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Interpreting the B-cell receptor repertoire with
single-cell gene expression using Benisse

Ze Zhang'®, Woo Yong Chang'’, Kaiwen Wang?, Yuqgiu Yang'?, Xinlei Wang? Chen Yao©®34,
Tuogi Wu3#, Li Wang® and Tao Wang ®16X

B-cell receptors (BCRs) are a crucial player in the development and activation of B cells, and their mature forms are secreted
as antibodies, which execute functions such as the neutralization of invading pathogens. All current analytical approaches
for BCRs solely investigate the BCR sequences and ignore their correlations with the transcriptomics of the B cells, yielding
conclusions of unknown functional relevance regarding the roles of BCRs and B cells, and could generate biased interpretation.
Many single-cell RNA-sequencing (scRNA-seq) techniques can now capture both the gene expression and BCR of each B cell,
which could potentially address this issue. Here, we investigated 43,938 B cells from 13 scRNA-seq datasets with matched
scBCR sequencing, and we observed an association between the BCRs and the B cells’ transcriptomics. Motivated by this,
we developed the Benisse model (BCR embedding graphical network informed by scRNA-seq) to provide refined analyses of
BCRs guided by single-cell gene expression. Benisse revealed a gradient of B-cell activation along BCR trajectories. We dis-
covered a stronger coupling between BCRs and B-cell gene expression during COVID-19 infections. We found that BCRs form
a directed pattern of continuous and linear evolution to achieve the highest antigen targeting efficiency, compared with the
convergent evolution pattern of T-cell receptors. Overall, a simultaneous digestion of the BCR and gene expression of B cells,
viewed through the lens of Benisse, will lead to a more insightful interpretation of the functional relevance of the BCR repertoire

in different biological contexts.

trol the activation and maturation of B cells'~*. B cells with

mature BCRs differentiate into plasma cells that secrete anti-
bodies, which are the secreted forms of BCRs and carry out a vari-
ety of functions, such as neutralization of invading pathogens®’. In
addition to their key roles in infectious diseases and autoimmune
diseases, recent studies have also discovered curious parts that
tumour-infiltrating B lymphocytes play in all stages of cancers,
potentially in a BCR/antibody-dependent manner®".

Due to the importance and the complexity of BCRs, profiling of
the BCR repertoire has been the core interest of many studies. BCR
sequencing enables the direct sequencing of BCRs of thousands
of cells at one time. Following the sequencing of BCRs, BCRs with
the same variable (V) and joining (J) gene segments and the same
complementarity-determining region 3 (CDR3) lengths are some-
times grouped as being clonally related””. Moreover, the phylo-
genetic relationships of the BCRs are usually derived using metrics
such as Levenshtein distance'*'®. Many studies employ certain
diversity metrics to characterize the clonal richness of BCRs'-*".
However, a fundamental challenge exists for all the aforementioned
approaches—all conclusions are drawn solely on the basis of inter-
rogating the BCR sequences, without knowing the functional rele-
vance of the BCRs/antibodies.

To address this challenge, we need to investigate the coupling
between the BCR repertoire and the transcriptomic status of the
B cells, which could reveal the true functional implication of the
BCR repertoire under various biomedical contexts. Several recently

B -cell receptors (BCRs) recognize antigenic epitopes and con-

developed single-cell RNA-sequencing (scRNA-seq) technologies
provide the necessary data to answer this question. Among them,
the 10x Genomics Chromium platform, which directly amplifies the
BCRs while capturing the expression information of the other genes
at the same time, is currently the dominant technique. However, until
now, most studies generating such data have simply analysed these two
modalities of data using separate and ad hoc methods. Critical oppor-
tunities from an integrative analysis of scBCR-seq and scRNA-seq
data to discover interesting biological insights have been missed.

In this work, we develop a mathematical model, named Benisse
(Fig. 1a), to integrate the high-dimensional BCR and single-B-cell
expression data. Benisse is based on a correlation effect that we
observed between BCRs and B-cell gene expression. By validatingand
applying Benisse on 43,938 B cells from 13 scRNA-seq + scBCR-seq
datasets, we showed that Benisse is capable of mapping the func-
tional relevance of the BCR repertoire in various biological con-
texts, at single-cell resolution and supported by empirical evidence
from single-B-cell expression.

Results

A numeric embedding for BCRs of B cells based on deep con-
trastive learning. To build Benisse, we need to first mathematically
describe the peptide sequences of the BCRs. To achieve this, we
focused on the complementarity-determining region of the heavy
chain (CDR3H) regions of BCRs and built a numeric embedding
of BCR CDR3H sequences. We encoded the BCR sequences by the
‘Atchley factors™”, representing each amino acid with five numeric
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values. Next, we further reduced the dimension of this Atchley fac-
tor matrix into a short numeric vector through contrastive learn-
ing”. During this step, the contrastive learning model learns a
20-dimensional embedding space where similar CDR3H peptide
sequences are closer to each other, whereas the dissimilar ones are
far apart (Extended Data Fig. 1).

