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A B S T R A C T   

Cardiovascular disease is the leading cause of death worldwide. Continuous heart monitoring is an effective 
approach in detecting irregular heartbeats and providing early warnings to patients. However, traditional cardiac 
monitoring systems have rigid interfaces and multiple wiring components that cause discomfort when contin
uously monitoring the patient long-term. To address those issues, flexible and comfortable sensing devices are 
critically needed, and they could also better match the dynamic mechanical properties of the epidermis to collect 
accurate cardiac signals. In this review, we discuss the principles of the major mechanisms of heart monitoring 
approaches as well as traditional cardiovascular monitoring devices. Based on key challenges and limitations, we 
propose design principles for flexible cardiac sensing devices. Recent progress of cardiac sensors based on various 
nanomaterials and structural designs are closely reviewed, along with the fabrication methods utilized. More
over, recent advances in machine learning have significantly implemented a new sensing platform for the 
multifaceted assessment of heart status, and thus is further reviewed and discussed. Such strategies for designing 
flexible sensors and implementing machine learning provide a promising means of automatically detecting real- 
time cardiac abnormalities with limited or no human supervision while comfortably and continuously moni
toring the patient’s cardiac health.   

1. Introduction 

Cardiovascular disease (CVD) is the leading cause of death, causing 
an estimated 32% of deaths worldwide [1]. According to the World 
Health Organization (WHO), an estimated 17.9 million people die 
annually from CVDs, and around 80% of those deaths come from heart 
attacks and strokes [1]. Continuous heart monitoring is an effective 
approach in detecting irregular heartbeats and providing early warn
ings, especially since people may not be able to distinguish some 
symptoms of cardiovascular diseases on their own. Traditional cardiac 
monitoring systems, such as Holter monitors and cardiac event re
corders, are portable devices that measure the heart’s electrical activity 
in and outside a hospital setting, which could be 24 h or longer [2]. By 
using certain mechanisms to interpret the collected cardiovascular data, 
healthcare workers can evaluate patients for their cardiac-related 
health. Of the various mechanisms available for interpretation, elec
trocardiogram (ECG) and seismocardiogram (SCG) are the most 
commonly used and effective methods for monitoring the heart, and this 
review primarily focuses on those two mechanisms. ECG-based cardiac 
monitoring approach is one of the most effective methods in detecting 
the heart’s electrical activity in a hospital setting [3,4]. The process is 

simple, fast, and non-invasive. Despite the effectiveness of ECG ma
chines, patients still require continuous cardiac monitoring outside the 
hospital setting due to the infrequency of irregular or abnormal heart
beats. Doctors can prescribe portable cardiovascular monitoring systems 
such as the Holter monitors or cardiac event recorders that can be taken 
outside the hospital for the patient’s ECG to be recorded for 24–48 h. 
However, such devices are bulky and utilize wiring to attach electrodes 
to the chest to record ECG as patients go about their daily activities. For 
the Holter monitor, six to ten wires are attached to the patient and 
showering is not advised throughout the monitoring period since wet 
electrodes may provide inaccurate results [5,6]. Skin irritation may also 
occur through the electrode attachment; thus, long-term continuous 
monitoring beyond the 48 h would not be feasible. Another non-invasive 
effective method of diagnosing CVDs is SCG, and it has also been widely 
used in clinical settings. SCG measures the heart’s mechanical activity 
such as the vibrations induced by the heartbeat [7,8]. Accelerometers or 
gyroscopes are placed on the patient’s chest to collect the SCG data. 
However, placement of the device on the human chest matters signifi
cantly and motion artifacts can greatly affect SCG data if the patient 
moves around. Furthermore, the devices are either taped or strapped to 
the human chest, increasing discomfort the longer they are attached. 
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While both ECG and SCG methods provide sufficient cardiac infor
mation, those heart monitoring devices have limitations: they consist of 
various hard-wired, rigid interfaces that provide discomfort to the pa
tient during long-term, continuous usage, and they typically rely on 
batteries to operate. Additional equipment and measurement methods 
are often required to further evaluate physiology processes. Due to those 
limitations, flexible cardiac sensing devices designs are critically needed 
for long-term, continuous monitoring of the heart by excluding rigid 
interfaces and wiring. Various flexible sensors have been developed in 
the field to extract the patient’s real-time cardiovascular signals, heart 
rate, blood pressure, respiratory rate, or sleep patterns with ease of ac
cess and comfortability to the patient [9–25]. In this review, different 
design strategies of cardiac sensing innovations are discussed in terms of 
structural layouts, material development, and fabrication methods. An 
ideal cardiac sensing device is flexible, conformable, biocompatible, and 
has an extended or unlimited battery life to enhance its sensing capa
bilities and to provide a safe and comfortable experience for continuous 
cardiac monitoring. 

Recently, advances in machine learning (ML) have significantly 
implemented a new sensing platform for the multifaceted assessment of 
heart status. This is another key challenge for continuous cardiovascular 
monitoring, which is analyzing real-time sensing data on the patient’s 
cardiac activity outside the hospital setting. Monitoring and analyzing 
the cardiac data in real-time help healthcare professionals diagnose 
CVDs early on and provide early warnings to their patients. In recent 
years, various ML strategies have been employed to provide automatic 
abnormal cardiac detection [10, 26–31]. ML is a subset of artificial in
telligence that can solve complex problems without being explicitly 
programmed to do each step [32,33]. ML algorithms in cardiac moni
toring applications include convolutional neural network (CNN), 
binarized neural network (BNN), Hidden Markov Model (HMM), and 
Random Forest. The most commonly employed algorithm is CNN, which 
operates on a grid-like structure to process data such as images to 
automatically identify a hierarchy of features such as amplitudes and 
wavelengths of cardiovascular signals [34–36]. Essentially, CNN can 
take raw cardiovascular signals and categorize them into normal sinus 
rhythm or abnormal rhythm, such as atrial fibrillation, different types of 
arrhythmias (supraventricular ectopic beats and ventricular ectopic 
beats), and more. By incorporating ML strategies to cardiovascular 
sensors, minimum human supervision is required to discover and 
annotate abnormalities in the collected cardiovascular signals. 

There have been various comprehensive reviews on sensing devices 
that have focused on structural designs [37–39], materials development 
[39,40], and different biomedical applications [11,35,39,41,42]. By 
contrast, this review focuses on flexible cardiac sensors and machine 
learning in cardiac monitoring applications. We begin by discussing the 
principles of the two major mechanisms of heart monitoring: ECG and 
SCG. Then, traditional cardiovascular monitoring devices currently 
employed in and outside a hospital setting are discussed, along with 
their key challenges and limitations. Next, we explore the design prin
ciples of cardiac sensors that take several considerations into account, 
such as the sensitivity, flexibility, conformability, biocompatibility, and 
battery life of the device. The structure and material designs are also 
carefully examined, along with the fabrication methods utilized. Then, 
we further discuss various ML strategies that have been implemented to 
automatically categorize cardiovascular signals into normal sinus 
rhythm and various abnormal rhythms. Lastly, we conclude by 
providing a summary of perspectives in this field. 

2. Mechanisms of heart monitoring 

CVD is a prevalent disease worldwide and takes up to a estimated 
17.9 million lives every year [1]. Examples of such disease include 
coronary heart disease, cerebrovascular disease, rheumatic heart dis
ease, heart attacks, and other potentially fatal conditions. Those with 
highest risk of CVDs should be identified early on so that they can be 

notified of any feasible changes to their lifestyle or receive suitable 
treatment to prevent premature death. Continuous heart monitoring is 
an effective approach in detecting irregular heartbeats and providing 
early warnings. As is shown in Fig. 1, this review primarily focuses on 
the most commonly used and effective methods for heart monitoring: 
ECG and SCG approaches. 

2.1. The ECG-based cardiac sensing approach 

The body naturally produces electrical impulses that correspond 
with heart contractions that keep the blood flowing. The ECG-based 
approach is to measure electric potentials induced on the human skin 
as the stimulation of the cardiac muscle changes the electrical activity of 
the heart [3, 48–51]. The cardiac signals from the electrical activity have 
small amplitudes ranging from 110 μV to 4 mV in the low frequency 
range of 0.05–100 Hz [51,52]. Those ECG signals provide insight to the 
heart activity, such as the pace of the heart beating, regular or irregular 
rhythm of the heart, electrical impulse strength, and electrical impulse 
timing. Clinical and hospital-grade ECG-based devices, such as Holter 
devices (Fig. 1 top), use adhesive patches as electrodes to detect the 
heart’s electrical impulses, which are then graphed to represent several 
waves that repeat with each heartbeat [53,54]. One normal cycle of an 
ECG waveform in Fig. 2A contains waves, intervals, segments, and one 
complex [4]. The cycle consists of the P wave, R wave, S wave, Q wave, T 
wave, and the U wave. Certain elements of an ECG wave are closely 
examined to determine any heart conditions [4,48,50,55] (Fig. 2B). 
Those elements include the time interval between two ECG events, such 
as the PR, QRS, QT, and the RR intervals. The combination of various 
waves grouped together, such as the QRS complex, is observed for any 
abnormalities, and the lengths between two points that are located on 
the baseline amplitude, depicted as the PR, ST, and the TP segments, are 
closely analyzed [4,55]. Comprehension of these elements of ECG waves 
is significant because any observed abnormalities to the ECG waves 
would notify healthcare professionals of any issues with the heart, and it 
could help them easily diagnose medical conditions from the ECG results 
without any surgeries. For example, a prolonged QT interval may indi
cate medication or electrolyte abnormalities, such as hypocalcemia, 
hypomagnesemia, hypokalemia, or other diseases like intracranial 
hemorrhage. However, certain patient factors, such as patient gender, 
may affect the diagnosis from the ECG results, as women and those with 
lower heart rates typically have longer QT intervals. A wide QRS com
plex heart rhythm could indicate ventricular tachycardia, which is a 
condition of having a rapid heart rate. A long RR interval or P wave that 
precedes every QRS complex with a ventricular rate of less than 60 beats 
per minute may indicate sinus bradycardia, which refers to a slow heart 
rate. A variation of the PP interval of at least 120 ms may indicate sinus 
arrhythmia, or an irregular heart rate, which could be indicative of a 
more serious condition for those who are not young. Moreover, PR in
tervals longer than 200 ms may indicate a first degree of heart blocking, 
whereas a PR interval shorter than 120 ms may indicate pre-excitation 
syndrome [50]. With an explicit understanding of the ECG waveform 
and its structure, early diagnoses of cardiac conditions can be achieved. 

ECG-based cardiac sensing approaches are also considered non- 
invasive. Hospital-grade ECG instruments conventionally have 12 
leads (10 electrodes), leading to increased sensitivity and accuracy when 
compared to personal-use ECG monitors, which typically use less leads 
[53]. While the electrodes can be easily and quickly placed on the 
human body with gel, they may bring discomfort when the gel dries, and 
thus long-term monitoring with the existing ECG instruments is not 
preferred. Each electrode is connected to a lead, or wiring, which con
nects all of them to an ECG machine displaying ECG wave patterns that 
characterize the heart’s rhythm on a screen. Therefore, multiple elec
trodes would increase the amount of wiring, leading to discomfort and 
overall difficulty in maneuvering for the patient during long-term 
monitoring, especially considering some leads are placed not only on 
the torso but also on the patient’s limbs [53]. In addition, changes to 
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ECG results could be affected by bodily movements, and electrodes are 
also sensitive to placement on the patient. Certain patient factors, such 
as patient gender and weight, should also be considered when exam
ining the results for any issues, as they provide differing results [55]. 

