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Abstract
The aim of this paper is to describe a new MS Excel-based approach for designing

driveshafts for stiffness and fatigue strength. We analyze the efficacy of the
Correspondence

Arun R. Srinivasa, J. Mike Walker '66
Department of Mechanical Engineering,
Texas A&M University, 202 Spence St,
College Station, TX 77840, USA.

Email: arun-r-srinivasa@tamu.edu

approach in engaging students in an iterative design process and higher-level
qualitative decision-making activities in an undergraduate class at Texas A&M
University. Compared to conventional fixed cross-section frames and trusses,
there are few tools (barring Finite Element Packages) that facilitate rapid design

evaluations of stepped shafts. The approach is based on a novel use of singularity
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This approach allows for relatively easy implementation into Excel without the
need for any numerical integration or other forms of approximation. Currently,
the tedious calculations involved in the design of stepped shafts prevent
instructors from exploring iterative changes in driveshaft design. The Excel tool
that we have developed allows instructors and students to focus on iterative
decision-making. With this tool, open-ended design questions are assigned even
in exams since the entire iterative process takes less than 15-20 min. Student
surveys and analysis of exam answers reveal that students have gained a
considerable capability to make design decisions. They also indicate areas where

improvement in design thinking is needed.
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1 | INTRODUCTION

learn how the concepts that they learned in their
engineering science (mechanics) courses can be used to

The design of machine elements is an essential course in
the mechanical engineering curriculum. It is the
culmination of the mechanics coursework that begins
with physics mechanics and continues through statics
and strength of materials. This is a transition course
between pure engineering science and engineering
practice. The aim of the course is to enable students to

design components, such as drive shafts, gears, welds,
and so forth. The process of designing such components,
as practiced in the real world, is iterative: certain initial
guesses are made with regard to the geometry, material,
and loads, and the design proceeds by verifying whether
they meet the targets in terms of stiffness, strength (both
static and fatigue), and stability. The process proceeds by
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iterating and each step of the iterative decision-making
are checked against the criteria.

However, in the classroom, very little “design” can be
done using the iterative design process, wherein students
make an initial guess of the component geometry, choose
material properties and estimate loads, verify whether it
meets the stiffness, strength, and stability. The reason is
that conventional approaches take too much time to
carry out. Also, teachers spend a considerable amount of
time helping students with the nitty-gritty of the actual
computation of deflections and stresses, and not enough
time is spent on the decision-making process. Students
come away with the idea that the class is mostly about
complex and lengthy calculations instead of design
decision-making and interpretation of the results.

This is more evident in the case of stepped shafts.
These shafts are the critical components that connect
precision-engineered drive parts (gears, chain, sprockets,
sheaves for belt drives, bearings, etc.) with the frame.
They have very significant time-varying loads and, at the
same time, must have excellent dimensional accuracy
since the precision parts mounted on them will operate
only under stringent deflection and orientation mismatch
conditions. Moreover, with the increased interest in
autonomous and electric vehicle competitions (ranging
from electric bicycles and skateboards to cars, wheel-
chairs, and other personal mobility devices), there is an
upsurge in interest in the design of custom driveshafts.
Anecdotally, many student groups have approached the
instructors for help in the design of these components.

The design of these shafts is suitable for consideration
for the class since they are an illustration of how all the
aspects of design are carried out—shaft layout, geometry
specification, considerations of deformation, considerations
of load and stress concentrations, and so forth. Further-
more, they are seemingly suitable since they involve shear
force, bending moment, beam slope, and deflection
formulae. For statically determinate beams, the shear force
and bending moments (SFD, BMD) are independent of the
shaft cross-sections and can easily be computed. However,
the same is not valid for the slope and deflections of the
beam. For this reason, most textbooks, including Shigley's
Mechanical Engineering Design [26] and Fundamentals of
Machine Component Design [16] focus on SFD and BMD
first and present design problems (where shaft dimensions
have to be estimated) purely based on static strength or
fatigue strength. The use of singularity functions consider-
ably simplifies the setup for these problems and slope and
deflection calculations for shafts with fixed diameters.

However, it is well known that for most applications,
gross dimensions of driveshafts are determined by stiffness
requirements due to the extremely stringent conditions
imposed by gear and bearing alignments. This poses a

problem for teaching—the calculations of the deflection and
slope of a stepped shaft are very tedious (as opposed to a
shaft of constant cross-section). A complete stepped shaft
design takes many pages of tedious computation (see Shigley
[26]) and so is entirely avoided by many instructors as being
too time-consuming. The alternative is to either use
Castigliano's theorem (as was done by [22]) or use a
numerical solver, like the Finite Element Method (which for
all purposes is a black box for the students). In the latter case,
in a typical course on the design of machine elements,
students fail to decipher how these equations are obtained or
derived, so instructors are loathed for simply using it as a
black box.

In this paper, we present an alternative approach of
using the singularity function method to obtain explicit
solutions for the displacements and slopes for stepped
shafts and implement this approach in Microsoft Excel.
Spreadsheets, such as Excel, offer an extremely attractive
alternative to the two extremes—hand calculations or
full-fledged solids modeling environment. Even though
the use of spreadsheets for calculations has been widely
advocated (and routinely used in engineering practice),
they are not as widely adopted as one would expect,
partly because textbooks tend not to use them.

Niazkar and Afzali [21] have surveyed the use of Excel
in a wide variety of fields in engineering. The ability of
Excel spreadsheets to provide quality and experiential
learning for the students has already been discussed in
detail by Baker et al. [2]. Fernidndez et al. [11] demonstrated
that numerical method problems can be solved and
graphically represented using the VBA solver in Microsoft
Excel, resulting in a higher understanding of the students.
Boye et al. [5] pointed out the multiple characteristics of
Excel spreadsheets, which makes them one of the best
problem-solving applications for engineering problems
catering to first-year students. Students can use Excel
without the hassle of learning advanced programming
skills. Students are less likely to get lost in the intricacies of
programming and more focused on understanding the
problem at hand. One of the best features of Excel is the
ability to instantly vary the charts and graphs when any
variable of the equation is changed making the decision-
making process more intuitive. Doak et al. [8] use of
animated spreadsheets resulted in effective learning for
students at the freshman level. Leon et al. [4] used MS
Excel to teach numerical solutions of ordinary differential
equations owning to its simple interface and versatility
allowing students to focus on the algorithm and its
implementation. The advantages of using Excel spread-
sheets for teaching simulations using spreadsheets have
been listed by Evans [10]:

(1) Quick start-up time.
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(2) Easy visualization of data.

