
Automatic HBMManagement: Models and Algorithms
Daniel DeLayo∗

Stony Brook University
ddelayo@cs.stonybrook.edu

Kenny Zhang∗
Stony Brook University

kzzhang@cs.stonybrook.edu

Kunal Agrawal
Washington University in St. Louis

kunal@wustl.edu

Michael A. Bender
Stony Brook University

bender@cs.stonybrook.edu

Jonathan W. Berry
Sandia National Laboratories

jberry@sandia.gov

Rathish Das
University of Waterloo

rathish.das@uwaterloo.ca

Benjamin Moseley
Carnegie Mellon University
moseleyb@andrew.cmu.edu

Cynthia A. Phillips
Sandia National Laboratories

caphill@sandia.gov

ABSTRACT
Some past and future supercomputer nodes incorporate High-
Bandwidth Memory (HBM). Compared to standard DRAM, HBM
has similar latency, higher bandwidth and lower capacity.

In this paper, we evaluate algorithms for managing High-
Bandwidth Memory automatically. Previous work suggests that,
in the worst case, performance is extremely sensitive to the policy
for managing the channel to DRAM. Prior theory shows that a
priority-based scheme (where there is a static strict priority-order
among ? threads for channel access) is $ (1)-competitive, but FIFO
is not, and in the worst case is ⌦(?) competitive.

Following this theoretical guidance would be a disruptive change
for vendors, who currently use FIFO variants in their DRAM-
controller hardware. Our goal is to determine theoretically and
empirically whether we can justify recommending investment in
priority-based DRAM controller hardware.

In order to experiment with DRAM channel protocols, we chose
a theoretical model, validated it against real hardware, and imple-
mented a basic simulator. We corroborated the previous theoretical
results for the model, conducted a parameter sweep while running
our simulator on address traces from memory bandwidth-bound
codes (GNU sort and TACO sparse matrix-vector product), and
designed better channel-access algorithms.

In our simulations, we found two consistent results: (1) at low
thread counts, when there is less competition for HBM, FIFO out-
performs Priority by up to 37%. (2) at high thread counts, Priority
outperforms FIFO by up to 3.3⇥.

We also generated arti�cial traces not based on bandwidth-bound
code where FIFO’s makespan was 40⇥ larger than Priority, but
thanks to Priority’s provably good bounds, could not manufacture
similarly bad ratios for Priority.

∗co-�rst author

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or a�liate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
SPAA ’22, July 11–14, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-9146-7/22/07. . . $15.00
https://doi.org/10.1145/3490148.3538570

To mitigate (1), we designed new versions of Priority, called
Dynamic Priority, that periodically shu�e the priorities of the
threads. Choosing an appropriate reshu�ing frequency removes
an inherent “unfairness” in the original Priority approach: we can
reduce the standard deviation of the response time for a DRAM
request by an order of magnitude without increasing the makespan.
This makes Dynamic Priority unambiguously better than both FIFO
and Priority in all our simulations.

CCS CONCEPTS
• Hardware → Emerging architectures; • General and refer-
ence → Experimentation; Empirical studies; Validation; General
conference proceedings;Design;Metrics; •Computer systems
organization → Multicore architectures;

KEYWORDS
HBM; High-Bandwidth Memory; Far-Channel Arbitration; Queue
management; Priority Queue; Scheduling; Memory Management;
Memory Hierarchy; FCFS; First-Come-First-Serve; FIFO; First-In-
First-Out; KNL; Knight’s Landing; Xeon Phi; Sapphire Rapids; LRU;
makespan; Dynamic Priority; Timeliness; Fairness

ACM Reference Format:
Daniel DeLayo, Kenny Zhang, Kunal Agrawal, Michael A. Bender, Jonathan
W. Berry, Rathish Das, Benjamin Moseley, and Cynthia A. Phillips. 2022.
Automatic HBM Management: Models and Algorithms. In Proceedings of
the 34th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’22), July 11–14, 2022, Philadelphia, PA, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3490148.3538570

1 INTRODUCTION
To improve memory performance, a new hardware technology
has been introduced known as high-bandwidth memory or
HBM [34, 57].1 HBM has higher bandwidth than DDR4 (today’s
DRAM technology) but similar latency. HBM’s bandwidth is so
high because it is placed directly onto the processor package (un-
like DRAM). HBM thus augments the existing memory hierarchy
by providing a memory that can be accessed with up to 5x higher
bandwidth than DDR4 when feeding a CPU [1], and up to 20x
higher bandwidth when feeding a GPU [59].

1From [24], “hardware vendors use various brand names such as High-Bandwidth
Memory (HBM), Hybrid Memory Cube (HMC), and MCDRAM for this technology.”

1

https://doi.org/10.1145/3490148.3538570
https://doi.org/10.1145/3490148.3538570

HBM is not a replacement for DRAM since it is generally about
�ve times smaller than DRAM.2 Moreover, HBM does not �t into
the standard cache hierarchy because its latency is no better than
DRAM’s. (With standard “pyramid-shaped” hierarchies, the band-
width and latency get better as the sizes get smaller.)

Central problem of HBMmanagement. Any system that has
HBM must decide what data gets evicted from HBM and in what
order HBM fetches requests via a limited number of channels to
DRAM. Least-recently-used (LRU) [54] and other traditional re-
placement policies [17, 18, 29, 54] have been used in conjunction
with First-In-First-Out (FIFO) DRAM-access policies, such as First-
Come-First-Served (FCFS) for multicores with traditional cache.
This combination works well for regular caches but much worse
for HBM [24]. We empirically observe LRU with FCFS performing
poorly for HBM in this paper.

Machines that use HBM, such as Intel’s Knights Landing [56],
boot in multiple modes specifying how much of the HBM is system
managed and howmuch is usermanaged. In cachemode the system
controls HBM as a last level of cache, in flat mode the programmer
explicitly copies data in and out of HBM, and in hybrid mode the
HBM is split into a “�at” piece and a “cache” piece. Intel Knight’s
Landing has long been depcrecated [58]; However Intel’s upcoming
(2022 planned release) Sapphire Rapids [50] Xeon will also have
HBM. Sapphire Rapids further adds HBM-only mode for systems
without DRAM. Another variation (to which our model does not
apply) exists and is being used in Deep Learning: HBM+NVram
without DRAM [37].

