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Abstract

This paper presents a domain-guided ap-
proach for learning representations of scalp-
electroencephalograms (EEGs) without relying
on expert annotations. Expert labeling of
EEGs has proven to be an unscalable process
with low inter-reviewer agreement because of
the complex and lengthy nature of EEG record-
ings. Hence, there is a need for machine learn-
ing (ML) approaches that can leverage expert
domain knowledge without incurring the cost
of labor-intensive annotations. Self-supervised
learning (SSL) has shown promise in such set-
tings, although existing SSL efforts on EEG
data do not fully exploit EEG domain knowl-
edge. Furthermore, it is unclear to what ex-
tent SSL models generalize to unseen tasks and
datasets. Here we explore whether SSL tasks
derived in a domain-guided fashion can learn
generalizable EEG representations. Our contri-
butions are three-fold: 1) we propose novel SSL
tasks for EEG based on the spatial similarity of
brain activity, underlying behavioral states, and
age-related differences; 2) we present evidence
that an encoder pretrained using the proposed
SSL tasks shows strong predictive performance
on multiple downstream classifications; and 3)
using two large EEG datasets, we show that
our encoder generalizes well to multiple EEG
datasets during downstream evaluations.

1. Introduction

A scalp-electroencephalogram (EEG) is a biosignal
modality that non-invasively measures the electrical
activity of a large population of cortical neurons via
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an array of sensors placed along the subject’s scalp
(Binnie and Prior, 1994). Scalp EEGs are one of the
main diagnostic tests in neurology, where the visual
identification of abnormal brain activity indicates the
potential for neurological disorders. EEGs also play
a crucial role in brain-computer interfaces where the
same neural signals help decode or predict brain ac-
tivity (Casson et al., 2010). Despite its ubiquitous
use, the time-consuming review of EEGs is still per-
formed by experts because of the complexity of neu-
rophysiological phenomena. At present, the pace of
manual expert labeling cannot match the amount of
clinical and research EEG data being acquired. Fur-
thermore, manual EEG review results in low inter-
rater agreement due to high variability in expert in-
terpretation (Halford et al., 2017; Williams et al.,
1985). As a consequence, under the traditional su-
pervised learning regime, an increasing amount of
unlabeled EEG data remain under-utilized and algo-
rithms trained on ‘noisy’ labels show a degradation in
performance, increase in model complexity, and diffi-
culty in identifying relevant features (Frénay and Ver-
leysen, 2013; Frénay et al., 2014). These issues create
a strong incentive for researchers to develop methods
that can instead learn from the large amounts of raw
unannotated EEG corpora already available.
Encouragingly, a variant of unsupervised machine
learning, called self-supervised learning (SSL), has
shown great promise in settings where, 1) access to
labels is limited; 2) the training process is corrupted
by label noise; and 3) out-of-domain generalization is
desirable (Hendrycks et al., 2019). In the SSL setting,
an encoder is trained in a supervised fashion on un-
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labeled data by constructing a ‘pretext’ learning task
that predicts known attributes found in the data it-
self (i.e., self-supervision). Then, this pretrained en-
coder is used as a feature extractor for ‘downstream’
tasks of interest (Liu et al., 2021). Examples of com-
monly used pretext tasks for time series data include
1) learning to predict a portion of future or masked
data, 2) learning to predict the temporal order of a
sequence of inputs (Jaiswal et al., 2021), or 3) learn-
ing to identify signals that are proximal in time ver-
sus distal (Banville et al., 2021). Intuitively, such
tasks are designed to recover the temporal structure
that exists in a time series. The empirical success
of SSL in other domains presents a particularly en-
ticing possibility for EEG - can we make encoders
learn desirable physiological or pathological features
through bespoke pretext tasks? Arguably, construct-
ing pretext tasks for EEG in collaboration with do-
main experts is a more scalable approach than the
expert manual review of lengthy EEG recordings. In
that context, this study investigates two hypotheses:

e Can we use SSL to explicitly encode known phys-
iological patterns of scalp EEG data that we de-
sire our model to be sensitive to?

e Do physiologically meaningful SSL pretext tasks
enable the learning of EEG representations that
transfer (i.e., generalize) seamlessly to multiple
downstream tasks and datasets?

To that end, this paper introduces three novel pre-
text tasks that leverage, 1) spatial similarities across
the left and right brain hemispheres, 2) brain’s be-
havioral states, and 3) age-related changes in brain
activity (Section 4). We trained an encoder using
the above tasks under a multi-task learning setting
and evaluated its performance on several downstream
tasks and datasets. We utilized the TUH EEG corpus
(Obeid and Picone, 2016) for encoder training and
validation, and the MPI LEMON corpus (Babayan
et al., 2019) for out-of-sample evaluation. We fine-
tuned the encoder and evaluated its performance on
several downstream tasks including, EEG grade, eye
state, age, and gender classifications. Our results
(Section 6) indicate that multi-task domain-guided
SSL pretraining is effective in learning desirable prop-
erties and the learned representations show strong
predictive performance and generalization across new
subjects, multiple tasks, and out-of-sample datasets.