2.2. The SCG-based Cardiac Sensing Approach 

The SCG-based approach is to measure the local vibrations caused by 
the contractions and relaxations of the heart and blood pumping 
through the heart by using miniature gyroscopes and accelerometers 
attached to the chest (Fig. 1 bottom) [7,8]. During every cardiac cycle, 
chest vibrations are produced when the heart twists forward and touches 
the chest wall [56]. The vibrations of the heart consist of both axial and 
rotational motion, and SCG signals are measured in the low frequency 
range of 0.5–100 Hz with amplitudes around 10 mg [48, 57–60]. Ac
celerometers (in a range of ± 1 g or ± 2 g) and gyroscopes can deter
mine the cardiac acceleration in rotational and axial directions [7,60]. 
Such approach enables the sensing devices to give information about 
local heart vibrations on the chest wall while also providing a 
non-invasive technique to evaluate cardiac activity. Using accelerome
ters or gyroscopes, a typical SCG waveform is measured and recorded, 
with the peaks of the signals corresponding to specific cardiac events [7, 
8,60] (Fig. 2C). Comprehension of these prominent maximum and 
minimum points of SCG waves is important. Any observed abnormalities 
to the structure of the waveform can instantly notify healthcare pro
fessions to any cardiac-related issues. This enables doctors to quickly 
provide a diagnosis from the evaluation of these abnormalities without 
any surgical procedures. For example, certain cardiac mechanical ac
tivities can be monitored from SCG cycles [48,50,56,61,62]. The top 
graph of Fig. 2D displays normal SCG cycles, which show the feature 
point AO (aortic valve opening) having a higher amplitude compared to 
other feature points. Abnormal SCG cycles, such as the ones shown on 
the bottom graph of Fig. 2D, show the feature point with a lower 
amplitude, which is indicative of a patient who might be suffering from a 
cardiovascular-related disease or condition [48,56,61,62]. For example, 
a low amplitude of point AO can indicate a decreased coronary blood 
flow, which can be associated with coronary artery stenosis or ischemia 
[61]. Furthermore, the distance between other SCG feature points and 
point AO can be estimated to calculate the normal range of time in
tervals of healthy subjects, which can then be used to compare with the 
range of unhealthy subjects [48]. Those changes or abnormalities of SCG 
signals can indicate cardiac-related diseases and conditions. Examples 
include myocardial ischemia, indicating an obstruction of the blood flow 
to the heart muscle with the buildup of plaques; myocardial infarction, 
suggesting a cellular response to the rupturing of the built-up plaques; 

and arrhythmia, referring to an irregular heart rate [48,50,63]. 
One major benefit of measuring SCG in a clinical setting is that it is an 

entirely non-invasive and inexpensive technique due to its non-inclusion 
of any surgical elements. To sense the beating heart and the blood 
pumping through the arteries, accelerometers and gyroscopes are placed 
on the human chest at specific locations for easy detection of SCG signals 
[7, 8, 50, 58–60]. The cardiac muscle, or the myocardium, relaxes and 
contracts with each heartbeat and the SCG monitoring devices record 
the dorsoventral acceleration of the chest induced by the cardiac activity 
[49,61]. Moreover, SCG monitoring devices are not significantly 
affected by changes in the magnetic field [49]. SCG signals provide in
formation on the heart’s mechanical activity, not the heart’s electrical 
activity, so lightweight accelerometers and gyroscopes are compatible 
with high magnetic fields, such as 3 T or 7 T [58]. During cardiac 
magnetic resonant imaging (CMRI), data on the heart’s electrical ac
tivity is distorted by high magnetic fields greater than 3 T, thus making 
that form of cardiac monitoring unfavorable during CMRIs. Therefore, 
SCG monitoring can be utilized under those conditions to provide better 
resolution of the signals. However, there are certain constraints that 
should be considered when attaching the SCG-based monitoring devices 
to the human chest wall. One such constraint is that the SCG sensing 
would be sensitive to motion artifacts, and thus could influence the re
sults [7,8,59]. Motion artifacts from SCG signals include the posture of 
the human subject, bodily movements, and even respiration. Another 
constraint of the SCG sensing approach is that the positioning of 
SCG-based devices relative to the heart would also influence the clarity 
of the measured SCG waves [7,49]. All those limitations have the ca
pacity to affect SCG results; therefore, additional measurement may be 
used together with this heart monitoring mechanism to further evaluate 
cardiac-related health issues. 

2.3. Summary of cardiac sensing approaches 

As a way to diagnose CVDs, ECG monitoring has been widely used 
over the years to primarily diagnose cardiac-related health issues [1]. 
Traditional cardiac monitoring systems like Holter monitors and cardiac 
event recorders have the ability to measure the heart’s ECG in and 
outside a hospital setting and provide a diagnosis for different cardiac 
conditions. Holter monitors can continuously monitor a patient’s ECG 
for more than 24 h outside the hospital due to the relatively small, 
portable recording device [2]. However, those traditional devices have 
their own disadvantages, such as causing patient discomfort with the 
electrode attachment and lasting for a short duration outside the hos
pital when longer periods of observation are required to accurately di
agnose cardiac conditions [65]. In recent years, doctors and researchers 

Fig. 1. An overview of two typical heart monitoring strategies and conventional sensing devices: ECG to detect the heart’s electrical activity (top) [43,44] and SCG to 
detect the heart’s mechanical activity (bottom) [28, 45–47]. 
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have developed an interest in collecting and measuring SCG data 
alongside ECG data due to its non-invasive and inexpensive method of 
monitoring the heart’s mechanical activities and providing further 
analysis of the heart to aid in diagnostic tests [8]. ECG monitoring alone 
may not be able to provide enough insight on the patient’s cardiac ac
tivity. Thus, a combined analysis of multiple heart mechanisms could 
provide a more comprehensive and reliable evaluation of the patient’s 
cardiac-related health while also increasing the validity of observed 
abnormalities [48]. As shown in Fig. 2E, the leftmost graph displays 
both normal ECG and SCG morphology while the middle graph displays 
normal SCG morphology with abnormal ECG morphology with atypical 
R and P amplitudes. Both the left and middle graphs in Fig. 2E used 
normal subjects for data analysis. According to the authors, that could 
indicate an issue with the ECG monitor since the SCG data does not show 
any abnormalities [48]. The rightmost graph in Fig. 2E, which used an 
abnormal subject, presents an abnormal R-wave in the ECG waveform 
with a high voltage amplitude compared to the normal ECG readings 
with corresponding abnormal SCG readings as well. With a dual display 
of abnormal ECG and SCG morphology, it could be indicative of a 

cardiac issue since both heart mechanisms validate the existence of 
abnormalities. Along with an increased validation of cardiovascular 
diagnoses, a combined analysis of the heart mechanisms could also 
improve the accuracy of the diagnosis and rule out external noises and 
motion artifacts that might be affecting one heart mechanism detection 
and not the other [48]. 

In general, the analysis of any abnormalities from ECG signals are 
considered the standard practice with diagnosing the patient, but SCG 
signals can further complement the analysis. The addition of SCG 
monitoring alongside ECG monitoring provides a more inclusive anal
ysis for the patient due to the examination of not only the heart’s elec
trical activity but also the heart’s mechanical activity. To compare both 
approaches, Table 1 lists the advantages and disadvantages of both SCG 
and ECG-based cardiac sensing approaches. For the two cardiac sensing 
approaches, the most advantageous feature is that they both provide 
non-invasive methods to detect cardiovascular signals. However, for the 
SCG-based approach, the disadvantages are that the monitoring devices, 
such as accelerometers and gyroscopes, are very sensitive to motion 
artifacts and device placement on the human body. For the ECG-based 

Fig. 2. Typical ECG and SCG waveforms: (A). Waveform of an ECG signal [64]. (B). Various abnormalities from ECG waveforms [50]. (C). Waveform of an SCG 
signal [8]. (D). Comparison of normal SCG cycles (top) versus abnormal SCG cycles (bottom) [48]. (E). Combined analysis of ECG and SCG approaches with detection 
of normal ECG and SCG morphologies (left), detection of abnormal ECG morphology and normal SCG morphology (middle), and detection of abnormal ECG and SCG 
morphologies (right) [48]. 
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approach, the monitoring devices are also sensitive to device placement. 
Moreover, the traditional monitoring devices have many rigid interfaces 
and wiring that can provide discomfort to the patient. 

Even though ECG and SCG are the two most standard heart mecha
nisms that are utilized to diagnose patients for any cardiac-related is
sues, other mechanisms for heart monitoring approaches are still used to 
examine patients for any issues regarding their cardiovascular health. 
The approaches include monitoring the patient’s pulse waves, respira
tion rates, heart rates, and blood pressure. One specific approach called 
photoplethysmogram (PPG) provides a person’s cardiac information by 
measuring reflection-mode measurements from the base of the patient’s 
foot [9]. Another common approach called phonocardiography (PCG) 
provides a graphic representation of auscultation from the heart [66]. 
Alongside ECG and SCG-based cardiac sensing approaches, those 
mechanisms also assist in providing early diagnoses to the patient. 

3. Design strategies of cardiac sensing devices 

While both ECG and SCG methods provide sufficient cardiac infor
mation, they have major disadvantages that make continuous moni
toring challenging. For example, due to the rigid interface and multiple 
wiring components of traditional monitoring devices, vigorous move
ment and exposure to water from the patient would affect the quality of 
the cardiovascular signals. Therefore, flexible cardiac sensing devices 
are critically needed for long-term, continuous monitoring of the heart 
by excluding rigid interfaces and wiring. Furthermore, the devices 
should have enhanced sensing capabilities that allow the patients to go 
about their daily activities without any restrictions in order to improve 
their quality of life. In this section, different design strategies of flexible 
cardiac sensors in the field are discussed [9–25]. 

3.1. Key challenges and design principles 

Traditional heart monitoring devices suffer from various challenges 
that limit their ability to monitor cardiovascular signals comfortably and 
long-term while restricting the patient’s range of movements. Recently, 
flexible cardiac sensors have been designed to address the key 

challenges in order to provide solutions to patients that improve 
continuous monitoring safely and innovatively. Non-invasive, tradi
tional ECG monitoring devices, such as the Holter monitor, utilize rigid 
electrodes that use multiple leads to attach to the human body, causing 
discomfort and chafing during long-term usage (Fig. 3A) [2]. Further
more, as shown in Fig. 3B [67], accelerometers and gyroscopes are taped 
or strapped to the chest for traditional SCG monitoring [7,8]. Fig. 3C 
shows another example of a cardiovascular monitoring device, where 
various rigid wiring of the polysomnography (PSG) sensors are attached 
to a subject to measure ECG, electroencephalogram (EEG), electroocu
logram (EOG), and pressure transducer air flow measurements [10]. In 
Fig. 3D, conventional measurement hardware is attached to a life-sized 
neonate doll to measure blood oxygenation, skin temperature, heart 
rate, heart rate variability, and respiratory rate [9]. Vigorous movement 
is not advised, and the patients would be aware of the various attach
ments on their bodies as they go about their daily activities. Especially 
for neonates, approximately 300,000 of them in the United States are 
brought to the neonatal intensive care units (NICUs) every year since a 
majority have delicate health due to premature birth and low birth 
weight [9]. In the NICU, current monitoring systems utilize rigid elec
trodes and sensors that are attached to the skin using adhesives and are 
connected to the base units through wiring. Adhesives can greatly irri
tate and even cause scarring to the neonates’ fragile skin, and the wiring 
components make it difficult to turn them from prone to supine, a 
commonly done task for neonates. Therefore, creating epidermal elec
tronic systems, which removes rigid components and incorporates ma
terials that complement the mechanical properties of the human 
epidermis, would improve the patient’s quality of life. 

Strategies of skin-like cardiac sensing devices have been intensively 

Table 1 
Comparison of ECG and SCG-based cardiac sensing approaches.  

Type ECG-based Approach SCG-based Approach 

Working 
Mechanism 

Electrical potential of the 
muscle fibers produced by 
the stimulation of the 
cardiac muscle[3] 

Chest vibrations induced by the 
heart twisting forward and 
tapping the chest wall during 
every cardiac cycle[56] 

Frequency (Hz) 0.05 – 100[51,52] 0.5 – 100[48,57] 
Amplitude 

Range 
0.110 μV – 4 mV[51] ~ 10 mg[58–60] 

Advantages  1. Non-invasively records 
electrical activities of the 
heart.  

