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1 | INTRODUCTION

In many regression applications, there are multiple response variables of mixed types. For instance, when modeling
complex biological processes like fertility (see Section 6.1), the outcome (ability to conceive) is often best characterized
through a collection of variables of mixed types: both count (number of egg cells and number of embryos) and continuous
(square-root estradiol levels and log gonadotropin levels). Similarly, one may be interested in the dependence between
various types of omic data in a particular genomic region (see Section 6.2), some binary (eg, presence of somatic muta-
tions) and some continuous (eg, gene expression). Joint modeling of responses facilitates inference on their dependence,
and it can lead to more efficient estimation, better prediction, and allows for the testing of joint hypotheses without the
need for multiple testing corrections. Popular regression models, however, typically assume all responses are of the same
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type. A case in point is the multivariate normal linear regression model which assumes a vector of responses Y € R" and
vector of predictors x € RP satisfy

Y ~ N(B'x, %), )
for some regression coefficient matrix 3 € RP*" and covariance matrix X € §', |, the set of r X r symmetric and positive def-
inite matrices. Model (1) is fundamental in multivariate statistics and leads to relatively straightforward likelihood-based
inference; the parameters are identifiable, have intuitive interpretations, and maximum likelihood estimates are compu-
tationally tractable even when r and p are relatively large (but smaller than the number of independent observations n).
Here, our goal is the development of a likelihood-based method for mixed-type response regression that retains some of the
useful properties of (1). We focus on settings where dependence between responses cannot be parsimoniously parameter-
ized and interest is in inference on an unstructured r X r covariance matrix characterizing this dependence. Rather than
a method for specific combinations of response distributions, of which there are many,!!! we pursue a unified method
that can be adapted to many different combinations of response distributions with relative ease.

To develop our method, we assume there is a known link function g : R” — R" and latent vector W € R" such that

g{E(Y|W)} =W and W ~ N,(B'x,X). (2)

That is, a latent vector satisfies the multivariate linear regression model and the observable responses are connected to
that latent vector through their conditional mean. We further suppose that, conditionally on W, the elements of Y satisfy
generalized linear models with linear predictors given by the elements of W (see detailed specification in Section 2). This

leads to a likelihood based on n independent observations {(y;,x;) € R" X RP,i =1, ... ,n} which can be written
n
LuB,2) =[] [ foilw) dwi B'x, T) dw,, 3)
i=1 JR

where f(y; | wy) is the conditional density for Y; = [Yi, ... , Y3 ]" given W; = [Wy, ... , W;,]" and ¢(-; B'x;, ) is the mul-
tivariate normal density with mean B'x; and covariance matrix X. Note (1) is a special case of (2) where Y = W and g
is the identity. Conversely, (3) can be obtained as the likelihood for a specific generalized linear latent and mixed model

(GLLAMM),'? a class of models which also includes many other models for mixed-type responses as special cases.!>8
Example 1 illustrates our setting.
Example 1. Suppose Y € R? is a vector of 10 count variables (Y7, ... , Y19) and 10 continuous variables (Y11, ... , Ya0)

whose joint distribution is of interest. If there are no predictors, a possible version of (2) assumes Y;|W ~ Poi(W)) for
j=1,...,10,Y; | W ~ N(W;,1) forj =11, ... ,20, and W ~ Nyo(B", Z), where BT € R* and X € S%,.

There are several challenges with inference based on (3). First, in general the integrals cannot be computed analyt-
ically, and numerical integration can be prohibitively time consuming even for r ~ 10. This is commonly addressed by,
for example, Laplace approximations, Monte Carlo integration, or penalized quasi likelihood (PQL), which results from
dropping terms in a Laplace approximation that are assumed to be of lower order.'*?* Here, in the interest of devel-
oping a method operational for relatively large r, we will approximate the likelihood using a modified version of PQL
(Section 3), which is known to be fast.?! We will also discuss how the proposed method can be extended to settings where
the likelihood is approximated by other means.

A second challenge is that, even if the integrals in (3) can be computed efficiently, maximum likelihood estimation of
(B3, Z) requires optimization over RP*" x §' _ :

(B,£)e argmax L,(B,X). 4)
(B.L)ERPXS,

When r is small it may be possible to solve (4) using off-the-shelf optimizers (eg, the m1 command in Stata or the
optim function in R). For example, if r = 2, then (4) can be characterized as a constrained optimization problem over
(B, [Z11, 212, 222]7) € RP¥" x R3, the constraints being that ;; > 0, Z,, > 0, and Zfz < ¥11Z2. When r is even moder-
ately large, however, such constraints become untenable. In software packages for mixed and latent variable models it
is common to maximize the likelihood in B and the Cholesky root L such that £ = LL".?*?> This ensures the estimate
of X is positive semidefinite, but it does not ensure positive definiteness and it complicates more ambitious inference.
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For example, implementing a likelihood-ratio test of whether some of the responses are independent requires solving (4)
subject to the constraint that some off-diagonal elements of X are zero (Section 4). Similarly, for some response-types it
is necessary to constrain diagonal elements of X to ensure identifiability (see Section 2), and sometimes it is desirable to
assume diagonal elements of X corresponding to responses of the same type (eg, responses 1-10 or 11-20 in Example 1)
are the same. These types of restrictions are nontrivial to accommodate when parameterizing in terms of L, but as we will
see in Section 3, they are elegantly handled by the method we propose. Briefly, our method iteratively updates a PQL-like
approximation of (3) and maximizes that approximation in B and X using block coordinate descent. The update for B is
a least squares problem which can be solved in closed form and the update for X is solved using an accelerated projected
gradient descent algorithm. The algorithm scales well in the dimension r and it natively supports restrictions of the form
% € M for sets Ml C §',, onto which a projection can be computed.