We tested whether the CDR3H embedding is reflective of
antigen specificity using the LIBRA-seq data*, which allows
high-throughput mapping of antigen specificity of BCR sequences.
A total of nine antigens were profiled in one setting, and the anti-
gen specificities of 2,321 BCRs against these nine antigens were
obtained as a continuous variable for each antigen. We calculated
the pairwise similarities between BCRs, in terms of their LIBRA-seq
antigen specificity scores (Euclidean distances between LIBRA-seq
scores of all antigens), and also of their numeric embeddings of
BCRs (also Euclidean distances). We showed that the correlations
between BCR sequence embedding similarities and BCR antigen
specificity similarities reached 0.616 (Fig. 1b), suggesting that our
embedding can indeed reasonably reflect the key features of BCR
CDR3Hs. We also performed this analysis with each individual
antigen, and observed an overall positive but reduced correlation
for each (Fig. 1c and Extended Data Fig. 2). As a benchmark, we
performed the same analyses with the work of Lindenbaum et al.”
and bcRep?, in both of which we can also calculate similarity scores
between different BCRs. In Fig. 1d, we show that our BCR CDR3H
embeddings achieved a higher association with the LIBRA-seq
scores compared with Lindenbaum et al. and bcRep.

We also accessed the BCR-sequencing data from Liao et al”,
who performed BCR sequencing for a single lineage of antibodies
derived against one human immunodeficiency virus (HIV) epitope,
collected at a series of times (weeks after HIV infection). We
generated a pairwise Euclidean distance matrix between the BCR
embeddings. A phylogenetic tree of BCRs was constructed from
this distance matrix®, rooted at the unmutated common ancestor
(UCA) of these BCRs. We observed that BCRs from earlier times
are closer to the UCA on the tree (Extended Data Fig. 3a). The
phylogenetic tree then branched out, and the leaves in the only
major branch contain many BCRs from later times. In particular,
the group of the best antigen-targeting antibodies of week 144,
CH103, CH104, CH105 and CH106 (sharing the same CDR3H),
were found at almost the farthest leaf of the tree. The waterfall plot
with BCRs ordered by the Euclidean distances between the UCA
BCR and all the other BCRs (Extended Data Fig. 3b) also con-
firms that BCRs from earlier times are closer to the UCA BCR in
general. Taken together, these analyses validate our BCR embed-
ding approach, and reveal an interesting linear evolution pattern of
BCRs/antibodies.

Benisse integrates BCR and expression of single B cells. With the
BCR embeddings, we then sought to investigate whether the BCRs
are indeed correlated with the expression of the B cells. We inves-
tigated a total of 13 datasets that were generated from scRNA-seq
with paired scBCR-seq (Extended Data Table 1). In each dataset,

we embedded the BCRs as described above, and then we calculated
the pairwise distances between BCR clonotypes using their BCR
distances and also their gene expression distances. Interestingly, we
observed a positive correlation between these two distances, sug-
gesting that the BCR clonotypes with similar BCR sequences have
similar gene expression profiles (Supplementary Note 2). Across all
13 datasets, we observed a positive correlation with an average of
0.32. Importantly, in this analysis, we removed pairs of BCRs that
are the same (BCR distance=0). We also separately examined the
expression distances between pairs of B cells with BCRs that are the
same (in the same clonotype) or differ. We observed that B cells in
the same clonotype have much more similar expressions than those
from different clonotypes (Supplementary Note 2).

Motivated by this observation, we built the core Benisse model
(Supplementary Note 1), to enable a more refined interrogation of
the relationships between BCRs and B-cell expression. The model
searches for a latent space of the BCRs, supervised by the empirical
evidence of their functional relevance provided through the B-cell
gene expression. Many BCRs in one sample are usually clonally
related, representing BCRs that were generated from one parental
BCR due to somatic hypermutations'>”. Therefore, we need to
detect sparse graphs of BCRs under the new latent space so that
closely related BCRs will be connected into what we term ‘BCR net-
works™ (Fig. 1a). Mathematically, Benisse employs a sparse graph
learning model to handle these requirements, where the BCRs are
to be embedded in a low-dimensional manifold that may be reason-
ably expressed by a graph. Each vertex is a B-cell clonotype marked
by a unique BCR (same V/J gene and same CDR3H) and the weight
of each edge represents the similarity between two BCRs. This
latent space is learned via the supervision of gene expression, and
we require that BCRs closer to each other in the latent space should
have similar BCR sequences and represent B cells with similar tran-
scriptomic features. We also incorporated a prior requirement that
an edge exists only when two BCRs share the same V gene and the
same ] gene. The resulting Benisse graph is comprised of many
small BCR networks, with each network containing BCRs with the
same V/] genes and similar CDR3Hs in the latent space.