2. Measures signals from 
various locations on the 
body, not just from the 
human chest, to increase 
accuracy of the readings.  

3. Standard practice of 
monitoring cardiac 
activity.  

4. Technology for 
continuous monitoring is 
possible.  

1. Non-invasively records 
mechanical activities of the 
heart.  

2. Monitoring devices 
(accelerometers and 
gyroscopes) are relatively 
small, compact, and 
inexpensive.  

3. Not easily affected by 
changes in the magnetic 
field. 

Disadvantages  1. Sensitive to device 
placement on the patient.  

2. Typically requires rigid 
interfaces and multiple 
wiring.  

3. Sensitive to changes in 
the magnetic field.  

1. Sensitive to motion artifacts.  
2. Sensitive to device 

placement on the patient.  
3. Sensor placement has to be 

relatively close to the 
patient’s heart to record the 
vibrations and sounds of the 
heart.  

Fig. 3. Traditional heart monitoring devices: (A). Holter monitor with elec
trodes and leads to measure ECG [44]. (B). IMU taped to a patient’s chest to 
measure SCG [67]. (C). PSG sensing device with various wiring to measure 
ECG, EEG, EOG, and pressure transducer air flow measurements [10]. (D). 
Conventional measurement hardware to measure blood oxygenation, skin 
temperature, heart rate, heart rate variability, and respiratory rate [9]. 
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developed; however, there are still certain challenges to ultimately 
address. An overview of key challenges of traditional heart monitoring 
devices and design principles of flexible cardiac sensors is shown in  
Fig. 4. To design cardiac sensing devices, the sensitivity, conformability, 
flexibility, biocompatibility, and battery life of the devices are critical 
considerations that should be focused on in order to optimize the de
vice’s performance toward clinical translation (Fig. 4 right). The sensing 
capability of a cardiac sensor is a significant parameter to maximize 
since the measurements of the electrical activity and the vibrations of 
the heart register on a miniscule level. To correctly diagnose the patient 
with a heart defect or condition, healthcare professionals need to work 
with accurate readings that filter out background noise and diminish 
motion artifacts since those artifacts could be intentional and uninten
tional movement from the patient that can significantly affect image 
acquisition [10,11,68]. Researchers have employed various materials 
and structural designs to expand the sensing capabilities of cardiac 
sensing devices [9–24, 39]. For example, Nayeem et al. developed 
electrospun nanofiber layers for their cardiac sensing device that 
measured the vibrations of the heart. The device demonstrated a high 
sensitivity level of 10,050.6 mV/Pa in a low frequency range of less than 
500 Hz [12]. Bongrain et al. designed a flexible sensor using a piezo
electric material that measured pulse waves, in which different struc
tural designs (annular, disk, and serpentine annular) provided varying 
sensitivity levels [13]. The annular design achieved the highest sensi
tivity of 0.805 mV/μL, while the other designs achieved sensitivity 
values of 0.257 mV/μL and 0.312 mV/μL respectively. 

Rigid devices and interfaces increase motion artifact and cause 
discomfort by creating interfacial gaps between the sensor and human 
skin and irritating the epidermal layer of the skin especially when 
continuously monitoring the heart’s electrical activity for long-term 
applications. Therefore, flexibility and conformability are important 
considerations for cardiovascular sensor designs. Soft materials are 
being developed to better handle the overall device flexibility [9–14, 
16–24, 39]. Due to the outstanding flexibility, polymer-based materials 
are commonly used in cardiac sensing designs. For example, poly
vinylidene fluoride (PVDF) and its co-polymer poly(vinylidene 
fluoride-trifluoroethylene) (P(VDF-TrFE)) are favorable for biomedical 
applications due to their excellent flexibility, biocompatibility, and 
processability with microstructures for designs, and they have been 
developed in various energy harvesting and sensing applications [39, 
69–79]. AlMohimeed et al. developed an ultrasonic sensor that incor
porated a double-layered film of PVDF to measure cardiac tissue motion 
[14]. The integration of PVDF allowed it to be a wearable sensor, which 
reduced patient discomfort and introduced the potentiality of their de
vice to continuously monitor cardiovascular signals in long-term studies. 
Furthermore, Sun et al. developed a strain sensor that was designed to be 
a wearable or implantable sensor [15]. The researchers chose PVDF as 
the main functional layer due to its natural flexibility. Hesar et al. also 

incorporated PVDF to the SCG sensing cardiac patch [23], along with 
Nayeem et al., who electrospun PVDF nanofibers to design a SCG-based 
cardiac sensor [12]. Other polymer-based materials such as ecoflex, 
parylene, and more have been used as substrates or encapsulate layers 
for flexible and conformable cardiac sensors [13,22]. For example, Liu 
et al. encapsulated their entire device with Silbione and ecoflex, both 
low-modulus silicone, to cover the circuitry of their sensor and to pro
vide conformability that prevented patients from feeling the rigid 
components [22]. The use of the silicone materials permitted their 
design to mechanically isolate the electronics, which reduced motion 
artifacts and improved conformability on the skin without any alter
ations to the device application. Essentially, those flexible sensors are 
designed to conform to the dynamic mechanical properties of the human 
skin, thus increasing patient comfortability. 

Cardiovascular sensors intimately interact with the human skin in 
order to minimize motion artifacts since the artifacts may disrupt the 
sensing capabilities of the cardiac monitors, and thus may provide 
incomplete and even misleading results [10]. Meanwhile, sensing de
vices are also expected to continuously measure cardiac activity, so they 
are required to be biocompatible to provide a safe user experience 
especially for long-term usage. From a design perspective, no toxic 
materials would be utilized during the fabrication process, and no 
debilitating or allergic reactions should occur to the patient. So far, 
various biocompatible materials, such as PVDF, polyimide (PI), ecoflex, 
parylene, polyurethane (PU), polyethylene terephthalate (PET), hydro
gel, and polydimethylsiloxane (PDMS), have been incorporated into the 
design of the devices to make them biosafe [13,20,23,39,42,72,80,81]. 
Furthermore, strategies of encapsulating the overall device with 
biocompatible materials have been developed to effectively prevent the 
exposure of devices and ensure the safety of the patients. Xu et al. 
incorporated silver nanowire (AgNW) and graphene oxide (GO) into 
their material composition to create an ECG monitoring device [21]. 
Since AgNW is not a biocompatible material, they sandwiched the ma
terial between the PET substrate and the GO layer to prevent direct 
contact with the skin. With the encapsulation method, they achieved 24 
continuous hours of monitoring while directly pasting their sensor on 
the human skin and recorded no allergic reaction or skin irritation from 
the patient after the removal of their sensor. To further prove the 
biosafety of the cardiac sensing and energy harvesting devices, different 
biocompatibility tests have been conducted [15,19,22,80,82]. For 
example, Sun et al. conducted a cell viability test on their PVDF strain 
sensor to confirm biocompatibility with the human skin through live/
dead staining of COS7 cells that were cultured on the samples of the 
sensor [15]. Moreover, Liu et al. designed an epidermal 
mechano-acoustic sensing device that measured both ECG and SCG 
signals [22]. To test the biosafety of their device, they conducted a 
cytotoxicity test by culturing mouse embryonic fibroblasts on the device 
surface, and they observed no signs of apoptosis or necrosis. For those 
cardiac sensing devices to intimately interface with the epidermis, the 
biocompatibility of the materials should first be ensured by adminis
tering biocompatibility tests or encapsulating the device with biocom
patible materials to guarantee the safety of the patient, especially when 
considering long-term usage of the cardiovascular devices [15,21]. 

In addition, traditional heart monitoring devices have limited bat
tery life, which reduces the effectiveness of the monitoring devices due 
to periodic battery replacements [2,39,83,84]. For example, Holter de
vices utilize batteries that need continuous replacements. For short-term 
usage, Holter devices can be worn for 24–48 h without replacing bat
teries, whereas for long-term usage, battery replacement is required to 
allow the Holter device to be worn for as long as two weeks [2]. The 
optimization of the battery life of cardiac devices could reduce the 
number of battery replacements or ultimately remove the use for an 
external battery supply. Self-powered sensing strategies provide prac
tical and promising power solutions for cardiac devices. One of the most 
common transduction mechanisms makes use of the direct piezoelectric 
effect. The piezoelectric effect is the ability of the generation of electric 

Fig. 4. An overview of key challenges of traditional heart monitoring devices 
and design principles of flexible cardiac sensors [9,26,44]. 
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charges on the material surface in response to applied mechanical strain 
or stress [39,85]. Nayeem et al. designed a nanofiber-based cardiac 
sensing device, whose middle layer consisted entirely of PVDF, to induce 
the piezoelectric effect [12]. Due to the application of the piezoelectric 
effect to sense self-sustainably, the cardiac sensor did not require a 
separate, external battery supply while collecting SCG information. 
Additionally, Hesar et al. designed a piezoelectric sensor that measured 
SCG signals [23]. They also utilized PVDF as their choice of material, but 
the device was not able to sense self-sustainably due to the low voltage 
signals. As an augmentation to their device’s battery life, they incor
porated near-field communication (NFC) technology to deliver power 
and also transmit data wirelessly in order to produce a battery-free, 
contactless cardiovascular sensor. Other strategies besides piezoelec
tric designs that optimize battery life include using miniaturized 
rechargeable batteries or utilizing other transduction mechanisms. For 
example, the triboelectric energy harvesting strategies convert me
chanical energy into electrical energy through the movement of elec
trical charges between two materials that create an electrical potential 
difference [10,18,39,86]. 

While taking into account the limitations that affected traditional 
cardiovascular monitoring systems, other issues should also be consid
ered. Sometimes, to optimize one parameter might negatively affect 
another. For example, to ensure the biocompatibility of a sensor, it 
might require the overall device to be encapsulated by an additional 
biocompatible material, such as PDMS, which would increase the total 
thickness of the device and impede the sensor’s sensitivity by increasing 
motion artifacts. Therefore, researchers need to carefully contemplate 
the structures of the device designs, material choice, and appropriate 
fabrication methods depending on the cardiac sensing mechanism by 
taking all above considerations and design principles into account. 

3.2. Structural and material designs 

To address the existing limitations of current cardiac monitoring 
devices, the rapid advancement in structural designs, material devel
opment, and fabrication methods has encouraged diverse innovations in 
cardiac monitoring device designs. In ECG sensing, flexible materials 
that have high conductivity are employed to measure the human body’s 
electric potential. To sense SCG signals, various structural layouts are 
employed to measure the miniscule movements of heart vibrations while 
simultaneously filtering out motion artifacts. Some designs measure 
other mechanisms besides ECG and SCG, such as pulse waves, respira
tion rate, heart rate, and blood pressure, but they are still categorized as 
cardiovascular signals. With a difference in mechanism approach, 
various strategies for structural layouts, material development, and 
fabrication methods are discussed in this section, as shown in Fig. 5. 