In some settings it may be appropriate to, as is common in mixed models, restrict * = ZDZ" for some design matrix
Z € R™4 and covariance matrix D € S¢, of d < r random effects (see eg, Jiang®). Such structures may be suggested by
subject-specific knowledge or the sampling design, or they may be motivated by necessity when n is small relative to r.
Similarly, many methods based on the marginal moments, such as for example generalized estimating equations,?” specify
a covariance structure. In many applications, however, it is unclear whether there is any particular dependence structure.
Indeed, it may be of primary interest to discover a structure using data, rather than imposing one a priori; our method
enables such discoveries. Some methods based on the marginal moments also allow the specification of an unstructured
correlation matrix, but for Y rather than W.?%% In general, however, such methods are inconsistent with (2) since the
mean vector and correlation matrix of Y cannot be independently parameterized. Accordingly, it is often unclear whether
the estimates are in the parameter set of any particular model for mixed-type responses. Nevertheless, methods based on
the marginal moments can be useful in practice and they are a reasonable comparison to our method for some purposes.

Other advantages of the parameterization we consider are that (i) the off-diagonal elements of X affect the joint
distribution of responses but not their marginal (univariate) distributions and (ii) responses are independent if the corre-
sponding off-diagonal elements of X are zero. Thus, we can test the null hypothesis that some responses are independent
by testing whether the corresponding off-diagonal elements of X are zero, without that null hypothesis implying restric-
tions on the marginal distributions. This is generally not possible in more parsimonious parameterizations of the form
¥ = ZDZ" since, in general, elements of D affect both marginal and joint distributions.

2 | MODEL
2.1 | Specification

We now specify our model in detail and generalize somewhat compared to the Introduction. Assume the elements of

Y = (Y3, ... , Y,) are conditionally independent given W with conditional densities of the form
Yiw; = ¢(wy)
f(yjIW)=eXp{— , (5)
vj
where y = [y1, ... ,y,]" is a vector of strictly positive dispersion parameters and ¢; is a cumulant function for the dis-

tribution of Y; | W. For example, c]f(Wj) =E(Y; | W) and u/jcjf’ (W)) = var(Y; | W), with primes denoting derivatives. From
these properties it follows that the link function g defined by g{E(Y | W} = W satisfies g(W) = [g1(W1), ... ,&(W,)]" with
g; real-valued and strictly increasing for j = 1, ... ,r. That is, the jth latent variable has a direct effect on the jth response
but no other responses. Equation (5) specifies a (conditional) generalized linear model** (GLM), which when y; = 1 spe-
cializes to a one-parameter exponential family distribution, as in Example 1. Here, we do not assume y; = 1 for every j
but we do assume the y; are known.

Because it makes our development no more difficult, in what follows we consider a slightly more general version of
(2) where

W ~ NY(Xﬂv E)a (6)

for a nonstochastic design matrix X € R™? and g € R%. The classical multivariate response regression setting in (2)
which motivates our study is then a special case with X = I, ® x", § = vec(/3), and q = rp, where ® is the Kronecker
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product and vec(-) the vectorization operator stacking the columns of its matrix argument. Unlike (2) where all responses
have the same predictors, (6) allows distinct predictors for each response, as in seemingly unrelated regressions.>!
With {(3;,X;) € R" x R™P,i =1, ... ,n}, denoting independent realizations, the likelihood is

L., %) = |Z|” "/ZH/ exp {( yUWU —‘cj(w,,)> - %(Wi - XP'E i —Xiﬂ)} dw;. (7

v

To see the connection to GLLAMMSs and other mixed models which are often written for all observations simultaneously,
let Y =1[Y],...Y/]TeR™ X=X/, ..., X" € R"™4, and € ~ N,,+(0,I, ® ). Then (7) is the likelihood for a model
which assumes the elements of Y follow conditionally independent GLMs given &£, with canonical link functions and
linear predictors given by the elements of

W=Xp+¢E;

that is, each of the rn responses has a linear predictor with its own random intercept, and the covariance matrix for those
random interceptsis I, ® X.

2.2 | Parameter interpretation and identifiability

It is often difficult to interpret parameters in latent variable models and, similarly, it is often unclear which parameters
are identifiable—we address some such concerns in this section. The parameters are straightforward to interpret in the
latent regression, but interpreting them in the marginal distribution of Y requires more work. To that end, note that the
mean vector and covariance matrix of Y are, respectively, by iterated expectations,

E(Y) =E{g'(W)} and cov(Y) = cov{g }(W)} + E{cov(Y | W)}. (8)

We make a number of observations based on (8): first, because cov(Y | W) is assumed diagonal, the covariance between
responses is determined by cov{g~!(W)}. Second, since E(Y;) and E(sz) are determined by the univariate distribution
of Yj, off-diagonal elements of X do not affect means and variances of the responses. Third, since g and cov(Y | W) are
nonlinear and nonconstant in general, E(Y) and E{cov(Y | W)} in general depend on both f and diagonal elements
of X. Fourth, since var(Y;) is increasing in y; and cov{g~!(W)} does not depend on y, cor(Yj, Yi) is decreasing in y;
and yy. This is intuitive as responses are conditionally uncorrelated and hence, loosely speaking, a large element of y
indicates substantial variation in the corresponding response is independent of the variation in the other responses. In
some settings, more precise statements are possible by analyzing closed form expressions for the moments in (8), as the
next example illustrates.

Example 2. (Normal and Poisson responses) Suppose there are r =4 responses such that E(Y;| W)= W, and
var(Y; | W) = y; forj = 1,2, and E(Y;|W) = exp(W)) and var(Y; | W) = y; exp(W)) for j = 3, 4. These moments are consis-
tent with assuming Y; | W ~ N(Wj,y;) forj = 1,2, and, ify3 = w4 = 1, Y;|W ~ Poi{exp(W))},j = 3,4. When not assuming
w3 = w4 = 1, we say these moments are consistent with normal and (conditional) quasi-Poisson distributions. We exam-
ine the effects of these assumptions on the marginal moments of Y. Some algebra (Supplementary Material) gives the
following moments: E(Y1) = X] , E(Y3) = exp(X]  + Z33/2), var(Y1) = w1 + Z11, var(Ys) = exp(2X; f + Zs3){exp(Zs3) —
1+ y3exp(—X] f — Z33/2)}, cov(Y1,Ys) = a1, cov(Y1, Y3) = Z3; exp(X] f + Z33/2), and cov(Y3, Yy) = exp(X; f + X f +
Y33/2 + Z4a/2){exp(Z43) — 1}; the remaining entries of cov(Y) are the same as those given up to obvious changes in sub-
scripts. Clearly, both E(Y) and cov(Y) depend on f and X, but regardless of type, the variance of Y; is increasing in X, the
mean is increasing in XjTﬂ, and the covariance between Y; and Y} is increasing in Zj,. We will later use these observations
to prove a result which implies # and X are identifiable in this example.