In the scRNA-seq data that we collected, we calculated the dis-
tances in the latent space between the BCR clonotypes that are con-
nected in the BCR networks, that are not connected but share V/J
genes or that do not share the same V/J genes. In Fig. le, we show
that the BCR distances in the latent space are the smallest for the
BCR clonotypes that are connected within the same networks by
Benisse (the first group). This is consistent with our expectation,
as Benisse is supposed to group B-cell clonotypes with the most
similar BCRs into individual BCR networks. In Fig. 1f, we also
calculate the correlation between the expression-wise distances and
BCR-wise distances of the BCR clonotypes that are connected in the
same networks. We found that their correlation indeed increased in
the Benisse latent space compared with the original BCR numeric
embedding space. These results suggest that Benisse successfully
achieved the maximal sharing of information between B-cell expres-
sion and the BCRs of B cells.

>
>

Fig. 1| Schematic overview of the Benisse model. a, Schematic diagram showing how Benisse digests the BCR sequence data and the single-B-cell expression
data to detect an embedding space of the BCR clonotypes that are supervised by the transcriptomic information, and also to detect a graph of BCR networks
that connect BCR clonotypes (from a crude BCR graph that connects BCRs with the same V and J genes). Uniform manifold approximation and projection
(UMAP) was performed for dimension reduction of the single-cell expression data. The BCR encoder outputs a 20-dimensional embedding of the BCRs. Thus
they are labelled differently CUMAP 1 versus ‘Dim 1'). B cell expression and BCRs of the same B cells, marked by the same colour (e.g., red, blue, yellow),

are merged into one single latent space embedding point. b,c, Spearman correlation between BCR distances and distances between LIBRA-seq scores of

all antigens (b) and the HA_indo antigen (c) for all pairs of BCR clonotypes. d, Benchmark analyses showing the correlations between BCRs and LIBRA-seq
scores, for BCR embeddings derived from our contrastive learning model, from BcRep and from Lindenbaum et al.” e, The distances in latent space between
the BCR clonotypes that are connected in the BCR networks built by Benisse (left), that are not connected but share V/J genes (middle) and that do not
share V/J genes (right). Results for all datasets are averaged. f, The correlations between expression and BCR of the B cells of the same networks, with BCR
distances calculated from the Benisse latent space (‘cor(a, b)', left-hand box of the boxplot) or the original BCR embedding space (‘cor(a, ¢)’, right-hand box).
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Fig. 2 | Benisse reveals a gradient of B-cell activation along BCR trajectories. a, A schematic showing the proposed model of a linear and continuous
pattern of BCR evolution. A phylogenetic tree-like pattern of BCR evolution is shown for one BCR network, where the BCRs are created through VDJ
recombination and somatic hypermutation to become better and better at targeting the antigen. The x axis shows the direction of BCR evolution. The

y axis shows the B-cell activity levels of the BCR clonotypes on the tree. The coloured bars on the Y axis refer to the levels of B cell activation in successive
stages of BCR maturation as a result of SHM (marked by different colours). The dotted circles denote the prime clonotypes assigned by our model.
SHMs, somatic hypermutations. b, An example dataset showing how the phenotypes of the B cells vary as a function of the BCR distance from the prime
clonotypes (x axis). The y axis shows the expression level of the activation signature in the B cells. Clone sizes of the BCR clonotypes and class-switching
status are also shown for each BCR clonotype. NSCLC, non-small-cell lung carcinoma. ¢, Boxplots showing the pseudotimes of the B cells in the BCR
clonotypes that are grouped into groups 1, 2 and 3. Only BCR networks with at least three BCR clonotypes were included. B cells in group 1 have BCRs
that are closest to those of the prime BCR clonotypes (and include prime BCR clonotypes themselves). Group 3 is most dissimilar from prime BCRs.

d, Expression of the B-cell activation signature of the B cells belonging to groups 1, 2 and 3. e, GSEA plots of the pathways enriched in the genes that
showed a monotonic increase or decrease of expression from the B cells of group 1to group 3 BCR clonotypes. The COVID U41 dataset is shown as an
example. f, The clonal sizes of the B cells belonging to groups 1, 2 and 3. g,h, The proportions of the IgD, M, G, A and E BCRs of all the B cells in the 10x
melanoma dataset (g) or all datasets (h) in each of the three groups.

Benisse reveals a gradient of B-cell activation along BCR trajec-  high affinity to the target antigens have been created, supposedly
tories. During somatic hypermutations in the germinal centres creating a family of continuously evolving BCRs with different
(GCs), BCRs of B cells keep mutating until one or more BCRs with  antigen-targeting efficiencies (Fig. 2a). In the Benisse analyses, such
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networks of related BCRs are detected as a part of the algorithm.
We calculated pseudotimes for the B cells using Monocle®, and we
picked, in each BCR network, the BCR clonotypes that are most
newly created according to pseudotimes. These recently generated
BCR clonotypes probably represent the BCRs that are the ‘best’ in
terms of antigen targeting, and therefore activation of B cells, within
each of their networks (Fig. 2a). We term these BCR clonotypes the
‘prime’ clonotypes of their respective networks.

