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ABSTRACT

Uncovering the non-trivial brain structure-function relationship is fundamentally important for reveal-
ing organizational principles of human brain. However, it is challenging to infer a reliable relationship
between individual brain structure and function, e.g., the relations between individual brain structural
connectivity (SC) and functional connectivity (FC). Brain structure-function displays a distributed and
heterogeneous pattern, that is, many functional relationships arise from non-overlapping sets of anatom-
ical connections. This complex relation can be interwoven with widely existed individual structural and
functional variations. Motivated by the advances of generative adversarial network (GAN) and graph con-
volutional network (GCN) in the deep learning field, in this work, we proposed a multi-GCN based GAN
(MGCN-GAN) to infer individual SC based on corresponding FC by automatically learning the complex
associations between individual brain structural and functional networks. The generator of MGCN-GAN
is composed of multiple multi-layer GCNs which are designed to model complex indirect connections in
brain network. The discriminator of MGCN-GAN is a single multi-layer GCN which aims to distinguish
the predicted SC from real SC. To overcome the inherent unstable behavior of GAN, we designed a new
structure-preserving (SP) loss function to guide the generator to learn the intrinsic SC patterns more ef-
fectively. Using Human Connectome Project (HCP) dataset and Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) dataset as test beds, our MGCN-GAN model can generate reliable individual SC from FC. This
result implies that there may exist a common regulation between specific brain structural and functional
architectures across different individuals.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

the same functional regions tend to possess consistent structural
connectivity patterns across different individuals and populations.

A fundamental question in neuroscience is how to understand
structure-function relationship of human brain. It is widely be-
lieved that brain structural architecture provides the substrate
where rich functionality arises from, and therefore, the dynamics
of brain function are closely related to the relatively fixed structure
organization. Numerous studies confirmed that brain structure can
determine, at least partially, brain functional patterns. For exam-
ple, the concept of “connectional fingerprint” (Passingham et al.,
2002) suggests that each brain’s cytoarchitectonic area has a
unique set of extrinsic inputs and outputs, which largely deter-
mine the function that each brain area performs. This close rela-
tionship between structural connection pattern and brain function
has been confirmed and replicated in many literatures. For exam-
ple, our previous work (Zhu et al. 2011, 2012, 2013) proved that
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Koch et al. (2002) directly compared brain structural connectiv-
ity (SC) and functional connectivity (FC) and found that regions
which directly linked by structural connectivity show high func-
tional connectivity. Skudlarski et al. (2008) reported a significant
overall agreement between SC and FC by calculating the partial
correlation between the two global matrices. Some other studies
implemented computational models to study the brain structure-
function relationship at macroscale (Honey et al., 2009; Gong et al.,
2009), mesoscale (Wang et al., 2013), and microscale (Pernice et al.,
2011). A consistent result achieved by these studies is that strong
functional interactions tend to be accompanied with strong struc-
tural connections. On the other hand, some studies also found
that parts of the FC may be not supported by the underlying SC.
Greicius et al. (2009) studied the relations between SC and four
default mode network (DMN) related brain regions and found that
strong FC can still exist without direct SC. This may be due to sev-
eral factors. Firstly, the complex indirect interactions may widely
exist among different brain regions. The functional connections
observed between regions with little or no direct structural con-
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nections may be mediated by indirect structural connections. Sec-
ondly, brain’s structure-function behaves under a distributed and
heterogeneous pattern: at network level, many functional relation-
ships arise from non-overlapping sets of anatomical connections
(Misic et al., 2016), which means functional networks do not nec-
essarily correspond to the underlying structural substrate with a
simple node-to-node mapping. Therefore, how to represent and
analyze the relationship between brain structural and functional
network, especially at individual level, is still challenging.

The existing approaches that have been used to explore brain
structure-function relationship can be broadly divided into two
categories: the first approach is to conduct association analy-
sis using correlation coefficient, which mainly focuses on simple
and linear relationship between SC and FC (Koch et al., 2002;
Skudlarski et al., 2008). The second is to apply graph theory
to both brain structural and functional network for quantita-
tive analysis, such as small world property (Achard et al., 2006;
[turriaMedina et al., 2008; Sporns and Zwi, 2004), modular struc-
ture property (Zamora-Lpez et al., 2016; Diez et al., 2015), and
rich-club organization Van Den Heuvel and Sporns, 2011; Van Den
Heuvel et al., 2012). All these approaches have fundamentally ad-
vanced our understanding of the relationship between brain struc-
ture and function at population level, but they are limited in char-
actering individual variability in subject-specific brain network.
In addition to the above two widely used strategies, some other
computational models have also been developed to bridge the
gap between structural network topology and the related func-
tion by examining their relations at multiple scale and resolu-
tion (Honey et al., 2009), modeling dynamics (Pernice et al., 2011)
and constructing local mm-scale networks using animal model
(Wang et al., 2013). However, because of brain’s distributed and
heterogeneous structure-function pattern, traditional methods are
limited to represent the complex relationship between individual
SC and FC.

Recent advances in deep learning have revolutionized the fields
of machine learning (Hinton and Salakhutdinov, 2006; LeCun et al.,
2015) and brought breakthroughs for computational neuroimag-
ing field including reconstruction (Sun et al., 2019), segmenta-
tion (Wang et al., 2015), detection (Sirinukunwattana et al., 2016),
and computer-aided diagnosis (Roth et al., 2015). Among numer-
ous deep learning models, graph convolutional network (GCN)
(Kipf and Welling, 2016; Wu et al., 2020; Zhang et al.,, 2020c)
generalizes the convolutional operations from grid data to graph
data and witnesses great success in brain network domain re-
cently (Ktena et al., 2018; Kazi et al., 2019; Parisot et al., 2018;
Zhang et al., 2019b, 2020b, 2021). More importantly, the generative
adversarial network (GAN) (Goodfellow et al.,, 2014; Hong et al.,
2019) provides an efficient way to revisit the complex relationship
between brain structure and function: as a generative model, GAN
can powerfully handle the brain’s distributed and heterogeneous
structure-function pattern. Moreover, compared to other genera-
tive models, GAN effectively converts the regression problem to a
classification problem through the adversarial training scheme. In
this way, an explicit regression loss function is unnecessary, and
the criterion used to evaluate the performance of the predictions
is implicitly learned from the data. This can be especially suitable
for areas with insufficient prior knowledge, such as brain network.

In this work, we proposed a multi-GCN based generative ad-
versarial network (MGCN-GAN) (Fig. 1) to learn individual SC from
the corresponding individual FC. We adopted GAN to handle brain’s
distributed and heterogeneous pattern. To overcome the inherent
unstable behavior of GAN (Goodfellow et al., 2014; Hong et al.,
2019) caused by the adversarial training scheme, we proposed a
novel structure-preserving (SP) loss function to guide the genera-
tor to learn the intrinsic SC patterns more effectively. In order to
capture the complex relationship buried in both direct and indirect
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brain connections, we constructed the generator and discrimina-
tor using GCN. However, traditional GCN has two limitations: First,
comparing to widely used convolutional neural network (CNN) that
has multiple filters to capture multiple feature spaces, conventional
GCN only has one filter (weight matrix) in each GCN layer and
therefore can only learn a single feature map. Second, the per-
formance of GCN may gradually decrease with increasing number
of layers (Zhao and Akoglu, 2019) and which limits the power of
learning by deepening the network as CNN does. To address these
limitations, we designed a multi-GCN based generator that used
multiple GCNs instead of one deep GCN to simultaneously capture
underlying complex interactions in brain network and avoid the
performance decay by stacking more layers in a single GCN. We
tested our methods on two datasets: Human Connectome Project
(HCP) dataset (Van Essen et al, 2012) and Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset (Petersen et al., 2010). Our
results show that the proposed MGCN-GAN can generate reliable
individual SC based on corresponding individual FC. More impor-
tantly, our results imply that there may exist a common regula-
tion between specific brain structural and functional architectures
across individuals.