2. Related Work

Recently, there has been a sharp surge in studies
that aim to apply SSL to physiological time series
data, ranging from cardiac signals (Kiyasseh et al.,
2021; Chen et al., 2021), electronic health record
(EHR) timeseries (McDermott et al., 2020; Yéche
et al., 2021), to EEG data (Mohsenvand et al., 2020;
Banville et al., 2021; Kostas et al., 2021). In the fol-
lowing, we summarize two EEG-based SSL studies
closest to our work and highlight the differences.
Mohsenvand et al. (2020) proposed a contrastive
learning approach for EEG data adapted from do-
mains such as computer vision that enforced the en-
coder to be invariant to physiologically plausible data
augmentations such as time shift, scaling, masking,
filtering, and additive noise. Banville et al. (2021)
proposed a ‘relative positioning’ pretext task which
ensured that nearby EEG epochs (epochs denote
short segments of EEG) have similar representations
and distant epochs have dissimilar representations. A
limitation of this pretext task is that distant epochs
of brain activity can be very similar if they represent
the same behavioral state. Furthermore, both studies
trained separate encoder models for each downstream
task and dataset. As such, the transfer capabilities
of those models to other datasets remain unknown.
Our work differs from the above studies in several
ways. First, we propose pretext tasks that lever-
age EEG’s spatial similarities, dynamic behavioral
states of the subject, as well as age-related differences
in EEG. Second, we propose an approach for esti-
mating a measure of behavioral state from raw data
and define more interesting notions of contrast across
multiple subjects (as in (Kiyasseh et al., 2021)). In
prior work, the definition of contrasting epochs dis-
regards EEG behavioral states and in most cases has
been restricted to EEG epochs drawn from the same
recording. Third, we evaluate the transfer capabil-
ity of our approach using an out-of-sample dataset.
Specifically, we evaluate whether the representations
learned by an encoder model trained on one dataset
can generalize to multiple downstream tasks in an
out-of-sample dataset with additional fine-tuning.

3. Overall Workflow & Datasets

Figure 1 illustrates the overall workflow of our study.
We used the topographical maps in seven frequency
bands to represent epoch-level EEG data (described
below). We trained an encoder fp with a resnet-18
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Figure 1: Tllustration of the overall workflow. We represent the EEG data as topographical maps, train a
resnet-18 encoder (feature extractor) using proposed SSL tasks, and evaluate on multiple down-

stream tasks after fine-tuning.

backbone (He et al., 2016) using a multi-task loss de-
fined by three SSL tasks (Section 4) using the TUH
EEG Corpus. Here the parameters 6 represent the
parameters of the encoder. We then applied the
trained encoder to multiple downstream classifica-
tion tasks in TUH and LEMON datasets (Section 5).
Note that we used only the resnet-18 backbone net-
work (shown in blue in Figure 1) for downstream fine-
tuning and that we fine-tuned the same pretrained
backbone for each of the four downstream tasks. Sec-
tion 6 describes the results of our experiments.
Datasets: Our experiments make use of two EEG
corpora: 1) the Temple University Hospital (TUH)
EEG Corpus (Obeid and Picone, 2016), which con-
tains clinical EEG recordings of patients with neu-
rological disorders, and 2) the Max Planck Insti-
tute Leipzig Mind-Brain-Body (LEMON) Dataset
(Babayan et al., 2019), which contains resting-state
recordings from healthy participants.

TUH EEG: This dataset comprises ~30,000 EEG
recordings collected at TUH starting from 2002. A
subset of recordings in TUH EEG have been broadly
annotated by experts as either “normal” or “abnor-
mal”, and have been released as a derived dataset
called the TUH EEG Abnormal Corpus (TUAB). For
our experiments, we only utilize the TUAB record-
ings, leading to a total of 2993 EEGs from 2329 dis-
tinct patients. We extracted the age and gender of
recorded subjects, assumed here as non-expert labels,
from text reports accompanying the EEGs (Rawal
and Varatharajah, 2021). Recordings where this ex-
traction failed were discarded.

MPI LEMON: This dataset represents a cross-
sectional sample of healthy individuals from Leipzig,

Germany. The sample comprised two age groups:
young adults (ages 20-35) and older adults (ages 59-
77). EEG recordings were acquired using 62 elec-
trodes in the 10-10 sensor configuration with a sam-
pling rate of 2500Hz, for a total of 216 participants.
Each subject’s session is made up of 16 trials, each
60 seconds long: 8 eyes-closed and 8 eyes-open. We
included data from both trials in our experiments.
The raw data were corrupted for 4 subjects, which
resulted in a useful set of healthy EEGs from a to-
tal of 212 subjects. Age group and gender labels are
released with the EEGs (78 females and 134 males).
Data preprocessing': The EEG preprocessing
steps applied to both datasets are as follows: (1) we
selected 19 EEG channels, namely ‘Fpl’, ‘Fp2’, ‘F3’,
‘¥4, ¢C3’, ‘C4’, ‘P3, ‘P4, ‘O17, ‘02, ‘F7°, ‘F8’, ‘“T7’,
‘T8, ‘P7’, ‘P8, ‘Fz’, ‘Cz’, and ‘Pz, (2) we resampled
the recordings to 80Hz, followed by (3) a bandpass fil-
ter between 1Hz and 39.5Hz, then (4) we divided the
recordings into contiguous non-overlapping epochs of
10-seconds each, and finally (4) we identified and re-
moved bad epochs when the total power in their ‘Cz’
channel exceeded 2 standard deviations as calculated
from statistics of the entire recording.