To evaluate our hypothesized paradigm of BCR evolution, we
calculated the similarity of each BCR to its network’s prime BCR,
in terms of Euclidean distance in the latent space learned by Benisse
(x axis of Fig. 2b). We divided BCR clonotypes of each BCR net-
work into three groups on the basis of this BCR distance. The first
group of BCRs (including the prime BCR clonotypes themselves)
has the largest similarity to the prime BCR clonotypes, and the
third group of BCRs has the least similarity. We then investigated
how the phenotypes of the B cells vary as a function of the distances
from the prime clonotypes on the BCR trajectories. We first exam-
ined the pseudotimes of all the BCR clonotypes in each network,
and observed that group 1 BCR clonotypes have the smallest
pseudotimes, and more importantly that these three groups of
BCR clonotypes formed a gradient with group 2 clonotypes having
larger pseudotimes than group 1 clonotypes and group 3 clonotypes
having larger pseudotimes than group 2 (Fig. 2c).

We also delineated specifically which part of the transcriptome is
associated with the trajectories of the BCR networks, by examining
a gene signature of B-cell activation (Methods). We again observed
a gradient of B-cell activation among the three groups, with group
1 BCR clonotypes’ B cells having the highest level of activation
(Fig. 2d). On the other hand, we performed an unbiased search,
using gene set enrichment analyses (GSEAs)”', for the pathways
enriched in the genes that showed a monotonic increase or decrease
of expression from group 1 to group 3 in each dataset (Fig. 2e).
We observed strong enrichment of pathways relevant for B-cell
activation (for example, ‘Naive_vs_Memory_Bcell DN’). We made
similar observations with all other datasets that we investigated
(Extended Data Fig. 4). Concomitant with the variation in tran-
scriptomic phenotypes, group 1 BCR clonotypes also have larger
clonal sizes than group 2 clonotypes, which in turn have larger
clonal sizes than group 3 (Fig. 2f).

In the GCs, a process called class switching happens, which is
independent of but related to BCR somatic hypermutations®—*.
Class switching changes a B cell’s production of immunoglobulin
from IgM and IgD to IgG, IgA and IgE during B-cell maturation. In
Fig. 2¢g (the 10x melanoma dataset), we calculated the probability
of class switching for the B cells belonging to each of groups 1-3.
Interestingly, we observed that the group 1 BCRs have the lowest
proportions of [gM/D and highest rate of class switching, followed by
group 2 BCRs and then group 3 BCRs. We performed this analysis
for all scRNA-seq datasets (Fig. 2h), and observed that group 1
BCRs do indeed have the highest rates of class switching (t-test

P value of IgD +M% =0.0034 for group 1 versus group 2, 0.00035
for 1 versus 3, 0.35 for 2 versus 3). Overall, we showed that Benisse is
capable of defining functionally relevant trajectories of BCR evolu-
tion, which revealed how somatic hypermutations generate increas-
ingly ‘better’ BCRs that confer stronger activation and maturation
signals to their B cells.

Benisse reveals tighter coupling of BCR and B-cell expression
during COVID-19. To demonstrate the capability of Benisse to
reveal novel biological insights, we deployed Benisse to analyse a
set of single-B-cell RNA-sequencing datasets with matched BCR
sequencing from COVID-19 patients®. These data consist of 16,066
B cells from 11 patients and two healthy donors. We applied Benisse
to the expression and BCR data of each patient’s B cells, constructed
the BCR networks and detected the prime BCR clonotypes (Fig. 3a
and Extended Data Fig. 5). We first validated that the detection
of the BCR networks and the prime/non-prime BCR clonotypes
is biologically meaningful, by leveraging the data of validated
SARS-CoV-2 antibodies®™ (N=2,037). As we hypothesize that the
prime BCRs are more likely to be antigen specific and will more
strongly activate the B cells, we should expect the prime BCRs to be
more likely to be the same as or at least very similar to these vali-
dated SARS-CoV-2 antibodies. Indeed, the prime BCRs are much
more likely to be the same as one of the 2,037 validated antibodies
or only differ by a small number of amino acids (from <2 to 5) from
them, compared with the non-prime BCRs (Fig. 3b).

We next examined the topology of the BCR networks constructed
by Benisse, which could reflect the activity of the somatic mutation
events during BCR clonotype generation. For the diseased patients,
the B cells were collected from one or more of the severe, recovery
and cured phases of COVID-19 (definition in Methods, Fig. 3c). We
counted the number of connections (degree) each BCR clonotype
makes within the networks (Fig. 3d), in each of three disease phases
and the healthy donors. We also narrowed down the investigation to
the prime BCR clonotypes of each network and examined the degrees
of connection of only these BCR clonotypes (Fig. 3¢). Interestingly, we
observed that the B-cell clonotypes from all phases of the COVID-19
patients demonstrate more connections than the B-cell clonotypes
from the two healthy controls (Fig. 3d,e), indicating more active
affinity maturation of BCRs during COVID-19. Next, examining the
different phases of COVID-19, we observed that, overall, B cells from
the severe phases demonstrate the highest level of connections, fol-
lowed by the recovery and cured phases (Fig. 3d,e). To further con-
firm this observation, we also calculated another index, by examining
each B-cell clonotype from each patient sample and calculating the
probability that it is part of a BCR network with at least one other
member clonotype. Again, this index is highest in the severe phase of
COVID-19, followed by the recovery and cured phases, which are all
higher than the control samples (Fig. 3f). The maturation of the BCR
repertoire should be characterized by successive iterations of somatic
hypermutations that generate well connected networks of BCRs.