Our proposed MGCN-GAN advances the state of the art in
two ways: firstly, our model is designed to capture individual-
specific structure-function relationship. Previous publication
(Batista-Garcia-Ramo and Fernandez-Verdecia, 2018) found that
similar structural damage of patients with the same pathology
show different dysfunctions, which indicates the variability of
individual structure-function relationship. Unveiling individual
structure-function relationship is fundamentally important to
the comprehensive understanding of individual variation in brain
structure and function and is the premise and key step for person-
alized medicine. Secondly, we introduced multi-GCN architecture
into GAN framework and designed a structure preserving (SP)
loss function to help the model to generate high-quality SC.
The MGCN-GAN is a flexible architecture with adjustable GCN
components to fit different tasks with varying complexity.

2. Related work

Graph convolutional network (GCN) (Kipf and Welling, 2016;
Wu et al., 2020) was developed to manipulate graph topological
properties in a deep manner. Recently, it has been used to de-
fine and represent brain network for deep modeling of brain struc-
tural and/or functional connectivity under a given task, i.e., clas-
sification (Zhang et al, 2019a, 2020a, 2021; Huang et al., 2020).
In this section, we reviewed the most recent GCN-related stud-
ies on brain network from two views: (1) the definition of the in-
put graph - group-level GCN model vs individual-level GCN model
(Section 2.1), and (2) the architecture of the GCN framework -
single-GCN architecture vs multi-GCN architecture (Section 2.2).

2.1. Group-level GCN model vs individual-level GCN model

Based on different definitions of input graph, existing GCN-
based studies on brain network can be grouped into two cate-
gories - group-level GCN model and individual-level GCN model. In
group-level GCN model, the input graph represents the whole pop-
ulations. For example, Parisot et al. (2018) used imaging features
of individuals as nodes and encoded pairwise similarities between
non-imaging features as edge weights. By this way, the whole pop-
ulations were represented as a sparse graph, upon which a GCN
was built in a semi-supervised learning task to predict conver-
sion to Alzheimer's disease. Kazi et al. (2019) constructed a sim-
ilar graph structure, where each node was a feature vector gener-
ated from imaging data to represent an individual and the non-
imaging data was used to measure the similarities between the
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Fig. 1. An illustration of the proposed multi-GCN based generative adversarial network (MGCN-GAN). Firstly, by using brain atlas (Destrieux Atlas (Destrieux et al., (2010)) and
Desikan-Killiany Atlas (Desikan et al.,, (2006)) along with diffusion MRI and rs-fMRI data, we extracted the averaged BOLD signal of each brain region. Then we constructed
functional connectivity (FC) by different methods (correlation, partial correlation, threshold FC, and binarized FC) and structural connectivity (SC) by diffusion MRI derived
fiber counts. SC was used as 1) ground truth to guide the generator at the beginning of the training process; 2) real samples of discriminator. FC was used as: (1) features
associated with the nodes; (2) initialization of the GCN topology. The features and topology were fed into generator to predict SC. The predicted SC were used to (1)
iteratively update the GCN topology and (2) train discriminator as fake samples. The whole model is trained based on the proposed structure preserving (SP) loss function.

connecting nodes. To break the limitation of applying the same fil-
ter size to all layers, Kazi et al. proposed an InceptionGCN model,
in which the filter size of different GCN layers can be different,
and thus make the model more efficient in capturing useful fea-
tures. To better measure the similarity between two connecting
nodes, Song et al. (2021) designed a similarity-aware adaptive cal-
ibrated GCN (SAC-GCN). In this work, a calibration mechanism was
proposed to fuse fMRI and DTI information into edges and a pre-
trained GCN was used to calculate the similarity between each
pair of subjects. However, group-level GCN model can be limited
in the flexibility when handling the large sample size and in ca-
pability when representing rich individual information. Individual-
level GCN model takes individual graph as input. Each node in the
individual graph represents an anatomical brain region, and the
edge denotes the relationships between the two connecting brain
regions, such as the morphological, functional or structural con-
nectivity. Ktena et al. (2018) used functional connectivity to create
individual graph and leveraged siamese graph convolutional net-
work (s-GCN) to learn a graph similarity metric which was incor-
porated into a classification task at later steps. Zhang et al. (2019a,
2020a) combined individual-level GCN model with recurrent neu-
ral network (RNN) models to deal with both brain structural and
functional connectivity when identifying the mild cognitive impair-
ment patients. Zhang et al. (2021) also proposed a topology learn-
able GCN model: the topology of the GCN was initialized by indi-
vidual structural connectivity and iteratively updated by functional
information to maximize its classification power for MCI patients.
In general, most GCN studies focused on extracting useful features
from brain connectivity data to do classification or to conduct as-
sociative analysis. Inferring the relationship between structural and
functional networks at individual level has not yet been studied.

2.2. Single-GCN architecture vs multi-GCN architecture

Several GCN studies summarized in Section 2.1 adopt single-
GCN architecture. To further take advantages of complemen-

tary information provided by different scales and modalities,
some studies tried to build multiple GCNs for different brain
graphs. Zhang et al. (2018) proposed a multi-view GCN to han-
dle different brain connectivity graphs (BCGs) derived from DTI
imaging data using different tractography algorithms. A pair-
wise matching strategy was adopted to fuse the output of each
GCN to conduct classification of Parkinson’s disease patients.
Huang et al. (2020) designed an attention-diffusion-bilinear neu-
ral network to integrate structural connectivity and functional
connectivity for predicting frontal lobe epilepsy, temporal lobe
epilepsy, and healthy subjects. This framework consists of two
GCNs for two scales - direct connections and indirect connec-
tions. Zhang et al. (2019b) trained different GCNs for multiple
graphs with respect to multi-modal brain networks. The features
generated by each GCN were concatenated to conduct classifica-
tion of patients with Parkinson’s disease. In general, by build-
ing independent GCNs for each type of brain connectivity, multi-
GCN architecture is able to capture more comprehensive infor-
mation from multi-modal data and therefore, improve the model
performance.