Data representation: We represented the EEG
epochs by 2D images (each of size 32 x 32) that
depict the topographical map (or ‘topomap’) of the
spectral power in a brain rhythm band. Specifically,
we computed these maps of relative power distribu-
tion within 7 frequency bands defined as: delta (2-
4Hz), theta (4-8Hz), lower alpha (8-10Hz), higher
alpha (10-13Hz), lower beta (13-16Hz), higher beta

1. Based on Makoto’s EEG preprocessing pipeline: https://
sccn.ucsd.edu/wiki/Makoto’s_preprocessing_pipeline
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(16-25Hz), and gamma (25-40Hz). Collectively, these
topomaps result in a 7-channel image representing
an EEG epoch (Figure 1). We min-max scaled these
images within each channel such that the values lie
between 0 and 1.

4. Model description

In this section, we describe the proposed SSL tasks
(shown in Figure 2), their mathematical formulations
and corresponding loss functions, and how they are
combined to form a multi-task objective for pretrain-
ing. Lastly, we describe the architectural elements of
the encoder trained using that objective.
Hemispheric symmetry (HS) task: In general,
healthy brain activity is similar across the left and
right hemispheres. Therefore, despite naturally aris-
ing minor distortions, we would want the feature rep-
resentations of brain activity derived from both the
hemispheres to be similar as well. This forms the ba-
sis for our first SSL task. In the following, we use
X € R7%32X32 to denote a topomap of brain activ-
ity and X9 ¢ R7*32%32 to denote an augmented
version of the topomap. We use Z € R? to denote
the output of the feature extractor fy, where d is the
output dimensionality, i.e., Z = fg(X).

Suppose that we obtain X%“9! by randomly flip-
ping X horizontally and X*“92 by randomly adding
Gaussian noise?. Our goal is to define a loss that
penalizes learning different representations for X9t
and X492, To achieve this invariance, we employ
the Barlow Twins (BT) loss function (Zbontar et al.,
2021). Given a batch of inputs X?%9! and X492 the
construction of the BT loss encourages the model fy
to learn representations Z%“9! and Z*“92 such that
the cross-correlation matrix between them is close to
an identity matrix. The cross-correlation matrix C'
over a batch of inputs b is given by Eq. 1.

Z augl aug2
be 7 ,]

\/Zb augl \/Zb aug2

Given C, the hemispheric symmetry loss Lg g is com-
puted using Eq. 2.
) ©
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2. Although we could simply focus on the similarities between
X and X291 we found that adding some noise to the
original EEG epoch X improves training.

Both terms in the definition serve a distinct pur-

pose. The first term encourages the diagonal ele-
ments of C' to be closer to 1, thereby making the
representations similar for input distortions. The sec-
ond term forces the off-diagonal terms of C' towards
0, thereby decorrelating the embeddings and as a re-
sult, preventing the model from learning trivial so-
lutions. The hyperparameter A balances the relative
importance of each term. As discussed in (Tsai et al.,
2021), we set A to 1/d so that both terms are weighted
equally during optimization.
Behavioral state estimation (BSE) task: The
dynamic nature of neural activity is modulated by
the behavioral state of the subject. Therefore, it is
clearly beneficial for EEG encoders to generate rep-
resentations sensitive to the behavioral state of the
subject. The slow-wave () to fast-wave (3) spectral
power ratios in the central brain regions provide ro-
bust estimates of the behavioral state of the subject
and their attentional control (Kremen et al., 2017).
We used the delta-beta power ratio as the proxy mea-
sure to construct a pretext task. For an EEG epoch
X, the delta-beta ratio (DBR) is defined by Eq. 3.

ps(X)
ps(X)

Here, ps(X) and pg(X) are the power of ¢ and
bands calculated from the original EEG time series
corresponding to X. We chose § band as 2 — 4 Hz
and § band as 13 — 25 Hz, and used the C3 and C4
channels to calculate the power ratio. Although DBR
is only a proxy measure of the subject’s behavioral
state, it has the advantage of being easily computable
from data. We formulate this task as regression with
a mean square loss defined by Eq. 4.

DBR(X) = (3)

2

— DBR(X) (4)

1
Lpsg = ]
2

Here, g(.) takes the representation Z and outputs
a prediction of DBR (i.e., a regression head).
Age contrastive (AC) task: Due to the impor-
tance of age in modulating brain activity (Rossini
et al., 2007), it is desirable for an EEG feature ex-
tractor to learn representations that are sensitive to
the age-related slowing of EEG. Broadly, the rep-
resentations of brain activity of younger subjects
should look different from those of older subjects.
This property can be readily formulated within the
contrastive triplet learning paradigm, originally pro-
posed by (Weinberger and Saul, 2009). A triplet is a
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(a) Hemispheric symmetry

(b) Behavioral state

(¢) Age contrast

Figure 2: A schematic representation of the three self-supervised learning (SSL) tasks proposed in this study.

training tuple constructed from 3 EEG epochs: 1) an
anchor epoch X, 2) an epoch ‘similar’ to the anchor
X4, and 3) an epoch ‘dissimilar’ to the anchor X_.
The objective is to learn a feature space in which pos-
itive pairs are represented closer than negative pairs,
per some measure of similarity s. Given a set of train-
ing triplets (X, X,, X_), the triplet loss (Schroff
et al., 2015), is defined by Eq. 5.