(3) Dynamic update of graphs and charts allowing users
to make changes almost instantly.

(4) Integration of statistical tools and functions.

Bermudez et al. [3] used Excel spreadsheets for the
active teaching of an undergraduate hydraulic engineering
course. Excel allowed students to get familiarized with the
tools used in professional practice, follow along the
calculations, change the variables in the equations/formu-
lae, and see their effects on the result plots. Demir et al [7]
illustrated the use of MS Excel tools for designing water
distribution networks in environmental engineering educa-
tion. The authors elucidate that even though MATLAB
provides faster solutions than MS Excel VBA, MATLAB is
licensed software that is not available to everyone. On the
other hand, most of the students own a student license for
MS Excel, which provides a user-friendly interface that
handles both steady-state and extended period simulation of
a given water distribution network. Liu [20] has shown how
many aspects of solid mechanics can be taught with Excel.
Specifically, they have shown examples of the use of Excel
for (a) design of straight shafts, (b) unsymmetrical bending
(c). They have also shown how specific finite element
programs can be performed in Excel. There are various
other examples of using MS Excel spreadsheets in other
engineering fields [1,6,12,14,15,18,23,25,27].

However, stepped shafts pose a unique challenge because
they are not conventional frames and do not seem amenable
to simple frame calculations, and have not been treated in a
way that is suitable for use in Excel hitherto. With the
approach presented here, the instructor can derive the
equations for stepped shafts along the same lines as for a
shaft with constant diameters (except for a few additional
terms) and also set it up as an Excel program that can solve
any stepped shaft problem and plot the SFD, BMD as well as
slope and deflection diagrams so that students can see what
these shapes are, probe different points directly in the Excel
charts, make changes to the dimensions on the fly and see
the results—all within Excel. With this, it is now possible to
assign stepped shaft design problems to the students and
engage them in discussing design tradeoffs.

We illustrate how this approach allows instructors to
focus on the decision-making challenges in the design
process. We have utilized this method in our Solid
Mechanics in Mechanical Design course (Course ID:
MEEN 368), which consisted of about 200 students (two
sections) in the Fall of 2020, to assign full design
problems as homework and also parts of it in exams—
with the help of such a spreadsheet, students can carry
out a complete stepped shaft design (iteratively choosing
dimensions and checking for the satisfaction of slope and
deflection constraints) in 40 min or less.
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The rest of the paper is structured as the following:
Section 2 provides an overview, implementation, and
pedagogical issues of the current methods that are used
in solving stepped shaft problems. Section 3 details the
use of the singularity function for solving stepped shaft
problems and its implementation in MS Excel. Section 4
assesses the use of Excel for solving the problem and
conclusions are given in Section 5.

2 | OVERVIEW OF CURRENT
METHODS

To illustrate the current approach and its contrast with
available strategies, we consider an example of a stepped
shaft in Figure 1. The dimensions of the stepped shaft are
given in Table 1. To solve the problem in Figure 1, we
describe the outlines of four methods that are typically
taught in a Strength of Materials course: (a) Piecewise
integration; (b) using Castigliano's theorem [9]; (c)
Superposition; and (d) Finite Element Method. We then
describe the singularity function approach for stepped
shafts and demonstrate the simplicity of the method,
especially with Excel. The governing equations for the
shaft derived from the Euler-Bernoulli beam theory are
[26]:

V, = _fpy(x) dx, Vylenda = 0 o

Force Equilibrium,

M, = —ny(X) + ¢, dx,Mz|end =0
()

Moment Equilibrium,

M,
6, = f E_Ide+ a; Constitutive Relation, (3)

Uy, = f 0, dx + a;Kinematical Compatibility,
C))

where p,(x) is the distributed transverse load on the beam,
V,, is the shear force on the beam cross-section, M, is the
internal bending moment, &, is the cross-sectional rotation,
and u, is the displacement of the beam. Also, E is the
Young's Modulus, and I is the cross-sectional moment of
inertia. When I is constant, the resulting equations are
trivial to solve by integration and can also be easily
automated, and have been implemented as an educational
tool for teaching structural analysis (see e.g., [17,19]).
When applied to a stepped shaft problem, the
challenges arise with the last two equations where the
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FIGURE 1 A shaft for an idler pulley with two steps.

TABLE 1 Dimensions of the stepped shaft in Figure 1.
Description Symbol Value
Bearing 1 shoulder location L 15 mm
Pulley center location L, 35mm
Bearing 2 shoulder location I3 55mm
Bearing diameter d; 20 mm
Pulley mounting shaft diameter d, 22 mm
Pulley diameter D, 120 mm
Wrap angle ] 60°
Belt tension T 0.75 kN

term EI is now piecewise constant and creates quite a
complex problem. We will now review some common
approaches that are used for analyzing this critical
structural member.

2.1 | Piecewise direct integration
method

This is a relatively straightforward method using the basic
equations of straight beams [13]. Since the beam is statically
determinate, the bending moment M(x) is independent of
the shaft diameters and is computed directly. Using
equation (3) and integrating it with respect to x, we get
the equation for the slope and deflection given below

(M)
B(x) = —EI(x)dx + ¢y, (5)
M
uy(x) = f Tg;dx + c1x + c. (6)

This simple formula hides considerable complexity
since the denominator under the integral is piecewise
constant (quite apart from the fact that the load itself may
be a set of point loads so M, will be piecewise linear).