The vision of this paper is that a system could automatically
manage HBM as e�ciently as a standard cache. This would free the
programmer from explicitly managing HBM. In high-performance
computing environments such as DOE supercomputers running
scienti�c codes, system cache mode sometimes yields little if any
advantage, but software is too complex and mature to be rewritten
to manage HBM explicitly. Since HBM was �rst commercialized it
hasn’t been clear whether this is indeed even possible. The algorith-
mic plus empirical results in this paper provide strong optimistic
evidence in support of provably good automatic HBMmanagement.

Recent theoretical results o�er hope for practical automatic HBM
management. Das et al. [24] give a theoretical performancemodel of
HBM,which captures the high (on-package) bandwidth between the
cores and HBM and the lower (o�-package) bandwidth to DRAM.
It is unknown how well the theoretical abstraction introduced by
Das et al. [24] predicts empirical performance, especially when
constants are a �rst-order concern in real systems.

HBM+DRAMmodel. In an HBM, the channel(s) to DRAM (far-
channels) are a sequential bottleneck [24]. The ? cores can simulta-
neously send a memory request in each time step. Up to ? requests
can be ful�lled by the HBM in parallel, but only a small number @ of
requests can use the channel to DRAM at a time. Thus, if multiple
cores simultaneously request memory from DRAM, the channel
accesses need to be scheduled and serialized. We call this problem
far-channel arbitration. Waiting for access to DRAM dominates
the running time over other considerations. For current systems,

2From [24], this is due to constraints such as heat dissipation, as well as economic
factors.

the number of DRAM channels per processor is typically not more
than 8.

A natural performance objective is makespan which, given
a batch of running processes, is the time when the last process
completes. Minimizing cache misses is not the same as minimizing
makespan, and can be far from it [24, 43]. In fact, a workload could
have few cache misses, but because it does not take advantage of
the parallelism between cache and HBM, it has a poor makespan.

1.1 Two Components of HBMManagement
A system-controlled HBM has two algorithmic policies to set:

• HBM replacement policy. When the system brings a new
block from DRAM to HBM, it �rst needs to decide which
block to evict from HBM.

• Queuing policy for far-channel arbitration. Multiple
requests (up to ? disjoint requests: one request per core) for
blocks on DRAM can occur simultaneously, but at most @
requests (1  @ << ?) can be ful�lled per time step. The
system must decide in each time step which of the outstand-
ing block requests to ful�ll (and which ones to keep in the
queue).

HBM replacement is not the problem. The traditional way we
think about replacement policies (Least Recently Used [54], or LRU)
turns out also to work with HBM. That is, LRU can also be used in
the context of HBM management to help obtain theoretically good
performance guarantees [24]. In actual implementations of HBM as
a last level of cache, LRU is not the replacement policy, since when
HBM is used in cache mode, it has limited associativity or is even
direct mapped. However, we show that the same good theoretical
guarantees from [24] can be retained, given certain assumptions
on the mapping from DRAM addresses to locations in HBM (see
§2). The bottom line is that LRU and variants work asymptotically
well, not only in regular caches, but also in HBM.

FIFO queue for far-channel arbitration. In contrast, a natu-
ral and intuitive policy for serializing the outstanding requests to
DRAM—simply to queue themup in First-In-First-Out (FIFO) order—
is provably bad. Moreover, in this paper, we show that workloads
that are bad for FIFO queue management are easy to generate and,
based on how we generate them, we expect to see similar work-
loads commonly in practice. We �nd it unsurprising that traditional
replacement policies (e.g., LRU [54]) continue to work with HBM,
but we �nd it surprising that FIFO can perform poorly given its
prevalence. Intel has previously used a FIFO variant called “adaptive-
open-page-policy,” and much of the literature [32, 38] focuses on
optimizations to the basic FCFS policy. We believe that our results
justify cycle-accurate simulations that might in�uence hardware
vendors to consider the disruptive change of modifying far-channel
arbitration policies.

Far-channel arbitration is the problem. How to determine
which pages to transfer in each time step (and which to delay)
is a new algorithmic challenge not faced in traditional caching, but
critical to HBM management.

This algorithmic challenge can be restated as follows: how to
partition the pages of the HBM among all processes and then change
this allocation dynamically in each time step. This is because if in

2

each timestep we have control over which process’s page is brought
into HBM, and which process’s page is ejected, then we are exactly
determining the partitioning of HBM among the processes.

The problem with the FIFO policy for serializing DRAM access
is that it tends to have the e�ect of spreading out HBM evenly and
thinly among all the processes. The HBM becomes too “stretched,
like butter scraped over too much bread.”

At any time step, a good partitioning of HBM may allocate HBM
space to processes unevenly. Some of the processes may be assigned
a zero fraction of space in HBM,momentarily starving them in order
to give enough capacity of the HBM to other processes so that
they do not thrash. In principle, good parallelism means having
as many processes running and as few starved as possible. But
if the HBM partition gives too tiny a sliver of the HBM to each
process, then no process signi�cantly bene�ts from HBM, and the
bottleneck becomes the channel to DRAM. But determining how
many processes to run and exactly how to divide the HBM, is
extremely sensitive to the processes’s request streams and a good
solution changes in each time step.

Priority queue for far-channel arbitration. An alternative pol-
icy called Priority was recently proposed by Das et al. [24]. In this
scheme, each thread is assigned a �xed priority. These priorities ef-
fectively determine at each step, which thread gets to use the DRAM
channel. Speci�cally a page request from a high–priority thread
always takes precedence over a page request from a lower-priority
thread, regardless of which page requests was made �rst.