In recent years, the structures of cardiovascular monitoring devices 
have evolved beyond Holter devices and cardiac event recorders, which 
essentially utilize electrodes and leads. For example, Anwar et al. created 
a cantilever sensor from PVDF to measure SCG, pulse rate, and the 
respiratory cycle [87]. The cantilever structure was affixed to the pa
tient’s body with a belt that wrapped around the upper sternum so that 
the SCG signals could be collected from the left side of the sternum. 
Moreover, Panahi et al. designed a piezoelectric sensor that incorporated 
PVDF in a double triangle structure to monitor breath rate specifically 
for COVID-19 patients [88]. The piezoelectric sensor, which was either 
taped directly to the chest or placed inside a vest and tightened around 
the chest with a belt, measured the breathing vibrations of the patient 
through displacement of the chest during respiration, much like a 
cantilever. The triangle design consisted of three layers, with the PVDF 
layer sandwiched between two layers of PDMS, which was incorporated 
due to its ability to prevent moisture and sweat accumulation and act as 
an insulator for electronics. Takahashi et al. developed a piezoelectric 
plate sensor that incorporated lead zirconate titanate (PZT) to detect 
pathologic heart sounds and murmurs in patients with hereditary heart 
defects [89]. The circular plate design consisted of the ceramic PZT plate 

(diameter of 14 mm), which was attached to a copper plate (diameter of 
20 mm) and a plastic plate (diameter of 100 mm). To avoid direct skin 
contact with neonates, a towel (thickness of ~5 mm) was placed be
tween the skin and the plate sensor while the neonates were placed in a 
prone position to ensure less signal noise. Using those piezoelectric 
materials, various structures, such as cantilevers [69, 87, 88, 90–93], 
plates, patches and membranes [89, 94–103], beams [42, 94, 104–106], 
and helical structures [72,107,108], have been developed to implement 
sensing and energy harvesting applications. Essentially, these cantilever 
and plate devices expand beyond gel-based electrodes that are con
nected to the patient’s body through leads by incorporating piezoelec
tric materials or other structural components that remove the use of 
batteries [87–89]. Despite the progression from traditional cardiovas
cular monitoring devices, these devices have maintained their rigid 
structural designs that limit their stretchability, flexibility, and con
formability to the human skin. 

Flexibility and stretchability play an important role in expanding the 
sensing capabilities of cardiac devices by allowing the devices to 
conform to the human epidermis without degradation to the device 
performance [37]. Conventional cardiovascular sensing devices typi
cally have limited flexibility and stretchability that hinder their ability 
to consistently and accurately sense cardiovascular signals. As shown in  
Fig. 6, two typical strategies can be employed to enhance the flexibility 
and stretchability of cardiac sensing devices: implement new structural 
designs for conventional materials or use new materials with conven
tional structures. New structural designs can include wavy, 
island-bridge, and Origami/Kirigami layouts designed to enhance the 
stretchability of functional materials that have otherwise limited flexi
bility [37,38]. For the material designs for conventional, rigid structures 
such as planar configurations, cantilevers, and plates, flexible functional 
materials and substrates can be used to design a flexible cardiac sensor. 

From a structural design perspective (Fig. 6 left), new structural 
layouts are proposed to integrate with conventional, non-stretchable 
materials such that they can absorb applied load and strain to 
augment the flexibility and stretchability of the devices [37,38]. When 
using non-stretchable materials, three structural layouts are mainly 
developed in the field: wavy, island-bridge, and Origami/Kirigami [37]. 
The first design utilizes wavy, wrinkled designs that support the device 
in absorbing strain and preventing fractures. Such wavy design allows 
for buckling during the deformation of the device, which permits the 
buckled structure to freely move out of the plane and thus reduce the 

Fig. 5. Summary of the various strategies for structural layouts, materials, and 
fabrication methods to design a flexible cardiac sensor [15, 23, 109–111]. 
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chances of fracturing. The wavy design is generally employed for sys
tems that have achieved less than 20% stretchability. Implementation of 
this design varies the amplitude and wavelengths of the waves to adjust 
for varying levels of applied strain [37]. The second design structure 
utilizes island-bridge designs to connect circuitry (“islands”) with each 
other mostly through electrode interconnects (“bridges”). The overall 
design can then retain rigid circuitry components without fractures or 
permanent deformations while focusing on enhancing device flexibility 
and conformability. One of the most commonly used strategies for 
island-bridge designs is the serpentine structure [9,10,13,16,22,23]. 
Other strategies include arc-shaped, 2D spiral, and 3D spiral structures 
[112–114]. Implementation of the island-bridge designs can improve 
the stretchability of certain materials from 100% up to even 1000% 
[37]. For example, Ha et al. used a filamentary serpentine network of 
electrode interconnects that acted as the “bridge” [16]. This permitted 
the use of circuitry components while the filamentary serpentine 
network of interconnects enabled the overall functionality of the device 
to stretch and conform to the surface of the human skin. A stretchability 
of more than 110% was achieved by implementing the serpentine 
network into their structure. The third type of structural designs utilizes 
Origami or Kirigami structures, which take inspiration from the art of 
paper folding and cutting. For Kirigami designs, strain is reduced at the 
points where cuts are made. The load is then being uniformly distributed 
throughout the entire Kirigami-inspired design, which helps the device 
induce lateral buckling or out-of-plane bending to avoid fracturing [37]. 
Implementation of this design enables high levels of stretchability while 
also providing breathability for the human skin. For example, Sun et al. 
employed such structural layout for a Kirigami-based cardiovascular 
sensing device [15]. Along with the intersegment pattern of the elec
trodes, the network of patterned cuts onto the PVDF film improved the 
stretchability and electrical performance of the piezoelectrical material. 
For the Kirigami-based device, cuts have been made to create various 
strips on the piezoelectric film. Each strip buckles out-of-plane as the 
device stretches, which induces the piezoelectric effect to generate 
electrical charges. To test the possibility of the device as an implantable 
device, researchers placed it on a deforming balloon with tie constrains 
to simulate the conditions of the heart. Under the same balloon inflation 
conditions, researchers achieved a maximum strain of 0.2 on the balloon 
with the Kirigami pattern while the planar configuration of the device 
without any cut patterns produced a higher strain of 0.47, displaying the 

device’s ability to absorb strain [15]. In addition, researchers also placed 
it on the human knee where large deformations normally take place. The 
patient was asked to go through a series of exercises, such as cycling, 
running, and climbing. Different voltage cycles were produced for each 
individual exercise, allowing for researchers to differentiate the types of 
motion. With the application of these structural design strategies such as 
wavy, island-bridge, and Origami/Kirigami layouts, researchers have 
successfully utilized conventional, non-stretchable materials to fabricate 
flexible and stretchable cardiovascular sensing devices. Such structural 
layouts are designed to absorb applied load and strain and prevent 
fractures. Especially for high stiffness, non-stretchable materials, 
without utilizing these structural layouts, there are large interfacial gaps 
between the skin and the device and thus can create significant motion 
artifacts that deteriorate the quality of the obtained cardiovascular 
signals [26]. Mechanistic exploration on the conformability of thin layer 
devices on soft bio-tissues (such as the human skin) has been developed 
to quantify the contact area and conformability of epidermal electronics 
[37,38,115]. Increased adhesion strength between the device and the 
human skin can be achieved by improving conformability of the device 
to facilitate signal transfer, and thus increase the sensor sensitivity. 
Since the human skin is not completely smooth due to having crevices 
and dips, the design of epidermal electronics should be carefully 
considered to improve the human-device interface, and thus further 
enhance sensor sensitivity. 

From a materials design perspective, highly flexible and biocom
patible materials are developed and integrated into the design of car
diovascular sensors (Fig. 6 right). For example, a commonly used 
polymer-based material of PVDF has been preferred in various sensing 
and energy harvesting biomedical applications [39, 75–79, 108]. In 
addition to the strategies of structural layouts, researchers have evolved 
advanced materials through engineered micro and nano structures to 
enhance the cardiac sensing performance [17,69,72,78,108,116,117]. 
For example, the engineered microporous structures of polymeric 
piezoelectric materials allow for high compressibility, and thus enable 
the design of novel piezoelectric polymers with high 
mechanical-electrical conversion for cardiac sensing and energy har
vesting applications [69,72,108]. Piezoelectric nanoarrays are another 
nanostructure applicable for cardiac sensing and energy harvesting ap
plications due to the excellent piezoelectric performance of aligned 
nanorods [117]. Engineered polymeric nanofibers also have large sur
face area to volume ratio to complement the induction of the piezo
electric effect [12,116]. For example, Nayeem et al. created an 
all-nanofiber-based gas-permeable mechano-acoustic SCG-based sensor 
by electrospinning PU nanofibers and a middle layer of PVDF nanofibers 
(Fig. 7A) [12]. Scanning electron microscopy (SEM) allowed visualiza
tion of individual nanofibers, and they were able to measure average 
fiber diameters of 250–450 nm. Such electrospinning process involves 
the use of a high voltage electric field that produces electrically charged 
jets or streams of the PU or PVDF materials, which are then collected on 
a flat surface that is oppositely charged [118]. The sensing signals come 
from both piezoelectricity (the maintained contact between the soft 
layers even with the air gaps) and triboelectricity (the PVDF layer that 
oscillates between the top and bottom nanofiber layers), which allowed 
their sensor to achieve a sensitivity as high as 10,050.6 mV/Pa. Those 
ultrathin, ultralight nanofibers had higher sensing capabilities, and also 
assisted in increasing the piezoelectric conversion efficiency, with 
decreasing PVDF diameters further increasing the efficiency. Outside of 
micro and nano structures, AlMohimeed et al. created a wearable, ul
trasonic sensor that used double-layer PVDF films to monitor cardiac 
tissue motion at a depth of 30 mm [14]. In that work, researchers 
applied an equal electric potential to each individual PVDF layer to in
crease the acoustic output power. They obtained the M-mode ultrasonic 
measurement of the cardiac tissue motion, which corresponded with the 
reference signals of ECG. Sun et al. created a PVDF strain sensor, which 
could function as a wearable or implantable sensor, with a 
Kirigami-patterned component (Fig. 7B) [15]. Such design provided a 

Fig. 6. Two strategies that enhance the stretchability and flexibility of cardiac 
sensing devices: structural designs for conventional materials (left) [15,23,37] 
and material designs for conventional structures (right) [109]. 
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solution for materials to further match the dynamic strain of human 
skin. In addition, Ha et al. created an epidermal electronic PVDF-based 
e-tattoo that sensed ECG signals along with SCG signals [16]. Using a 
“cut-and-paste” method, they fabricated the ultra-thin, flexible device 
with a filamentary serpentine network of gold interconnects, enabling 
the sensor to achieve increased stretchability and skin comfortability 
(Fig. 7C). The fabrication method utilized a mechanical cutter plotter to 
pattern and cut out the serpentine network mesh onto the PVDF film, 
which was previously placed on adhesive transfer tape. To avoid thermal 
stress in the PVDF film, a weak adhesive transfer tape of Tegaderm was 
used as a temporary support instead of thermal release tape (TRT). 
Tegaderm was also used to encapsulate the patterned PVDF film to 
prevent direct contact with the human skin. Hesar et al. also created a 
wireless, battery-free, PVDF sensor that provided a contactless mea
surement of SCG signals using NFC technology [23]. A PVDF sheet was 
metalized with screen-printed silver, and a “cut-and-paste” method was 
used to fabricate serpentine designs on the PVDF with a mechanical 
cutter (Fig. 7D). The material was patterned with a serpentine structure 
that eliminated air gaps between the human skin and the sensor, and 
further lessened global inertia motions. Due to the serpentine structure, 
a circuit layer was attainable, which consisted of the NFC chip tag, 
microcontroller unit, and a voltage regulator. Essentially, the Kirigami 
and serpentine structural layouts are applied to design non-stretchable 
materials such that they can absorb applied strain without fracturing 
[15,16,37]. These design structures also complement piezoelectric ma
terials since the stretchability and flexibility of the devices are enhanced 
to induce the piezoelectric effect without hindering device performance. 

Despite the intrinsic flexibility of polymer-based materials, other 
piezoelectric materials are also utilized to allow for passive cardiac 
sensing. In the case of Bongrain et al., researchers used aluminum nitride 
(AlN) to create a thin, flexible, piezoelectric sensor that measured micro- 
deformations, which translated into cardiac pulse wave measurement 
[13]. AlN has properties that are favorable in sensing applications, such 
as good oxidation resistance and low dielectric constant [119,120]. 