Consider the linear dependence between responses with conditional normal and quasi-Poisson moments, Y; and Y3,
say. The sign of their correlation is the sign of ;5 and the squared correlation satisfies, by Cauchy-Schwarz’s inequality,
cor(Y1, Y3)? < Z11Zs3/[(y1 + Z11){exp(Ts3) — 1 + w3 /E(Y3)}] < Z33/{exp(Z33) — 1}. Thus, strong linear dependence
between Y; and Y; requires a small ;5.
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To gain intuition for how two responses with quasi-Poisson moments behave, suppose for simplicity that £33 = 44,
w3 = yy, and X;ﬁ = XIﬁ. Then cor(Y3, Y,) = {exp(Z43) — 1}{exp(Ts3) — 1 + w3 /E(Y3)}. For small w3, this correlation
is approximately (exp(Zs3) — 1)/(exp(Z33) — 1), which for |Z43| < X33 is upper bounded by 1 and lower bounded by
{exp(—X33) — 1}/{exp(X33) — 1}. The latter expression tends to —1 if X33 — 0 and 0 if X33 — oo. Thus, strong negative
correlation between Y3 and Y, requires a small Xs3.

Example 2 is convenient because the moments have closed form expressions. In more complicated settings, the fol-
lowing result can be useful. It implies the mean of Y; and covariance of Y; and Y} are strictly increasing in, respectively,
the mean of W; and covariance between W; and W;.

Lemma 1. Let ¢,5 be a bivariate normal density with marginal densities by .02 and buy.02 and covariance o =
X1 = Xy, then for any increasing, nonconstant g,h : R — R, the functions defined by p — [ gD, 52(1) dt and o —

/ gt)h(ty)p,x(t) dt are, assuming the (Lebesgue) integrals exist, strictly increasing on R and (—/Z11222, VZ1122),
respectively.

The proof is in the Supplementary Material. We illustrate the usefulness of this result in another example.

Example 3 (Normal and Bernoulli responses). Suppose r = 2with Y1 |W; ~ N(W1, y1) and Y, Bernoulli distributed with
E(Y>|W,) = logit_l(Wz) =1/{1 + exp(—W>)}. Suppose also for simplicity W ~ N,(f,X), f§ € R2. The marginal distribu-
tion of Y> is Bernoulli with E(Y;) = / [p(®)/{1 + exp(—p — \/Ezzt)}] dt, where ¢(-) is the standard normal density. One
can show that, if %, is fixed, E(Y3) — 0if f, —» —c0 and E(Y;) — 1if f, — o0. That is, any success probability is attainable
by varying f and, hence, some restrictions are needed for identifiability. One possibility, which has been used in similar
settings, is to fix Z,, to some value, say one.!”3> While fixing ¥, = 1 does not impose restrictions on the distribution of
Y, as long as #, can vary freely, it may impose restrictions on the joint distribution of Y = [Y, Y»]", properties of which
we consider next.

Equation (8) implies cov(Yy, Y3) = / [{t1dp=(®)}/{1 + exp(—t>)}] dt — fiE(Y>). The integral does not admit a closed
form expression, but Lemma 1 says the covariance is strictly increasing in X,, which can be used to show the parameters
are identifiable in this example if %,; is known (Theorem 1). To understand which values cov(Y7, Y) can take, consider
the limiting case as 1, — \/En \/522 and assume for simplicity #; = f, = 0. In the limit, the covariance matrix is singular

and the distribution of W the same as that obtained by letting W, = (\/222 / \/211) W1. Then one can show cor(Y7,Y,) =

2 f [{ vV Zutd)(t)} / {1 + exp(—\/}:zzt)}] dt/+/w1 + 2£1;. By using the dominated convergence theorem as y; — 0 and

%,, — o0, this can be shown to tend to and be upper bounded by 1/2/z =~ 0.8 . This correlation corresponds to a limiting
case and is an upper bound on the attainable correlation between Bernoulli and normal responses.

We conclude with a result on identifiability. The result is stated for some common choices of link functions and
distributions of Y | W, but the proof can be adapted to other settings. In the Supplementary Material, we state a result
(Lemma B.4) which outlines conditions for identifiability more generally. Essentially, when Y; | W satisfies a GLM, it
suffices that, for every j, the variance of Y; is not a function of the mean of Y;. If it is, as is the case when Y; is Bernoulli
distributed, restrictions on diagonal elements of ¥ are needed for identifiability. The proof is in Supplementary Material.

Theorem 1. Suppose {(y;,X;)) e R"xR"x q;i=1, ... ,n} is an independent sample from our model and that (i) g,
j=1,...,r, is either the identity, natural logarithm, or logit (log-odds) function; (ii) X is fixed and known for every j
corresponding to logit g;; and (ii) XTX is invertible, then distinct (B, Z) correspond to distinct distributions for Y.

From a computational perspective, nonidentifiability can lead to likelihoods with infinitely many maximizers or ridges
along which the likelihood is constant. In light of this result, we constrain the diagonals of X corresponding to binary
response variables: we found this leads to faster computation and improved estimation accuracy.