What is interesting about this priority-based scheme is how
apparently unfair it is. Low-priority threads can get delayed by
higher-priority threads—but the reverse does not happen. Despite
the pecking order among the threads and this seeming unfairness,
Priority’s makespan is within $ (1) times the optimal makespan.
This is a major improvement over FIFO’s ⌦(?) worst case.

The Priority scheme has a good makespan because the priority
scheme naturally does a good job of partitioning the HBM among
the threads. If there is not enough space in the HBM to satisfy all of
the threads, then the lower-priority threads starve until the higher-
priority threads do not need as much as space. As the priorities are
allowed to change over time, randomly permuting the priorities
can mitigate excess starvation.

In this paper, we show that for large processor counts, Priority is
favorable over FIFO queue management. For small processor counts,
Priority does as well as FIFO or better when periodically randomly
permuting the priorities. This also has the bene�t of mitigating
some of the unfairness inherent in a Priority scheme. We show
this on workloads that are based on common memory-bandwidth
bound computation kernels.

1.2 Results
In this paper, we evaluate priority-based methods for managing
High-Bandwidth Memory automatically.

Explanation of Knight’s Landings performance using the
HBM+DRAM Model. We validate the HBM+DRAM model
Knight’s Landing (KNL) [56], an example system with HBM, has a
performance pro�le explained by HBM+DRAM model. We develop
and run a series of microbenchmarks on KNL in its di�erent modes.
In our measurements HBM has a similar but slower access latency

than DRAM by 24ns (roughly 10 percent outside of shared L2),
HBM has a higher bandwidth by about 4.8⇥, and accessing HBM
in cache mode can incur an extra latency cost.

We run the benchmarks in Flat mode HBM, Flat mode DDR,
and Cache Mode. We use the srGUPS microbenchmark (see §5) to
measure bandwidth and we chase pointers to measure latency.

In order to access DRAM in Cache Mode, we must �rst cross
the mesh and miss shared L2, then cross the mesh again and miss
in HBM. Thus, this third mesh crossing adds a 50% overall latency
penalty, but a 100% latency penalty when just considering the time
to access HBM.

The latency penalty on a cache miss is roughly the time it takes
to traverse the mesh on KNL systems. This causes a 1.5⇥ change in
overall latency, but a 2⇥ change in latency when discounting the
initial mesh search across shared L2.

Simulation and Extension to Multiple Channels. We built a
simulator in C++ using the HBM+DRAM model. We instrumented
two memory-bandwidth-bound applications, TACO Sparse Matrix-
Matrix Multiplication [23, 40] and GNU sort [53], to obtain page-
access sequences for use as simulator workloads. In our instru-
mentation we used several techniques, such as overloading C++
operators, to log memory accesses.

In our simulations, we varied the size of HBM, the source of
the access traces (GNU sort, quicksort, Sparse and Dense Matrix
Multiplication), the number of cores, the distribution of work across
the cores, the method by which we permute priorities (none, cy-
cle, cycle-reverse, interleave, Dynamic Priority), how often we
remapped priorities (some parameter times the HBM size), the num-
ber of channels to DRAM (1-10), and whether the DRAM queue is
FIFO or Priority. In this paper, we present an interesting subset of
them in depth and brie�y present our results for several others.

Evaluation of FIFO versus Priority.We compare FIFO and Pri-
ority’s makespan when running the TACO Sparse Matrix-Matrix
Multiplication and GNU sort workloads.

In our instrumented traces, at low thread counts where HBM is
plentiful, Priority gives a worse makespan than FIFO by up to 37%.
When the number of threads increases and HBM becomes more
scarce, FIFO gives up to a 3.3⇥ worse makespan than Priority. We
also design a request sequence to be bad for FIFO, hold the amount
of memory per core constant, and get a linearly worse makespan.
We observe up to 40⇥worse makespan. Because Priority is provably
good, we cannot create a bad request sequence for it.

Demonstration that periodically changing priorities fully
eliminates FIFO’s advantage. We propose Dynamic Priority,
which retains the theoretical guarantees of Priority. Unlike Pri-
ority, Dynamic Priority is either as good as FIFO or outperforms
FIFO in all of our simulations. We also �nd that Priority su�ers
from having highly variable response times, where the response
time of a page request is the duration between sending the page
to the DRAM queue and the page being served. Dynamic Prior-
ity reduces this variance by occasionally permuting the priorities.
Changing priority more often decreases the standard deviation of
response times but may increase the makespan. We characterize
this tradeo� and, for our experiments, identify a broad range of

3

parameters where variance is small and the makespan is as good
as or better than both Priority and FIFO.

1.3 Related work
HBM-tuning and cachemode.Our HBMmodel is consistent with
the behavior of the Multi-Channel DRAM (MCDRAM) in Intel’s
Knights Landing (KNL) processor [34]. In KNL, arbitration of HBM
misses is handled by the DRAM controller. Although the actual
protocol is proprietary, it is likely a solution based on [49]. Such
arbitration is commonly called “�rst-ready �rst-come-�rst-served
(FR-FCFS).” As the name implies, this is a variant of FCFS.

The �rst algorithmic work for MCDRAM, done before KNL ex-
isted, used a simulator to predict speedup for a �at-mode sorting
algorithm. [13, 14]. This was validated on KNL by Butcher, et al. [20].
Several recent papers have documented runtime improvements of 3-
4x using KNL when problem instances �t entirely in the MCDRAM.
For example, Li et al. studied kernels from scienti�c computing [42]
such as sparse matrix-vector multiplication. Byun, et al. observe
KNL speedup for dense matrix-matrix multiplication [21]. Laghari,
et al. designed �at-mode algorithms for computational kernels such
as STREAM on KNL [41]. Slota and Rajamanickam [55] obtained
2-5x speedups for graph algorithm instances larger than HBM.

The above work gives HBM-aware algorithms for structured
kernels. However, many scienti�c work�ows are too complex to
be completely rewritten using such kernels [20]. Das, et al., o�er
theory predicting computational speedups on HBM systems by
changing the DRAM controller design. [24].