3. Materials and methods
3.1. Participants and data description

HCP dataset. In this work, we selected all the 1064 subjects
which have structure MRI (T1-weighted), resting state fMRI (rs-
fMRI) and diffusion MRI data from HCP S1200 release. For the T1-
weighted MRI data, the Field of View (FOV) is 224 mmx224 mm,
voxel size is 0.7 mm isotropic, TR = 2.4 s, TE = 2.14 ms and flip
angle = 8° For the rs-fMRI data, the FOV is 208 mmx180 mm,
72 slices, voxel size is 2.0 mm isotropic, TR=0.72 s, TE=33.1 ms,
flip angle = 52° and there are 1200 vol for each subject. For
the diffusion MRI data, the gradient direction is 288, the FOV
is 210 mmx180 mm, 111 slices, voxel size is 1.25 mm isotropic,
TR=5.52 s, TE=89.5 ms and flip angle = 78°.
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Table 1
Multiple types of FC measures.
Methods Formula
cov(fi. £j)
PCC E ;= “]7”,,1

Sparse ICOV maxr logdet(F) —
trace(CF) — p|F|;

C=
T

™ Zl(gr—gu)(g[—gﬂ)T
t=

T
=1 [Z] 8
Binary FC 1E = cm:f(]{;fif,-)
2.F j=
{1, if abs(F, ;) > Threshold,
0, else
Threshold FC 1.E ;= fm;(!{';ljf,)
2.F j=
F, j. if abs(F, ;) > Threshold,
{ 0, else

ADNI dataset. We used 132 normal control (CN) subjects (68
females, 64 males; 76.45 + 7.68 years.) from ADNI dataset. Each
subject has structure MRI (T1-weighted), rs-fMRI and diffusion MRI
data. The FOV of T1-weighted MRI is 240 mmx256 mmx208 mm
and the voxel size is 1.0 mm isotropic, TR = 2.3 s. The diffu-
sion MRI data has 54 gradient directions, the FOV is 232 mmx232
mmx160 mm and the voxel size is 2.0 mm isotropic, TR = 7.2 s
and TE = 56 ms. The rs-fMRI data has 197 vol, the FOV is 220
mmx220 mmx163 mm, voxel size is 3.3 mm isotropic, TR = 3 s,
TE = 30 ms and flip angle = 90°.

3.2. Data preprocessing

We applied the same standard preprocessing procedures as in
Zhu et al. (2014a) and Wang et al. (2019) to both HCP and ADNI
datasets. In brief, we applied skull removal for all three modal-
ities and registered T1 and fMRI to DTI space by FLIRT in FM-
RIB Software Library (FSL) (Jenkinson et al., 2012). For rs-fMRI im-
ages, we applied spatial smoothing, slice time correction, temporal
pre-whitening, global drift removal and band pass filtering (0.01-
0.1 Hz) via FEAT command in FSL. For DTI images, we applied
eddy current correction using FSL and fiber tracking via MedINRIA
(Toussaint et al., 2007)). For T1 images, we conducted segmenta-
tion using FreeSurfer package (Fischl, 2012) and then adopted the
Destrieux Atlas (Destrieux et al., 2010) and Desikan-Killiany Atlas
(Desikan et al., 2006) for ROI labeling.

3.3. Generation of functional connectivity and structural connectivity

For each subject, the whole brain is divided into 148/68 (148 for
Destrieux Atlas and 68 for Desikan-Killiany Atlas) ROIs and repre-
sented as a network with 148/68 nodes. Averaged fMRI signal was
calculated for each brain region and normalized by the standard
Z-score normalization (Jain et al., 2005) formulated as:

fi—fu
Ji A (1)
where f; is the averaged fMRI signal of brain region i, f, and fs
are the mean and the standard deviation of all 148/68 averaged
fMRI signals. There exist several measurements to represent pair-
wise relationship between two fMRI derived BOLD signals, such as
correlation (Zhu et al., 2014b), partial correlation (Marrelec et al.,
2006) and covariance (Challis et al., 2015). Since how to effec-
tively represent the functional relationships among brain regions
is still an open research area, in this work, we adopted four dif-
ferent measures that have been used in the field (Table 1) to con-
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struct functional connectivity (FC, denoted as F = [F, ;] € RN*N) in-
cluding: (1) Pearson correlation coefficient (PCC), (2) Sparse in-
verse covariance estimation with the graphical lasso (Sparse ICOV),
(3) binarized FC and (4) threshold FC. Pearson correlation coeffi-
cient (PCC) between the BOLD time series of two regions of inter-
est derived from resting state fMRI data is the most used func-
tional measurement to estimate functional connectivity (Batista-
Garci a-Ramo “and Ferna ndez-Verdecia, 2018). Partial correlation
provides a convenient graphical representation for functional in-
teractions. In this work, we used sparse inverse covariance estima-
tion with the graphical lasso (Sparse ICOV) (Friedman et al., 2008)
to capture the partial correlations. In Friedman et al. (2008), the
sparse inverse covariance matrix is estimated by maximizing the
L1 penalized log-likelihood of the observed data with assumption
of Gaussian distribution. In this paper, for each subject, we ap-
ply the graphical lasso method for learning individual sparse func-
tional connectivity F. Let g, ; be the fMRI signal of brain region i
at time ¢ for one subject. Denote by G = [g; ;] € RT*N the fMRI sig-
nals over N regions spanning time T. Assume that the tth sample
g =I81,...8&n]" € RN is drawn i.id. from some Gaussian distri-
bution with the precision matrix F for encoding the conditional
independencies between any two ROIs. The empirical sample co-
variance is:

1
(=773
t

T
T
(g — &) (g — &) 2)
=1
where g, = % ZL] gt is the mean of T samples. The optimization
problem of the graphical Lasso is

maxr logdet (F) — trace(CF) — p|F|1 (3)

Where p is the regularization parameter of the L1 regularization to
control the sparsity of F. Binary FC and Threshold FC are another
two widely used strategies to control the susceptibility to noise
(van den Heuvel et al., 2017). We applied our proposed method
on these multiple types of FC measures, and the prediction results
of structure connectivity are summarized in Section 4.4 (Fig. 8).

The structural connectivity (SC) was created in terms of fiber
counts, denoted as S e R¥*N. S; ; e R is the number of fibers con-
necting brain regions i and j. Then, we conducted normalization of
S using (4) and (5).

S,'_j = lng (S,‘_j + 1), (4)
S-S,
s=32 )

Sy, and S, are the mean and the standard deviation of S. Be-
cause the fiber count can be a value from zero to a few thousands,
which often follows a skewed distribution. Log transformation can
equalize the standard deviations and make the distribution of the
sample mean more consistent with a normal distribution (Curran-
Everett, 2018). Therefore, we first used log transformation to shrink
the range of the fiber counts by (4) and then used (5) for normal-
ization.

3.4. Method overview

We proposed a Multi-GCN based GAN (MGCN-GAN) model
to generate individual SC from the corresponding FC. Similar to
vanilla GAN (Goodfellow et al.,, 2014; Hong et al.,, 2019), MGCN-
GAN is built on two components, i.e., generator and discrimina-
tor. To capture the highly complex relationship between SC and
FC at the connectome level, we used multi-layer GCN architecture
(Section 3.5) to design the generator and discriminator, namely
Multi-GCN based generator and single-GCN based discriminator,
respectively (Section 3.6). Given an individual SC and the associ-
ated FC, the generator is trained to create real-like individual SC
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by competing with the discriminator based on an adversarial train-
ing scheme. The specific training steps are shown as follows: (i)
FC is used as initial topology of brain network as well as features
associated with the nodes; (ii) based on current topology, differ-
ent GCN components of generator map the FC to different feature
spaces to explore the latent relationship between SC and FC, and
each GCN component outputs one feature matrix; (iii) all the out-
put feature matrices are combined by learnable coefficients to gen-
erate the predicted SC in current iteration; (iv) discriminator acts
as a classifier to differentiate the input SC as real SC (real samples)
from the predicted SC (fake samples) generated by the generator;
(v) the topology of the generator is updated by the predicted SC
in the next iteration. Given the training data consisting of FC sam-
ples and their corresponding real SC samples, the whole model is
trained based on the proposed SP loss function (Section 3.7).