3 | ESTIMATION
3.1 | Overview

We propose an algorithm based on linearization of the conditional mean function w — Ve(w) = g~1(w), where c(w) =

Z;zlcj(wj); this is essentially equivalent to linearization of the link function, which has been considered in other

latent variable models.!® More specifically, consider the elementwise first order Taylor approximation of g~!(:) = Ve(+)
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around an arbitrary w € R": E(Y | W) = V(W) ~ Ve(w) + Vie(w)(W —w). Applying expectations and covariances
on both sides yields E(Y) ~ Ve(w) + VZew)(Xf — w) =: m(w, f) and cov{E(Y | W)} ~ VZc(w)ZV2c(w). Approximating
E{cov(Y | W)} = E{diag(y)V2c(W)} ~ diag(y)VZc(w) leads to cov(Y) =~ diag(y)Vic(w) + Viecw)ZVie(w) =: C(w, Z).
Intuitively, we expect m(w, ) and C(w, X) to be good approximations if W takes values near w with high probability. Now,

consider a working model which says Y7, ... , Y}, are independent with
Yi ~ N {m(w;, §), C(w;, D)}, )
for observation-specific approximation points w; € R",i =1, ... , n. The corresponding negative log-likelihood is, up to

scaling and additive constants

n n
ha(B,Z | Wi, ... ,wy) = ) logdet {C<wi, )} + ) i — mw, B} Cwi, )7 yi - m(wl-,ﬂ)} .
i=1 i=1

If all responses are normal, then the working model is exact and minimizers of h, are maximum likelihood estimates
(MLEs). More generally, minimizers of h,, are approximate MLEs whose quality depend on the accuracy of the working
model (9). For further insight it is helpful to note that if w; is set to the maximizer of the ith integrand in (7), then h,
is the same type of approximation of L, as that used in PQL, specialized to our setting. The correspondence between
linearization of the link function and PQL is detailed by Breslow.?* The correspondence implies that, in addition to the
moment-based motivation given here, h, can be motivated as a Laplace approximation of L,, with terms assumed to be of
lower stochastic order ignored (see Breslow and Clayton? for details). Roughly speaking, the approximation will be better
the closer the distribution of Y; is to a normal. Because the latent variables are normal, we expect the distribution of Y; to
be close to normal if the distribution of Y; | W; is. Now, to estimate variance parameters, conventional PQL makes further
approximations which lead to a set of estimating equations. We proceed differently and avoid these approximations,
both because they lack formal motivation (section 2.5 in Breslow and Clayton®’) and because they do not in general
lead to a simpler optimization problem for an unstructured and positive definite X. Thus, we will work directly with
the approximate log-likelihood h, and propose an algorithm that is substantially different from ones commonly used for
mixed models.

With h, as the starting point, a natural algorithm for estimating § and X would iterate between updating (g, Z) by
minimizing h, with the w; held fixed and then updating the w; to get a more accurate working model. Motivated by the
connection to Laplace approximations, we update the w; by setting them to equal to the maximizers of the integrand in
(7) with g and X fixed at their current iterates. To summarize, we propose a blockwise iterative algorithm whose (k + 1)th
iterates are obtained using the updating equations

(p%+D 20D = arg min h, (B, =W, ..., W), (10)
p.x
n
k+1 k+1
(Wg + )’ ,W51+ )> = arg maxz logfﬂ(m)yﬂku)(yi,wi). (11)
Wy, .. W, oy

This algorithm can be run for a prespecified number of iterations or until convergence of the # and X iterates, for example.
While the complete algorithm is not designed to minimize a particular objective function, the individual updates, which
we discuss in more detail shortly, minimize objective functions that can be tracked to determine convergence within
each update. In our experience, the values of £ and § tend to converge after (at most) tens of iterations of (10) and
(11). The final iterates of £ and # are approximate MLEs and h, evaluated at the final iterates of wy, ... ,w, is an
approximate log-likelihood which we will use for approximate likelihood-based inference, including the construction of
likelihood-ratio tests.
A formal statement of the proposed algorithm is in Algorithm 1.

3.2 | Updating fand X

To solve (10), we use a blockwise coordinate descent algorithm. Treating wy, ... ,w, as fixed throughout and ignoring the
iterate superscript, this algorithm iterates between updating f and X. Specifically, the (I + 1)th iterates of the algorithm
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Algorithm 1. Blockwise iterative algorithm for estimating (4, Z)

1. Given €;>0, x>0, initialize =V € M, and Y € RY. Setk = 1.

k .
2. ' = arg max, . {logfm,g(k)(w | vi) = Tllyi —Xiﬂ(")llz} fori=1,...,n.

3. Set£® = x® Forl=1,2,... until convergence:
(@) FHD = argming hy(8,E0 | WY, L WD)
(b) SetZ® =E® = F® For ¢ = 1,2, ..., until convergence:
SEHD = py [2(’) — aVsh,(FED, EO w0 Wity 4y (20 i“‘”}] ,
(c) £™D = S where £ is the final iterate from 3(b).
4, (PR Tty = (FE) $E)) where (O, £0)are the final iterates from 3.
5. IF || %D — p0)1Z < g5 and || Z*FD — 2®)||2 < ey, terminate. Otherwise, set k < k + 1 and return to 2.

for solving (10) can be expressed
pHY = argmin hy, (.20 |wr, ... ,wy), (12)
B

>®V = arg min h,, (ﬁ(l“),Z | Wi, ... Wp) . (13)
>

Update (12) can be shown to be a weighted residual sum-of-squares with solution

n -1,
pHY = {ZXIawi,z“))-lXi} Y X Cwi. =),
i=1

i=1

where X; = VZc(w))X; and y; = y; — Ve(w;) + V2c(w;)w;. Minimizing h, with respect to ¥ is nontrivial owing to noncon-
vexity and the constraint that X is positive semi-definite. One possibility is to parameterize X in a way that lends itself to
unconstrained optimization (see eg, Pinheiro and Bates®) and use a generic solver. However, such parameterizations are
inconvenient since we, as discussed in Section 2, sometimes restrict diagonal elements of X to be equal to a prespecified
constant for identifiability. Similarly, testing correlation of responses requires constraining some off-diagonal elements to
equal zero. Thus, we need an algorithm that allows restrictions on the elements of ¥ and ensures estimates are positive
semidefinite, and can be constrained to be positive definite if desirable.

By picking an appropriate (convex) Ml C R" x r, (13) can be characterized as an optimization problem over R" x r
with the constraint that £ € M. To handle both the nonconvexity and general constraints, we propose to solve this
problem using a variation of the inertial proximal algorithm proposed by Ochs et al.** This is an accelerated pro-
jected gradient descent algorithm that can be used to minimize an objective function which is the sum of a nonconvex
smooth function and convex nonsmooth function. In our case, h, (as a function of ¥) is the nonconvex smooth
function and the convex nonsmooth function is the function which equals oo if £ ¢ M and zero otherwise. This
algorithm, like many popular accelerated first order algorithms, for example, FISTA,> uses “inertia” in the sense
that the search point is informed by the direction of change from the previous iteration, which can lead to faster
convergence.