Since it is a piezoelectric material, AlN can also generate electric charges 
as a self-powered sensor. Qu et al. created a low-cost, light, piezoelectric 
heart sound MEMS sensor [24]. The device was fabricated by using a 
6-by-7 AlN membrane array to sense phonocardiography (PCG) in order 
to distinguish and diagnose heart diseases (Fig. 7E). Researchers 
demonstrated the stability of the device by filtering out environmental 
noises and maintaining the quality of the collected heart sounds a month 
after the fabrication of their device. Their results showed an observable 
difference in normalized amplitude graphs for normal heart sounds and 
various abnormal heart sounds such as patent ductus arteriosus, mitral 
regurgitation, mitral stenosis, aortic insufficiency, and aortic stenosis. 
Peng et al. created a flexible ultrasound blood pressure sensor using a 
piezoelectric material PZT-5A and polymer matrix PDMS as the filler 
material [17]. AgNW based electrodes were deposited to provide 
increased stretchability and conductivity when compared to conven
tional electrodes to prioritize non-invasiveness and convenience for the 
patient. Ultimately, the inherent property of piezoelectric materials 
makes them favorable for sensing applications by converting the me
chanical stress into electrical charges. 

In addition to applications of passive sensing, these discussed 
piezoelectric materials have also been utilized in cardiac energy har
vesting applications. The inclusion of materials, such as PVDF and PZT, 
in the design of implantable medical devices (IMD) allows the devices to 
power themselves by harvesting biomechanical energy from the heart 
[39, 69–74]. Current IMDs like pacemakers require surgery for battery 
replacement every 7–10 years, and an early battery depletion can 
require emergency surgery as early as 3 years [39,83]. With piezoelec
tric materials harvesting energy from the human body, longevity of 
IMDs that utilize these materials can increase so that the likelihood of 
requiring additional surgeries to replace depleted IMD batteries greatly 
decreases. 

Piezoelectric materials have great potential for various biomedical 
applications due to their ability to incorporate various approaches to 
design self-sustainable and biocompatible devices. Other sensing 

Fig. 7. Reported flexible cardiac sensors using piezoelectric materials. (A). PVDF-based nanofiber SCG sensor [12] (B). PVDF-based Kirigami-patterned strain sensor 
[15]. (C). PVDF-based e-tattoo ECG and SCG sensor with serpentine network of interconnects [16]. (D). PVDF-based SCG sensor with serpentine designs interconnects 
and circuitry including NFC technology [23] (E). AlN-based PCG sensor with a 6-by-7 membrane array [24]. 
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strategies utilize conductive materials to create flexible and stretchable 
cardiovascular sensors. For example, Zhang et al. created a fully-organic, 
self-adhesive, stretchable dry electrode to measure ECG, electromyog
raphy (EMG), and EEG for wet and dry skin conditions (Fig. 8A) [20]. 
They used the solution processing method to combine poly(ethyl
enedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) with water
borne polyurethane (WPU) and D-sorbitol to increase the conductivity 
of the dry polymer electrode (Fig. 8B). The fabrication method processed 
all three solutions together by mixing them and then drop-casted the 
blend solution into a mold, which would then dry into the blend adhe
sive film. Peng et al. created a flexible pressure sensor that was able to 
detect heart rate, respiration rate, and blood pressure (Fig. 8C) [18]. 
Researchers fabricated the device by using printing technology with 
porous graphene (Fig. 8D). They utilized a printing head to print GO 
onto the electrodes, which was later sprayed with foaming reagents of 
aqueous N2H4. The device was able to achieve a resolution of less than 
0.3 kPa, with a detecting range of 0.3 kPa to 1.0 MPa and repeatability 
by withstanding 1000 cycles. A high sensitivity of a maximum gauge 
factor of 53.99/MPa had been reached [18]. Xu et al. created an ECG 
monitoring device (Fig. 8E) that incorporated AgNW-based electrodes 
and GO using screen printing (Fig. 8F) [21]. Here, they utilized a 
desktop screen printer with a patterned screen mesh. AgNW was 
dispersed onto the screen mesh, which was placed on top of a PET 
substrate. The overall device showed good biocompatibility and stability 
by going through thermal oxidation and exhibiting a resistance change 
of less than 1% increase after 1500 bending cycles. It also exhibited 
excellent optical properties with the transmittance of 83.5% at a 
wavelength of 55 nm, as well as excellent electrical properties with the 
sheet resistance of 11.9 Ohm/sq. Kim et al. also incorporated AgNW 
networks into the wearable strain and ECG epidermal sensor (Fig. 8G) 
[19]. Researchers fabricated adhesive and transparent electrodes by 
spin-coating a solution mixture of adhesive PDMS (a-PDMS) and Triton 
X, a nonionic surfactant, on top of the AgNW layer (Fig. 8H). Triton X 
was included into the solution to effectively embed the AgNW network 
into the PDMS matrix by creating heterogeneously cross-linked net
works of polymer chains, which enabled the fabrication of the highly 
conformable and stretchable electrodes. No residue remained after 
removal of their sensor. Moreover, cell viability tests were conducted to 
validate the biocompatibility of the sensor, which achieved a cell 
viability of around 90% over three days. Overall, flexible piezoelectric 
materials are commonly used for cardiac sensing due to the piezoelectric 
effect. For SCG-based sensors, piezoelectric materials are widely used to 
convert the heart’s mechanical activity into electrical activity. Espe
cially such transduction mechanism allows for energy conversion to 
self-power and further extend the lifetime of these sensing devices for 
long-term continuous cardiac monitoring [39, 69–79]. Graphene oxide 
is also commonly used for the design of epidermal electronics, such as 
ECG-based sensors, due to their excellent conductivity, high surface 
area, and nanoscale size [18,121]. Additionally, another biocompatible 
material that has been recently used in the cardiac sensing field is the 
hydrogel. It is a biocompatible, hydrophilic polymer that mimics the 
human tissue with a high-water content, and has been utilized in bio
electronic applications [81,122]. For example, Liu et al. designed a 
hydrogel bioelectric wearable strain sensor [81]. They custom-designed 
microfluidic channels to encapsulate liquid metal, which was favorable 
due to its biodegradability and large conductivity. Researchers fabri
cated the strain sensor by combining a laser-engraving method for the 
hydrogel microchannel and a crosslinking mechanism for the double 
network hydrogels. This hydrogel bioelectric strain sensor was able to 
distinguish various levels of volume and spoken letters with high 
signal-to-noise ratio. 

By taking into consideration of different structural layouts, materials 
design, and fabrication methods, researchers have successfully devel
oped innovative flexible and biocompatible cardiac sensors with com
parable or even increased sensitivity, flexibility, and conformability. For 
both ECG and SCG-based sensing, flexible cardiac sensors can easily and 

comfortably obtain the cardiovascular signals outside the hospital 
setting. Particularly for ECG-based sensors, essentially only conductive 
materials such as AgNW [17,21] and PEDOT:PSS [20] are needed to act 
as electrodes to sense the heart’s electrical activity. This allows for the 
facile fabrication of flexible ECG-based sensors since the functional 
material basically consists of the electrodes. These electrodes are thinner 
and lighter when compared to the electrodes used in traditional cardiac 
monitoring systems, such as the Holter device. Therefore, those flexible 
sensors allow for easy manipulation of the shape of the electrodes to 
complement the design and adhere to the skin for a longer time by 
removing any bulky components. However, for ECG-based sensors, care 
should also be taken to cover those electrode materials if they are not 
biocompatible. Further design strategies such as encapsulation methods 
should be considered to prevent exposure to the skin. For SCG-based 
sensors, piezoelectric materials are commonly used to convert the 
heart’s mechanical activity into electrical activity. This allows for the 
sensors to be self-sustainable due to the piezoelectric effect without 
using additional batteries. Other designs include circuitry (such as ac
celerometers) for SCG-based sensing in order to collect the heart’s me
chanical activity [7,8,22]. Encapsulation methods can also be utilized 
for implementation of soft and flexible materials to prevent any rigid 
components from making direct contact with the human skin. 

3.3. Summary of flexible cardiac sensing devices 

Traditional cardiovascular monitoring systems can detect and 
monitor cardiovascular signals through non-invasive means, but the 
rigid interfaces and wiring ultimately bring discomfort to patients 
especially during long-term, continuous monitoring outside the hospital 
setting. Electrodes are attached to the human body with gel to monitor 
the patient’s ECG. When the gel dries over a period of time, it could 
irritate the human skin. For accelerometers and gyroscopes, instead of 
gel, they are taped or strapped to the patient’s chest. Thus, to address 
those limitations of existing cardiac sensing devices and improve the 
quality of life for patients, there is a need for epidermal electronic sen
sors that have high sensitivity, excellent conformability, outstanding 
flexibility, verified biocompatibility/biosafe methods, and an extended 
battery life. The most significant parameter to consider is the sensing 
capability of the flexible cardiac sensor. Since the heart’s mechanical 
and electrical activity register on a miniscule scale, the sensors should be 
able to capture the cardiovascular signals without being affected by 
environmental noise or motion artifacts. Flexibility and conformability 
are also vital parameters to consider for clinical translation. Soft mate
rials such as polymers provide the cardiac sensors the ability to be 
flexible and conformable on the epidermis without causing patient 
discomfort. A long-term usage of cardiac sensors also requires a safe user 
experience. Using biocompatible materials such as PVDF, PI, and PDMS 
for device fabrication and encapsulation methods could create biosafe 
sensors. To further ensure the safety of the devices, biocompatibility 
tests such as cytotoxicity tests and cell viability tests could be conducted 
in laboratory settings. Lastly, traditional cardiovascular devices are 
typically hindered by limited battery life. Strategies of the power solu
tions include making the cardiac devices self-sustainable through the use 
of the piezoelectric effect, utilizing miniaturized rechargeable batteries, 
or employing wireless charging such as NFC technology. Overall, many 
factors should be taken into consideration to make these cardiac sensors 
reliable, comfortable, and sensitive to minor changes on the human skin. 

To design a flexible cardiac sensor, the structure and material should 
be carefully considered. Structural layouts such as wavy, island-bridge, 
and Origami/Kirigami can be integrated into the design to absorb 
applied load and strain, thus enhancing the flexibility and stretchability 
of the sensor. The wavy design is generally used for systems that have 
achieved less than 20% stretchability [37]; the island-bridge can 
improve the stretchability by up to 1000% for certain materials [16,23]; 
and a Kirigami layout can absorb applied load by inducing out-of-plane 
bending, which also provides breathability to the skin [15]. From a 
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Fig. 8. Reported flexible cardiac sensors and fabrication methods using non-piezoelectric materials. (A). Stretchable dry electrode sensor created with PEDOT:PSS to 
sense ECG, EMG, and EEG [20]; (B). Fabrication of the sensor using the solution processing method [20]; (C). Pressure sensor created with porous graphene and GO 
to sense heart rate and respiration rate [18]; (D). Fabrication of the porous graphene and GO sensor using printing technology [18]; (E). ECG sensor created with 
AgNW and GO [21]; (F). Fabrication of the AgNW and GO sensor using the screen printing method [21]; (G). AgNW-based strain and ECG sensor mixed with PDMS 
and Triton-X [19]; (H). Fabrication of the AgNW and PDMS sensor using the spin-coating method [19]. 
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material design perspective, piezoelectric materials such as PVDF [12, 
14–16, 23], AlN [13,24], and PZT [17,19] can generate electrical 
charges in response to mechanical stress or strain and are desirable in 
not only sensing applications but also energy harvesting applications 
[39, 69–75, 78]. Other non-piezoelectric materials [18,20,21] are also 
used to create cardiac sensors that are highly flexible, conductive, and 
biocompatible. 