3.5. Graph convolutional network (GCN)

In many applications, data are generated from non-Euclidean
domains and represented as graphs with complex interdependency
and relationships between graph nodes. The complexity of graph
data has imposed significant challenges on the existing deep learn-
ing algorithms, such as CNN model. Graph convolutional network
(GCN) (Kipf and Welling, 2016; Wu et al., 2020; Zhang et al.,
2020c) extends traditional CNN by applying convolutional opera-
tions on graph-based instead of Euclidean-based neighbors and is
essential to various applications. In this work, to represent the la-
tent interactions between brain SC and FC, we adopt a multi-layer
GCN architecture to build the proposed MGCN-GAN model. For the
ease of better understanding GCN architecture, we first introduce
the notations of a graph and the graph convolution operation used
in this work.

Graph. let G=(V, £) to be an undirected graph,
where V={vq, 1p,---, vy} is a set of vertices and &=
{eijli, j=1,2, .-, n} is a set of edges. If there exists an

edge connecting two vertexes v; and v}, then e; ; > 0, otherwise,
e; j = 0. Each vertex v; can have its own attributes (features) which
can be represented by a vector x; € R'*d, d is the dimension of
the attributes (features). X = [x1;Xy; --- ; Xn] € R™¢ is the feature
matrix of graph G. The topology of G can be represented by a
weighted adjacency matrix A = [q; ;] € R™", for all i, j, a; ; =¢; ;.
Thus, G also can be represented by G = (A, X).

Graph Convolution Operation. As shown in Shuman et al. (2013),
the traditional convolution operators can be generalized to the
graph setting by defining filters in the graph spectral domain. For a
graph G = (A, X) with the adjacency matrix A = [g; ;] e R"™" and
node-wise feature matrix = [Xq;X2; --- ; Xa] € R™4, its normalized
graph Laplacian is defined as = Iy — D3 A D‘%, where Iy is the
identity matrix and D =}"q;; is the diagonal degree matrix. In
general, the graph spectral convolution can be carried out by a
convolutional network with convolutional layers of the polyno-
mial form. For example, a two-layer GCN was formulated as Z =
f(A, X) = f(A RelU(A xWO)YW D) in Kipf and Welling (2016),
where A=D"% A D% is the Laplacian transformation of A. In
our previous work Zhang et al., 2019a), we compared A = A with
other three different Laplacian transformations of A: 1) A =D — A,
2) A=D% AD 7, and 3) A=D "4 and found that A= A and
A= Dt AD D give similar performance. Therefore, in this work
we directly used the functional connectivity to initialize the adja-
cency matrix (A = F) without using Laplacian transformation, the
reasons are as follows: (1) compared to A=D~% F D%, A=F
needs less computational cost; 2) to infer the reliable relationship
between structural and functional connectivity, using the original
FC matrix may be more appropriate than applying extra transfor-
mation on FC.
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Based on above discussion, the convolutional process of multi-
layer graph convolutional network can be formulated as (6) and

(7):
G(A, X, W) =0 (AH'"'W'), (6)

. o (AHSTWYH, 10

H={ ( X,l:)O ’ )
where ¢ is the nonlinear activation function, H! is the output of
the I convolution layer, W! € Rf*f is the weight matrix, F is
the input feature size and F, is the output feature size. As shown
in Fig. 2, W! acts like a filter which selects related features from
neighbors and defines how to combine these features. By stacking
multiple graph convolutional layers, information from high-order
neighbors (indirectly connected via other nodes) can be propa-
gated along graph topology defined by the adjacency matrix A. In
this work, we represented brain as a graph, and took the individ-
ual FC as the feature matrix i.e., X =F and the initialized topology
A = F. By conducting graph-based convolution via the proposed
MGCN-GAN model, we iteratively updated the graph topology and
learned the individual SC (Section 3.6).

3.6. Multi-GCN based GAN (MGCN-GAN)

Multi-GCN based Generator. Inspired by the great success of CNN
that uses multiple filters to identify different features, the pro-
posed generator consists of multiple multi-layer GCNs. Different
GCN components are designed for different feature spaces and
each of them will learn a latent mapping from individual FC to
its corresponding SC. Through paralleling multiple GCNs, the gen-
erator has the capacity to model complex relationship between FC
and SC, which will be demonstrated by our experimental results
in Section 4. Specifically, a generator that is composed by k multi-
layer GCNs can be formulated by (8), (9) and (10),

Gi=G(T. F, W) ®)

£({G}.0) =00 Gil|GlIGs ]| [1G) = YOG, (9)
k

T— {g({G,-}, 0 ). iteration > 0 (10)

F, iteration =0

where G;, i=1, 2, 3, ---, k represents the i" GCN and || de-
notes parallel operation. Each GCN takes the individual FC (F) as
input and outputs the predicted individual SC. Then, we used the
learnable coefficients § = (01, 65, ..., 6;) to fuse (&) these k pre-
dictions and obtained the final prediction SP = g({G;}, @ ). During
the training process, topology T is initialized by F and iteratively
updated by T = g({G;}, 0 ). After training, each multi-layer GCN
learns an independent mapping that represents a potential rela-
tionship between the input FC and SC. In order to enhance the ca-
pability of generator, we paralleled multiple GCNs to capture the
complex relationships between individual SC and FC.

Single-GCN based Discriminator. In order to distinguish the two
sets of graph data - real SCs and the predicted ones generated
by the generator, the discriminator is composed by a multi-layer
GCN, G4 = G(SC, I, Wy), and followed by two fully-connected lay-
ers. The input SC can be the real SC matrix - S, derived from diffu-
sion MRI and predicted SC matrix — SP, created by generator. They
are treated as real and fake samples during the training process.
Different from generator, we used identity matrix as input fea-
ture matrix for discriminator. This is because discriminator aims
to learn the rules that can be used to decide whether the input
connectivity matrix is a valid SC matrix, any external knowledge
should be excluded.
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Fig. 2. Illustration of the graph convolution process. A graph G can be represented by an adjacency matrix .4 and a feature matrix . The GCN takes the two matrices as
input to conduct graph convolution. We used the red node as an example to show the convolution process. The neighbors with the same order have the same color in graph
G. The colors of features are the same as the corresponding nodes. For the I'" layer, the red edges of the input adjacency matrix .4 indicate the neighbors that participate in
the convolution process and the features of these activate neighbors are non-transparent.