To summarize briefly, our algorithm for (13) has (¢ + 1)th iterate D = Py[E? — aVsh, (8, 2@ |wy, ... ,w,) +
y{Z® — £=D}], where y € (0,1), a is determined using backtracking line search (see algorithm 4 of Ochs et al**), and Py
is the projection onto M. We assume the projection is defined; it suffices, for example, that Ml is nonempty, closed, and con-
vex (corollary 5.1.19 of Megginson3®). In our software, M is the intersection of a set of matrices with constrained elements
and the set of symmetric matrices with eigenvalues bounded below by ¢ > 0, where ¢ = 0 ensures positive semidefinite-
ness and € > 0 positive definiteness. To compute projections onto M of this form, we implement Dykstra’s alternating
projection algorithm.*’” This algorithm iterates between projections onto each of the two sets whose intersection defines
M. Both projections can be computed in closed form, so this algorithm tends to be very efficient. The gradient of h,
with respect to X needed for implementing the algorithm can be found in the Supplementary Material. The algorithm is
terminated when the objective function values converge.
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3.3 | Updating the approximation points

We use a trust region algorithm for updating w;,i =1, ... ,n (eg, chapter 4 of Nodecal and Wright3®). Essentially,
the trust region algorithm approximates the objective function locally by a quadratic and requires the computa-
tion of gradients and Hessians. The gradient is given in the Supplementary Material and the Hessian is, assuming
>~! is positive definite, for i =1, ... ,n, V§, logfy(yi,w;) = —V?c(w;) — X~". Since V?c(w;) and X" are positive defi-
nite and the latter does not depend on w;, the objective function is strongly concave and therefore has a unique
maximizer and stationary point. In practice, however, ¥ can be singular or near-singular and the Hessian —X7! —
V2c(w) can have a large condition number. To improve stability, we regularize by (i) adding an L,-penalty on
w; — X;p and (ii) replacing £ by £ = X+ «I, for some small « > 0. Then the optimization problem for updating
wj 1S

. 1 -
arg min { —yw + cw) + >0, = X! HTE (0 = Xip) + lhw = X A1}

weR"

where 7 > 0. The intuition for shrinking w; to X;p is that the latter is the mean of W; when f is the true parameter. The
penalty and regularization of £ are only included in the update for w;, not in the objective function for updating f and X.
In the Supplementary Materials, we outline a procedure for obtaining starting values that can improve computing times
and the quality of the resulting estimates relative to naive starting values.

4 | APPROXIMATE LIKELIHOOD RATIO TESTING

To make inferences about the parameters we use the approximate negative log-likelihood h,(#, % | w1, ... ,wy,), where
wi, ... ,w, are held at the final iterates given by Algorithm 1. Focus is on testing hypotheses of the form (4,%) € H, vs
(B, %) € Hy, where Hy and H partition the parameter set. If the null hypothesis constrains f# only, we write for sim-
plicity g € Hy, and similarly with £ € Hj if the null hypothesis constrains £ only. We propose the test statistic T, =
(B, 2 | Wy, ... WD) — ha(B, 2 | W1, ... ,W,), where (f,%) and the approximation points W = {W, ... ,W,} are obtained
by running Algorithm 1 with the restrictions implied by Hy and (4, X) = arg min(ﬂ’z)eHouHA h, (B, Z|Wy, ... ,W,). That is,
(f,%) and W are estimates and expansion points, respectively, from fitting the null model while B and X are obtained by
maximizing the working likelihood from (9) with the expansion points fixed at those obtained by fitting the null model.
We fix the expansion points to ensure (4, £) and (B, X) are maximizers of the same working likelihood, but under different
restrictions. We chose the null model’s expansion points to be conservative; that is, to favor the null hypothesis model. If
the working model is accurate and H, contains no boundary points of the parameter set, we expect T, to be, under the
null hypothesis, approximately chi-square distributed with degrees of freedom equal to the number of restrictions implied
by Hp.

A main motivation for our method is inference on the covariance matrix . Null models corresponding to hypotheses
that constrain elements of X are straightforward to fit by including those constraints in the definition of the set M in
the update for X. For example, to test whether the first and second element of Y are independent, fitting the null model
corresponds to setting

MZ{ZES::ZHIZHZO},

assuming there are no other restrictions. Similarly, independence of more than two responses can be tested by includ-
ing more off-diagonal restrictions in the definition of M, and equality of variances for some responses can be tested by
including restrictions such as X1; = Z,,. In principle our method could also be used to test restrictions such as £1; =0,
corresponding to the first latent variable being constant. However, any null hypothesis which forces some eigenvalues of £
to be zero corresponds to testing of boundary points, and then the likelihood ratio test-statistic has a different asymptotic
distribution.3%#

A formal statement of the full algorithm for hypothesis testing is given in Algorithm 2. We investigate the size and
power of the proposed procedure in Section 5.5.
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Algorithm 2. Hypothesis testing procedure for (5,X) € Hy vs (5,X) € Hyu

1. Given Hj and Hy, initialize (), =) € H,.
2. Fork =1,2,... until convergence:
0 = arg min,eg, { 3w+ ) + Law = XTAO)TEO) vy = Xp®) + el = XTOIR | fori =1,

i
(b) (B%D, 2*D) = arg min iy ha(. T [ W, wi*D)