Hierarchical memory models. There are several hierarchical
memory models for both sequential and parallel settings [2–4, 8–
11, 15, 16, 22, 25, 35] including models with private caches. In our
HBM model, we do not include private caches. HBM does not �t
well with standard hierarchical memory models [13, 31] because
DRAM and HBM have about the same latency.

Feuerstein and Strejilevich de Loma [28] work on a multi-
threaded paging problem. Their model has only one core, and they
interleave request sequences of multiple threads into a single thread
to minimize the number of cache misses. Loma [26] and Seiden [51]
give randomized algorithms for the same setting as described by
Feuerstein and Strejilevich de Loma.

Paging in multicore systems is investigated throughly [5, 33, 39,
43]. Hassidim [33] introduces a paging model where ? cores share
a cache. His objective is to minimize the maximum running time
of all the processors. López-Ortiz and Salinger [43] use Hassidim’s
model, but they minimize the total number of cache misses incurred
by all the cores instead of the running time. They present several
dynamic programming algorithms; however, their running times
are exponential in model parameters.

Katti and Ramachandran [39] work on a constrained model
where the interleaving of the processors is given as part of the in-
put. They present competitive online algorithms in their restricted
model. Very recently, Agrawal et al. [5–7] give$ (log ?)-competitive
online algorithm in the general parallel paging model.

Although related, these models are incomparable to the Das et
al. HBM model since latencies di�er by level.

HBM hierarchies by application: deep learning and scienti�c
computing. Recent work in large-scale deep learning leverages

multi-level memory hierarchies involving HBM/NVRAM. [12]. Sto-
chastic gradient descent computations in HBM withing GPU’s can
be adequately fed from NVRAM. of such hierarchies have vastly dif-
ferent latencies, so the model of Das, et al. does not apply. However,
scienti�c computing requires more interaction between memory
levels. Therefore, HBM/DRAM hierarchies persist, as represented
by Intel Sapphire Rapids. The latter has huge amounts of HBM
bandwidth. Under certain expected con�gurations, Sapphire Rapids
could have 3.68 TB/s of peak memory bandwidth with 128GB of
HBM [52].

2 HBMMODEL AND MANAGEMENT

1 2 p

B B B

HBM

Main

Memory

B

p cores

. . .

.
.
.

q(<< p) channels

Figure 1: The HBMmodel with p cores.

In this section, we describe the theoretical model of HBM on
which our simulator is based. This model slightly generalizes the
model from [24]—the primary di�erence is that we consider mul-
tiple channels from HBM to memory while the prior model only
considered a single channel.

HBMModel. The model consists of ? cores connected to the HBM
of size : blocks by ? parallel channels. The HBM is connected
by 1  @ << ? channels to DRAM of unbounded size. Data is
transferred in blocks of size ⌫ both from DRAM to HBM and from
HBM to the cores. Thus, the size of HBM is : · ⌫. We model the
increased bandwidth of HBM as ? parallel channels between HBM
and the ? cores. However, due to the bandwidth bottleneck of
DRAM, at most @ blocks can be transferred in parallel along the
channel to DRAM. The similar block-transfer time from HBM to
the cores and from DRAM to HBM is captured by setting all block-
transfer times to 1.

In reality, instead of a ‘DRAM-HBM’ far-channel as depicted
in Figure 1, there is a mesh connecting the cores to both DRAM
and HBM. When the HBM is used as a cache, a core’s memory
access is �rst directed to the HBM. On an HBM miss, the memory
access then goes to DRAM. Modeling this behavior as a separate
channel between HBM and DRAM is both algorithmically clean
and predictive (see §5).

Each core ?8 requests a sequence of blocks '8 = A 80, A
8
1, A

8
2, . . . on

its dedicated channel to HBM. Each core’s requests are disjoint;
that is, satisfying a request on sequence ?8 does not progress any
other sequence. Core ?8 requests blocks in the order of sequence
'8 and does not request the next block until the previous block in
the sequence is served to the core. If core ?8 requests block A 89 at
time step C and if A 89 is in the HBM (this is an HBM hit), then at the

4

next time step C + 1, the requested block is transferred to core ?8 .
If the requested block is not in HBM (this is an HBMmiss), then
the block must be transferred from DRAM to HBM and then from
HBM to core ?8 . This takes at least two time steps but may take
arbitrarily longer if the request from HBM to DRAM must wait to
get access to (one of the @) DRAM channels.

HBMManagement Policies. The HBM-management algorithm
must consider two resources: (1) @ far channels between HBM
and DRAM; and (2) the : blocks within the HBM (see §1.1).

A far-channel arbitration policy decides which (of the po-
tentially many) waiting requests are served using the @ channels
between HBM and DRAM. When there are more than @ outstand-
ing requests for blocks that are not in HBM, all of them cannot be
fetched from DRAM to HBM in parallel due to limited bandwidth
between DRAM and HBM. The block requests are kept in a queue
called the request queue. Blocks are fetched from the DRAM in
the queue order determined by the far-channel arbitration policy
and up to @ blocks can be served in parallel.

A block-replacement policy decides which blocks stay in HBM
and which blocks are evicted when HBM is full and new blocks
are brought from DRAM to HBM. This is analogous to cache re-
placement. Several block-replacement strategies such as LRU, FIFO,
CLOCK [36] have been proposed in the caching literature. For cache
management, LRU guarantees constant-competitive performance
with the optimal given constant-factor resource augmentation [54].

Makespan as our performancemetric.On a single core with nor-
mal cache, the metrics ofmakespan (maximum completion time)
and number of cache misses are closely aligned. Approximately
minimizing the number of cache misses would approximately min-
imize the makespan. However, this correlation does not extend to
HBM. López-Ortiz and Salinger [43] and Das et al. [24] show that
the number of HBM misses is the wrong objective, since di�er-
ent policies that have the same number of misses can have wildly
di�erent makespans. Instead, they argue that we should directly
optimize makespan. Formally, given an HBM of size : blocks and ?
disjoint request sequences to the ? cores, the objective is to �nd a
far-channel arbitration policy (for the HBM-DRAM channel) and a
block-replacement policy for the HBM to minimize makespan.