Researchers have developed innovative cardiovascular sensing de
vices by combining structural layouts, specific materials, and fabrication 
processes to evolve sensors from traditional cardiovascular monitoring 
systems and to exceed the limitations hindering traditional cardiovas
cular devices. A summary of the traditional cardiac monitoring systems 
and flexible cardiac sensing devices discussed in this review is provided 
in Table 2. Other heart mechanisms besides ECG and SCG monitoring 
include blood pressure, respiration rate, strain, PCG, and more. 
Numerous fabrication techniques were utilized to design flexible cardiac 
sensors that enhanced favorable properties of certain materials or pro
vided cost-effective methods of fabrication. Also, various metrics for the 
sensitivity levels of the sensors were reported, which were reliant on the 
heart mechanism that researchers were analyzing [12,13,15,16,18,20]. 
Biosafety of the devices was proven by using biocompatible materials. 
Furthermore, researchers presented promising longevity of devices for 
long-term usage, with some reporting periodic usage over a span of a 
month and 24 h of continuous monitoring without any allergic or 
negative reactions [20,21]. In future works, long-term studies are still 
needed to further validate the biocompatibility of the sensors and the 
effects of devices on people’s regular physical activity. Additionally, 
designing a cardiac sensor that combines both SCG and ECG monitoring 
along with other heart mechanisms could provide an extensive exami
nation to the patient’s cardiovascular health. Moreover, certain cardiac 
sensors discussed here need to be connected to a computer to transfer 
raw cardiovascular signals for further analysis [12–14, 16–18, 20, 24, 
87–89]. Wiring components can disrupt the patient’s daily activities and 
make it problematic for long-term monitoring. Other methods of car
diovascular data transmission utilize NFC technology or Bluetooth to 
wirelessly transfer data, but that also requires further work to provide 
real-time analysis and to automatically detect cardiac abnormalities [9, 
15,21,23]. If the sensor had the ability to wirelessly transfer raw car
diovascular data and analyze the real-time data without human super
vision, healthcare professionals and patients themselves would be able 
to easily and quickly monitor cardiac health. This would be an effective 
time-saving cardiac monitoring strategy, since it could provide early 
warnings to cardiac-related issues, and thus could prevent further car
diac complications or even death. 

In terms of the traditional cardiac sensing systems, Holter devices 
provide amplitudes of ± 5.0 mV for frequencies up to 40 Hz for ECG 
monitoring while commercial accelerometers provide a range of ± 1 g 
or ± 2 g for frequencies up to 1 kHz for SCG monitoring [60,123]. As 
mentioned in Section 2.1, hospital-grade ECG instruments have 12 leads 
(10 electrodes) that are placed on the patient’s chest and limbs. The 
increased leads, and thus increased skin coverage of the electrodes, 
provide heightened sensitivity and accuracy at the expense of the pa
tient’s comfortability and the instruments’ long-term usage. On the 
other hand, for the flexible cardiac sensors, different metrics for the 
reported sensitivity levels of the devices were considered based on the 
heart mechanism that the researchers were analyzing. Especially, the 
performance evaluations of those reported cardiac sensors (such as 
sensitivity) are various provided by the researchers based on their own 
test protocols. For example, Nayeem et al. reported a sensitivity value of 
up to 10,050.6 mV/Pa device in the low frequency range of below 
500 Hz [12] and Bongrain et al.’s best structural design provided a 
sensitivity value of 0.805 mV/μL [13]. Furthermore, many varying 
levels of sensitivity were reported due to the various consideration of 
certain factors, such as biocompatibility, self-sustainability, and reduced 
skin coverage, while also utilizing different fabrication methods and 
structural layouts into the design process of the sensors [15–18, 20, 21, 

24]. Fabrication methods such as electrospinning can increase the 
sensitivity levels of sensing devices by creating aligned nanofibers that 
are ultrathin, ultralight, and have a high surface area-to-volume ratio 
[12,116]. Furthermore, structural designs such as wavy, island-bridge, 
and Origami/Kirigami provide enhanced stretchability to otherwise 
rigid materials and designs, leading to better conformability to the 
human skin and thus increased sensing capabilities [37,38]. By testing 
their sensors, most researchers compared the heart signals obtained by 
their sensors with those obtained by commercial devices to successfully 
establish a correlation. For example, Peng et al. compared their blood 
pressure values (mean diastolic pressure of 65.38 mmHg and systolic 
pressure of 97.15 mmHg) with the values from a commercial upper arm 
blood pressure monitor (mean diastolic pressure of 64.40 mmHg and 
systolic pressure of 95.15 mmHg) for the same subject and observed 
reasonable agreement between the two results [17]. Another example 
shows Ha et al. validating their e-tattoo sensor by comparing their SCG 
signals with that from a commercial accelerometer and achieving 
comparable waveforms with peaks that were well-aligned for S1 and S2 
heart sounds [16]. 

4. Machine learning algorithms for cardiac monitoring systems 

Cardiac monitoring systems have interfaces and wiring that collect 
raw physiological data to be analyzed by healthcare professionals. For 
example, ECG electrodes measure the heart’s electrical impulses and the 
leads transfer the electrical activity to a monitor, which then graphs out 
ECG waveforms for observation. Essentially, the raw physiological data 
is collected and converted to accessible signals that are categorized 
depending on their physiological mechanism, such as ECG, SCG, heart 
rate, respiratory rate, blood pressure, systolic time intervals, and more. 
To improve the ease of access provided by cardiac sensors, machine 
learning has been developed and employed for automatic detection of 
cardiac abnormalities (Fig. 9). Patient conditions would then be effort
lessly available to healthcare professionals outside the hospital setting 
since those cardiac monitoring systems have the cognitive ability to 
automatically learn independently or with minimum human supervision 
[32,126]. 

4.1. Principles of machine learning 

Machine learning is an analytical model that solves complex prob
lems by executing a specific task without explicitly programmed to do so 
[32,33]. The machine is interfaced with human-like cognitive abilities 
that allow it to generate patterns, answers, predictions, rules, recom
mendations, or similar outcomes. The machine is given input data (X =

{x1, x2, x3,…, xN}) and labeled data (Y = {y1, y2, y3,…, yN}), in which it 
learns a function f(X) from the input X. The machine can then make 
informed choices on a new dataset by utilizing the function it learned 
from the training dataset. There are three types to machine learning: 
supervised learning, unsupervised learning, and reinforcement learning 
[32,33,127]. For supervised learning, the machine generates relation
ships and patterns based on what it derived from a given training 
dataset. With the data points intended for training, it can extract rele
vant features and build its model. Once the machine is trained, it applies 
the pattern and relationship it derived to the test dataset for identifi
cation (classification) or numerical prediction (regression) purposes. For 
unsupervised learning, no such reference or training is applied to the 
machine for it to build its model. Instead, the machine determines 
structural information that is of interest on its own, such as grouping 
elements together based on similar properties (clustering). For rein
forcement learning, a goal is defined and a list of constraints is applied. 
The machine then goes through the reiterative process of achieving its 
goal with a reward-based learning. It uses a trial-and-error based oper
ation, in which the ML model maximizes the reward in order to achieve 
its goal. These three categories of ML demonstrate the ability of ma
chines to execute specialized tasks with limited human dependency such 
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Table 2 
Summary of traditional cardiac monitoring systems and flexible cardiac sensing devices [12, 13, 15–18, 20, 21, 24, 25, 50, 58, 60, 123–125].  

Ref. Traditional Methods [20] [21] [12] [16] [18] [13] [15] [24] [17]  

Holter Device Accelerometer ECG and SCG Signals Other Cardiovascular Signals 

Heart sensing 
mechanisms 

ECG SCG ECG ECG SCG ECG and 
SCG 

Respiration rate, 
heart rate, blood 
pressure 

Pulse wave Surface strain and 
knee flexion 

PCG Blood 
pressure 

Materials Ag/AgCl 
Electrodes 
[124] 

Semiconductors PEDOT:PSS AgNW, 
graphene 
NWs 

PVDF nanofiber PVDF film GO, porous 
graphene 

AlN PVDF film AlN PZT-5A, 
AgNW 

Fabrication methods – – Drop-casting Screen 
printing 

Electrospinning Cut-and- 
paste 

Ink printing Deposition Laser engraving 
(patterning) 

Casting Dice-and- 
fill[25, 
125] 

Continuous 
monitoring/ 
testing period 
(power sources) 

24–48 hrs 
(battery- 
powered) 

Up to 24 hrs [50,58, 
60] 
(battery-powered) 

1 hr (battery- 
powered) 

24 hrs 
(battery- 
powered) 

10 hrs (self- 
powered) 

N/A (self- 
powered) 

N/A N/A (self- 
powered) 

N/A (self-powered) 30 s over 30 
days (self- 
powered) 

N/A (self- 
powered) 

Sensitivity ±5.00 mV 
0.05–40 Hz  
[123] 

±1 or ±2 g Up to 
1 kHz[60] 

Vpp = 1.84 mV – Up to 
10,050.6 mV/Pa 
(<500 Hz) 

0.4 mV/με 
(Sensor) 

53.99/MPa 0.805 mV/μL 
(Annular) 

Vopen = 18.4 V – –       

12 mV/με 
(PVDF)  

0.257 mV/μL 
(Disk)            
0.312 mV/μL 
(Serpentine 
annular)    

Biocompatible 
material (BioM)/ 
Biosafety test 

FDA Approved FDA Approved BioM No allergic 
reaction after 
24 hr 

BioM BioM Sealed by PI and 
PET/EVA 

Sealed by PL Live/dead staining 
of COS7 cells, 
encapsulation by 
PDMS 

Sealed by 
PLA-based 
silicone 

BioM 

Positions Chest, limbs Chest Left and right 
inner wrists 

Left and right 
forearms 

Chest Chest Arm and wrist Carotid, wrist, 
clavicular 

Knee Chest Right arm 

Thickness – – 20 µm 
(decreases to 
15 µm at 30% 
strain) 

40–90 nm 
(AgNW 
diameter) 

2.5 µm 122 µm – ~1.0 mma) – – 350 µm  

a Estimated data from the reference. 
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that automation is possible. In the cardiac sensing field, supervised 
learning has been implemented for automatic classification of specific 
cardiac conditions from the collected cardiovascular signals. For a more 
complex performance of machine learning, the machine can identify the 
features and classify them on its own by using deep learning (Fig. 10A) 
[34,35]. Many reported cardiac sensing processing approaches applied 
deep learning algorithms [10, 26–31]. Deep learning simulates the 
brain’s neural network in order to create data representation architec
ture using multi-layer learning models. By comparing with traditional 
ML, deep learning does not require some of the data pre-processing and 
thus can utilize unstructured input data. The initial layers extract 
low-level features, and the last layers extract high-level features to 
eventually classify input data such as images. Additional layers help to 

refine the accuracy of the classification. Specifically for the cardiac 
sensing field, feature extraction becomes an automatic process while 
minimizing human dependency. In this section, the major machine 
learning algorithms for cardiovascular sensing signals including CNN, 
HMM, Random Forest, and BNN are discussed. 

One of the deep learning algorithms utilized for cardiovascular 
monitoring is the convolutional neural network (CNN). CNN is one of 
the most commonly employed algorithms especially in the field of 
speech processing, face recognition, computer vision, and more since it 
can process data in a grid-like form that allows the machine to auto
matically identify a hierarchy of features and classify them into the 
proper category (Fig. 10B) [34–36]. CNN consists of three main layers 
that allow it to identify and classify features without human supervision: 

Fig. 9. A schematic of ML implementation in the cardiac sensing field to provide early warnings to healthcare professionals [9,28].  

Fig. 10. Machine learning algorithms in the cardiac sensing field: (A). Comparison of the machine learning and deep learning structures [34]; (B). Structure of the 
CNN model [34]; (C). Structure of the HMM model [35]; (D). Structure of the Random Forest model [130]. 
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convolution (hidden), pooling, and fully connected layer. The input, 
such as an image that is represented as N-dimensional metrics, is sent to 
the convolutional layers, which extract feature maps from the image 
with kernels (filters) that act as pattern detectors. The feature maps are 
then down-sampled by the pooling layers, where max pooling is the 
most common method. The down-sampling process reduces network 
parameters, which decreases computational power and time spent on 
the training process. Non-linear activation functions are employed to 
allow the model to apply complex functional mappings between the 
input and output data. The most common activation functions are ReLU, 
sigmoid, tanh, Leaky ReLU, and PReLU. Lastly, the fully connected layer 
receives the extracted features from the last convolutional layer and 
assigns them to their specific class by generating classification scores, 
which represent the probability for each specific class [36]. 