2.1.1 | Implementation
The following steps are involved for calculating the slope
and deflection for a stepped shaft using the direct/
piecewise integration method.

1. For each section of the beam, draw a separate free
body diagram (FBD), and beginning from one end of
the beam find the internal forces and moments at
every cross-section.

2. Next, write a singularity function for the bending
moment for each section of the beam and find the
expressions for O(x) and y(x) (each may involve
multiple concentrated or distributed loads and lead
to a singularity function). This will lead to N+1
piecewise equations if there are N steps (each
containing two constants of integration).

3. Match the slopes and deflections at each step, and the
displacement boundary conditions at the two ends,
resulting in 2N+ 2 equations if there are N steps.
These must be solved simultaneously.

4. Now, use these piecewise solutions to find the slope
and deflection at points of interest.

2.1.2 | Pedagogical issues

This procedure is the most popular and basic method used
for solving beam problems. Although this process is within
the scope of the students, for stepped shaft problems with
multiple steps and loads, it becomes a tedious and error-
prone process as an FBD is drawn and forces and moments
are computed for every cross-section. For even a straight-
forward problem in Figure 1, this method will lead to a 6 by
6 set of equations. The process must be repeated for every
change in diameter so iteratively changing the diameters to
verify the satisfaction of given slope or deflection con-
straints for bearings or gears will be impossible as students
will be buried in an avalanche of computations.
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2.2 | Castigliano's method

Castigliano's theorem states that the displacement u(x,)
at any particular point x; on the shaft is equal to the first
partial derivative of the complementary energy U in the
body with respect to the force acting at that point in the
direction of the displacement [26]. Similarly, the slope 6
(xo) of the shaft at any point on the shaft is equal to the
first partial derivative of the complementary energy U in
the body with respect to the concentrated moment/
couple C(x,) acting at that point in the direction of the
slope angle [26]. This is illustrated in Equation (7).

ou

0(xo) = ) (7)

oUu
u(xp) = m,

2.2.1 | Implementation

To apply this method to the stepped shaft problem, the
complementary energy U needs to be computed through
integration over each section in symbolic form so that
suitable derivatives can be computed [22]. A direct
calculation will lead to the piecewise integral shown
below in Equation (8).

3 N X1 M (x)?
v= i§ j-;i EI e (8)

Next, the energy U must be differentiated with respect
to the force and moment at the point of interest, and the
deflection and slope are obtained by substituting the
numerical values for the external forces and moments. If
there are no forces or moments at the point of interest, a
fictitious force and/or moment must be applied, and the
moment distribution must be computed with these
additional fictitious forces, the energy U differentiated,
and the value of the fictitious forces must be set to zero.
This is a versatile approach, and several simplifications can
be made to improve the efficiency (e.g., by differentiating
the moment inside the integral sign to simplify the
computation). It can also deal with complex curved beams
and shear corrections as long the energy can be computed.
However, it cannot be automated easily.

2.2.2 | Pedagogical issues

The procedure requires students to adopt an altogether new
approach to solve the given problem, that is, a lot of class
time is spent on teaching the basics of Castigliano's
theorem and its applications. The use of fictitious forces
and moments for finding deflections is quite hard to
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explain. If this is already part of the curriculum, then this
approach could be feasible. The integrations can become
increasingly complicated due to the squaring of the
moment function. This is somewhat mitigated if the
differentiation with respect to the force is computed before
the integration (allowing for many terms to be dropped).
Even after performing these steps, this method only
provides the deflection and slope at specific points of the
shaft and not the overall deformed shape of the shaft. One
needs to repeat the method at every point on the shaft to
determine the deflection and slope, that is, every point must
be resolved explicitly. If there is more than one point where
forces/moments are not present, the moments must be
computed again after adding new fictitious forces.

2.3 | Superposition method

If multiple external loads are acting along the length of
the shaft, the procedure to calculate displacement and
slope becomes quite long. However, because the govern-
ing equations are linear, the complex loading conditions
can be modeled as a linear combination of simple loading
configurations. As a result of this, the total deflection of
the shaft is expressed as the algebraic sum of the
deflection due to the individual loads. This method
assumes that the deflection varies linearly with the load,
and the initial geometry of the shaft does not change
significantly due to the loads [13].

For example, if the transverse deflection due to
loading configuration 1 is y; and deflection due to
loading configuration 2 is y,, then the total deflection, if
both the loads are acting simultaneously on the shaft, is
Y1+, Similarly, this method can be followed for
determining the slope of the shaft. Many of the standard
deflections and slopes can be found in various engineer-
ing handbooks and catalogs [24].

2.3.1 | Implementation

The following steps are involved for calculating the slope
and deflection of a stepped shaft using the superposition
method:

1. Divide the given loading configuration of the beam
into standard loading configuration components.

2. Use the engineering handbook catalogs and tables to
find the slope and deflection for each component of
the beam loading.

3. Add the results of the components to find the total
slope and displacement caused due to the various
loads on the beam.
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2.3.2 | Pedagogical issues

Although this method is extremely simple for the students
to follow, its usefulness for stepped shafts is very limited
since geometries cannot be superposed—only external loads
can. This means that solutions must be available for each
geometry under consideration—an impossible task. For
solving step shaft problems, no catalog or table provide the
deflection or slope formulae for stepped shafts. This is
because no table/catalog can be made for all possible
diameters of the stepped shafts. Thus, this approach
becomes inapplicable for stepped shafts.

2.4 | Finite element method

The Finite Element Analysis (FEA) method subdivides a
larger object into smaller elements and solves for equili-
brium conditions at each node. Boundary conditions, such
as fixtures, prescribed displacements or slope, and load are
then applied to selected nodes on different elements. FEA
software packages like ANSYS and ABAQUS are well
equipped with all the tools to analyze complex mechanical
components to determine stress, strain, displacement, and so
forth. For most purposes, a computer application would be
used to create a mesh subdividing the object and solve for
the desired values. Hand-written equations could be used by
utilizing methods, such as the Ritz or Galerkin methods,
based on the weak formulation of a governing equation.