Theoretical Results for Automatic HBM management. Das et
al. [24] analyzed HBM-management policies under this model for
the special case where @ = 1, that is, only one channel from HBM
to DRAM. Their results indicate that HBM management is funda-
mentally di�erent from Ideal-Cache management [30, 31] which
is only concerned with the block-replacement policy. They show
that designing a far-channel arbitration policy is fundamental for
designing good automatic HBM-replacement algorithms: Combin-
ing the natural far-channel arbitration policy of First Come First
Serve with the natural block replacement policy of LRU is terri-
ble theoretically. On the other hand, a priority-based policy (also
combined with LRU) performs well. This policy arbitrarily assigns
a pecking order on the cores and always satis�es requests from
high-priority cores before lower-priority cores. Therefore, for the
same block-replacement policy (LRU), the far-channel arbitration
policy makes all the di�erence in theoretical performance.

The performance of the two channel-arbitration policies Priority
and FCFS with the same block-replacement policy LRU are:

T������ 1 ([24] P���������� �� P������� ���@ = 1). Priority
is $ (1)-competitive for the makespan-minimization problem (even
without any memory-augmentation).

T������ 2 ([24] P���������� �� FCFS ��� @ = 1). There exists
? block request sequences such that even with3 memory augmentation
and B bandwidth augmentation the makespan of FCFS+LRU is ⇥(?

3B)-
factor away from that of the optimal policy.

Therefore, in the worst case, FCFS+LRU can be factor of ⌦(?)
worse than Priority+LRU.

Extension to multiple channels between HBM and DRAM.
We now present a relatively straightforward extension from one
channel to @ channels between HBM and DRAM and present a
$ (@)-competitive online algorithm for the generalized HBM model.

T������ 3. If there are @ channels between DRAM and HBM,
then Priority achieves an $ (@)-competitive ratio for the makespan-
minimization problem (even without any memory-augmentation).

Generalizing fully-associative HBM results to direct-mapped
implementations. Prior HBM results applied to fully-associative
caches [14, 24]. However, practical implementations of HBM are
usually direct mapped [50, 56]. We now explain how to take a
program designed for a fully-associative HBM with LRU (or op-
timal) replacement and automatically transform it into another
program that runs asymptotically as fast on a direct-mapped cache.
This direct-mapped cache only need be a constant-factor larger.
From this transformation plus resource augmentation, we conclude
that the scheduling asymptotics for HBM are the same on a fully-
associative cache and a direct-mapped cache.

Frigo et al. [30, 31] and Prokop [48] show that a fully-associative
sequential cache of size" with LRU replacement can be simulated
with a direct-mapped cache of size $ ("). We give a similar result
for HBMs—the main di�erence is that in a sequential cache, at most
one page is accessed at a time while multiple pages may be accessed
concurrently in an HBM with ? channels to the cores.

Lemma 1. There exists an automatic transformation from a pro-
gram running on a size-: fully-associative HBM with LRU or FIFO
replacement to another program that simulates these policies on direct-
mapped cache of size ⇥(:) using a constant factor more bandwidth
from HBM to DRAM. Speci�cally, assuming that the direct mapped
cache has $ (1) more HBM and bandwidth, (1) each HBM hit in the
original program causes $ (1) hits and no misses in the transformed
program (in expectation) and (2) each miss in the original program
causes $ (1) misses in the transformed program (in expectation).

P����. We will use two data structures, similar to those used
by Frigo [30, 31, 48]. The �rst data structure is a hash table (with
chaining to resolve collisions) which allows us to simulate full-
associativity. The other is a doubly-linked list which allows us to
simulate LRU or FIFO. The transformation is essentially identical
to the one described by Frigo; we describe it here for completeness.

The HBM is divided into two⇥(:) regions — one for maintaining
the meta-data (hash-table and linked list) and another for keeping
the actual pages from the program (program data). All manipulation

5

is done by accessing DRAM addresses and changing the data stored
in these addresses.We �rst reverse themapping from direct-mapped
HBM and designate a single location in DRAM whose data will be
stored in each location in the HBM — that is, we have a bijection
between the direct-mapped HBM and DRAM.

The hash table is a size : hash table which maps each block that
the programmight access in DRAM to some location in the program
data region of the HBM —we call it the Cache DRAM address (even
though it might not always be cached). That is, each HashTable key
is a user-supplied DRAM address. Each HashTable value contains a
DRAM address which is part of the above mentioned bijection. By
using a 2-universal family of hash functions [45], one can ensure
that if we have : blocks in HBM at a time, then the chain length is
$ (1) in expectation.

We will use this hash-table to simulate full-associativity as fol-
lows: When the program accesses a user-supplied DRAM address,
we search the hash-table in $ (1) time to see if the page is in HBM.
If not, we copy over data from the user-supplied DRAM address
to the corresponding Cache DRAM address and then bring it into
HBM. When evicting a page, we copy data from the Cache DRAM
address to the user-supplied DRAM address. If the page is found
in the hash table, we can then access this page by accessing the
corresponding Cache DRAM address which is cached within HBM.

To pair the hash-table and linked list, each hash-table node points
to a linked-list node; each linked-list node also has a corresponding
back pointer. The linked list is ordered based on eviction policy. In
FIFO, the front of the linked list is the node corresponding to the
�rst-in page and the back is the node corresponding to the last-in
page. In LRU, the front of of the linked list is the LRU page and the
back of the linked list is the MRU page.

When we encounter an HBM miss, the page at the front of the
linked list is evicted, or removed from the hash table and from the
linked list. The data is then copied back from the Cache DRAM ad-
dress to the original DRAM address. At this point, the user-supplied
DRAM address is copied to the corresponding Cache DRAM ad-
dress of this page, brought into HBM, and inserted into the hash
table and into the back of the linked list. All this causes at most a
constant number of pages to be brought into HBM. On an HBM hit,
no new pages are brought into HBM. ⇤

T������ 4. The makespan of the transformed program running
on the direct-mapped cache is at most $ (log@) factor larger than
the original program running on a fully associative cache with FIFO
and at most $ (log?) larger than the original program running on a
fully associative cache with LRU, where @ is the number of channels
from DRAM to HBM and ? is the number of processors. If @ is a
constant, as in the original HBM model, then the direct-mapped cache
is asymptotically equivalent to FIFO.