Lac=max(s(X, X)) —s(X, X_)+~v, 0 (5

Here, 7 is a hyper-parameter called margin.

We define the notion of contrast using two broad

age groups: young (age < 40) and old (age > 60), and
use the Euclidean distance as a measure of similar-
ity. Two EEG epochs are labeled similar if they come
from subjects within the same age group. Conversely,
they are labeled dissimilar if they come from differ-
ent age groups. To make this age contrast physiolog-
ically meaningful, we require that all epochs within
the triplet are in the same behavioral state (i.e., sim-
ilar DBR) as the anchor epoch. DBR similarity is
determined by the quartiles formed by the distribu-
tion of DBR values in the training set.
Model architecture: The overall model architec-
ture and multi-task training scheme are shown in Fig-
ure 1. The feature extractor fy consists of a resnet-
18 ‘backbone’ network followed by three linear layers
called the ‘projector’ network. Due to the presence
of this projector network, the last linear layer of the
resnet-18 backbone is disabled. This architecture is
a scaled-down version of the model used in (Zbontar
et al., 2021). At the end, there are task- or loss-
specific layers. Specifically, the HS loss needs a batch
normalization layer before the loss is computed, while
the BSE loss needs an additional linear layer that out-
puts the DBR prediction for the sample (i.e., g).

The encoder model fy accepts a 7-channel topomap
and outputs a 512-dimensional embedding. While the
full model fy is pretrained using the multi-task loss

objective £ (Eq. 6), only the resnet-18 backbone is
extracted after pretraining and used to fine-tune on
the downstream tasks.

Multi-task training: The weights of the network
are shared between the three tasks and all three tasks
are used to train the encoder simultaneously. Eq. 6
defines the total loss L.

L = Lus + Lesk + Lac (6)

5. Exerpiments & Evaluation Setup

Experiments: Our experiments consist of quali-
tative and quantitative evaluations of the proposed
multi-task training objective and the learned repre-
sentations. In addition, we conduct ablation experi-
ments to elucidate the contribution of each of the pro-
posed SSL tasks. The overall semi-supervised work-
flow is depicted in Figure 1.

First, we trained an encoder model on a subset of
the TUH dataset and evaluated whether the physio-
logical characteristics enforced by the SSL tasks are
reflected in the representations generated by the en-
coder. We generated embeddings using the trained
encoder for the epochs in the validation set and vi-
sualized them with ground-truth overlays in a low-
dimensional 2D space using the t-SNE algorithm
(Van der Maaten and Hinton, 2008).

Second, we conducted a within-sample validation
of the encoder by assessing its transfer performance to
different subjects and tasks within the same dataset
used for training, i.e., the TUH corpus. We con-
sider three downstream binary classification tasks:
1) whether the EEG was normal or abnormal (re-
ferred to as EEG grade), 2) whether the subject was
young or old (referred to as age), and 3) whether the
subject was male or female (referred to as gender).
We fine-tuned the encoder on a training set of the
TUH dataset and evaluated the classification perfor-
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mance on a held-out test set. Third, we conducted
an out-of-sample evaluation of the encoder by assess-
ing its transfer performance in the LEMON dataset.
We consider three downstream binary classification
tasks: 1) whether the subject’s eyes were open or
closed (referred to as eye state), 2) whether the sub-
ject was young or old (referred to as age), and 3)
whether the subject was male or female (referred to
as gender). We fine-tuned the encoder trained on
the TUH training dataset on a subset of the LEMON
dataset and evaluated the classification performance
on a held-out test set in LEMON.

Training and evaluation: We used the stochas-
tic gradient descent optimizer with momentum set to
0.9 for all model training (Qian, 1999). We controlled
the learning rate by a policy that oscillates between
0.5 to 0.0001 (Smith, 2017) and dampened the os-
cillations over time by an exponentially decreasing
scaling factor of 0.5. During transfer experiments,
we extracted the resnet-18 backbone of the best-fit
model pretrained on the TUH data and added a lin-
ear output layer for binary classification on down-
stream tasks. We separately fine-tuned the resnet-18
backbone from the same pretrained model for each of
the downstream tasks. We also used a weighted ran-
dom sampling approach to balance the target classes
during fine-tuning.

Data splits: First, we divided the TUH dataset
(subjects: 2,328; epochs: 409,083) into train (sub-
jects: 2,095; epochs: 365,483) and validation (sub-
jects: 233; epochs: 43,600) sets for pretraining. For
fine-tuning and evaluation on downstream tasks, we
performed a 3-way data split including train, valida-
tion, and test sets. Table 1 shows those divisions in
the TUH and LEMON datasets. We made all data
splits using disjoint sets of subjects.

TUH LEMON
Subjects | Epochs || Subjects | Epochs
Train (~55%) | 1,303 | 227,728 118 10,487
Valid (~15%) 326 56,543 30 2,695
Test (~30%) 699 124,812 64 5,744

Table 1: Train, validation, and test splits.