3. Set (4,%) = (p%),2*)y and w; = wﬁk )fori=1,...,nwhere k* denotes the final iterate from 2.

4. Compute (f,%) = arg min(ﬂ,z)eﬂouHA hn(_ﬂ,_Z | Wr, ..., W)

5. Return Ty = hn(4, S | Wp, ... Wn) — hn(B, & | W1, ... , W)

(a) w

5 | NUMERICAL EXPERIMENTS
51 | Overview

We are not aware of a publicly available (or otherwise) software that fits our model outside of special cases. We there-
fore compare to existing methods which assume related but somewhat different models. Specifically, when investigating
prediction (Section 5.2) and estimation of f (Supplementary Material) we compare to separate GLMMs for the different
response types. We chose this comparison because the GLMMs have correctly specified marginal distributions in our set-
ting. In particular, the marginal moments [E(Y;) and var(Y;),j =1, ... , r, are correctly specified under the GLMMs. Thus,
we expect the GLMMs to give reasonable estimates of the mean functions, and expect differences in predictive perfor-
mance to our method to be indicative of the usefulness of joint modeling and estimating the off-diagonal elements of X.
We also compare our method on prediction, estimation of #, and estimation of cor(Y’) to multivariate covariance general-
ized linear models (MCGLMs).? MCGLMs model the marginal moments of Y and, accordingly, provide estimates of the
mean vector and covariance matrix of Y, but not of X. To further highlight the usefulness of modeling dependence, we
include results for our method with X constrained to be diagonal, that is, with responses assumed independent. Whether
constraining X to be diagonal or not, diagonal elements corresponding to Bernoulli responses are constrained to equal
one when using our method.

5.2 | Prediction comparisons

We consider r = 9 response variables, three normally distributed, three Poisson, and three Bernoulli. When fitting separate
GLMMs for the three-dimensional response vectors with elements of the same type, we consider two covariance structures
that common software can fit: (i) Z;; = 6].2 and X = 0forj # kor (ii) £ = 6?1351}, forsome 6 > 0and 13 = [1,1,1]". Option
(i) assumes all responses are independent and option (ii) corresponds to using a shared random effect for observations of
the same type in the same response vector. We refer to these as independent and clustered GLMMs, respectively. There
are many software packages for fitting GLMMSs. We pick the glmm?® package to fit the independent GLMM:s and fit the
clustered GLMMs using 1me4.? Briefly, the former uses a Monte Carlo approximation of the likelihood and the latter
uses adaptive Gaussian quadrature.

Predictions are formed by plugging estimates from the different methods into the expressions for E(Y;) =
E{E(Y; | W)} in Section 2, and for simplicity we define prediction errors as the differences between those expectations
and the observed responses, regardless of type. When a closed form expression is unavailable, the expectation is obtained
by r one-dimensional numerical integrations. We compare to (oracle) predictions using the true g and X.

We next describe how data are generated in the simulations. The responses have different predictors and f is parti-
tioned accordingly: # = (4], ... , 871", f € R¥,and q = Z;zl pj. We write X;; € R¥ for the ith observation of the predictors
for the jth response. In all simulations, each X;; consists of a one in the first element (an intercept) and, in the remaining
p;j — 1 elements, independent realizations of a U[-1, 1] random variable, where p; = p for all jand k. For j =1, ... ,r,
the true regression coefficient f; has first element equal to fly; and all other elements chosen as independent realizations
of a U[-.5,.5]. We set fiy; = 2 if the response is normal or (quasi-)Poisson, and equal to zero if the response is Bernoulli.
Similarly, if the response is normal, we set y; = .01; otherwise, we set y; = 1.
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We consider three different structures for X: for some p € (0,1) we set £ = 0.5% where £ is (i) autoregressive (ijk =
pU=k1); (ii) compound symmetric (£ = pl(j # k) + I(j = k)); or (iii) block-diagonal, meaning % = pll(j # k) + I(j = k) if
(G, k) € {1,4,7} x {1,4,7}, (j, k) € {2,5,8} x {2,5,8}, or (j, k) € {3,6,9} X {3,6,9} and zero otherwise. The first through
third responses are normal, the fourth through sixth Bernoulli, and seventh through ninth Poisson. Hence, each of the
blocks given by the structure in (iii) includes one of each response type. These structures are used to generate the data
but are not imposed when fitting models. For all the structures, the GLMMs have correctly specified diagonal elements
of ¥, but incorrectly specified off-diagonal elements in general.

For each structure of X, we investigate the effects of the sample size (n), the number of predictors (p;, j =1, ... ,7),
and the correlation parameter (p). We present relative squared out of sample prediction errors, defined as the ratio of a
method’s sum of squared prediction error to the sum of squared prediction error of the oracle prediction. Averages are
based on 500 independent replications, and for each replication, out of sample predictions are on an independent test set
of 10* observations.

In the top row of Figure 1, as n increases, each method’s performance improves relative to oracle predictions. However,
across all settings, the proposed method performs best. When the covariance structure is nonsparse (eg, autoregressive
or compound symmetric), the clustered GLMMSs can outperform our method with the diagonal covariance matrix and
the independent GLMMs. The same relative performances are observed as p increases in the middle row; and when p
increases in the bottom row. When X is block-diagonal, both versions of our method outperform the competitors. In
the case of clustered GLMMs, this is likely due to the specified covariance structure being a poor approximation to the
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n=200and p; = 5forj =1, ... ,9. glmm indicates clustered GLMMs, glmm-Ind GLMMs with diagonal covariance matrix, mcglm the
method of Bonat and Jergensen,? mmrr the proposed method, and mmrr-Ind the proposed method with diagonal covariance matrix
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true covariance. For independent GLMMs, this is likely due to the fact that g1lmm (nor other software) can impose the
identifiability condition on X for the Bernoulli responses. MCGLMs perform second-best in most settings, can perform
similarly to clustered GLMMs when the true covariance structure is nonsparse, and can be outperformed by our method
with diagonal covariance when dependence is weak. In summary, the results show the usefulness of joint modeling for
prediction, and they illustrate the usefulness of the proposed method relative to ones based on marginal moments.

The Supplementary Material include results on mean squared errors for estimating f, for the same methods and
settings used in Figure 1, and the results are qualitatively similar to those in Figure 1. The Supplementary Material
also include a comparison to separate GLMs, effectively assuming independence between responses, which leads to
substantially worse predictions than all methods considered here.

