

gastrography: comparison of transverse and volumetric CT scanningRadiology 236 879–85
Lambin P et al 2012Radiomics: extractingmore information frommedical images using advanced feature analysisEur. J. Cancer 48 441–6
Larue RTHM,DefraeneG,DeRuysscherD, Lambin P andVan ElmptW2017Quantitative radiomics studies for tissue characterization: a

review of technology andmethodological proceduresBr. J. Radiol. 90 1070
Lee I J, Lee JM, KimSH, ShinC-I, Lee J Y, Kim SH,Han JK andChoi B I 2010Diagnostic performance of 64-channelmultidetector CT in

the evaluation of gastric cancer: differentiation ofmucosal cancer (T1a) from submucosal involvement (T1b andT2)Radiology 255
805–14

Lee SH,Han P,Hales RK, VoongKR,NoroK, Sugiyama S,Haller JW,McNutt TR and Lee J 2020Multi-view radiomics and dosiomics
analysis withmachine learning for predicting acute-phaseweight loss in lung cancer patients treatedwith radiotherapy Phys.Med.
Biol. 65 19

Li C, Xu J, LiuQ, ZhouY,MouL, PuZ, Xia Y, ZhengH andWang S 2020Multi-viewmammographic density classification by dilated and
attention-guided residual learning IEEE/ACMTrans. Comput. Biol. Bioinf. 18 1003–13

Liang S, Kim-HanT,NieD, ZhangY and ShenD 2020Multi-view spatial aggregation framework for joint localization and segmentation of
organs at risk in head and neckCT images IEEETrans.Med. Imaging 39 2794–805

Lin J-X et al 2019Risk factors of lymph nodemetastasis or lymphovascular invasion for early gastric cancer: a practical and effective
predictivemodel based on internationalmulticenter dataBmcCancer 19 1

LumCY,HuangK-H, ChenM-H, FangW-L, ChaoY, Lo S-S, Li A F-Y,WuC-Wand Shyr Y-M2020The clinicopathological characteristics
and prognosis of patients with node-positive gastric cancer after curative surgery J. Chin.Med. Assoc. 83 751–5

MengX et al 2019 Preoperative radiomic signature based onmultiparametricmagnetic resonance imaging for noninvasive evaluation of
biological characteristics in rectal cancer Eur. Radiol. 29 3200–9

Pudil P, Novovicova J andKittler J 1994 Floating searchmethods in feature-selection Pattern Recognit. Lett. 15 1119–25
Puyol-Anton E, Ruijsink B,Gerber B, AmzulescuMS, LangetH,DeCraeneM, Schnabel J A, Piro P andKingAP 2019Regionalmulti-view

learning for cardiacmotion analysis: application to identification of dilated cardiomyopathy patients IEEETrans. Biomed. Eng. 66
956–66

SadaYH, Smaglo BG, Tan J C, CaoHST,Musher B L andMassarwehNN2019 Prognostic value of nodal response after preoperative
treatment of gastric adenocarcinoma J. Natl Comprehensive Cancer Netw. 17 161–8

Shang-GuanX-C et al 2018 Preoperative lymphnode size is helpful to predict the prognosis of patients with stage III gastric cancer after
radical resection Surg. Oncol. 27 54–60

Sun S 2013A survey ofmulti-viewmachine learningNeural Comput. Appl. 23 2031–8
SungH, Ferlay J, Siegel R L, LaversanneM, Soerjomataram I, Jemal A andBray F 2021Global cancer statistics 2020:GLOBOCAN estimates

of incidence andmortality worldwide for 36 cancers in 185 countriesCA—Cancer J. Clin. 71 209–49
Thammasorn P, ChaovalitwongseWA,HippeDS,Wootton L S, Ford EC, SprakerMB,Combs S E, Peeken J C andNyflotM J 2021Nearest

neighbor-based strategy to optimizemulti-view triplet network for classification of small-samplemedical imaging data IEEETrans.
Neural Netw. Learn. Syst. 0 1–15

Traverso A,Wee L,Dekker A andGillies R 2018Repeatability and reproducibility of radiomic features: a systematic review Int. J. Radiat.
Oncol. Biol. Phys. 102 1143–58