P����. The above transformation works for both FIFO and LRU.
For simulating FIFO, the linked list is only modi�ed on an HBM
miss—since at most @ blocks can be transferred from DRAM to
HBM on each time step, we have to add up to @ blocks to the front
of the linked list on any one step. However, LRU order changes on
HBM hits as well. Therefore, if ? processors access ? pages which
are all within HBM, then ? corresponding blocks must move to the
head of the linked list in one time step.

We must move G items concurrently to the front of the linked
list. G  @ for FIFO and G  ? for LRU. There are two components:
remove G items concurrently from the linked list and insert the G
items to the front of the linked list. Removal is easier—we mark the
items removed without physically removing them and periodically
run garbage collection to physically remove the items. As we never
traverse this linked list to �nd an item, we allow it to get large as
long as it �ts in HBM.3

We keep a @ (correspondingly ?) element auxiliary array. At a
high-level, we wish to ensure all G processors can write their item
into a di�erent location of this array. If we can achieve this, then we
can create a “mini” linked list of these G items in $ (1) time (each
item can link itself to the item before and after itself concurrently).
This mini linked list can be linked to the front of our master linked
list in $ (1) time.

The remaining problem is to ensure that each item can be writ-
ten at a unique location in this auxiliary array concurrently. This
can be achieved in $ (log@) (correspondingly $ (log?)) time using
pre�x-sums. In brief, each processor must get a unique number
between 1 and G (which is equivalent to updating a shared counter)
in parallel and then write their element in the location they get by
updating this shared counter—pre�x-sums is exactly designed to
perform this operation.4 Therefore, each core will write its item in
a unique location in the auxiliary array in $ (1) time, link itself to
its neighbors in $ (1) time, and then the mini list is linked to the
original list in $ (1) time. ⇤

The following corollary follows since FIFO can be used as a
replacement policy instead of LRU in the original HBM proof
from [24] without changing the competitive ratio asymptotically.

Corollary 1. One can achieve $ (1)-competitive makespan with a
direct-mapped HBM versus a fully-associative HBM, when @ = $ (1).

3 SIMULATING HBM AS CACHE
We built a simulator of the HBM Model from §2 to understand how
Priority and FIFO behave in typical cases and how their constants
compare. Following the model:

P������� 1. The sets of pages accessed by each core are mutually
exclusive.

P������� 2. We track page references and ignore computation.
Thus, any advantage in minimizing makespan has meaning only
when the code being simulated is memory-bandwidth bound.

P������� 3. HBM is fully associative.

These properties are notably di�erent from KNL hardware. We
intend not to understand KNL’s implementation but the constants
and performance predicted by the model.

We argue that these properties are reasonable. Property 1 means
that we do not simulate true parallel programs—we argue that ?
cores sharing a common HBM and processing reference streams
3In principle, it can get even larger since the unaccessed items will logically move out
of HBM and never be accessed. We need only keep the items representing the pages
currently in HBM—that is, the logically un-removed items—and their neighbours. That
is, at most$ (:) items of the linked list have to be in cache even if the linked list is
longer than$ (:) .
4Some theoretical models assume an$ (1)-time fetch-and-add (FAA) hardware opera-
tion. With such an operation, this update can be done in constant time.

6

from the same serial code is a reasonable surrogate for multi-
threaded execution. Our two test codes, sorting and sparse matrix
multiplication (SpGEMM), are both memory-bandwidth bound, sat-
isfying Property 2. Corollary 1 shows that Property 3 is reasonable.

3.1 Simulating HBM
We simulate FCFS and priority-based[24] management of HBM
under LRU with a simple C++ program that ingests address traces
from serial runs of annotated code. In a preprocessing step, each
array dereference in the annotated code is mapped to its page
reference. The resulting sequence of page references forms the
input to our simulator.

Simulation. All cores share a single HBM of size : slots, each of
which can hold a single page. The simulation operates on ticks. We
de�ne A 8⇤ as the currently requested page in '8 . When processor 8
is served the page it requests, A 8⇤, then on the next tick processor
8 will request the next page in its queue, changing A 8⇤. Let C be the
current tick, on which the following occurs:

(1) If C is a multiple of the remap period) , remap the priorities.
Increase C by 1.

(2) For each A 8⇤, if A 8⇤ is not resident in HBM, add A 8⇤ to the DRAM
request queue.

(3) If there are more requests in queue then empty slots in HBM,
evict up to @ pages by LRU.

(4) For each A 8⇤, if A 8⇤ is resident in HBM, serve A 8⇤ to processor 8 .
(5) Retrieve up to the next @ pages in the DRAM request queue

from DRAM into HBM. Remove these pages from the queue.

3.2 Generating Data
We run 1 independent run of a program per processor to generate
? independent access traces. These traces form a workload; in our
workloads, we assume that all processors areworking on su�ciently
similar tasks and each trace is generated from the same program
with di�erent randomness. Datasets 1 and 2 are both from memory-
bandwidth bound applications, and they’re therefore amenable to
HBM. Dataset 3 is designed to stress FIFO.

Dataset 1: Sorting. We generate GNU sort [53] memory access
traces by running GNU sort on randomly generated sequences of
500,000 integers. Since GNU sort takes iterators as input, we created
a logging iterator class that logs every dereference to a �le, and
passed these logging iterators to GNU sort.

Since sorting is perhaps the most ubiquitous computing kernel
of all, any advantage is of interest.

Dataset 2: Sparse Matrix Matrix Multiplication. Our SpGEMM
code is based on TACO SparseMatrix-Matrix Multiplication [23, 40].
We replaced the arrays used in this code with our own array-like
objects that log all accesses to a �le. We generate the access traces
by running this modi�ed version on two sparse matrices of size
600 by 600 where approximately 10% of the elements exist. These
elements are randomly generated.