5.3 | Performances for different response types

In Figure 1 averages were taken over all responses types. To see if the benefits of joint modeling are greater for some
response types, it is of interest to stratify results by type. We compare the two versions of our method (diagonal vs non-
diagonal X). Because both versions have correctly specified univariate response distributions and are fit using the same
algorithm except for the constraints on X, these simulations investigate the usefulness of joint modeling of mixed-type
responses. Data are generated as in the previous section.
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In the first row of Figure 2, as n increases, both methods’ relative mean squared prediction error approaches the
oracle prediction error. However, the predictions from joint modeling outperforms those using a diagonal X. The differ-
ences between the two methods are smallest for Bernoulli responses. A similar result is observed in the second row: as
p;j approaches 10, both methods’ relative performance degrades, although for all three response types, predictions from
the joint modeling degrades more gradually. In the bottom-most row, we display results as p varies. When p = 0.5 there
is a less substantial difference between the two methods. As p approaches 0.95, the difference between the two meth-
ods becomes greater. This result is also observed in the Bernoulli responses, but to a lesser degree than the normal and
Poisson.

In Section F.2 of the Supplementary Material, we present a simulation study which focuses on modeling many
Bernoulli responses and a single normal response. Those results highlight that even though the relative squared predic-
tion error for the Bernoulli responses is only slightly improved by joint modeling, one can realize substantial prediction
accuracy gains for the single normal response variable by exploiting dependence between it and the Bernoulli responses.
We present similar results comparing our method and MCGLMs in the Supplementary Material.

5.4 | Covariance estimation

To investigate the usefulness of the proposed method for estimating covariances and correlations specifically, we consider
a setting without predictors. That is, we consider (2) with x = 1, corresponding to an intercept only. Ideally we would
compare to an established method for estimating ¥ in our setting. Since none is available (to the best of our knowledge),
we compare the estimates of Q = cov(Y) and cor(Y) = diag(Q)~'/2Qdiag(Q)~'/? from our method to moment-based esti-
mates. One is the empirical (or sample) covariance matrix S = n=' Y (y; = y)(vi —y)", wherey = n=1 Y| y; is the sample
mean. The corresponding empirical correlation matrix is diag(S)~'/2Sdiag(S)~/2. MCGLMs also provide a moment-based
estimate of cor(Y), which we found to be indistinguishable from the empirical correlation matrix in the present setting
without predictors.

We note the comparison to S, or other moment-based estimates of cov(Y) not assuming (2), is not ideal because S
cannot in general be mapped to an estimate of . Formally the issue is that while Q is injective as a function of X, which
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follows from Theorem 1, that function is not onto S'.. Put differently, not all realizations of S give an estimate consistent
with (2). Nevertheless, S is (strongly) consistent for Q when there are no predictors since the observations are then i.i.d.,
so we expect reasonable estimates of Q.

The data generating model is as in Section 5.2, but with an intercept only. Figure 3 shows average relative mean square
error for the diagonal entries of Q by type. Specifically, we report the averages of: (normal) 21.3:1(9]7 - Qﬁ)2 / Z;ZIQ;.,
(Bernoulli) Z};(ij -Q)?/ Zfz 491.2]., and (Poisson) ngﬂ(ij -Q)?/ 219:79; where Q is an estimate of Q with jth diagonal
entry Q;;. In Figure 3, we see our method estimates the variances of the Poisson components more accurately than does
the sample covariance, but the two perform similarly for normal and Bernoulli responses.

Figure 4 displays the average mean squared estimation error for diag(Q)~'/2Qdiag(Q)~'/2, the correlation matrix of
(Y1, ... , Yo)T. For smaller sample sizes, the proposed method performs better than MCGLMs. For larger sample sizes the
differences diminish somewhat, which is not surprising given that sample correlations are consistent. As the correlation
parameter p varies with n = 200, we see that the differences between the methods remain relatively constant, with the
proposed one being better in every setting.

5.5 | Approximate likelihood ratio testing

We examine the approximate likelihood ratio testing procedure described in Section 4. Let D', | be the set of r X r diagonal
and positive definite matrices. We study the size and power of the proposed tests for X € Hy = D", , vsZ € Hy = S, \ Hp,
and, assuming all responses have the same predictorsasin(2), Be Ho = {BeRP*" : B;; =0, j=1, ... ,rjvs Be Hy =
RP*r\ Hy, where By; denotes the kth predictor’s effect on the jth response variable, that is, the (k, j)th element of 3. We set
k = 2. Thus, the null hypothesis implies the first predictor (ignoring the intercept) has no effect on any response. Multiple
testing corrections, which are often needed when using separate models for the r responses, are not needed here.

Data are generated as in Section 5.3 but with X;; =X, =--- =X, foralli=1, ... ,nand B=[f, ... , f;] € RP*",
In the first setting, n € {200,400, ... ,1000} and ijk = pU=* » € {0.0,0.05, ... ,0.4}. The top row of Figure 5 displays the
proportion of rejections at the 0.05 significance level. When p = 0 (null hypothesis is true), the proportion of rejections
is approximately 0.10 when n = 200, below 0.075 when n > 400, and near 0.05 (the nominal level) when n = 2000. As p
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increases, even with n = 200, the proportion of correctly rejected null hypotheses is near one when p = 0.4. The power
depends positively on both the magnitude of p and the sample size.

In the second setting, we fix p = 0.5 and study how the effect size of the By; affects power. After generating 53 as
in Section 5.3, for j = 1, ... ,r independently, we replace 3j; with a realization of a U[-y1072,y1072] where y € [0, 12].
The second row of Figure 5 shows that when y = 0, so that B; =0 for all j =1, ... ,r, the proportion of rejections is
slightly above 0.10 for n = 200, but close to 0.05 (the nominal size) for all n > 400. There is also an indication that cor-
relation between responses benefits power. For example, the power curves under compound symmetry tend to be above
the corresponding ones under block-diagonal structure.

6 | DATA EXAMPLES
6.1 | Fertility data

We consider a dataset collected on 333 women who were having difficulty becoming pregnant.*> The goal is to model
four mixed-type response variables related to the ability to conceive. The predictors are age and three variables related to
antral follicles: small antral follicle count, average antral follicle count, and maximum follicle stimulating hormone level.
Antral follicle counts can be measured via noninvasive ultrasound and are therefore often used to model fertility.