Deriving subject-level predictions: Because we
performed model training using epochs of EEG
data, we aggregated epoch-level predictions to form
subject-level predictions in cases where the target at-
tribute is at subject-level (grade, age, or gender). We
made a simplifying assumption that the signal in each
10s EEG epoch is independent of other epochs in the
dataset. We then used a maximum likelihood estima-

tion based on the classifier output Y;, € [0,1], which
represents the probability that the n*® epoch belongs
to the positive class. We model the epoch-level pre-
dictions of a subject S; as independent observations
made from a Bernoulli trial with an unknown prob-
ability m;, where m; is the probability that the sub-
ject S; belongs to the positive class. Then, an es-
timate of m; that maximizes the likelihood function

| 7V (1 — 7)Y (™) after N epochs is given
as m; = Tasy Yo
3 N M

Metrics: We used the area under the receiver oper-
ating characteristic curve (AUC), precision (Prec.),
recall (Rec.), F1 score, and balanced accuracy
(B.Acc.) to evaluate downstream classifications. We
chose an optimal decision threshold using Youden’s
J statistic (Youden (1950)) to calculate precision, re-
call, F1, and balanced accuracy scores for the held-
out test sets. We evaluated the final models on the
held-out test set in a leave-one-subject-out fashion to
obtain multiple AUC scores for each model. Table 2
displays the mean AUC scores and standard devia-
tions obtained in those evaluations (see the appendix
for a full report of all the metrics).

Baselines comparisons: We compared the transfer
performance of our proposed method to: 1) a purely
supervised linear classification baseline, and 2) the
temporal contrastive SSL pretext task called ‘rela-
tive positioning’ (RP) (Banville et al., 2021). We
trained the linear classifier on a flattened feature in-
put of power spectral density values of the same 19
channels used to generate the topomaps. We used a
grid search to choose the values of the regularization
strength and elastic-net mixing ratio. For the relative
positioning benchmark, we computed the channel-
wise normalized time series and ShallowNet model
as described in the original paper. We heuristically
set the hyperparameters 7,,; and 7,4 to 6 and 12 re-
spectively, meaning that the positive context for the
anchor spans 60s (30s on each side of the anchor),
while the negative context lies beyond 60s on either
side of the anchor. From each recording, we sam-
pled 1000 positive and 1000 negative training tuples
during pretraining. We performed downstream eval-
uations in a similar fashion as our proposed model
described above. Finally, we used the two-sample
Kolmogorov-Smirnov test to determine whether the
AUC scores obtained from leave-one-out evaluation
of the best baseline and those from the best ablated
model are drawn from the same distribution.
Software & hardware: The preprocessing, feature
extraction, and experiments were implemented using
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a combination of the following Python libraries: 1)
scikit-learn (Pedregosa et al., 2011), 2) MNE-python
(Gramfort et al., 2013), 3) PyTorch (Paszke et al.,
2019), 4) NumPy (Harris et al., 2020), and 5) Brain-
Decode (Schirrmeister et al., 2017). The experiments
were performed using 2 Nvidia RTX 3090 GPUs.

6. Results

We summarize our results in Figure 3 and Table 2.
Figure 3 illustrates the qualitative experiments and
Table 2 provides a comparison between our encoders
and baseline models in both TUH and LEMON
datasets (based on AUC metric alone). The appendix
includes additional metrics such as precision, recall,
F-1, and balanced accuracy.

Visualization of the feature space: Figure 3 illus-
trates how the SSL tasks affect the embeddings gener-
ated by the encoder. Figures 3(a) and 3(b) show the
generated embeddings when the encoder was trained
with all three SSL tasks, and BSE and AC tasks
alone, respectively. Here, the green points indicate
representations of unaugmented data and the red
points indicate those of hemispherically-flipped data
in the same low-dimensional 2D space denoted by z1
and z2. We observe that adding the HS SSL task
enables the learning of representations that are un-
affected by the spatial flipping of the input. Figure
3(c¢) shows the predicted DBR values (using the lin-
ear layer g(.)) and ground truth DBR values when the
encoder was trained with BSE task alone. We observe
that the predicted DBR values and ground-truth
computed DBR values align well. Lastly, Figure
3(d) shows the embeddings generated from epochs
of young (red) and old subjects (green) when the en-
coder was trained using the AC task alone. Here, we
fixed the epochs to be in a specific behavioral state
because behavioral states can confound age-related
differences. We observe a stronger separation be-
tween subjects in contrasting age groups than the
subjects within the same age group. Overall, our re-
sults suggest that the EEG representations generated
using the proposed SSL framework reflect desirable
physiological properties.

Within-sample transfer evaluation: The first set
of columns in Table 2 show the results obtained after
fine-tuning the pre-trained encoder on TUH task la-
bels. We observe that the full multi-task setting does
not always provide the best performance. Nonethe-
less, ablated versions substantially outperform the
linear baseline in all the tasks - EEG grade (0.88 vs.

0.92 AUC), age (0.74 vs. 0.80 AUC), and gender
(0.68 vs. 0.70 AUC). Interestingly, the ablated ver-
sion trained with BSE SSL task alone provides the
best performance in each case.