SpGEMM is the cornerstone of many computations in scienti�c
computing and data science, and has been shown to bene�t from
many-core parallelism of 200 cores and beyond [19, 27].

Dataset 3: Traces designed to be bad for FIFO. FIFO performs
asymptotically poorly when run on a long sequence of unique pages,

repeated many times. We generate the sequence 1, 2, 3 . . . 256 and
repeat it 100 times. FIFO performs poorly on this sequence when
there is insu�cient memory to keep everything paged in. See §4.

While this sequence is speci�cally designed to make FIFO look
bad, it is still a simple sequence that generalizes nicely to everyday
usage. For example, this trace could be generated by a program that
needs more memory than the working set size to perform well. If it
has less memory than the working set size, it starts to thrash.

4 MODEL SIMULATION RESULTS
We simulate FIFO, Priority, and Dynamic Priority and establish:

• Priority is generally better than FIFO in terms of Makespan,
often much better (3.3⇥), except at small thread counts,
where Priority can be slightly worse(1.37⇥).

• Dynamic Priority gives the same or better Makespan than
both FIFO and Priority for all tested workloads.

• Priority may end up starving threads for long periods of time
(metric formalized later). Dynamic Priority starves threads
for much shorter periods of time.

• Dynamic Priority, by changing thread priorities more or less
often, can increase or decrease thread starvation at the cost
of additional overhead in Makespan, but a large range of
values lead to essentially the same Makespan.

Simulation and explanation of FIFO’s poor performance. We
now show the results of our simulation of FIFO and Priority on
Dataset 3 (see §3.2), where FIFO performs asymptotically worse
than Priority. We plot the results in Figure 3; FIFO yields a 40⇥
worse makespan that linearly scales with thread count. To make
FIFO fail so catastrophically, the HBM size : is set to have enough
memory to �t only 1

4 of all the unique pages across all the threads.
When running on FIFO, we never have a cache hit—by the time

a thread repeats a page in its sequence, the page has been long
evicted. In contrast, Priority will have a much higher cache hit rate.
The �rst two threads (as one thread cannot saturate the channel
in the HBM+DRAM model) load all of their pages into HBM. They
complete their work quickly while the next two threads load pages
into HBM. This repeats until all of HBM is �lled up, at which point
some least recently used page is evicted. When a higher priority
thread runs into a cache miss due to this eviction, the lowest priority
thread stops making progress instead of continuing to sabotage
other threads. Generalizing this examples makes it clear why FIFO
performs much worse than Priority when HBM is especially sparse.

We show similar but less extreme cases where FIFO performs
badly on Datasets 1 and 2 (see §3.2). Figure 2 shows FIFO vs Priority
on one instance of sparse matrix-matrix multiplication and one
instance of GNU sort. In Figure 2a, we see that FIFO can give a
makespan of up to 3.3⇥ as large as Priority for large thread counts
between 50 and 200. Similarly, for GNU sort in Figure 2b, FIFO gives
a 1.2⇥ larger makespan at high thread counts.

When and why FIFO outperforms Priority for Makespan.
There are cases where Priority yields a worse makespan than FIFO.
In Figure 2a, Priority yields a slightly larger makespan up to 1.33⇥
as large as FIFO. For GNU sort in Figure 2b, Priority gives a 1.37⇥
larger makespan at low thread counts.

7

(a) SpGEMM, 600 ⇥ 600, 90% sparsity. The SpGEMM results are par-
ticularly promising since SpGEMM has been shown in the literature
to scale beyond 100 cores.

(b) GNU sort of 500,000 integers.

Figure 2: Simulation results for priority vs. FIFO, with HBM sizes ranging from 1000 to 5000 slots. The ~-axis shows the ratio
of FIFO’s makespan to priority’s makespan. Values greater than 1.0 show an advantage for priority. In both cases, FIFO can
dominate at low processor counts but priority always dominates at high processor counts.

Figure 3: FIFO vs Priority for 100 repetitions of the sequence
1, 2, 3 . . . 256, but only 1

4 of the memory required to �t every
page in HBM. FIFO misses every page and Priority starves
threads. FIFO yields a higher makespan by as much as 40⇥.

For these low thread count results, HBM is plentiful—all the
threads can run simultaneously without thrashing. Since all the
workloads are running the same problem of approximately the
same length and characteristics, it is natural for all the threads to be
worked on at approximately the same speed to end at the same time
and minimize Makespan. When running Priority, we instead work
on some threads slowly and some threads quickly, causing some
threads to be left behind. The issue isn’t utilization, but an artifact
of this inconsistency when running balanced workloads. Dynamic
Priority aims to reduce this inconsistency, which we quantify below.
We also discuss Priority’s performance on a di�erent metric (that
does not have such an artifact) at the end of this section.

Quantifying thread starvation. To capture some notion of thread
starvation, we de�ne ’response time’ and ’inconsistency’ as follows.

Let A 80, A
8
1, A

8
2, . . . be the page reference sequence running on

thread ?8 . Let the response time F8
9 of any page reference A

8
9 be the

number of simulation ticks between when the page is requested
and when the page is serviced. For an HBM cache hit,F8

9 = 1, since
it takes one tick to transfer the page from HBM to the thread. For

an HBM cache miss,F8
9 � 2, depending on when it is served by the

DRAM request queue. It takes one tick to transfer the page from
DRAM to HBM, and one more tick to transfer the page from HBM
to the thread (see §2). We de�ne inconsistency to be the standard
deviation ofF8

9 over all 8, 9 .
Thread starvation occurs when some threads have disproportion-

ately higher response times than other threads. In FIFO, no threads
are starved, and both response time and inconsistency are $ (?). In
Priority, low-priority threads are starved. Their initial page requests
are blocked by higher-priority threads, causing some requests to
have large (possibly unbounded) response time and inconsistency.
Thus, the inconsistency for Priority is high.