3.7. Structure-preserving (SP) loss function

In the adversarial training scheme, the generator is optimized
according to the feedback of discriminator. However, in this SC
prediction task, the generator is trained to generate real-like in-
dividual SCs while the discriminator is trained to identify the real
SCs from the predicted ones. The classification task of discrimina-
tor is much easier than the regression task of generator. Thus, the
discriminator may easily differentiate real SCs from predicted SCs
after a few training iterations and the generative adversarial loss
would be close to 0, resulting in zero back-propagated gradients
in generator. In such case, the generator cannot be optimized and
will keep generating invalid SCs. To break this dilemma, maintain-
ing the balance between generator and discriminator regarding the
optimization capability during the entire training process is impor-
tant. We designed a new structure-preserving (SP) loss function
to train our discriminator and generator. The SP loss function is
combined by three parts: mean squared error (MSE) loss, Pearson’s
correlation coefficient (PCC) loss and GAN loss. It is formulated by
(11), (12) and (13).

Lsp = Lean + & Lyse + BLpcc, & >0, B>0 (11)

Leay = —(log (D(S)) + log (1 — D(SP))) — log D(SP) (12)

Lpcc = Lpcc-p + Lpcc-r

2?12] 1 (S:J’S)(SPU’SF) + n Z] 1 (511 5)(5;7’],51:)
\/Z?]ZJ 1 (511*5) \/Z: 120 1(5pu*5’7) i=1 \/Z, 1(511 5) \/Z; l(spu’sp)
sijeS, sPijeSP

(13)

where the regularization parameters « and $ are initialized by 1
and will gradually reduce to O later in the training process to let
the model learn completely from the data. The three components
of SP loss aim to guide the learning process from different per-
spectives. MSE loss (Lysg) forces the predicted SC to be the same
scale as real SC at element-wise level. It is designed to control the
magnitude of the predicted SC. PCC loss (Lpcc) maximizes the sim-
ilarity of overall pattern between predicted SC and real SC. It at-
tempts to constrain the structure of the predicted SC. PCC loss is
formulated by (13), which consists of two components: 1) brain-
level PCC loss (Lpcc_p) and 2) region-level PCC loss (Lpcc_r). Brain-
level PCC loss calculates the PCC between predicted SC matrix and
real SC matrix, which measures the overall correlation between the
predicted and real SCs. Region-level PCC loss calculates the corre-
lation for each brain region (each row/column of the connectivity

matrix), which measures the correlation of each brain region pairs
of the predicted and real SCs. GAN loss (Lgan) effectively converts
the regression problem to a classification problem and endows our
model the power to implicitly learn the criterion, which is used
to evaluate the quality of the predictions, from the data. It is for-
mulated by (12), where D(S) and D(SP) are the classification re-
sults predicted by discriminator. The adversarial GAN loss guides
the generator to create real-like SC to fool the discriminator by as-
signing a “true” label to the predicted SC as well as guides the
discriminator to differentiate the two kinds of inputs correctly.

4. Results

We applied our proposed MGCN-GAN to infer individual SC
from the associated FC. For each sample (subject) in training
dataset, the real SC is used as the real sample for discriminator
((11) and (12)) and as the ground truth for the generator at the
beginning of the training process ((11) and (13)). The individual
FC is used to initialize the adjacency matrix as well as to be the
feature matrix ((8), (9) and (10)). During the adversarial training
process, the topology of the graph is iteratively updated. The re-
sults of this work will be organized as follows: 4.1) introducing
the experimental settings; 4.2) measuring the predicted SCs from
three perspectives using two independent datasets; 4.3) evaluating
the prediction performance with different atlases; 4.4) comparing
the prediction performance of different types of FC measures; 4.5)
evaluating different model settings including different GCN archi-
tectures, the learnable combination coefficients — @, different loss
functions; and 4.6) comparison with other widely used methods.

4.1. Experimental setting

Data Setting. We conducted our experiments using two datasets:
HCP and ADNI. For HCP dataset, we used 600 subjects for training
and 464 subjects for testing. For ADNI dataset, we used 80 CN sub-
jects for training and 52 CN subjects for testing. The details of the
two datasets and the data preprocessing pipeline are introduced
in Sections 3.1 and 3.2. For each subject, following the process in
Section 3.3, we created the individual SC and FC.

Model Setting. In this work, three two-layer GCNs are paral-
leled in generator. The model size of GCN components in gen-
erator is: Gy = (74, 148), G, = (148, 148) and G3 = (296, 148).
Gi= (F, E,---,F) represents an I-layer GCN and output feature
dimension of the I'" layer is F. The three GCNs are combined by
the learnable coefficient # which is initialized by 6; = (0, 0,0). We
also tested different model architectures and different initializa-
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tions of @ in Section 4.5. The discriminator is composed of one
three-layer GCN followed by two fully connected layers. The model
size of the GCN component is: G; = (148, 296, 148), and the out-
put feature dimensions of the two fully connected layers are 1024
and 2, respectively. For both generator and discriminator, activa-
tion function Relu and layernorm are used at each layer. The entire
model was trained in an end-to-end manner. During the training
process, the Adam optimizer was used to train the whole model
with standard learning rate 0.001, weight decay 0.01, and momen-
tum rates (0.9, 0.999).

4.2. Predicted structural connectivity

In this section, we used three strategies to evaluate the qual-
ity of the predicted SCs. Firstly, we plotted the predicted SC and
real SC pairs to illustrate the overall similarity patterns via visual
inspection. Secondly, we quantitatively measured the similarity be-
tween the predicted SCs with real ones using six measures (MSE,
cosine similarity, PCC, mean degree, mean strength and mean clus-
tering coefficient) that can comprehensively depict the similarity
between our predicted SC and the real SC from three perspectives:
magnitude, overall pattern and graph property. Thirdly, we exam-
ined the prediction performance of predicted SC by focusing on the
overlaps of top connectivity between predicted SCs and the real
SCs. The individual SCs and FCs used in this section were gener-
ated via Destrieux atlas.

4.2.1. Visualization of predicted SCs and real SCs

To visually evaluate the similarity between the predicted SCs
and the real SCs, we randomly selected 20 subjects from HCP and
ADNI datasets and showed the prediction results in Fig. 3. We
used two ways to visualize the results: first, we directly displayed
the predicted SC and the real SC of each subject in Fig. 3(al, a2).
To demonstrate the details of the prediction, we extracted two
patches at the same location of the predicted SCs and real SCs and
showed them in the middle. From the enlarged patches, we can
see that our proposed model can predict not only the overall pat-
terns, but also the subtle differences across individuals. Secondly,
to better visualize the prediction result at individual level, we re-
move the consistent pattern across individuals by subtracting the
population-averaged SC based on the matrices in Fig. 3(al, a2) and
showed the residual matrices in Fig. 3(b1, b2). We can see that our
method effectively characterized and preserved the corresponding
individual SC patterns during the prediction. Of note, all these pre-
dictions are based on individual FC, which suggests the existence
of a common regulation between individual brain structural and
functional architectures.