Wang L and Li R-C 2020A scalable algorithm for large-scale unsupervisedmulti-view partial least squares IEEE Trans. BigData 0 1-11
Wang L, ZhuD andChi Y 2018 Efficient test-time predictor learningwith group-based budget 32ndAAAIConf. on Artificial Intelligence
WangX, Li C, FangM, Zhang L, Zhong L,DongD, Tian J and ShanX 2021 IntegratingNo.3 lymph nodes and primary tumor radiomics to

predict lymph nodemetastasis in T1-2 gastric cancerBMCMed. Imaging 21 58
WangX et al 2019Can peritumoral radiomics increase the efficiency of the prediction for lymph nodemetastasis in clinical stage T1 lung

adenocarcinoma onCT? Eur. Radiol. 29 6049–58
WangY, LiuW, YuY, Liu J-J, XueH-D,Qi Y-F, Lei J, Yu J-C and Jin Z-Y 2020CT radiomics nomogram for the preoperative prediction of

lymphnodemetastasis in gastric cancer Eur. Radiol. 30 976–86

13

Phys.Med. Biol. 67 (2022) 055007 J Yang et al

https://doi.org/10.1016/j.jacr.2018.12.017
https://doi.org/10.1016/j.jacr.2018.12.017
https://doi.org/10.1016/j.jacr.2018.12.017
https://doi.org/10.1016/j.bpg.2006.04.008
https://doi.org/10.1016/j.bpg.2006.04.008
https://doi.org/10.1016/j.bpg.2006.04.008
https://doi.org/10.1007/s12021-017-9324-2
https://doi.org/10.1007/s12021-017-9324-2
https://doi.org/10.1007/s12021-017-9324-2
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1016/j.acra.2020.03.045
https://doi.org/10.1016/j.ejrad.2020.109069
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1148/radiol.2015151169
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1158/0008-5472.CAN-17-0339
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1162/0899766042321814
https://doi.org/10.1162/0899766042321814
https://doi.org/10.1162/0899766042321814
https://doi.org/10.1245/s10434-013-3021-7
https://doi.org/10.1245/s10434-013-3021-7
https://doi.org/10.1245/s10434-013-3021-7
https://doi.org/10.3389/fonc.2019.00340
https://doi.org/10.1007/s00261-004-0273-5
https://doi.org/10.1007/s00261-004-0273-5
https://doi.org/10.1007/s00261-004-0273-5
https://doi.org/10.1148/radiol.2363041101
https://doi.org/10.1148/radiol.2363041101
https://doi.org/10.1148/radiol.2363041101
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1259/bjr.20160665
https://doi.org/10.1148/radiol.10091313
https://doi.org/10.1148/radiol.10091313
https://doi.org/10.1148/radiol.10091313
https://doi.org/10.1148/radiol.10091313
https://doi.org/10.1088/1361-6560/ab8531
https://doi.org/10.1109/TCBB.2020.2970713
https://doi.org/10.1109/TCBB.2020.2970713
https://doi.org/10.1109/TCBB.2020.2970713
https://doi.org/10.1109/TMI.2020.2975853
https://doi.org/10.1109/TMI.2020.2975853
https://doi.org/10.1109/TMI.2020.2975853
https://doi.org/10.1186/s12885-019-6147-6
https://doi.org/10.1097/JCMA.0000000000000341
https://doi.org/10.1097/JCMA.0000000000000341
https://doi.org/10.1097/JCMA.0000000000000341
https://doi.org/10.1007/s00330-018-5763-x
https://doi.org/10.1007/s00330-018-5763-x
https://doi.org/10.1007/s00330-018-5763-x
https://doi.org/10.1016/0167-8655(94)90127-9
https://doi.org/10.1016/0167-8655(94)90127-9
https://doi.org/10.1016/0167-8655(94)90127-9
https://doi.org/10.1109/TBME.2018.2865669
https://doi.org/10.1109/TBME.2018.2865669
https://doi.org/10.1109/TBME.2018.2865669
https://doi.org/10.1109/TBME.2018.2865669
https://doi.org/10.6004/jnccn.2018.7093
https://doi.org/10.6004/jnccn.2018.7093
https://doi.org/10.6004/jnccn.2018.7093
https://doi.org/10.1016/j.suronc.2017.11.009
https://doi.org/10.1016/j.suronc.2017.11.009
https://doi.org/10.1016/j.suronc.2017.11.009
https://doi.org/10.1007/s00521-013-1362-6
https://doi.org/10.1007/s00521-013-1362-6
https://doi.org/10.1007/s00521-013-1362-6
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1109/TNNLS.2021.3059635
https://doi.org/10.1109/TNNLS.2021.3059635
https://doi.org/10.1109/TNNLS.2021.3059635
https://doi.org/10.1016/j.ijrobp.2018.05.053
https://doi.org/10.1016/j.ijrobp.2018.05.053
https://doi.org/10.1016/j.ijrobp.2018.05.053
https://doi.org/10.1109/TBDATA.2020.3014937
https://doi.org/10.1186/s12880-021-00587-3
https://doi.org/10.1007/s00330-019-06084-0
https://doi.org/10.1007/s00330-019-06084-0
https://doi.org/10.1007/s00330-019-06084-0
https://doi.org/10.1007/s00330-019-06398-z
https://doi.org/10.1007/s00330-019-06398-z
https://doi.org/10.1007/s00330-019-06398-z