In addition to CNN, other ML algorithms are being utilized as well to 
collect and categorize cardiovascular data. Hidden Markov Model 
(HMM) is a statistical model that is widely used in areas such as speech 
recognition, named entity finding, optical character recognition, and 
topic identification for sequence classification problems [35,128,129]. 
The Markov model consists of “hidden states” and observed variables, 
which are influenced by the outcomes of the “hidden states” in a known 
manner. Essentially, HMM allows for the prediction of unknown vari
ables from a series of observed variables. In Fig. 10C, each hidden state 
(four in total) has a transitional probability (circular and right arrows) 
that displays the probability of moving from one state to another and an 
emission probability (down arrows) that displays the probability cor
responding to the observed variables. The HMM algorithm then com
putes the highest probability of the observation sequence to deduce the 
hidden state path. 

Another type of machine learning model used to process and cate
gorize cardiovascular signals is the Random Forest algorithm (Fig. 10D). 
This classifier randomly selects subsets of training data and creates 
numerous randomized “decision trees” [130,131]. Each individual tree 
provides a class prediction, and the model predicts the class based on the 
majority votes. Furthermore, a binarized neural network (BNN) algo
rithm has also been implemented in cardiac sensing processing. Essen
tially, BNN binarizes deep neural networks to significantly reduce 
computational power and increase power efficiency by reducing mem
ory size and substituting mathematical operations with bit-wise opera
tions [132,133]. It uses binary values (+1 or −1) for network weights 
and hidden layer activations in place of full precision values. Deep 
neural networks are used for large datasets that require a lot of 
computational power and storage; however, BNN can be utilized as an 
alternative to save on computational power and time while still 
providing similar working capabilities. 

4.2. ML Algorithms for cardiac monitoring 

Researchers have utilized various ML algorithms to process raw 
cardiac sensing data and categorize the data in real-time. Several re
searchers have implemented CNN for signal processing to detect cardiac 
abnormalities. Kim et al. created a thin-film, stretchable, flexible elec
tronic system that monitored, detected, and notified physicians of real- 
time cardiac conditions through continuous assessment of recorded ECG 
signals [26]. Researchers utilized two CNN units to process raw ECG 
data, acceleration, and angular velocity data and categorize them into 
respiratory rate (RR), heart rate (HR), different types of cardiac condi
tions, and motion activity data for real-time monitoring. The first CNN 
unit incorporated inception-type convolutional units with residual 
connections to classify user activity (idle, walk, stairs, run, and fall) from 
acceleration and angular velocity data. The second CNN unit imple
mented semantic segmentation of raw ECG data to provide ECG anno
tation and categorize them into cardiac conditions (normal sinus 
rhythm, myocardial infarction, heart failure and miscellaneous 
arrhythmia, fusion beat, supraventricular ectopic beats, and ventricular 
ectopic beats). Through convolutional operations and max pooling, 

dimensionality reduction was conducted to decrease the number of 
features. Deconvolutional layers were also included to up-sample the 
signals. Then, residual connections were created between the convolu
tional and deconvolutional layers to optimize accuracy during training. 
The HR and RR were derived from the raw ECG data using R-peak 
detection and interpolation algorithms. To determine the accuracy of 
the ML model, researchers used two publicly available ECG datasets 
(PTB Diagnostic ECG Database and St. Petersburg Institute of Cardio
logical Technics 12-lead Arrhythmia Database) through fivefold 
cross-validation that evaluated their ML model. The development of the 
CNN algorithm for their flexible cardiac sensor achieved an accuracy of 
98.7 ± 1.4% [26]. In addition, Ha et al. created a RF-SCG system that 
captured SCG signals without any bodily contact through sensing RF 
signals [28]. The RF-SCG sensor used a hybrid mixture of signal pro
cessing and deep learning, which consisted of a series of learnable 
spatio-temporal filter functions that incorporated domain knowledge 
from both RF and physiological models. They also implemented the 4D 
Cardiac Beamformer, which discovered the 3D location of the heart and 
estimated the heart rate by using a CNN-assisted template matching and 
1D CNN architecture. Another type of CNN model researchers utilized 
was Unet architecture, which is primarily utilized for biomedical image 
segmentation [134]. The model automatically labeled the five fiducial 
points of interest on SCG waveforms: mitral valve closing, isovolumetric 
contraction, aortic valve opening, aortic valve closing, and mitral valve 
opening. Moreover, Ullah et al. created a CNN algorithm as a stage-based 
model that annotated and classified ECG signals [29]. For the first stage, 
researchers incorporated 1D CNN that extracted useful features from the 
given data and transformed them into 2D ECG images. With these 2D 
images, healthcare professionals would be able to diagnose arrhythmias 
through eye vision inspection. For the second stage, researchers incor
porated 2D CNN that took the 2D ECG images as input to classify them 
into different types of arrhythmias. To determine the accuracy of their 
stage-based model, researchers used the arrhythmia database from 
Massachusetts Institute of Technology - Beth Israel Hospital (MIT-BIH). 
Their 1D CNN stage provided an accuracy of 97.38% while the 2D CNN 
stage provided an accuracy of 99.02%. Kamaleswaran et al. designed a 
deep learning model with the goal of reducing test run time that iden
tified normal sinus rhythm, atrial fibrillation, other abnormal rhythms, 
and noise from 8528 short single-lead ECG recordings [30]. From the 
8528 recordings collected from AliveCor’s single channel (lead I) ECG 
device, researchers identified 5050 normal rhythm, 738 atrial fibrilla
tion, 2456 other abnormal rhythms, and 284 noise. For the CNN model, 
researchers tested two design models. The first model utilized MatLab to 
extract a total of 62 features that could be fed into the CNN architecture 
for classification of the recordings. Researchers down sampled the re
cordings at 200 Hz and low-pass filtered the data between 1 and 35 Hz 
to filter out motion artifacts and environmental noise. The second model 
utilized Python to analyze raw data input of the ECG recordings. For the 
second model, researchers implemented a 13-layer 1D CNN architecture 
to limit the signal bandwidth between 3 and 45 Hz and detect the QRS 
complex. Their two-model approach allowed researchers to optimize 
parameters and finalize their model for identifying and categorizing 
abnormal cardiac rhythms. Increasing the number of layers increased 
validation loss while also improving model performance up to a certain 
threshold. Furthermore, certain activation functions provided the 
highest validation accuracy while also providing the highest average 
epoch runtime. Ultimately, they settled with the 13-layer 1D CNN model 
approach with ReLU as their activation function since their goal was to 
reduce test run time [30]. 

Other ML techniques, such as HMM, Random Forest and BNN, have 
also been implemented to analyze cardiovascular signals. Lee et al. 
designed a mechano-acoustic sensor and utilized HMM for data pro
cessing [10]. The sensor was mounted on the suprasternal notch, the 
throat, that collected multimodal data related to various physiological 
processes, such as HR, RR, talking time, swallow counts, and energy 
expenditure, by analyzing the acceleration data measured normal to the 
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skin surface. Researchers transferred raw physiological data to a phone 
via Bluetooth and used the statistical model for their ML algorithm that 
exploited time- and frequency-domain representations to analyze the 
data and categorize them. They used multi-band z-axis signal power on 
logarithmic scales as the observable clustering features, with a multi
band choice featuring a variety of frequency ranges for different types of 
signals. The three-axes time series data recorded real-time data over a 
time interval as the patient engaged in various activities that included 
sitting at rest, talking, drinking water, changing body orientation, 
walking, and jumping. Additionally, Kung et al. used the Random Forest 
algorithm to create a resource-saving system that extracted important 
features of ECG signals to classify them into different types of arrhyth
mias with the extracted features [27]. The feature extraction system 
consisted of two delta-sigma modulators (DSMs): the first DSM con
verted the collected ECG signals into binary or ternary digit streams, and 
the second DSM developed algorithms that extracted the required fea
tures from the streams. The DSMs utilized low-complexity algorithms, 
adopted a low sampling rate of 250 Hz, and compressed the extracted 
ECG features to save power and lower memory usage. For the classifier, 
researchers used Random Forest to utilize binary classification and 
regression trees to categorize the ECG signals into two major arrhythmia 
types: supraventricular ectopic beats (SVEB) and ventricular ectopic 
beats (VEB). To aid with the classification, the researchers used the 
MIT-BIH arrhythmia database for their algorithm to derive patterns and 
observations. Furthermore, Wu et al. employed a binarized 1D CNN 
model to analyze ECG signals for real-time arrhythmia detection [31]. 
Researchers initially designed a 1D CNN model that utilized bucketing 
data padding, layer normalization, and global pooling layer with the 
dataset from PhysioNet/CinC Atrial Fibrillation Classification Challenge 
2017. To reduce model complexity and computing resources, re
searchers further implemented a binarized CNN model. Since the BNN 
model presented some model performance loss due to the simplification 
of the model, researchers utilized knowledge distillation to transfer 
knowledge from their full-precision CNN model to the BNN model, 
which regularized the binarized model. 

Machine learning, more specifically supervised learning, is utilized 
in the cardiac sensing field such that the machine can learn from pre
viously labeled data to properly classify new cardiovascular data into its 
appropriate category. A summary of the various ML algorithms dis
cussed in this review for the cardiac sensing field is provided in Table 3. 
By integrating ML techniques to cardiac sensors, a patient’s cardiovas
cular health can by analyzed by computers or smartphone applications 

for a real-time cardiac analysis with automatic cardiac abnormality 
detection. Of the various ML algorithms used in this field, CNN is the 
most commonly used for image classification due to its high accuracy 
output and its ability to reduce the number of parameters or features 
(dimensionality reduction) without losing the quality of the image. 
Thus, the integration of ML opens new horizons for identifying and 
classifying cardiovascular signals with ease of access. 

5. Conclusions 

With CVDs causing an estimated 32% of deaths globally, flexible 
cardiac sensing devices are some of the most effective methods for 
diagnosing cardiovascular conditions and diseases and providing early 
warnings to patients in and outside the hospital setting, especially 
considering the unpredictability of CVDs [1]. Flexible cardiac sensors 
can facilitate long-term, continuous monitoring of the heart by removing 
wiring and providing solutions to rigid interfaces, thus increasing pa
tient’s comfort and quality of life. Cardiovascular signals include two 
major heart mechanisms, ECG and SCG, and other heart mechanisms 
such as heart rate, blood pressure, pulse waves, respiration rates, and 
systolic time intervals. ECG pertains to the heart’s electrical activity, 
while SCG captures the heart’s mechanical activity. Both require the 
sensors to be sensitive and filter out any motion artifacts in order to 
accurately capture the signals that register on a microscale level. 

Traditional cardiovascular monitoring systems, such as Holter 
monitors for ECG monitoring and accelerometers for SCG monitoring, 
have various key challenges that can be addressed by engineered solu
tions. Essentially, due to the rigid interfaces and multiple wiring com
ponents, long-term monitoring is difficult and vigorous movement and 
exposure to water from the patient would affect the quality of the car
diovascular signals. Thus, to address those issues, the ideal flexible 
cardiac sensor should be flexible, conformable, biocompatible, and have 
an extended or unlimited battery life that can facilitate continuous 
cardiac monitoring in order to observe irregular heartbeats. Flexible and 
conformable cardiac sensing devices can also better match the dynamic 
mechanical properties of the epidermis to collect accurate cardiac sig
nals. To do so, the device’s structural layout, material development, and 
fabrication method should complement each other during the design 
process. In this review, flexible cardiac sensors are discussed, especially 
on the structural layout, material design, and fabrication methods. For 
the structural layout, non-conventional smart structures such as 
serpentine, wavy, Kirigami, and more are employed to improve the 

Table 3 
Summary of ML for cardiac monitoring.  