Out-of-sample transfer evaluation: We utilized
the LEMON corpus to assess the pre-trained mod-
els’ transfer capabilities to domains or environments
not seen during training. The evaluation procedure
remains identical to that of the internal validation.
The second set of columns in Table 2 show the results
obtained after fine-tuning the pre-trained encoder on
LEMON task labels. We observe that our method
performs competitively to the linear baseline in the
eye state task (0.89 vs. 0.89 AUC) but substantially
outperforms in the age (0.95 vs. 0.99 AUC) and gen-
der (0.65 vs. 0.80 AUC) tasks.

Comparison with state-of-the-art: Results ob-
tained for an independent implementation of the
temporal-domain ‘relative positioning’ (RP) pretext
task are listed as the ShallowNet model in Table 2.
RP performs better at age and gender prediction on
TUH, and on eye state prediction on LEMON. Our
method performs better on age and gender predic-
tion on LEMON while performing competitively to
RP in EEG grade prediction on TUH. Broadly, our
multi-task training based on physiologically inspired
SSL tasks performs better than this benchmark on
transfer tasks evaluated on out-of-sample data.
Ablation studies: Overall, models trained using all
three tasks together show performance that is at the
least competitive with the linear baseline and in most
cases, significantly exceeds it. However, the perfor-
mance of ablated versions is more nuanced. Inter-
estingly, it is not the case that more self-supervision
tasks (i.e., two or more tasks) perform better than
a single task. On the other hand, while BSE task
alone provides the best within-sample performance
(TUH), it does not perform equally well on out-of-
sample data (LEMON).

7. Discussion

In this paper, we studied whether EEG encoders
trained on a large unlabeled dataset using domain-
guided self-supervision can help improve downstream
classification performance in small labeled datasets.
We utilized a resnet-18 encoder with EEG data rep-
resented as topographical maps and derived three
SSL tasks inspired from 1) hemispheric similarities in
brain activity, 2) behavioral states, and 3) age-related
EEG changes. We fine-tuned this encoder and evalu-
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Figure 3: Visualizations showing how the SSL tasks affect the embeddings generated by the encoder. The
subtitles denote the SSL tasks used in encoder pretraining. Note that we fixed the epochs in 3(d)
to be in a specific behavioral state because behavioral states can confound age-related differences.

Models TUH LEMON
EEG Grade Age Gender Eye State Age Gender

Linear 0.884 (4e-4) 0.741 (6e-4) 0.675 (6e-4) 0.888 (2¢-3) 0.949 (3e-3) 0.646 (1le-2)
ShallowNet 0.909 (3e-4) 0.872 (4e-4)* | 0.783 (le-3)* 0.948 (le-3)* 0.945 (3e-3) 0.721 (9e-3)
HS only 0.910 (3e-4) 0.771 (1e-3) 0.648 (1e-3) 0.885 (2e-3) 0.970 (2e-3) 0.740 (8e-3)
BSE only 0.918 (3e-4)* 0.797 (1e-3) 0.696 (1e-3) 0.892 (2e-3) 0.972 (2e-3) 0.725 (9e-3)
AC only 0.912 (3e-4) 0.792 (1e-3) 0.652 (1e-3) 0.870 (2e-3) 0.970 (2e-3) 0.703 (1le-2)
HS-BSE 0.914 (3e-4) 0.787 (1e-3) 0.668 (1e-3) 0.885 (2e-3) 0.983 (1e-3) 0.693 (9e-3)
HS-AC 0.895 (4e-5) 0.723 (1e-3) 0.636 (le-3) 0.861 (2e-3) 0.907 (5e-3) 0.649 (9e-3)
BSE-AC 0.913 (3e-4) 0.784 (1e-3) 0.675 (1e-3) 0.878 (2¢-3) | 0.987 (1e-3)* | 0.704 (9e-3)
HS-BSE-AC 0.907 (3e-4) 0.748 (1e-3) 0.638 (1e-3) 0.870 (2e-3) 0.984 (2e-3) 0.803 (Be-3)*

Table 2: Within-sample (TUH) and out-of-sample (LEMON) evaluation of ablated versions of the proposed
approach (last seven rows) and baselines (first two rows). Results shown are AUC values obtained
on the held-out set of TUH and LEMON subjects on multiple classification tasks, TUH: 1) ‘EEG
grade’: normal vs. abnormal, 2) ‘Age’: young vs. old, and 3) ‘Gender’: male vs. female; LEMON:
1) ‘Eye State’: eyes open vs. eyes closed, 2) ‘Age’: young vs. old, and 3) ‘Gender’: male vs. female.
* indicates a statistically significant result (p < 0.01).

ated its performance on several downstream tasks in
both within-sample and out-of-sample EEG record-
ings. Our results indicate that the proposed encoder
performs substantially better than fully-supervised
linear models on both within-sample and out-of-
sample experiments and competitively with the cur-
rent state-of-the-art SSL model with slightly superior
performance in out-of-sample tasks.