WeiW,DaiQ,WongY,HuY, KankanhalliM andGengW2019 Surface-electromyography-based gesture recognition bymulti-view deep
learning IEEETrans. Biomed. Eng. 66 2964–73

Wold S, AlbanoC,DunnW, EdlundU, EsbensenK,Geladi P,Hellberg S, Johansson E, LindbergWand SjöströmM1984Chemometrics
(Berlin: Springer) pp 17–95

Xia Y, YangD, YuZ, Liu F, Cai J, Yu L, ZhuZ, XuD, Yuille A andRothH2020Uncertainty-awaremulti-view co-training for semi-supervise
dme dical image segmentation and domain adaptationMed. Image Anal. 65 101766

Xie Y, Zhang J andXia Y 2019 Semi-supervised adversarialmodel for benign-malignant lung nodule classification on chest CTMed. Image
Anal. 57 237–48

Yang J et al 2020 Integrating tumor and nodal radiomics to predict lymph nodemetastasis in gastric cancerRadiother. Oncol. 150 89–96
ZhangH2004The optimality of naive BayesAA 1 3
Zhao J, Xie X, XuX and Sun S 2017Multi-view learning overview: Recent progress and new challenges Inf. Fusion 38 43–54
Zhou J, ZhangQ andZhangB 2021An automaticmulti-view disease detection system via collective deep region-based feature

representation Future Gener. Comput. Syst.—Int. J. Esci. 115 59–75

14

Phys.Med. Biol. 67 (2022) 055007 J Yang et al

https://doi.org/10.1109/TBME.2019.2899222
https://doi.org/10.1109/TBME.2019.2899222
https://doi.org/10.1109/TBME.2019.2899222
https://doi.org/10.1016/j.media.2020.101766
https://doi.org/10.1016/j.media.2019.07.004
https://doi.org/10.1016/j.media.2019.07.004
https://doi.org/10.1016/j.media.2019.07.004
https://doi.org/10.1016/j.radonc.2020.06.004
https://doi.org/10.1016/j.radonc.2020.06.004
https://doi.org/10.1016/j.radonc.2020.06.004
https://doi.org/10.1016/j.inffus.2017.02.007
https://doi.org/10.1016/j.inffus.2017.02.007
https://doi.org/10.1016/j.inffus.2017.02.007
https://doi.org/10.1016/j.future.2020.08.038
https://doi.org/10.1016/j.future.2020.08.038
https://doi.org/10.1016/j.future.2020.08.038

	1. Introduction
	2. Previous work and novel contributions
	3. Materials and methods
	3.1. Patients
	3.2. Study flow diagram
	3.3. Two-step feature selection
	3.4. Multi-view subspace learning and prediction
	3.5. Performance evaluation

	4. Results
	4.1. Dataset
	4.2. Two-step feature selection
	4.3. Multi-view subspace learning
	4.4. Performance comparison
	4.4.1. Multi-view method versus single-view method
	4.4.2. Our method versus previously proposed method
	4.4.3. Our method versus other baseline methods


	5. Discussion
	6. Conclusions
	Acknowledgments
	Conflict of interest
	References