Refs ML 
Algorithms 

Goals Heart Signals Dataset Sample Size Performance Metric 

[26] CNN Classification of cardiac conditions using ECG 
annotation 

ECG PTB Diagnostic ECG 
Database 

– 98.7 ± 1.4%acc 

INCART Arrythmia 
Database 

75 
recordings 

[28] CNN Extraction of heart rate SCG 21 healthy subjects 40,000 
heartbeats 

< 2.5%err 

Unet 
architecture 

Automatic labeling of fiducial points of SCG 
waveforms 

[29] CNN Transformation of 1D ECG signals into 2D ECG 
images 

ECG MIT-BIH 4000 
recordings 

97.38%acc 

2D CNN Classification of 2D ECG images into different 
arrhythmia types 

99.02%acc 

[30] CNN Classification of ECG recordings into normal 
sinus rhythm, atrial fibrillation, other abnormal 
rhythms, and noise 

ECG PhysioNet/Comuting in 
Cardiology Challenge 
2017 

8528 
recordings 

85.99%acc, 0.83F1-score 

[10] HMM Determination of sleep stages Acceleration data 
measured normal to the 
skin surface 

One participant – – 

[27] Random 
Forest 

Classification of different types of arrythmias ECG MIT_BIH 44 records 81.05%F1-score (SVEB), 
97.07% F1-score (VEB) 

[31] BNN Real-time arrythmia detection using ECG signals ECG PhysioNet/CinC AF 
Classification Challenge 
2017 

8528 
recordings 

0.87F1-score  
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flexibility and stretchability of non-flexible materials. In order to design 
a flexible, conformable cardiac sensor, conventional structures such as 
planar, cantilevers, and disks can still be implemented with soft mate
rials such as PDMS, PU, and ecoflex due to their inherent flexibility. 
Encapsulation methods by biocompatible materials are also discussed if 
the design of the cardiac sensor has rigid components or uses non- 
biocompatible functional materials. For the choice in materials, 
various flexible functional materials such as polymers, nanofibers and 
conductive materials are considered, along with flexible substrate ma
terials such as PDMS, PI, and PU. Lastly, various fabrication methods 
include the cut-and-paste, electrospinning, spin-coating, and more to 
either provide a cost-effective fabrication process or to enhance the 
properties of the materials. Other fabrication processes, such as chemi
cal layering, 3D printing, inkjet printing and other printing techniques, 
could also be integrated with these flexible functional and substrate 
materials; however, they are not widely used and preferable for cardiac 
sensing applications in the field [135–141]. Specifically for additive 
manufacturing in the biomedical field, the fabrication method limits the 
selection of materials, especially polymer and composite-based mate
rials [140,141]. Moreover, many materials with excellent performance 
in 3D printing are not biocompatible, which is a significant consider
ation in the cardiac sensing field. In terms of printed electronics, the 
issue of device-to-device variability arises due to the instability of the 
materials [140,141]. 

Strategies of cardiovascular monitoring have been intensively 
investigated in the field. However, there are still certain challenges for 
the design and optimization of flexible cardiac sensing devices. 
Regarding the battery life of the sensing devices, longevity is a critical 
consideration for future work. Self-sustainable energy generation such 
as the piezoelectric or triboelectric effect has been mentioned in this 
paper. Nevertheless, tests for measuring battery capacity should also be 
conducted to observe how long the self-sustainable methods can sustain 
cardiac sensors outside the test time frame that researchers have 
experimented for their research. Improving energy usage for future work 
can increase patient comfortability by decreasing the number of battery 
replacements or replacing the need for batteries. Additionally, 
biocompatibility is a critical factor when considering the longevity of the 
device. To become a biosafe cardiac sensor that comes into contact with 
the human skin, biocompatible and biosafe materials are essential dur
ing the design process. Biocompatibility tests such as cell viability and 
cytotoxicity tests can be conducted to prove biocompatibility status of 
the device. However, for continuous cardiovascular monitoring, long- 
term tests should be conducted within a reasonable timeframe to vali
date biocompatibility status for lasting devices since it would be un
feasible to test for the entire lifetime of the device. Longevity of the 
device is also critical when considering the durability of the sensor. For 
continuous cardiovascular monitoring, the patients go through their 
regular physical activity and as such, the device would encounter con
stant deformation through various types of motion such as tensile, 
compressive, and bending. Thus, long-term studies for device durability 
should also be conducted as future work. 

Recent advances in ML have also been significant in facilitating a 
new, real-time sensing approach for healthcare professionals. To easily 
provide early warnings to patients, cardiac monitoring sensors can uti
lize ML algorithms to provide an automated detection system for car
diovascular abnormalities. Moreover, application of real-time ML 
processing can improve the achievability of device-based diagnoses, and 
human dependency on detecting cardiac conditions can be significantly 
reduced depending on the level of ML implementation [142]. Due to the 
infrequency of irregular or abnormal heartbeats, continuous and 
long-term cardiac monitoring is necessary to detect those diseases as 
soon as they occur in patients who are at risk, so healthcare professionals 
can take immediate action to prevent premature death. Essentially, 
flexible cardiac sensors that utilize real-time ML processing would be 
able to send out alerts the moment a cardiac abnormality occurs, 
allowing for doctors, Emergency Medical Technicians (EMTs), and other 

healthcare professionals to provide immediate aid. ML can still be used 
in post-processing applications during the experimental process of 
designing flexible cardiac sensors [10,28]. The researchers can analyze 
the obtained cardiovascular signals and build a more accurate model if 
needed. This review discusses different ML algorithms for cardiac 
monitoring such as CNN, HMM, Random Forest, and BNN that have been 
employed to detect and classify various physiological processes within 
the human body. In recently published work, applications of ML have 
shown more effective and faster detection of cardiac abnormalities [10, 
26–31]. However, there are certain challenges that should be addressed 
for future work to optimize the application of ML in the field of cardiac 
sensing. Especially for ML algorithms like CNN, a considerable amount 
of computational power is required to work with large amounts of data 
such as cardiovascular signals [147]. The more complex the algorithm 
is, the greater the need for higher computational processors. As can be 
seen in Table 3, most works that utilize CNN typically include large 
sample sizes, with Ha et al. working with 40,000 recordings from 21 
subjects [28]. Additionally, HMM is a statistical model consisting of 
“hidden states” and observed variables. However, the model is depen
dent on the last known state and cannot correlate between them [129]. 
For the Random Forest algorithm, each randomized “decision tree” 
provides a class prediction for the model to predict the class [131]. The 
greater the number of “decision trees”, the higher the accuracy of the 
prediction. However, an increase of the number of trees can slow down 
the model. This could effectively make it difficult for real-time pro
cessing of cardiovascular signals, in which time is of the essence. For 
BNN, this model binarizes deep neural networks to reduce computa
tional power and memory size, which ultimately increases power effi
ciency [133]. Binarizing neural networks replaces full precision values 
with binary values to reduce computational power at the expense of 
decreasing the accuracy of detecting cardiac abnormalities. Moreover, 
besides the major heart mechanisms ECG and SCG, there are various 
other cardiovascular signals that can be considered as input data for 
signal processing. Various medical devices also exist to capture each 
type of cardiovascular signal differently. Thus, the classification of the 
cardiovascular signals would vary significantly, making one ML algo
rithm for a specific cardiovascular signal incompatible with analyzing 
other signals. Consideration of various types of cardiovascular data for 
the implementation of ML would be conducted as future work. 

Development in the cardiac sensing field has also introduced 
implantable flexible cardiac sensors for long-term, continuous moni
toring. Despite the inclusion of surgical elements for implantable cardiac 
sensors, certain heart mechanisms such as blood pressure need in vivo 
measurements for localized and accurate diagnosis of cardiovascular 
signals [11]. For example, Cong et al. designed an implantable silicone 
cuff for real-time blood pressure monitoring, which was tested on lab
oratory mice [143]. The blood pressure cuff wrapped around the blood 
vessel with an approximate diameter of 200 µm. The implantable car
diac sensor is wireless and requires no battery due to an external radio 
frequency (RF) powering station and RF powering coil located outside 
the animal cage. The flexible silicone material prevents restriction of the 
blood vessel and also allows for the incorporation of a MEMS pressure 
sensor positioned over an IC base. Liu et al. also used hydrogels to design 
a liquid-metal-based implantable cardiac patch to test on healthy rabbit 
hearts [81]. The patch conformed to the movement of the rabbit’s heart 
tissues to provide signals resembling cardiac electrophysiological sig
nals, such as breathing and the heart beating. Moreover, Zheng et al. 
designed an implantable triboelectric nanogenerator (iTENG) mainly for 
in vivo biomechanical energy harvesting but later realized its applica
tion as a self-powered, wireless cardiac sensor [97]. The sensor used 
nanostructured polytetrafluoroethylene (n-PTFE) as the functional 
triboelectric layer, which was encapsulated in PDMS and parylene in 
order to harvest energy from the heart of an adult swine by utilizing the 
triboelectric effect. Its energy harvesting performance over 72 h showed 
that it continuously generated electricity, thus demonstrating its great 
potential as a power source for other implantable medical devices. As a 
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cardiac sensor, iTENG was able to monitor three different heart rates 
(60, 80, and 120 beats per minute) and also wirelessly transmit real-time 
cardiac data due to its self-powered capability. Ultimately, implantable 
flexible cardiac sensors could provide another promising direction to 
long-term continuous cardiovascular monitoring. For biodegradable 
cardiac sensors that are soft and flexible, material degradation within 
the human body generally decreases the electrical output. As future 
work, this topic can be further explored in designing biodegradable 
cardiac sensors but note that biodegradable sensors are not applicable 
for long-term, continuous cardiovascular monitoring. Patients at risk of 
CVDs cannot easily lower the risk as there is no sole solution. Thus, soft 
and flexible cardiac sensors that can monitor the patient long-term and 
continuously are preferred within the cardiac sensing field. 

This work mainly focuses on the piezoelectric effect as the sensing 
mechanism of soft and flexible cardiac sensors, since this transduction 
mechanism allows for energy conversion to self-power for long-term, 
continuous cardiac monitoring. However, it should be noted that there 
are other sensing mechanisms utilized in the sensing field [144–149]. 
One main mechanism is the capacitance measurement. This sensing 
mechanism essentially harnesses the ability to store an electrical charge, 
as a capacitor would do [145,146]. The most common form of capacitors 
is the parallel plate capacitor, which consist of two parallel plates that 
carry equal but opposite charges. The electric field lines begin at the 
charged plate with the higher voltage potential and stop at the charged 
plate with the lower voltage potential. As a capacitor sensor, it would 
sense the capacitance, or displacement currents, produced by the human 
body [147]. In terms of cardiac sensing, a dielectric material, such as an 
electrically insulated layer or air, can be used instead of relying on 
electrode-skin interface; thus, non-contact sensing can be realized. 
However, localized measurement of cardiovascular signals would be 
challenging. Another sensing mechanism is the resistive mechanism, 
which measures the material’s change in electrical resistance when bent 
or stretched [148]. As a resistive sensor, it is commonly used as a 
pressure or strain sensor. Due to its ability to convert mechanical energy 
to electrical energy, piezoelectric materials can be incorporated to 
create piezoresistive sensors that detect small resistance variations 
[149]. As future work, those sensing mechanisms could be further 
explored due to their expanding possibilities in the field of cardiac 
sensing. 

A cardiac sensor that facilitates continuous monitoring outside the 
hospital setting and increases patient comfortability without negatively 
impacting the patient’s quality of life is an emerging prospect for diag
nosing CVDs early and potentially reducing the number of fatalities. 
Moving forward, long-term studies on humans will be required to vali
date the biocompatibility, durability, and battery life of flexible, 
conformable cardiac sensors. Long-term studies should span months and 
years and consist of volunteers or patients who undergo regular physical 
activity. It is a promising direction within the cardiac sensing field for 
these devices to be clinically operated in the future in order to provide 
patients a multifaced diagnosis of their cardiovascular status. 
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