\

Fig. 3 | Benisse reveals tight coupling of BCR and B-cell expression during COVID-19. a, The BCR networks constructed by Benisse for patient Coc012.
Principal component analyses were performed to reduce the dimensions of the embedding output by Benisse to two for visualization. The nodes in the
same BCR networks were drawn in the same colours. b, The percentages of prime BCRs and non-prime BCRs, detected by Benisse, that are the same as
one of the validated SARS-CoV-2 antibodies (edit distance <1) or differ only by a small number of amino-acid residues (edit distance <2 to <5). ¢, The
number of BCR clonotypes found in the scRNA-seq data of each sample of each patient. d,e, The degrees of connection of the BCR clonotypes (number of
other clonotypes in the same BCR network for each BCR clonotype) of B cells found in each stage of COVID-19: d, all BCR clonotypes; e, only prime BCR
clonotypes of the networks. f, The probability of each BCR clonotype belonging to a BCR network of at least two member clonotypes, for B-cell clonotypes
found in each stage of COVID-19. g, The correlation between B-cell gene expression and BCR embeddings in the latent space, for B cells belonging to

the severe/recovery/cured phases of the COVID-19 patients and the healthy donors. h, Circos plot showing the enriched pathways in the genes whose
expression was highly correlated with the BCRs in each stage of COVID-19. The top 30 pathways in each category are shown. However, the false discovery
rates for these 30 pathways are all <1x10-°. The curves in the centre connect pathways that share genes, with darker colouring of the curves referring to
more shared genes. The sizes of the dots on the circle refer to the number of highly correlated genes in each pathway divided by all genes in the pathway.
The colouring of these dots refers to a pathway activation score calculated by the mean of expression of all genes in each pathway. mRNA, messenger RNA.
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We sought to further investigate whether the expression of the
B cells demonstrates any concordant changes with BCRs during
COVID-19. We calculated the correlations between BCR distances
of all pairwise B-cell clonotype pairs and the expressional differ-
ences of the same clonotype pairs from the Benisse networks. Again
we observed that this coupling between expression and BCR is
stronger in all phases of COVID-19 compared with the healthy con-
trols (Fig. 3g). We also again observed that the correlation between
BCR repertoire and B-cell gene expression is strongest in the severe
phase, followed by the recovery phase and then the cured phase
(Fig. 3g). We also calculated the correlation between BCR and gene
expression for each individual gene. We selected the top 2% of all
investigated genes (N=452) with the highest average correlation,
from B cells of all datasets of the severe phases of COVID-19. We
removed from this set the 177 genes that are also highly correlated
with BCRs in B cells of the healthy samples (same criterion). We
also did the same for the genes from the recovery and cured phases,
and performed Gene Ontology (GO) analyses for remaining genes.
For all three phases, we observed many GO terms associated with
immune-cell functions, especially the activation of humoral immu-
nity (Fig. 3h). The severe phase has the highest level of pathway
activation, followed by the recovering phase and then the cured
phase. The pathways in the severe phase also have more genes in
common with one another. These observations indicate the highest
level of concerted action of the B cells during the severe phase of
COVID-19.

Taken together, our analyses indicate that the BCR signalling
pathway is most activated and induces the strongest BCR rearrange-
ment events in earlier severe phases of COVID-19, and weakens
when the patients are on the pathway to recovery.

Discussion

In this work, we developed the Benisse model to build the link between
expression of B-cell genes and their BCRs. The fields of BCR sequenc-
ing and scRNA-seq have been developing as independent disciplines.
Our work models the two types of data together, providing new
opportunities to mechanistically dissect the roles of B cells and BCRs
in normal development and disease progression. Methodologically,
Benisse is built upon mathematically innovative techniques that
enable learning a sparse weighted graph in the latent space probabi-
listically from the high-dimensional data of BCRs, under the supervi-
sion of gene expression’’. We applied Benisse to two human diseases,
COVID-19 (Fig. 3) and ulcerative colitis (Supplementary Note 2),
which revealed interesting biological insights.

Zhang et al.** and Yost et al.”” discovered convergent VD] (D,
diversity) recombinations for T-cell receptors (TCRs). These works
found that T cells tend to generate different but similar TCRs
through VDJ recombination against the same antigen. The TCRs that
are most similar to the ‘average/centre’ of these clustered TCRs are
probably the most efficient in antigen targeting. In an interesting
contrast to T cells, we observed that centre BCRs do not have higher
activation signals or larger clonal expansion than non-centre BCRs
(Supplementary Note 2). In other words, the prime BCR clonotypes
that we identified above in each BCR network are not the centre of
their BCR networks. Rather, BCRs of B cells continuously evolve,
via somatic hypermutation, to obtain higher specificity in antigen
targeting, forming a directional trajectory. This is most obvious in
Extended Data Fig. 3, where the phylogenetic tree of BCRs has only
one major branch of evolution, pointing towards the best antibody,
placed at the tip of the tree branch. This is different from T cells,
which have very limited somatic hypermutation ability***, so they
tend to converge to the best solution from different independent
trials of VDJ recombinations.