4.2.2. Quantitatively measuring the similarity between predicted SCs
and real SCs

We quantitatively measured the similarity between the pre-
dicted SCs and real SCs from three perspectives: magnitude, over-
all pattern and graph property. Specifically, we adopted six mea-
sures in total, including MSE for magnitude, cosine similarity and
PCC for overall pattern, and mean degree, mean strength and mean
clustering coefficient for graph property. In graph theory, the mean
degree is the average of the degrees (the number of edges con-
nected to a node) of all the nodes, which is a widely used mea-
sure for network density (Rubinov and Sporns, 2010). The strength
of a node in a graph is defined as the increase in the number of
connected components in the graph upon removal of the node,
which measures the vulnerability of the graph (Gusfield, 1991).
The mean clustering coefficient for the graph reflects, on average,
the prevalence of clustered connectivity around individual nodes
(Rubinov and Sporns, 2010). All the three graph measures are used
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to describe the overall characteristics of a network, such as seg-
regation and integration (Rubinov and Sporns, 2010). In this work,
we calculated two differences for each measure at individual level:
one is the difference between our predicted SC and real SC, and the
other is the difference between the population-averaged SC and
the real SC. If our predicted SC is more similar to real SC than
the averaged one, this represents our model is effective in char-
acterizing individual-specific relationship between brain structural
and functional connectivity. We showed the two differences by line
chart and displayed the distributions by violin plot. We also per-
formed significance analysis with p-value calculated via one tail
two sample T-test. The results are shown in Fig. 4 for both HCP
(Fig. 4(a)) and ADNI datasets (Fig. 4(b)). We can see that the pre-
dicted SCs have significantly lower MSE, higher cosine similarity
and PCC and smaller deviation of all the three global metrics com-
pared to the averaged SC. We used red arrows to highlight some
peaks in the line chart and these peaks represent some subjects
that have large deviation from other subjects in terms of the re-
lated measures. Since all the samples are normal brains, the high-
lighted subjects are likely the outliers when constructing real SC.
We have discussed these samples and the resulting correlation pat-
terns between the two curves in the section of discussion.

4.2.3. Connectivity level similarity between predicted SCs and real SCs

To further examine the prediction performance at connectivity
level, we showed the top 5, top 10 and top 15 strongest connectiv-
ity in both real SCs and predicted SCs for the same 20 subjects in
Fig. 5. We can see that due to the widely existing individual varia-
tions, the top connectivity of different subjects are different. How-
ever, for both datasets, the predicted SCs can capture most top 5
connectivity (missed 3 connections in two ADNI subjects). For top
10 connectivity, the predicted SCs in both datasets can also cap-
ture most of them. For top 15 connectivity, both datasets can cap-
ture at least 12 of them. Among these miss-predictions, there are
two types of mistakes: the first type is the missing top connec-
tivity. However, most of the missed connectivity can be found in
the following top connectivity in the predicted SCs. For instance,
we highlighted one example in Fig. 5 by green circle. The second
type of mistakes is the redundant top connectivity. It means the
predicted SCs contain some connectivity that are not among the
real SCs. Similar to the missing cases, the redundant connectivity
can also be found in the following top connectivity in real SCs. We
also highlighted some examples in Fig. 5 by red circles. In addition,
we found that all the missing or redundant SCs in our prediction
results can be found in the top 25 connectivity in predicted SCs
and the real SCs. In general, our model can robustly recover the
strongest individual connectivity from the individual FC.

4.3. Evaluation of the predicted SC using different atlases

The generation of brain connectivity relies on the adopted brain
atlas. To test the performance of the proposed model on different
brain atlases, we used another widely used brain atlas - Desikan-
Killiany atlas, to generate individual SCs and FCs and conducted
experiments. The predicted SC and the real SC based on Desikan-
Killiany atlas of the same 20 subjects used in Fig. 3 were shown in
Fig. 6. We can see that the results using different brain atlases are
consistent: our method can reliably characterize both the overall
pattern and the subtle differences of individual SCs for both atlases
with different number of brain regions.

To quantitatively measure the similarity between predicted SCs
with real SCs based on Desikan-Killiany atlas, we calculated the
MSE, cosine similarity, PCC, mean degree, mean strength and mean
clustering coefficient for each subject in the testing dataset and
showed the results in Fig. 7. Similar to the result using the other
brain atlas in Fig. 4, the predicted SCs have significantly lower MSE,



L. Zhang, L. Wang and D. Zhu

Sub-1 Sub-2 Sub-3 Sub-4 Sub-5

Medical Image Analysis 79 (2022) 102463

Sub-6 Sub-7 Sub-8 Sub-9

Sub-10

Real

Prediction

Real

Prediction

(a2) ADNI dataset

Real: Real SC generated by fiber count (Section 3.3) and normalized by formula (4) and (5)
Prediction: Predicted SC generated by proposed model
Real-Diff: Real SC minus Averaged SC of all Real SC
Prediction-Diff: Predicted SC minus Averaged SC of all Real SC

Sub-1 Sub-2 Sub-3 Sub-4 Sub-5 Sub-6 Sub-7 Sub-8 Sub-9 Sub-10
..QT .0.8
3
o~
=t 1
a
& -0.6
=)
S
g
&
(b1) HCP dataset 04
Sub-1 Sub-2 Sub-3 Sub-4 Sub-5 Sub-6 Sub-7 Sub-8 Sub-9 Sub-10
()
- 0.2
é F
=) |
/
£ 00
S
B
A

(b2) ADNI dataset

Fig. 3. (al, a2): Comparison of the predicted SCs and real SCs of 20 randomly selected subjects in HCP (a1) and ADNI (a2) datasets. For both datasets, we showed 10 real
SC matrices (the first row) and the corresponding 10 predicted SC matrices (the second row). Each column belongs to the same subject. Two patches of the matrices are
extracted from the same location and their enlarged patches are showed in the middle. (b1, b2): Comparison of the predicted SCs and real individual SCs after subtracting
the population-averaged SC. To better visualize the individual variability, the population-averaged SC was subtracted from each of the forty matrices in (al) and (a2). The

brain connectivity was generated via Destrieux atlas.

higher cosine similarity and PCC and smaller deviation of all the
three global metrics compared to the averaged SC.

4.4. Evaluation of the predicted SC using different types of FC
measures

In this work, we adopted the most widely used Pearson cor-
relation coefficient (PCC) to generate FC. Yet, how to effectively

represent FC is still an open research area and there exist differ-
ent ways to define FC in the field. To examine the potential influ-
ence of different types of FC measures to our SC prediction, we
applied our proposed model to four types of FC measurements
(defined in Section 3.3): (1) Pearson correlation coefficient (PCC),
(2) Sparse inverse covariance estimation with the graphical lasso
(Sparse ICOV), (3) binarized FC and (4) threshold FC. For bina-
rized FC and threshold FC, we set different thresholds - 0.2 and
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Fig. 4. We quantitatively measured the similarity between predicted SCs and real SCs from three perspectives (magnitude, overall pattern and network property) by using
six measures (MSE, cosine similarity, PCC, mean degree, mean strength and mean clustering coefficient). We calculated two differences for each measure at individual level:
one is the difference between our predicted SC and real SC, and the other is the difference between the population-averaged SC and the real SC. We showed the two sets of
differences by line chart and displayed the distributions by violin plot. The significance analysis was also conducted with p-value calculated by one tail two sample T-test.