241 | Implementation

1. Select the suitable FEA software package for solving
the given problem—typically SolidWorks or other
solids modeling software (since students are unlikely
to have already taken a course on the use of ANSYS or
other FEA software packages).

2. Construct the beam/3D model of the stepped shaft. In
SolidWorks, such beam models can be carried out
using the “Weldments” feature.

3. Assign the required materials and appropriate bound-
ary conditions (pin joint, roller joint, etc.), loads (point
loads, distributed loads, moments) for the shaft.

4. Mesh the part and run the analysis.

5. Analyze and interpret the results to find the displace-
ment and slope at the desired location.

2.4.2 | Pedagogical issues

Unless the students have already taken an FEA course, quite
a bit of additional training is required before such a process

can be meaningfully implemented. However, if the students
are familiar with FEA, the approach allows for a general
treatment of complex geometries. Changing cross-sectional
geometries and trying again is possible if the students set up
the initial geometry correctly. While this approach is by far
the most versatile, it is not generally feasible because it
requires expensive software, a good internet connection, and
a reasonably good computer, making this approach
unfeasible for many colleges around the world that do not
have such capabilities. Furthermore, the approach is not
suitable for exams since the setup time is too large. It may,
however, be feasible for a project (in fact, we do use
SolidWorks FEA for a project in the class).

3 | SINGULARITY FUNCTION
APPROACH FOR SOLVING
STEPPED SHAFT PROBLEMS AND
ITS COMPUTER
IMPLEMENTATION

Having described the current methods and their pedagogical
issues, we now discuss the approach presented in this paper.
It has been generally thought that it is not possible to use
singularity functions for this task. We first draw the FBD of
the shaft in question, shown in Figure 2. The shaft has a
transverse force distribution represented by the function
py(x) and external couple distribution by c(x)—both treated
as singularity functions. We will include the reaction forces
and/or any reaction moments in the external load specifica-
tion directly from the FBD. With these stipulations, the
equations for p,(x) and c/(x) take the form

py(x) = Rixy™" + 0.75¢x — 35)7" + Ry(x — 55)7"
9

kKN — mm™1,
¢z (x) = OkN — mm/mm. (10)

The above equations can be integrated since they
simply require the use of singularity functions. From the
FBD and integration, we get the following equations

R, = R, = —0.375 kN, (11)

V (x) = —0.375(x)° + 0.75{(x — 35)° — 0.375

(x — 70)° kN, (12)
M (x) = —0.375(x)! + 0.75(x — 35)! — 0.375

13
(x — 70)! kN — mm. (13)

EI is not a constant as I is a function of the cross-
section area. We need to figure out how to integrate M,/
EI and obtain singularity function results. We begin by
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FIGURE 2 Free body diagram of the shaft
in Figure 1 showing the external load. Y

2Tsin(0/2)=0.75kN

R; : Reaction Force at Bearing 1

R : Reaction Force at Bearing 2

Ry

defining 1/EI as bending compliance. For the example
problem under consideration

B(x) = 1/EI

6.37 X 1077
=14.35x 1077
6.37 X 1077

if x<15
if 15 < x < 55(kN — mm?)~".

if 55<x<70
(14)

In general, we note that for stepped shafts B(x) itself
can be written as a sum of simple Heaviside step
functions of the form

B(x) = ZABi x - bi>0. (15)
For our specific example,

B(x) = (6.37(x)° — 2.02(x — 15)° 4 2.02(x — 55)°)

16
x 1077(kN — mm?)~}, )

For evaluating fB(x)M(x)dx, we are required to
integrate the product of some function M(x) and a
Heaviside function. This is done by

f_ S — a)dx

I=
0 ) if x<a . a7)
[ rw - [
dx otherwise
The above can be conveniently written as
I=(g(x)—g(a){x — a), where g
(18)

0= s ax

To use the above expression, we now introduce Q(x)
and P(x)

Q(x):f M(x) dx=—0.1875(x)?
e 19)

+ 0.375{(x — 35)2 — 0.1875{x — 70)2,

R,

P(x) = j:wQ(x)dx = —0.0625(x)?

+ 0.125(x — 35)3 — 0.0625(x — 70)3,
(20)

which are simply integrals of singularity functions that
we would anyway use for computing slopes and angle for
constant diameter shafts. If EI was constant, the slope
and deflection are simply obtained by dividing the above
results by EI and adding the proper constants of
integration. However, for nonconstant EI we need to
proceed differently. By using the above result in Equation
(3) and after slightly regrouping terms we get the
following remarkable result

6(x) = QC)B(x) — Y Q) ABi(x — b)Y’ + a,
ey

B(x) = Q(x)B(x) — 8.29 X 107%(x — 15)°

+ 8.02 X 107>{x — 550 + a, (22)
where Q(x) and B(x) are defined respectively by
Equations (19) and (16).

In other words, we get an explicit expression for the
rotation angle in terms of singular functions that can be
easily evaluated. Moreover, the result is in the form of a
“correction” to the constant cross-section beam problem
and can be explained as such to students. Integrating
Equation (22) again, we obtain an explicit solution for
the displacement as

u(x) = P(x)B(x) — 2.Q(b)ABi(x — b)! + a

+ ZP(bi)ABi x—=b)° + a1x + ay, (23)
u(x) = P(x)B(x) — 8.29 x 107%(x — 15)!
+ 8.02 X 10~%(x — 55)! — 4.25
(24)

X 1075(x — 15)°
+ 1.90 X 1073(x — 55)° + a1x + a,.
We have thus obtained explicit expressions for

stepped shaft slopes and deflections without the need
for either Castigliano’s theorem or numerical
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discretization. Furthermore, these have been directly
implemented in an Excel spreadsheet (see Figure 5) for
the case of simply supported shafts on bearing as an
explicit solution. This is made possible by the fact that a
step function is simply (x>a) in Excel so that any
singularity function can be implemented in Excel using
(x—a)™ (x> a) and the graphs can be plotted.