We observed the coupling between BCRs and B-cell expression
in various biomedical contexts. There are two possible mechanisms
responsible for this coupling effect. First, in the GCs, the somatic
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mutational processes keep producing BCRs of various qualities in
a continuous process. BCRs that create higher-affinity antibodies
for the target antigens will induce stronger proliferation signals
for the B cells (the well known positive selection process). Similar
BCRs will probably induce similar proliferative signals for the B
cells. Second, some plasma cells still express functional BCRs that
can positively impact the survival and activation of plasma cells***.
Therefore, even in the stage of plasma cells, BCRs can still constitu-
tively modulate B-cell phenotypes depending on the qualities of the
BCRs, thereby explaining this coupling effect.

Opverall, the BCR repertoire should not be considered alone as a
marker of clonality, and the interrogation of how the BCRs interact
with and impact the transcriptomic status of the B cells will facilitate
the discovery of vital insights. We expect Benisse and similar works
to propell our understanding of the function of B cells in various
physiological processes.

Methods

The BCR embedding algorithm. We created an algorithm based on deep
contrastive learning for embedding the BCR CDR3H amino-acid sequences with
numeric vectors. We first encoded the BCR CDR3H sequences using the Atchley
factors, which represent each amino acid with five numeric values, and can
comprehensively characterize the biochemical properties of each amino acid*>**.
In our recent work on TCRs*, we also created a similar embedding model for
TCR CDR3p (complementarity-determining region 3) sequences with Atchley
factors and demonstrated the appropriateness of Atchley factors for numerically
embedding immune receptors. Next, we leveraged contrastive multiview coding
(CMC") to build a short numerical vector embedding of BCR CDR3H sequences
in the space of Atchley matrices for easy manipulations in the following model.
To achieve this, we leverage the fact that, for most CDR3H protein sequences

we obtained from various public sources, the nucleotide sequences for the BCR
sequences are also available. We treat the protein sequences (in the space of
Atchley factor matrices) as one view and their corresponding nucleotide sequences
(A/T/G/C are one-hot encoded) as another view—both matching the same
underlying CDR3H sequence. Then we developed a CMC model that is capable of
pairing CDR3H nucleotide sequences with the correct CDR3H protein sequences
from a pool, and also vice versa: namely, the loss function considers the loss in
both directions. In this process, the CMC model learns a latent embedding of
CDR3H in the form of a short numeric vector.

This approach is different from a simplistic protein translation between DNA
and protein sequences from several perspectives. First, the codon table is not
given as a model input, but rather we require the model to implicitly learn this
matching relationship from the given numerical vectors. Thus the model also has
to learn more information regarding the key inherent properties of the nucleotide
and protein sequences of CDR3H at the same time. Second, the goal of this CMC
model is to obtain the numeric embedding, which is a short fixed-length vector.
The correct pairing between CDR3H protein sequences and nucleotide sequences
forces the CMC model to capture the key structural information of BCRs through
this short vector, rather than only learning a simple matching relationship between
individual amino acids and triplets of nucleotides (the codon table).

The core Benisse model. The core Benisse model deals with a pool of B cells
where, for each cell we have (1) expression data, as a numeric vector, and
(2) BCR data, already encoded into a numeric vector as described above. In the
pool of B cells we analyse, there are groups of B cells that are in the same BCR
clonotype (same V, same J and same CDR3 for the H chain), and their expression
is averaged to the clonotype level. Benisse is tasked with detecting BCR clonotypes
that are related (similar sequences, probably generated for the same antigen) and
building a graph of BCR networks, with each network composed of related BCRs.
Within each network, the similarity between different BCR clonotypes should
be influenced by the similarity of their clonotype-level expression profiles. To
achieve this, Benisse finds a lower-dimensional embedding based upon the original
BCR embeddings that also satisfies the coupling between BCRs and expression.
Moreover, Benisse concomitantly detects the graph of BCR networks in this
lower-dimensional space.

Technically, the core Benisse model is based on a probabilistic supervised learning
model of sparse graph structure for BCR data, informed by the expression of the
B cells. The graph is derived from a unified model of density estimation and pairwise
distance preservation, where latent embeddings are assumed to be random variables
following an unknown density function to be learned, and pairwise distances are
then calculated as the expectations over the density for the BCR clonotypes. The
problem is solved using the alternating direction method of multipliers* algorithm
in two main alternating steps: (1) spectral projection for solving the latent space
embedding of BCRs supervised by gene expression and (2) L-BFGS-B* for solving
the graph of BCR networks. Mathematical details of the Benisse model are described
in Supplementary Note 1, along with simulation analyses.
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Acquisition and preprocessing of the BCR-seq and scRNA-seq data. The
processed BCR-seq data used for the training and validation of the BCR encoder
are obtained from bulk BCR sequencing and also from scRNA sequencing of
B cells with paired scBCR-seq. For the training/validation of the BCR encoder,
we included data from several sources, including IEDB (https://www.iedb.org/
database_export_v3.php), AdaptiveBiotech?-** and Rizzetto et al.*’. We also
included all BCRs from all the scBCR-seq datasets used in this study, including 10x
Genomics, and refs. *»*>*'=°, For the 10x single-cell data, we only included BCR
records with ‘is_cell, ‘high_confidence] full_length’ and ‘productive’ all being true.
The class-switching status of each B cell in the scRNA-seq data was inferred using
the standard 10x Cell Ranger software.