0.5. Thus, there are 6 different FCs that need to be compared in
this section. For each subject, we used Destrieux atlas along with
the 6 different measures to generate SC and FCs. We randomly se-
lected one subject to display its 6 FCs in the first block of Fig. 8
and showed the predicted SCs of the same 10 subjects used in
Fig. 3(a2) in the second block. For each subject in the testing
dataset, we calculated MSE of all the 6 predicted SCs and showed
the results by line chart in the third block of Fig. 8. We found that
different FC measures have slight influence on the prediction per-
formance: as the sparsity of FC increases, the prediction accuracy
will decrease. One possible explanation, as suggested by previous
studies (Santarnecchi et al., 2014; Goulas et al., 2015), is that the
performance degradation may be due to the overlook of potentially
useful information when enforcing sparsity or thresholding.

4.5. Model evaluation

An effective model should have the capability to capture indi-
vidual characteristics and avoid to being “trapped” in common SC
patterns. To measure the effectiveness of a model, we proposed
three measures:

(1) MSE (Real, Prediction of same subject), which is the MSE be-
tween the real SC and predicted SC of the same subject. This
measure directly evaluates the similarity between the real SC

and the corresponding prediction. A smaller value indicates

higher similarity. Thus, to generate reliable SC, this measure

should keep decreasing before converged.

MSE (Real, Prediction of different subjects), which is the MSE

between the prediction and the real SC of different subjects. A

reliable prediction should avoid being “trapped” in common SC

patterns at population level. Therefore, this measure is expected

to keep increasing during the training process.

(3) MSE (Real, Prediction of different subjects) - MSE (Real, Pre-
diction of same subject), which is the difference of the above
two measures and an increasing value is expected.

—
\S]
—

In this section, using the three measures we evaluated different
model settings including different GCN architectures, the learnable
combination coefficients - @, and different loss functions.

4.5.1. Evaluation of different GCN architectures

The generator was built on multiple GCNs, in order to verify the
necessity of multi-GCN architecture, we conducted experiments to
compare the performance of different generator architectures and
showed the results in Fig. 9. We can see that, for predicted SCs
generated from multi-GCN generator in both datasets (aland b1),
the MSE (Real, Prediction of same subject) keeps decreasing and the
MSE (Real, Prediction of different subjects) keeps increasing. For pre-
dicted SCs generated from single-GCN generator in both datasets
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(b) ADNI dataset

Fig. 5. Comparison of the top connectivity in the predicted SC and real SC for the same 20 subjects showed in Fig. 3. For both datasets, we showed the top 5 (the first
block), top 10 (the second block) and top 15 (the third block) strongest connectivity in real SC and predicted SC. The colorful bubbles and links represent different brain
regions and structural connections. The colors used in this figure are the same with Destrieux atlas in FreeSurfer.
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Fig. 6. (al, a2): Comparison of the predicted SCs and real SCs of the same 20 subjects as used in Fig. 3. The brain connectivity was generated via Desikan-Killiany atlas. Each
column belongs to the same subject. For each subject, we showed the real SC matrix in the first row and the predicted SC matrix in the second row. Two patches of the
matrices are extracted from the same location and their enlarged patches are showed in the middle. (b1, b2): Comparison of the predicted SCs and real individual SCs after
subtracting the population-averaged SC. To better visualize the individual variability, the population-averaged SC was subtracted from each of the forty matrices in (al1) and

(a2).

(a2-a4, b2-b4), the difference between trajectories of MSE (Real,
Prediction of same subject) and MSE (Real, Prediction of different sub-
jects) is much smaller and the MSE (Real, Prediction of different sub-
jects) - MSE (Real, Prediction of same subject) only has slight in-
crease. This result indicates that the predicted SCs generated from
multi-GCN generator can efficiently learn the individual differences
in SCs, while single-GCN generator only captures a common pat-
tern at population level.

1

4.5.2. Evaluation of the learnable combination coefficients

In our model, the multiple GCNs in generator are combined by
learnable coefficients - . In order to test the influence of the coef-
ficients to the proposed MGCN-GAN model, we initialized the co-
efficients with different values and compared the prediction per-
formance. The results are shown in Fig. 10. In general, the initial-
ization of the learnable coefficients has very slight influence on
the prediction results. Moreover, the coefficient with different ini-
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Fig. 7. We quantitatively measured the similarity between the predicted SCs with real SCs (based on Desikan-Killiany atlas) from three perspectives (magnitude, overall pat-
tern and network property) by using six measures (MSE, cosine similarity, PCC, mean degree, mean strength and mean clustering coefficient). We calculated two differences
for each measure at individual level: one is the difference between our predicted SC and real SC, and the other is the difference between the population-averaged SC and
the real SC. We showed the two sets of differences by line chart and displayed the distributions by violin plot. The significance analysis was also conducted with p-value

calculated by one tail two sample T-test.

tialization ; always converge to stable coefficient 6, which is ap-
proximately equal for different GCNs in generator. It suggests all
the GCNs have similar contributions to the results. Like the filters
in CNN, multiple GCNs with different size of output features can
be flexible and efficient for characterizing the complex FC-SC map-
ping.

4.5.3. Evaluation of SP loss function

To demonstrate the superiority of the proposed SP loss func-
tion, we compared our SP loss with GAN loss, combination of GAN
loss and MSE loss, and combination of GAN loss and PCC loss and
showed the results in Fig. 11. From the results we can see that the
gap between trajectories of MSE (Real, Prediction of same subject)
and MSE (Real, Prediction of different subjects) using SP loss function
(a4 and b4) is increasing as the training progresses, which means
individual characteristics are gradually learned. While the trajec-
tories of MSE (Real, Prediction of same subject) and MSE (Real, Pre-
diction of different subjects) using other three loss functions (al-a3,
b1-b3) almost coincide during the training process and this implies
that the other three loss functions may be limited in capturing po-
tential subtle differences across individuals in the proposed model.
The reason is that MSE only focuses on the element-wise similar-
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ity within the connectivity and overlooks the overall patterns. PCC
has better performance in describing the overall connectivity pat-
terns, but it may also overlook the connection magnitude across
different connectivity and different individuals. However, both of
MSE and PCC are important components in our designed SP loss to
capture the subtle differences between real and predicted SCs

4.6. Comparison with other widely used methods

To further demonstrate the effectiveness of the proposed
MGCN-GAN, we compared the proposed model with three state-
of-the-art models - CNN, multi-GCN, and CNN based GAN. In
addition, for the comparison purpose we also included the lin-
ear regression as a baseline. For fair comparison, we used the
same dataset to train and evaluate the four methods (HCP dataset,
600 training/464 testing). Since Section 4.5 showed that both
MSE and PCC have contributions in capturing the subtle differ-
ences between real and predicted SCs, here we combined these
two measures (MSE + PCC) as loss function in linear regres-
sion, CNN, and Multi-GCN, and used the proposed SP loss in CNN
based GAN and the proposed MGCN-GAN. We adopted six types
of measures (Section 4.2) to evaluate the performance of differ-
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- 0.2 and 0.5. The first block shows the 6 FCs of one randomly selected subject. The second block shows the predicted SCs of the same 10 subjects used in Fig. 3(a2). For
each subject in the testing dataset, we calculated MSE of all the 6 predicted SCs and showed the results by line chart in the third block.

ent models and summarized the results in Table 2. As shown in
Table 2, we found: (1) compared to deep models, linear regres-
sion has worse performance for all the evaluation measures; (2)
among different deep neural network architectures, GCN based ap-
proaches outperform CNN based methods when modeling brain
networks in this application and (3) our proposed MGCN-GAN has
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the best prediction performance comparing to Multi-GCN (with-
out GAN) and CNN based GAN. In general, this result demon-
strates the superiority of graph-topology-based over the Euclidean-
based convolution in brain connectivity analysis and the poten-
tial of using multiple GCNs to characterize complex feature space
in GAN.
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Fig. 9. Results of different generator architectures for HCP dataset (a) and ADNI dataset (b). GCN(G;]||Ga]|...||Gk) represents the architecture of generator. The generator is
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Table 2
Comparison with other widely used methods.