4 | ASSESSMENT OF THE EXCEL-
BASED APPROACH AND ITS

4.1 | Example homework problem
Students are introduced to singularity functions in
lectures and then given homework assignments for
simple beams with simple loading, fixtures, and constant
cross-sectional area. Problems such as these can be found
in Shigley's Chapter 4 [26].

The shafts with single-step are introduced in lectures,
and a homework problem is given to the students for them
to practice how to carry out the steps listed in the singularity
function-based solutions and to gain a deeper understanding
of the organization of the Excel spreadsheet. After this
exercise, an Excel spreadsheet is provided to the students to
select the material, geometry, bearing locations, load
location, magnitude, and direction. This Excel sheet uses a
solver built-in Visual Basic for Applications (VBA) to create
plots for the shear forces, bending moment, slope, and
deflection along the shaft. The students are then responsible
for determining if the design is satisfactory or if any design
changes are needed. If changes are needed, they are then
tasked with redesigning the shaft in a reasonable way and
explaining how they did so. This allows students to move
past the detailed equations and algebra and instead answer
high-level design questions. The solver is also not a black box
because they understand the equations and mathematical
steps from previous lectures and homework assignments.

A sample problem assigned in the Fall 2020 semester
is as follows. The problem is originally taken from
Shigley's [26]. The problem statement also includes a
step-by-step plan to guide the students.

4.1.1 | Problem statement from Fall 2020
Consider the shaft shown in Figure 3. An AISI 1020 cold-
drawn steel shaft with the geometry shown in Figure 3
carries a transverse load of 7 kN and a torque of 107 N m.
Assuming a root radius of 3 mm at all steps, analyze the
shaft to determine the fatigue life of the shaft. Verify
whether the shaft has infinite life or not.

4.1.1.1 | Analysis

Notice that the stiffness of the shaft is not examined in
this version since it is not possible to compute the stiffness
and iteratively adjust it until it is satisfactory. On the other
hand, the strength calculations are relatively simple and
require nothing more than some pre-existing formulae.
There is little, if any, design content in this formulation.

41.2 |
of Excel

New problem statement with the use

The following problem involves a full design calculation:
Choose some dimensions for the shaft and then check for
stiffness. For this, I require you to use the shaft deflection
spreadsheet to check if all the diameters are satisfactory.
All units are in millimeters.

“An AISI 1020 cold-drawn steel shaft with the geometry
shown in Figure 3 carries a transverse load of 7kN and a
torque of 107 Nm. Examine the shaft for strength and
deflection. If the largest allowable slope at the bearings is
0.001 rad and at the gear, the mesh is 0.0005 rad, what is the
factor of safety guarding against damaging distortion? If the
shaft turns out to be unsatisfactory, what would you
recommend to correct the problem?”

4.1.2.2 | Features that improve the quality of
engineering education

In this case, the students have to evaluate the stiffness
and make adjustments to the shaft diameter until the
required deflection and slope conditions are met. This is
a challenging problem (made possible with the Excel
spreadsheet) and requires students to show judgment,

7 kN
155 55
45
30 35 4§ i ¥ 30 20
y Y
- T - F e———— - =
T
115 ~10 150 = FIGURE 3 Sample stepped shaft
375 problem from the course homework.
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R4 : Reaction Force at Left Bearing
Rp : Reaction Force at Right Bearing

Rp

FIGURE 4 FBD of the shaft is shown in Figure 3. FBD, Free Body Diagram.

including exploring which diameters matter, which
diameters have the most impact on the deflection and
slope criteria, and how much one can change the
different diameters but still retain the same design
configuration. This allows students to move from the
current focus on laborious arithmetic focused on the
lower levels of Blmmos taxonomy (i.e., “apply”) to higher
levels of blooms taxonomy, (“analyze and judge”).

4.1.2.3 | Strategy

1. Draw FBDs for the front and side view to find out what
external forces are acting on the shaft. You do not have
to find the reaction forces; Excel will do it for you.

2. Go to the shaft deflection spreadsheet and determine
if the dimensions are ok or not, that is, do a stepped
shaft problem (look at the allowable deflections for
the spur gear and regular ball bearings and see if they
are acceptable).

3. If the shaft's slope or deflection is too high at critical
locations, redesign the shaft.

4. Calculate the Factor of Safety (FOS) of the slope and
deflection at all critical locations.

Step 1: Free Body Diagram—The FBD of the AISI
1020 cold-drawn steel shaft shown in Figure 3 is
illustrated in Figure 4.

Note: R, and Rgp are the reaction forces from the
bearings. FBD, Free Body Diagram.

Step 2: Spreadsheet—Given the problem statement and
information in Figure 3, the inputs are entered into the
spreadsheet as shown in Figure 5. These inputs include the
elastic modulus (E), the shaft's overall length (L), location
of steps and diameter, bearing locations, and external
forces. These inputs are highlighted in the spreadsheet
using orange color. Once the input values are entered, the
Excel spreadsheet solver generates four plots: Shear force,
Bending moment, Slope, and Deflection (see Figure 6). The
values of the deflection and slopes at the bearings and the
point of force application are given in Table 2.

Step 3: Iterative Design—Because the slope at both
bearing locations is greater than 0.001rad, the shaft
needs to be redesigned to increase stiffness. This part of
the assignment is open-ended, and students need to find

a reasonable solution by iterating and evaluating the
shaft diameter and step locations. Students would show a
final shaft design and provide justifications for the
changes they made.

Step 4: Factor of Safety—The last part of the assignment
involves calculating the factor of safety for the deflection
and slope. This is done to indicate if the selected changes to
the shaft have improved the design and meet the
requirements listed in the problem statement.