SSL pretext tasks: Our major contribution is the
design of pretext tasks inspired by neurophysiologi-
cal domain knowledge such as hemispheric similar-
ity of brain activity, behavioral states of the sub-
ject, and age-related changes. Our hypothesis was
that training a feature encoder using these prop-
erties can enable the learning of generalizable fea-
tures that indicate irregular/pathological asymme-
tries, behavioral state anomalies, and changes orthog-
onal to normal aging, which can then help with down-
stream classifications. Our results also indicate that

the supervision provided by the proposed SSL tasks
does help with learning generalizable representations.
While our study establishes the feasibility of deriv-
ing domain-specific SSL tasks for EEG data, there
is scope to further increase the granularity and/or
quality of self-supervision. For example, subjects be-
tween the ages of 40 and 60 could be included to learn
finer age-related changes. Additionally, mixing fre-
quency bands other than delta and beta can better es-
timate behavioral state than our current choice. Fu-
ture work can also design self-supervision to integrate
idiosyncratic asymmetries and pathological changes
caused by neurological disorders such as epilepsy and
Alzheimer’s. Readily computable measures of brain
connectivity, as well as information from EEG text
reports, remain untapped sources of expert domain
guidance that do not need epoch-level annotations.

Generalization: EEG is a highly non-stationary
signal i.e., its statistics evolve over time. As a con-
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sequence, there is significant inter-subject and inter-
session variability in the signal recorded and general-
ization remains a challenge for predictive EEG mod-
els (Roy et al., 2019). To evaluate whether domain-
guided self-supervision can partly address this chal-
lenge, we pretrained an encoder on large amounts of
clinically acquired data (TUH EEG) and validated
its performance on a smaller research-grade dataset
(LEMON). Our results indicate that domain-guided
SSL does provide competitive performance (in some
cases, superior) on unseen tasks and out-of-sample
datasets. The input representation of topomaps (Sec-
tion 3) limits our method’s ability to transfer to
low-density EEG datasets, such as those found in
sleep staging and brain-computer interfacing. Since
topomaps are computed using spatial interpolation, a
spatially low density of EEG sensors will result in an
overly smoothed input. Building general EEG fea-
ture extractors that are robust to low-density EEG
acquisitions remains an area for future work.
Multi-task training: As can be seen from Table
2, it is difficult to suggest which pretext task will
prove beneficial for a particular downstream task of
interest. However, our results indicate that combin-
ing multiple types of pretext tasks is very likely to
improve performance over a linear baseline. The fact
that the temporal RP task outperforms in certain
cases is additional evidence in support of multi-task
training. Therefore, we argue that multi-task SSL
pretraining is an essential component in the devel-
opment of general-purpose EEG encoders. However,
we also observed that in certain multi-task combina-
tions (HS-AC, for example), one task destabilizes the
training of another, leading to worse downstream per-
formance. In such cases, a biased weighting scheme,
as opposed to the equal weighting done in our exper-
iments, is likely to be a promising approach.
Backbone model: Our choice of a resnet-18 back-
bone was motivated by the image-like representation
of topomaps and by existing studies that found con-
volutional and residual networks to be suitable for the
classification of physiological signals (Hannun et al.,
2019; Faust et al., 2018; Schirrmeister et al., 2017).
However, it is plausible that a more physiologically-
driven architecture such as ShallowNet (Schirrmeis-
ter et al., 2017) trained with the proposed SSL tasks
could provide superior results.

Broader impact: Conventional analysis of EEG re-
lies on manual expert annotations which are limited
due to their time-consuming nature, inherent signal
complexity, and low inter-rater agreement. Through

the design of bespoke pretext tasks, we can poten-
tially alleviate the label-centric nature of large-scale
EEG predictive modeling (Roy et al., 2019). By
avoiding expert annotations, well-designed SSL pre-
text tasks could also unlock novel clinical applications
in scenarios where deep domain knowledge already
exists but labeled data does not.

Code & data availability: The datasets used
in this study are already publicly available. The
model definitions, code to train the proposed pretext
tasks, and evaluation scripts needed to reproduce re-
sults in Table 2 and Supplementary Tables 3 and 4
are available at https://github.com/neerajwagh/
eeg-self-supervision.

8. Conclusion

This study introduced a representation learning
method that leverages self-supervised learning (SSL)
to learn physiologically relevant features from scalp
EEG data without expert annotations. We proposed
three pretext tasks derived from healthy EEG pat-
terns that aim to exploit: 1) the hemispheric simi-
larities of brain activity, 2) behavioral states, and 3)
age-related EEG changes. Experiments indicate that
an encoder pretrained using the proposed method ex-
hibits competitive predictive performance in down-
stream classification tasks and strong generalization
across subjects, tasks, and datasets. Our future ef-
forts will investigate additional domain-guided SSL
tasks, different backbone models, and more clinically-
oriented downstream tasks. Because SSL enables the
integration of domain expertise without incurring the
cost of labor-intensive annotations, it has the poten-
tial to unlock novel clinical and consumer EEG ap-
plications, for which expert knowledge exists but an-
notated data does not.
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Appendix A. Supplementary Results

Below are extended versions of Table 2 with additional metrics.

Models EEG Grade Age Gender
AUC | Prec. | Rec. | F-1 | B.Acc. || AUC | Prec. | Rec. | F-1 | B.Acc. || AUC | Prec. | Rec. | F-1 | B.Acc.