For the analyses involving the Benisse model, we only investigated cells from
the scRNA-seq data that have both expression information and also the BCR
heavy-chain information. The scRNA-seq data were handled by the Seurat R package
(v4.0.5). For the single-cell expression matrices, we aggregated the expression of
the transcripts to the gene levels (HUGO gene symbols) via the annotation files
provided with the R biomaRt package (v2.48.0). We normalized by library size of
each cell and performed log(x+ 1) transformation before downstream analyses.

Implementation of bcRep and Lindenbaum cosine similarity. bcRep was
implemented using the bcRep R package (v1.3.6), based on the cosine dissimilarity
method, which was showcased in Fig. 6 of bcRep’s original publication. For the
Lindenbaum et al method, we calculated the tf-idf (term frequency-inverse
document frequency) representations (the TfidfVectorizer function from the
Python sklearn package, v1.0) and cosine similarities between BCR sequences,

as described in their original paper. The cosine dissimilarity used to form the

tree structures and waterfall plots in Extended Data Fig. 3e,f was calculated by
subtracting the min max normalized cosine similarity score (MinMaxScaler from
the Python sklearn package, v1.0) from 1.

Defining the different phases of COVID-19 for the Bernardes et al. dataset.

We assigned our four disease groups on the basis of the classification of Bernardes
et al.”, but slightly consolidated their different categories of disease trajectories.
This is done so that we have fewer groups but more samples in each of the four
groups (for more robust analysis results), and we also have more balanced numbers
of B cells in each category. Their ‘uninfected (control)’ samples were denoted as
‘healthy’ in our study. Their ‘incremental’ and ‘critical’ samples were denoted as
‘severe, their ‘complicated” and ‘early/moderate/late convalescence’ samples were
denoted as ‘recovering’ and their ‘long-term follow-up’ samples were denoted as
‘cured. In particular, all the incremental samples were taken within two days of the
patients entering the critical phase, including one patient who died. Therefore, we
grouped incremental and critical samples together.

Statistical analyses. All computations are performed in the R (v4.02) and Python
(v3.7) languages. The BCR embedding is created using the PyTorch package.
PyTorch version, 1.10.0; pandas version, 1.3.4; NumPy version, 1.21.3; sklearn
version, 1.0. UMAP was performed using the R umap package (v0.2.7.0) and
t-SNE was performed using the R Rtsne package (v0.15). Pseudotime inference
was performed using Monocle2*. The predicted pseudotimes were reordered

in each dataset so that the latest-appearing cells have the smallest pseudotimes.
For all boxplots appearing in this Article, box boundaries represent interquartile
ranges, whiskers extend to the most extreme data point, which is no more than
1.5 times the interquartile range, and the line in the middle of the box represents
the median. We assembled a B-cell activation gene signature (Fig. 2d) on the
basis of literature review and availability of the genes in the scRNA-seq datasets
of this study (Extended Data Table 2). GSEA analyses were performed using
clusterProfiler v3.14°. The GOrilla webserver (v2013Mar8) was used to detect
enriched GO pathways®. The CytoSig analyses were performed with the CytoSig
software downloaded from https://cytosig.ccr.cancer.gov/, using all default settings.
Canonical correlation analysis was performed using the R CCA package (v1.2.1).
All statistical tests were two tailed, unless otherwise specified. All correlations are
Pearson correlations unless otherwise specified.

Data availability

The data used for the training of the BCR embedding algorithm and the single-cell
sequencing data used for Benisse analyses are all publicly available. Their accession
methods are shown in Extended Data Table 1***>*-%°, The LIBRA-seq data are
publicly available from Setliff et al.”*. The SARS-CoV-2 antibody data are from
Raybould et al.**. Our own in-house BCR data can be found in our GitHub
repository at https://github.com/wooyongc/Benisse.