4.2 | Self-efficacy assessments, results,
and discussion

After the homework problem, surveys were conducted to
assess student self-efficacy in the following categories:

1. Can the student's defeature (remove some grooves and
steps) a shaft sufficiently to focus on important
features? This is an important goal for the class since
defeaturing a solid model to remove features that are
not important but may cause meshing complications
is an essential step in using FEA also.

2. Can they convert the loads and steps into symbolic
versions to be used in Excel?

3. Can they identify how the geometrical parameters
affect the deflections and slopes?

4. Can they redesign the shaft (by making suitable
changes) to meet the stiffness goals?

As can be seen from the self-efficacy surveys in
Figure 7, students were not comfortable defeaturing the
shaft. Based on common questions asked during the
office hours and lectures, it was evident that students had
difficulty understanding what steps and grooves were
critical to the analysis. Also, based on the student's
solutions, they favored keeping as many features as
possible and did not feel comfortable generalizing the
shaft. This clearly pointed to the difficulty that students
had in qualitative analysis of the deflection features.
Despite this, students otherwise felt confident with other
aspects of the problem.

The Excel spreadsheet allows the students and instruc-
tors to explore the differences in the deflection made by
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1 Shear Force, Bending Moment, Slope and Deflection for Stepped Shafts
2
3 CHOOSE UNITS FIRST UNITS Sl
4
5
6 MATERIAL PROPS
7
8 CHOOSE MODULUS Designer  Elastic Modulus | 2.10E+05 MPa(N/mm~2)
9
10 GEOMETRY
11
12 Choose Shaft length Designer Length 3.75E+02 mm
13
14 mm
15 mm
WARNING: THIS IS ALWAYS
6 ONE MORE THAN THE # OF
16 number of steps SHOULDERS
17 SHAFT STEPS DESIGNER STEP # a Dia EI(NmmA2) 1/El D(1/El)
THIS IS THE BEGINNING OF THE 0
18 = SHAFT, DON’T MESS WITH THIS 0.00E+00 3.00E+01 8.35E+09 1.20E-10 1.20E-10
19 il 5.00E+01 | 4.00E+01 2.64E+10 3.79E-11 -8.19E-11
20 2 1.15E+02 5.50E+01 9.43E+10 1.06E-11 -2.73E-11
21 3 1.25E+02 4.50E+01 4.23E+10 2.37E-11 1.31E-11
22 4 2.25E+02 4.00E+01 2.64E+10 3.79E-11 1.42E-11
23 5, 2.90E+02 3.00E+01 8.35E+09 1.20E-10 8.19E-11
24 6 0.00E+00 0.00E+00 -1.20E-10
25 7 0.00E+00 0.00E+00 0.00E+00
26
27 LOADS In the x-Y and X-Z planes
28
29 TRANSVERSE LOADS DESIGNER Load # @(mm) Y Value (N) ZValue (N) Vtot(N) Mtot(Nmm) ©_tot(rad) d_tot(mm)
30 1 ~ 1.55E+02 -7.00E+03 0.00E+00 3.89E+03 5.44E+05 | 1.67E-04 | 1.25E-01
31 2 | 0.00E+00 0.00E+00 | 0.00E+00 | 0.00E+00
32 3! 0.00E+00 0.00E+00 | 0.00E+00 | 0.00E+00
33 4 0.00E+00 0.00E+00 | 0.00E+00 | 0.00E+00
34 5 0.00E+00 0.00E+00 | 0.00E+00 | 0.00E+00
35 6 0.00E+00 0.00E+00 | 0.00E+00 | 0.00E+00
36 it 0.00E+00 0.00E+00 | 0.00E+00 | 0.00E+00
37 8 0.00E+00 0.00E+00 | 0.00E+00 | 0.00E+00
38 9 0.00E+00 0.00E+00 | 0.00E+00 | 0.00E+00
39 10 0.00E+00 0.00E+00 | 0.00E+00 | 0.00E+00
40 11! 0.00E+00 0.00E+00 | 0.00E+00 | 0.00E+00
41 Locate Bearings Designer Bearing 1 locations 15 ‘ 3.89E+03 0 ‘ <-Bearing Load 1 0.00E+00 0.00E+00 | 1.49E-03 | 0.00E+00
42 Bearing 2 location 330 r 3.11E+03 0 ‘ <-Bearing Load 2 3.11E+03 0.00E+00 | 1.41E-03 | 1.39E-17

FIGURE 5 Excel-based solution to the sample shaft problem in Figure 3.

removing different features and thus gain some under-
standing of the effects of features on the deflections.

To gain an objective measure of student performance
to supplement the self-efficacy surveys, a stepped shaft
design problem was included in the final exam, and the
results were evaluated. We emphasize that without the
use of singularity function and Excel, it had hitherto been
impossible to include such a problem in a final exam.
Furthermore, evaluating students’ solutions is easy with
the Excel spreadsheet. On the other hand, even with FEA
software, due to the issues with meshing and assigning
boundary conditions, it would be impossible to carry out
the complete FEA on the shaft within the time
constraints of an exam.

4.2.1 | Typical homework problem that was
asked previously (Fall 2019)

For this homework problem, students were asked to
determine the loading, slope, and displacements for a

stepped shaft. The problem consisted of two parts. For
the first part, the students were instructed to perform the
calculations by hand.

Part 1: “The following stepped shaft is made of AISI
1020 CD steel. We want to determine slopes and
displacements for this shaft. Assume the shaft is circular,
all dimensions are in millimeters and F=10kN),
determine the following:

(a) Draw a free-body diagram of the beam shown.

(b) Determine the loading equation.

(c) Determine the slope and elastic curve for the stepped
shaft.”

Features that improve the quality of engineering
education: The typical amount of time spent on the first
part of the homework ranged between 3 and 4h, with
some students reporting up to 6 h spent on the problem.
For the second part of the homework assignment, the
students were asked to use Excel to perform the
calculations.
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FIGURE 6 Result plots generated by the Excel spreadsheet solver. Here, (a) shear force diagram; (b) slope diagram; (c) bending moment

diagram; (d) deflection diagram.