Linear 0.88 | 0.78 | 0.89 | 0.83 | 0.81 0.74 | 0.61 | 0.70 | 0.65 | 0.69 0.67 | 0.58 | 0.75 | 0.65 | 0.63
ShallowNet 091 | 0.82 | 0.89 | 0.85 | 0.84 0.87 | 0.77 | 0.79 | 0.78 | 0.81 078 | 0.73 | 0.7 | 0.72 | 0.74
HS only 091 | 0.83 | 0.86 | 0.85 | 0.84 0.77 | 0.64 | 0.72 | 0.68 | 0.72 0.65 | 0.58 | 0.69 | 0.63 | 0.63
BSE only 0.92 | 0.83 | 0.90 | 0.86 | 0.85 0.80 | 0.66 | 0.75 | 0.70 | 0.74 0.70 | 0.63 | 0.68 | 0.65 | 0.66
AC only 0.91 0.83 | 0.87 | 0.85 0.84 0.79 0.66 | 0.75 | 0.70 0.74 0.65 0.59 | 0.68 | 0.63 0.63
HS-BSE 091 | 0.83 | 0.90 | 0.86 | 0.85 0.79 | 0.65 | 0.76 | 0.70 | 0.73 0.67 | 0.58 | 0.75 | 0.66 | 0.64
HS-AC 0.89 | 0.81 | 0.87 | 0.84 | 0.83 0.72 | 0.61 | 0.64 | 0.62 | 0.68 0.64 | 057 | 0.73 | 0.64 | 0.62
BSE-AC 0.91 0.82 | 0.90 | 0.86 0.85 0.78 0.64 | 0.76 | 0.70 0.73 0.67 0.58 | 0.77 | 0.66 0.64
HS-BSE-AC | 091 | 0.84 | 0.87 | 0.85 | 0.85 0.75 | 0.59 | 0.77 | 0.67 | 0.70 0.64 | 0.58 | 0.65 | 0.61 0.61

Table 3: Within-sample evaluation of ablated versions of the proposed approach and baselines. Results
shown are obtained on the complete held-out set of TUH subjects (i.e. without the leave-one-out
evaluation scheme followed for Table 2) on three binary classification tasks: 1) ‘EEG grade’: normal
vs. abnormal, 2) ‘Age’: young vs. old, and 3) ‘Gender’: male vs. female.

Models Eye state Age Gender
AUC | Prec. | Rec. | F-1 | B.Acc. || AUC | Prec. | Rec. | F-1 | B.Acc. || AUC | Prec. | Rec. | F-1 | B.Acc.

Linear 0.89 | 0.81 | 0.80 | 0.81 0.81 0.95 | 0.97 | 0.84 | 0.90 0.89 0.65 | 0.76 | 0.65 | 0.70 0.66
ShallowNet 0.95 | 0.89 | 0.86 | 0.88 0.88 0.94 | 095 | 0.86 | 0.9 0.88 0.72 | 0.82 | 0.7 | 0.76 0.72
HS only 0.89 | 0.83 | 0.78 | 0.80 0.81 0.97 | 1.00 | 0.84 | 0.91 0.92 0.74 | 092 | 0.58 | 0.71 0.75
BSE only 0.89 | 0.82 | 0.79 | 0.80 0.81 0.97 | 097 | 0.86 | 0.91 0.91 0.73 | 0.77 | 0.83 | 0.80 0.70
AC only 0.87 0.76 | 0.84 | 0.80 0.79 0.97 0.97 | 0.88 | 0.93 0.92 0.70 0.76 | 0.93 | 0.83 0.71
HS-BSE 0.88 | 0.84 | 0.76 | 0.80 0.81 0.98 | 0.98 | 0.93 | 0.95 0.94 0.69 | 0.80 | 0.58 | 0.67 | 0.66
HS-AC 0.86 | 0.75 | 0.84 | 0.79 0.78 0.91 | 0.95 | 0.86 | 0.90 0.88 0.65 | 0.81 | 0.63 | 0.70 0.69
BSE-AC 0.88 0.81 0.78 | 0.79 0.80 0.99 0.98 | 0.95 | 0.96 0.95 0.70 0.81 | 0.73 | 0.76 0.72
HS-BSE-AC | 0.87 | 0.81 | 0.78 | 0.79 0.80 0.98 | 1.00 | 0.91 | 0.95 0.95 0.80 | 0.87 | 0.83 | 0.85 0.81

Table 4: Out-of-sample evaluation of ablated versions of the proposed approach and baselines. Results
shown are obtained on the complete held-out set of LEMON subjects (i.e. without the leave-one-
out evaluation scheme followed for Table 2) on three binary classification tasks: 1) ‘Eye state’: eyes
open vs. eyes closed, 2) ‘Age’: young vs. old, and 3) ‘Gender’: male vs. female.

Appendix B. Additional Discussion

Early stopping: Our pretraining procedure utilized an early stopping criterion based on validation loss.
However, it is unclear whether the best-fit pretrained model leads to the best downstream performance,
as noted in (Banville et al., 2021). In other words, it is possible that an overfitted pretrained model may
yield better downstream performance upon fine-tuning. Further experiments are needed to elucidate how
overfitting affects model generalizability.

Online triplet mining: The empirical success of triplet-based training depends heavily on the ‘hardness’
of triplets sampled (Hermans et al., 2017). Given an anchor X and a margin v, ‘hard’ triplets are those that
the model will find the hardest to learn i.e., tuples where X is maximally away from X and X_ is minimally
close or within a distance of 7 to X. With each model update, training samples become increasingly ‘easier’.
Online mining of triplets ensures that the learning task (Eq. 5) continues to remain moderately difficult for
the model.
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