Code availability

The Benisse software, including the BCR embedding algorithm, is publicly
available under the MIT License at https://github.com/wooyongc/Benisse and in
the Supplementary Software. The software is also available via Zenodo®.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | GSEA of the pathways enriched in the genes that showed a monotonic increase (a) or decrease (b) of expression from group
1to group 3 BCR clonotypes’ B cells. Pathways enriched in the genes with “increasing” or “decreasing” trends were shown separately. The results for all
datasets are shown, with the top 5 pathways of the smallest False Discovery Rates (FDRs) shown for each dataset. The red circles denote the FDR cutoffs
of 5% and 10%.
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Extended Data Fig. 5 | The BCR networks constructed by Benisse for patient Coc003. Principal Component Analyses were performed to reduce the
dimensions of the embedding output by Benisse to 2 dimensions for visualization.
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Extended Data Table 1| The genes in the B cell activation signature and their citations
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Cohort name Source or ’ ite) Type Purpose URL

IEDB_bcrs1 and IEDB_bcrsi The Immune Epitope Database bulk BCR-seq BCR embedding iedb.org/result_v3.php?cookie_id=53c970

VDJpuzzle B-cell receptor reconstruction from single-cell RN/ scRNA-seq BCR embedding https://academic.oup.com/bioinformatics/article/34/16/2846/4961426

Bertoli Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/bertoli-2019-sr

CuiY Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/cui-2019-jaci

Ahmed Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/ahmed-2019-cell

Melenhorst Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/ruella-2018-naturemedicine

Fraietta Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/melenhorst-cll-ctl019

Allenspach Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/allenspach-2017-jallergyclinimmunol
Lombardo Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/lombardo-2017-bloodadvances

Seay Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/seay-2016-jciinsight

Boisvert Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/boisvert-2016-ji

Dewitt Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/robins-bcell-2016

Kanakry Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/Kanakry-2016-JClInsight

Mattoo Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/Mattoo-Mahajan-2013-JAICI

Kolhatkar Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/Kolhatkar-2015-JEM

Bertucci Adaptive Biotech bulk BCR-seq BCR embedding https://clients.adaptivebiotech.com/pub/bone-marrow-healthy-adults-control

RCC An Empirical Approach Leveraging Tumorgrafts t( scRNA-seq BCR embedding https://github.com/wooyongc/Benisse

FB5P FB5P-seq: FACS-Based 5-Prime End Single-Cell [scBCR-seq+scRNA-sed BCR embedding+Beniss| https://www.frontiersin.org/articles/10.3389/fimmu.2020.00216/full#h7

10x_NSCLC 10x genomics website scBCR-seq+scRNA-se BCR embedding+Beniss| https://support.10xgenomics.com/single-cell-vdj/datasets/2.2.0/vdj_v1_hs_nsclc_b
10x_PBMC1 10x genomics website scBCR-seq+scRNA-se BCR embedding+Beniss| https://support.10xgenomics.com/single-cell-vdj/datasets/2.2.0/vdj_v1_hs_pbmc_b
10x_PBMC2 10x genomics website scBCR-seq+scRNA-sed BCR embedding+Beniss| https://support.10xgenomics.com/single-cell-vd 3.0.0/vdj v1_hs pbmc2 b
10x_PBMC3 10x genomics website scBCR-seq+scRNA-se BCR embedding+Beniss| https://support.10xgenomics.com/single-cell-vdj; /3.0.2/vdj_v1_hs_pbmc3
10x_PBMC4 10x genomics website scBCR-seq+scRNA-sed BCR embedding+Beniss| https://support.10xgenomics.com/single-cell-vdj/c /3.1.0/vdj_nextgem_hs_pbmc3
10x_melanoma 10x genomics website scBCR-seq+scRNA-seq BCR embedding+Beniss| https://support. 10xgenomics.com/single-cell-vdj .0.0/sc5p_v2 hs melanoma_10k
10x_PBMC6 10x genomics website scBCR-seq+scRNA-se BCR embedding+Beniss| https://support.10xgenomics.com/single-cell-vdj; /4.0.0/sc5p_v2_hs_PBMC_10k
cap IL-17 production by tissue-resident MAIT cells is I{scBCR-seq+scRNA-seq BCR embedding+Beniss| https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE 124885

melanoma Single-cell analysis reveals new evolutionary com|scBCR-seq+scRNA-sed BCR embedding+Beniss| https://www.nature.com/articles/s41467-019-14256-1#Sec25

IBD Heterogeneity and clonal relationships of adaptive|scBCR-seq+scRNA-se BCR embedding+Beniss| https://pubmed.ncbi.nim.nih.gov/32826341/

Covid Longitudinal Multi-omics Analyses Identify Respor|scBCR-seq+scRNA-sed BCR embedding+Beniss| https://www.ncbi.nim.nih.gov/pmc/articles/PMC7689306/

Libra-seq High-Throughput Mapping of B Cell Receptor Seq/scBCR-seq+scRNA-sed BCR embedding https://www.sciencedirect.com/science/article/pii/S00928674 19312243
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Extended Data Table 2 | The BCR sequence data and the B cell scRNA-seq data used for the training/testing of the BCR embedding
algorithm and for Benisse analyses

Cohort Name PubMed Reference Number
CD27 PMID: 10809378
CD38 PMID: 16208411
IGHA2,JCHAIN PMID: 33815362
IGHA1,MZB1,XBP1,SSR4,IGHG1 PMID: 33941770
HSP90B1 PMID: 18509083
IL6 PMID: 28899868
SDC1 PMID: 25681333
AQP3 PMID: 14978691
IGHG4 PMID: 28546550
IGKC PMID: 28078109
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