TABLE 2 Values for the shaft deflection and slope at locations
of the bearings and gears.

Location 15mm 155 mm 330 mm
Slope (rad) -149%x10° 1.67x107* 1.41x1073
Deflection (mm) 0 —0.125 1.39%x107"

Part 2: “The following beam is made of 1018 CD
steel. You are tasked to design the dimensions for the
shaft shown below. The load F = 8 kN, the dimensions
for the bearings, the overall length of the shaft, and the
point of load applications are fixed. The diameters d1
and d2 and the lengths L1 and L2 are design
parameters that you must determine. It is suggested
that you input parameters for the diameters and
lengths into the Excel spreadsheet provided then
iterate until you get satisfactory dimensions. Deflec-
tions must satisfy the suggested minimums for
spherical ball bearings and spur gears with p <10
(Gear is located at the point where F is applied). All
dimensions are in millimeters.”

Features that improve the quality of engineering
education: Students reported average times of
20-40 min on this part of the problem with one student
reporting a maximum time of 90 min.

4.2.2 | Typical exam problem that was asked
previously (Fall 2019)

For the shaft shown in Figure 8, D1 = 30 mm, D2 =40 mm,
D3 =50mm, and r=5 mm. It rotates at 600 RPM for 8h a
day and carries a transverse load of 6 kN and torque of
2% 10° N-mm. Will it be safe for infinite life if not, what is
the expected life of the shaft? Which is the critical section
where fatigue failure may occur?

4.22.4 | Analysis

Here, too, questions about deflection cannot be consid-
ered for real shafts due to the number of steps in the
shaft. Due to the tedious table lookups involved with
empirical formulae for fatigue, design iterations are ruled
out even for the strength calculation. So, the focus of the
exam was only on verifying an existing design with some
judgment involving where the critical sections could be.

4.2.3 | Revised problem statement using the
Excel-based approach

The shaft shown below in Figure 8 rotates at 600 RPM for
8 h a day and carries a transverse load of 6 kN and torque of
2% 10° N-mm. There are cylindrical roller bearings at the
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FIGURE 7 Student self-efficacy survey results. About 200 students from the class were surveyed to analyze the effectiveness of the

Excel-based method.

500
6 kN <—l75*’|

Dz : Shaft Diameter at 220 mm from left hand side
R : Fillet Radius at 220 mm from left hand side

‘ D : Shaft Diameter at left and right bearing
|— g D> : Shaft Diameter at 40 mm from left hand side

I
280 TL 2020

FIGURE 8 Final exam problem. Students had about 45 min to use the Excel-based shaft analysis to carry out an iterative design and

fatigue analysis of this shaft.

two ends, and the spur gear (which is located at the point of
application of the load) can withstand a slope of only 0.0005
radians. Find suitable shaft dimensions (D1, D2, D3, and
fillet radius R) so that (a) the deflections are within limits
and (b) the shaft lasts at least 10 years with a factor of safety
of 2. Assume that the shaft is made up of AISI 1040 CD
steel. This is an open-ended problem, therefore make some
sensible design decisions and explain your assumptions
well. T will evaluate your justifications. All dimensions
shown in the Figure are in mm.

Note: Part B is found by fatigue calculations using its
own Excel calculator; this will not be explored in this paper.

4.2.3.5 | Features that improve the quality of
engineering education

We are now able to ask an open-ended and complete
design solution in about 1 h during an exam. Also, since
the calculations are done in Excel. The results are easily
verifiable by the TA/Instructor by simply entering the
same numbers and checking if the solution is suitable.
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Students’ work on the homework problem and their
work in the exam were evaluated based on three categories:
(a) How accurate were the students in specifying the inputs
(forces and shaft steps); (b) How well did they interpret the
results; and (c) How well did they carry out the redesign.
Inputs refer to taking the information from the problem
statement or figures and entering it into the spreadsheet
correctly. Interpreting results includes finding the values of
the deflection and slope at critical locations and evaluating
if the shaft design meets the requirements. Lastly,
redesigning the shaft was graded based on if they could
create a design that met the requirements of the bearing
and gear but did not do so with an excessive factor of safety.
The correct column indicates that students received full
points for the specified task, and error means that they
made some mistake that resulted in a point deduction (see
Figures 9 and 10). An error could be as severe as not
attempting that part of the problem or having a slightly
large shaft for the final design.

In terms of designing the shaft, there are three major
parts inputs, interpreting results, and redesigning.
Figures 9 and 10 show that students make more input
errors on the final exam when compared to the home-
work assignment. This is most likely due to the pressure
of a timed exam and students not taking the time to
double-check all the inputs. Generally, students were
able to accurately interpret the results, but fewer were
able to make reasonable design changes.

A careful look at the results suggests that most of
these errors were due to over-designing the shaft—
making the diameters much larger, in many cases, mak-
ing them 50 cm in diameter, which is unrealistically large
for the problem at hand. This indicates that students
need help understanding the tradeoffs between cost and
size of parts versus a factor of safety; if a factor of safety
of 2 is required, it is not necessarily better to design for a
factor of safety of 10. A further aspect revealed from the
iterations carried out by the students is that they have

Inputs
60 60
50 50
40 40
30 30
20 20
10 10
0 HEE
Correct Error Correct

Interpreting results

50
40
30
20
10
1 §

difficulty with estimating the sizes (in some cases,
starting with an initial shaft diameter of 5mm, not
realizing that such a dimension would make it wire).

The course evaluations and student comments indi-
cated that students were very appreciative of the approach
taken where the decision-making and reasoning were
emphasized, over-focusing just on calculations. Even
students who did not perform well in the class indicated
that they valued the class. This was made possible by using
Excel and singularity functions to provide students with a
realistic component design experience.