Model Setting Magnitude Overall Pattern Graph Property

Methods Loss Function =~ MSE PCC Cosine Similarity =~ Degree error  Strength error  Clustering Coefficient error
Linear regression ~ MSE+PCC 0.230+0.05  0.86+0.020  0.86+0.020 2.3+0.6 1.39+0.85 0.012+0.007

CNN MSE+PCC 0.132+0.02  0.91+0.010  0.91+0.010 1.6+0.7 0.92+0.64 0.006+0.004

Multi-GCN MSE+PCC 0.094+0.03  0.94+0.004  0.94+0.004 1.5+0.5 0.35+0.26 0.004+0.002

CNN based GAN SP Loss 0.106+0.02  0.94+0.010  0.94+0.010 1.5+0.7 0.82+0.62 0.004+0.003

MGCN-GAN SP Loss 0.084+0.01  0.96+0.005  0.96+0.005 1.3+0.6 0.294+0.25 0.002+0.001

5. Discussion
5.1. Outliers in normal brains

In this work, we used six measures to quantitatively evaluate
the similarity between predicted SCs and real SCs, including MSE
for magnitude, cosine similarity and PCC for overall pattern, and
global metrics including mean degree, mean strength and mean
clustering coefficient for graph property. The results are shown in
Fig. 4. We can see that there is a correlated pattern between the
two groups of MSE values. That is, for some samples that have
large MSE between the population averaged SC and the real in-
dividual SC, the MSE between the predicted SC and real individual
SC is also slightly larger. Because all the samples we used in this
work are normal brains, if a subject has significantly large MSE be-
tween individual SC and averaged SC comparing to other subjects,
it is likely that this sample is an outlier. In such case, the MSE be-
tween the predicted SC and the real individual SC will be large,
too. Therefore, the plot of the two groups of MSE values shows a
correlated pattern. Even so, the difference between predicted SC
and individual SC is much smaller than the difference between av-
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eraged SC and individual SC. This result implies our method is ef-
fective in characterizing the true relationship between SC and FC
at individual level.

5.2. Extending the learned mapping to MCI patients

In this work, our model is designed to infer the relationship
between SC and FC on normal brains. To examine the potential
influence when applying our method to disease populations, we
used another 118 mild cognitive impairment (MCI) subjects (63 fe-
males, 55 males; 74.05 + 8.29 years.) from ADNI dataset and con-
ducted three experiments that used different clinical groups for
model training: (A) 60 CN, (B) 60 MCI, and (C) the mix of 60 CN
and 60 MCI. For each experiment the same testing dataset includ-
ing 72 CN and 58MCI was applied. To compare the connectivity-
level patterns of different groups, we calculated group-level MSE
in Fig. 12. The mean value of each MSE matrix was reported in
Fig. 12(D). From the results we can see that 1) if the training and
testing process used the samples from the same clinical group, the
prediction result tend to achieve better performance. For example,
the experiment (A) used CN group for training, the MSE of CN
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group (0.073+0.0079) in testing is much smaller than MCI group
(0.0964-0.0068). Similarly, in the experiment (B) the MCI group ob-
tained better testing performance than CN group. (2) when using
a mixture of CN and MCI to train the model, the testing perfor-
mance of both groups decrease compared to using single group for
training. This result suggests that the FC-SC relationship of differ-
ent groups might be different, and the proposed model is more
effective in capturing the relationship of homogeneous samples.

5.3. Limitations and future work

In this work, we adopted PCC as the FC measurement to repre-
sent pair-wise relations between two brain regions. Therefore, the
proposed MGCN-GAN model does not consider directional infor-
mation in brain network mapping. However, our method can be
flexibly extended to directed graphs by adopting an asymmetry
adjacency matrix to define the convolution operations. In our fu-
ture work, we plan to examine if introducing directional informa-
tion can improve the SC prediction compared to using undirected
brain connectivity. Another limitation of this work, which is also
a general challenge suffered by deep neural networks, is the in-
terpretability (Ghorbani et al., 2019) of the deep model. Indeed,
several strategies have been proposed to interpret neural net-
work predictions. For example, feature importance interpretation
(Simonyan et al., 2013; Shrikumar et al., 2017; Sundararajan et al.,
2017) tries to assign importance scores to each feature, and sam-
ple importance interpretation (Koh and Liang, 2017) will assign im-
portance scores to each training example. However, these methods
cannot be directly applied to this work due to the following rea-
sons: (1) this work aims to infer the brain structure-function re-
lationship at individual level. Each input sample provides unique
individual information, and all the samples are therefore equally
important. (2) for feature importance interpretation, a commonly
used approach is to generate saliency maps to highlight unique
features which can depict the visually alluring locations in the in-
put image. However, for non-Euclidean graph data, the important
features can be isolated nodes or a sub-network that are not con-
tinuous in spatial domain, which makes it difficult to distinguish
them from noise. In general, further efforts are highly needed
to explore appropriate strategies for interpretation of graph-based
deep models, especially in brain network studies.

6. Conclusions

In this paper, we proposed a Multi-GCN based GAN (MGCN-
GAN) model to generate individual SC from the corresponding in-
dividual FC. By adopting generative adversarial network (GAN),
our proposed MGCN-GAN model can: (1) effectively handle brain’s
distributed and heterogeneous pattern; (2) learn the complex re-
lationship between brain structure and function by leveraging
adversarial training scheme to avoid designing an explicit re-
gression loss function. By embedding multiple GCNs into GAN
framework, our MGCN-GAN model can be used to represent the
complex direct and/or indirect interactions in brain network. To
overcome the inherent unstable behavior of vanilla GAN, we
proposed a novel structure-preserving (SP) loss function to si-
multaneously capture the overall SC patterns and subtle differ-
ences across individuals during the training process. We tested
our model and SP loss on two independent datasets (HCP and
ADNI), two different brain atlas (Destrieux Atlas and Desikan-
Killiany Atlas, Section 4.3), and six different FC generation mea-
sures (Section 4.4). The results demonstrate that our proposed
model can effectively predict individual SC from the correspond-
ing individual FC, and thus imply that there may exist a common
regulation between specific brain structural and functional archi-
tectures across individuals. All the codes of this paper have been
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released via GitHub (https://github.com/qidianzl/Recovering-Brain-
Structure-Network-Using-Functional-Connectivity).
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