The response variables quantify the ability to conceive in different ways. Two are approximately normally distributed
(square-root estradiol level and log-total gonadotropin level); and two are counts (number of egg cells and number of
embryos). We modeled the latter using our model with conditional quasi-Poisson distributions. We set y; = 10~ for con-
tinuous responses and y; = 10~* for counts. To illustrate how the proposed methods can be applied, we test the null
hypothesis that ¥ is diagonal and find evidence against it (P-value < 107'%) using the test described in Section 5.5. That is,
there is evidence suggesting the four responses are not independent given the predictors. Fitting the unrestricted model
using our software took less than three seconds on a laptop computer with 2.3 GHz 8-Core Intel Core i9 processor. The
hypothesis testing procedure took less than six seconds on the same machine.

The estimated correlation matrices for the four observed responses, cor(Y;|X; = X), and the latent variables,
cor(W; | X;), are, respectively,



2782 WI LEY—Stati stics EKVALL AND MOLSTAD

1.00 0.01 -0.08 -0.09 1.00 0.02 -0.09 -0.10
0.01 1.00 -0.03 -0.09 and 0.02 1.00 -0.04 -0.09
-0.08 -0.03 1.00 0.69 -0.09 -0.04 1.00 0.74
-0.09 -0.09 0.69 1.00 -0.10 -0.09 0.74 1.00

where the variable ordering is square-root estradiol level, log-total gonadotropin level, number of egg cells, and number
of embyros. The estimate of cor(Y; | X;) is here evaluated at X = YL, Xi/n. The estimates indicate substantial positive
correlation between the number of egg cells and number of embryos, whereas estradiol and gonadotropin levels appear
weakly negatively correlated with these two variables.

We also test whether the small antra follicle count is a significant predictor of any of the responses after accounting for
age, average antral follicle count, and maximum follicle stimulating hormone level. The number of small antra follicles
(2-5mm) is correlated with the number of total antra follices (2-10 mm), and it has been argued that only total antra follicle
count are needed in practice.*® Fitting our model with £ € S}, we reject the null hypothesis that the four regression
coefficients (one for each response) corresponding to antra follicle count is zero (P-value = 0.0052).

Finally, to illustrate how uncertainty can be quantitified using the approximate likelihood, we construct an approxi-
mate 95% confidence interval for £4; by inverting the proposed approximate likelihood ratio test-statistic numerically. This
gives the confidence interval (0.17,0.24), which corresponds to correlations between 0.62 and 0.8. Confidence intervals
for the other parameters could be constructed similarly.

6.2 | Somatic mutations and gene expression in breast cancer

‘We now focus on jointly modeling common somatic mutations and gene expression measured on patients with breast
cancer collected by The cancer genome atlas project (TCGA). A somatic mutation is an alteration in the DNA of a somatic
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FIGURE 6 Heatmap of the estimated correlation matrix for the W; | X; in Section 6.2. Suffix -SM for somatic mutations; -GEx for gene
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cell. Somatic mutations are believed to play a central role in the development of cancer. Because somatic mutations modify
gene expression, directly and indirectly, it is natural to model somatic mutations and gene expression jointly.

The somatic mutation variables are binary, indicating presence or absence of a somatic mutation in the region of a
particular gene. We focus on the ten genes where a somatic mutation was present in more than 5% of subjects. Thus, we
have r = 20, coming from ten genes each with one response corresponding to gene expression and one to the presence of
a somatic mutation. For gene expression, we model log-transformed RPKM measurements as normal random variables.
Each patient’s age is included as a predictor.

We test the covariance matrix for block-diagonality. Under the null hypothesis, entries of X corresponding the
correlations between somatic mutations and gene expression measurements are zero (ie, is no correlation between
somatic mutations and gene expression). The observed statistic is T, = 739 with 100 degrees of freedom for a P-value
< 107'%, Figure 6 displays the estimated correlation matrix for the W;|X;. We observe the latent variables corre-
sponding to somatic mutations and gene expression in CDH1 are highly negatively correlated, whereas for GATA3,
somatic mutation and gene expression latent variables have a strong positive correlation. Latent variables for many
of the somatic mutations are highly correlated (eg, TTN, MLL3, MUC4, MUC12, MUC16). However latent variables
corresponding to some somatic mutations, for example, those in the region of TP53, exhibit small or even nega-
tive correlations with many others (eg, GATA3, CDH1, PIK3CA). Confidence intervals could be constructed as in
Example 6.1.

7 | DISCUSSION

We have proposed a likelihood-based method for mixed-type multivariate response regressions. Our method gives an
approximate maximum likelihood estimate of an unstructured covariance matrix characterizing the dependence between
responses. This is particularly useful in settings where a dependence structure is not suggested by subject-specific knowl-
edge or one wants to discover such a structure using data. To address the computational challenges with estimating an
unstructured covariance matrix, we have proposed a new algorithm. The algorithm handles identifiability constraints
and it scales well in the dimension of the response vectors.

An advantage of likelihood-based methods compared to ones based on marginal moments, such as for example gen-
eralized estimating equations and its extensions,?’2>#* is the plethora of existing procedures for inference and model
selection using likelihoods. For example, Wald tests and standard errors for the coefficient estimates, based on the
observed Fisher information, are readily available once maximum likelihood estimates have been computed, as are infor-
mation criteria. We also used the likelihood to propose a testing procedure for the covariance matrix. On the other hand,
it is often computationally expensive to evaluate the likelihood in latent variable models and it can lead to complicated
optimizations. We addressed that using a PQL-like approximation and a new algorithm, and showed the resulting approx-
imate maximum likelihood estimates are often useful. Extending our method to other likelihood-approximations is a
possibility. For example, the PQL-approximation could be replaced by a Laplace or Monte Carlo approximation. Another
potential line of future research is the asymptotic properties of PQL-type estimators, which despite the estimators’
apparent practical usefulness, are not fully understood.

Finally, we note some types of mixed-type longitudinal data are handled by our method as-is, while other types would
require modifications or would be better analyzed using methods developed for that purpose. For example, our method
can be applied when the elements of Y; € R", i =1, ... , n, are repeated measures of mixed-type responses on indepen-
dently sampled patients indexed by i. Modifications may be necessary if one wants to impose a particular structure on %,
if n < r, or if there is dependence between patients.
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