5 | ADVANTAGES AND
DISADVANTAGES OF THE USE OF
EXCEL

(1) The overall average time to solve stepped shaft
design problems using MS Excel VBA reduces by
approximately 75% as compared to the traditional
methods (discussed in Section 2) of solving it. We
note such stepped shaft problems are actually treated
as a whole case study and broken up into multiple
subproblems spanning the whole semester, by
Budynas and Nesbitt [26].They state on page 3671
of the 8th edition and page 391 in the 11th (most
recent) edition that the deflection analysis is
lengthy and tedious to carry out manually, particu-
larly for multiple points of interest.” They go on to
add that “any general-purpose finite element soft-
ware can readily handle any shaft problems. Special-
purpose software solutions for 3-D shaft analysis are
available but somewhat expensive...” They then
proceed to do a deflection analysis as a case study
by using suitable software but provide no details.

(2) The Excel VBA program provides a very simple
interface to the students eliminating the need of
learning advanced programming skills.

Redesign

Error Correct Error

FIGURE 9 Completely correct versus error in work for different grading criteria on homework problems. The correct column indicates
that students received full points for the specified task, and error means that they made some mistake that resulted in a point deduction.
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FIGURE 10 Completely correct versus error in work for different grading criteria on the final exam. Problem. The correct column
indicates that students received full points for the specified task, and error means that they made some mistake that resulted in a point

deduction.

(3) The dynamic nature of the result plots provides the
students with an easier way of making necessary
design changes and visualizing them.

(4) Rather than focusing on tedious arithmetic, students
were able to focus on design decision-making,
interpret the results, and move to higher levels of
Bloom's taxonomy.

(5) The use of Excel allows the students to focus on the
concepts of the problems and the effect of different
parameters on the final results. A full iterative design
is not possible unless it is assigned as a team project.
In contrast, with the use of this Excel software, the
total time required by the students to complete the
whole task is reduced to 20 min or less in an exam.

(6) One of the principal disadvantages of using Excel
was that students tended to quickly use it as a black
box. We were able to mitigate this effect somewhat
by asking students to do one homework with a shaft
with one shoulder so that they can learn the process.

(7) A second disadvantage was that not all faculty were
comfortable with the Excel-based design approach
since they were not very familiar with Excel VBA. We
are planning a short course on Excel VBA for engineers
for both students and interested faculty to mitigate this.

6 | CONCLUSION

This paper addresses the difficulty of teaching the design
of stepped shafts, which is one of the core problems in
the design of machine elements. The main challenge,
which prevents instructors from teaching students to
carry out an iterative design approach is the extensive
algebra and calculus needed for hand calculation and the
nonavailability of a simple approach for computational
solutions. We have demonstrated an approach, using
singularity functions and Excel, to solve stepped shaft
problems quickly. Transparently and intuitively. This

allows students the opportunity to use their engineering
knowledge and intuition to obtain solutions to design
problems. This technique allows students to improve
their skills in engineering design and practice without
the time devoted to time-consuming algebra. We have
demonstrated the effectiveness of this technique from the
courses in which this methodology was implemented
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APPENDIX A: Excel VBA Code
The code below shows the two major functions needed
for the Excel-based solution:

Al: VBA function to integrate singularity func-
tions as many times are needed

Public Function SingularIntegrate(x
As Double, StartRange As Range, Coef-
fRange As Range, times As Integer) As
Double

Application.Volatile True

Dim WF As WorksheetFunction

Set WF = Application.Worksheet
Function

SingularIntegrate =0

nsteps = StartRange.Rows.Count

For ii =1 To nsteps

xa=x StartRange.Cells(ii, 1).Value

ci=CoeffRange.Cells(ii, 1) .Value

Jjj=times 1

If (xa>0) And jj>=0 Then

SingularIntegrate = SingularInte-
grate + c¢i * WF.Power(xa, 3Jj)/
WF.Fact(jJ)

End If

Next ii

End Function

A2: Integrating the product of the Beam compli-
ance step function and the Moment function and
its integrals

Public Function BeamGeom(x As Dou-
ble, StartRange As Range, CoeffRangel
As Range, CoeffRange2 As Range, inType
As Integer) As Double

Application.Volatile True

Dim WF As WorksheetFunction

Set WF = Application.Worksheet
Function

L =Range("D12") .Value

myPi=3.141592

Dimnsteps As Integer

nsteps = Range ("D16") .Value

Dim a As Double

BeamGeom = 0O

n=17

m=0

Do Until m=nsteps
n=n+1

m=m+ 1

a =Range ("D" & n) .Value

EI_Inv =Range("H" & n).Value

Xxa=x a

If xa > 0 Then

BeamGeom = BeamGeom + EI_Inv * (Sin-

gularIntegrate(x, StartRange, Coef-
fRangel, inType + 2) SingularInte-
grate(a, StartRange, CoeffRangel,

inType +2) SingularIntegrate(x, Star-
tRange, CoeffRange2, inType + 1) + Sin-
gularIntegrate(a, StartRange, Coef-
fRange2, inType + 1))

If inType > 1 Then

BeamGeom = BeamGeom EI_Inv * (Singu-
larIntegrate(a, StartRange, Coef-
fRangel, 3) SingularIntegrate(a,
StartRange, CoeffRange2, 2)) * xa

End If

End If

Loop

"BeamGeom = Range ("D" & 30) .Value

If x>L Then

BeamGeom =0

End If

End Function
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APPENDIX B: Student Self-Efficacy
Questionnaire
We developed a questionnaire based on a Likert scale
consisting of the following questions to quantify student
self-efficacy in designing stepped shafts:

For the following questions use the five-point scale
below

1. Very confident

2. Confident

3. Neutral

4. Not very confident

WiILEY—"

. Not confident at all

. Creating a singularity function for a 2D bar without

steps

. Creating a singularity function for a 2D bar with steps
. Defeaturing a shaft
. Verifying if the slope at the bearings is within

acceptable limits

. Verifying if the deflections at gears are within

acceptable limits

. Iteratively changing dimensions to decrease the slope

and deflection of the shaft
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