Changing priorities gives a better makespan and response
time than both FIFO and Priority. By changing priorities, we
gain two main advantages: threads are starved less often and the
mixed results from Figure 2 become unambiguously positive. We
present Dynamic Priority, a scheme which randomly permutes the
priorities of the threads every �xed interval) . We also consider Cy-
cle Priority, a deterministic scheme which cycles priorities on these
same intervals. These schemes are based on the observation in [24]
that priorities can be periodically re-assigned without violating the
theoretical bounds if the interval is longer than the size of HBM
() � :). Thus, we talk about) as a multiple of : . We de�ne % as
the set of processing thread ids and : as the HBM size.

We consider Cycle Priority as it has practical advantages over
Dynamic Priority: ease of implementation and ability to trivially
bound the response time. Coordinating and generating the shared
randomness required to implement Dynamic Priority in hardware
may not be desired, especially if a simpler and easier to implement
scheme su�ces. Cycle Priority does not need shared randomness;
it only requires processors to agree when to change priority.

There is also a trivial upper bound on the response time of a page
reference. A thread is guaranteed to become the highest priority
thread within ? priority permutations. We therefore bound the
longest a page reference can wait in the request queue by ? ·) . The
bound on inconsistency follows from this bound on response time.

8

(a) SpGEMM, 600 ⇥ 600, 90% sparsity. (b) GNU sort of 500,000 integers.

Figure 4: Simulation results for Dynamic Priority versus FIFO, with HBM sizes ranging from 1000 to 5000 slots. Randomized
remapping has mitigated any advantages that FIFO held in Figure 2. The results for deterministic remapping are similar for
balanced workloads.

(a) (b)

Figure 5: E�ect of scheme and Z on inconsistency. Starting at the bottom right of each sub�gure, �nd the Priority point (yellow).
This is our point of maximum performance and maximum inconsistency. Moving to the left, we show the priority permutation
strategies for decreasing permutation interval. Most of the inconsistency can be removed with minimal loss in performance.

De�nition 1.
c : % ! % . A permutation mapping thread ids to priorities.
Priority: c is always the identity permutation. c (8) = 8 .
Dynamic Priority: replace c with random permutation c 0.
Cycle Priority: replace c with c 0. c 0(8) = (c (8) + 1)

mod |% |.

Figure 4 shows the a�ect of randomizing priorities every 10 · :
ticks. At low thread counts, where Priority previously lost to FIFO,
Dynamic Priority either performs as well as FIFO or outperforms
FIFO on Makespan. At high thread counts, Dynamic Priority per-
forms as well as or better than Priority and FIFO. For balanced
workloads (where every thread has a comparable task), Cycle Prior-
ity also performs similarly to Dynamic Priority and may be simpler
to implement in hardware. When the work is asymmetric, Cycle
Priority continuously places the same thread behind the most de-
manding thread, causing small amounts of starvation. This can
likely be mitigated on su�ciently long sequences by instead cy-
cling through all permutations or shu�ing, but would be more

complex to implement. Even though Cycle Priority does not violate
the theoretical guarantees of [24], we believe Dynamic Priority to
be a more robust scheme.

Dynamic Priority reduces starvation and maintains
Makespan. We empirically show that periodically permuting
priorities (such as in Dynamic Priority or Cycle Priority) gives
us signi�cantly lower inconsistency than FIFO and as good or
better makespan than Priority. We plot the inconsistency and
makespan for various permutation intervals) of FIFO, Priority,
Dynamic Priority, and Cycle Priority in Figure 5. As) ! 1,
Dynamic Priority approaches Priority. As) ! 1, Dynamic Priority
approaches purely random selection, which has the same expected
waiting time in the DRAM queue for each thread as FIFO.

For both Figure 5a (sparse matrix-matrix multiplication) and
Figure 5b (GNU sort), FIFO has the highest makespan and Priority
has the highest inconsistency. For) in the parameter range 10: to
100: for Dynamic Priority and 5: to 100: for Cycle Priority, the
makespan is similar to Priority but the inconsistency is much lower.
However, when Dynamic Priority gets too small (less than 10:),
the makespan increase as) decreases. Therefore, there is a large

9

Table 1: FIFO has lowest inconsistency and highest average response time. Priority has highest inconsistency and lowest average
response time. More frequent permutation decreases Priority’s inconsistency and increases its average response time. This
di�ers from the results using makespan, where Priority’s makespan is about the same as or worse than Dynamic Priority.

(a) Inconsistency and average response time for sparse matrix
multiplication using permutation intervals k, 5k, 10k, and 100k.

Queuing Policy Inconsistency Response Time
FIFO 69.303 30.273
Dynamic Priority) = : 683.817 14.744
Dynamic Priority) = 5: 1178.274 10.824
Dynamic Priority) = 10: 1612.298 10.430
Dynamic Priority) = 100: 4744.975 9.745
Cycle Priority) = : 1768.970 10.430
Cycle Priority) = 5: 3916.114 10.323
Cycle Priority) = 10: 5512.070 10.275
Cycle Priority) = 100: 16597.218 9.837
Priority 21804.684 5.464

(b) Inconsistency and average response time for GNU sort using
permutation intervals k, 5k, 10k, and 100k.

Queuing Policy Inconsistency Response Time
FIFO 45.021 12.712
Dynamic Priority) = : 569.941 10.902
Dynamic Priority) = 5: 1163.263 10.513
Dynamic Priority) = 10: 1606.777 10.454
Dynamic Priority) = 100: 4722.316 10.303
Cycle Priority) = : 1776.058 10.451
Cycle Priority) = 5: 3929.010 10.436
Cycle Priority) = 10: 5528.542 10.428
Cycle Priority) = 100: 16823.080 10.242
Priority 27396.798 5.822

parameter range for) where Dynamic Priority’s makespan is as
good as Priority but the inconsistency is much lower.

Our results indicate that) should be greater than 10: to allow
closer behavior to Priority and more page reuse between permu-
tations. We observe large ranges of) such that Dynamic Priority
can reduce Priority’s inconsistency while retaining its makespan.

Priority gives a better average response time, even when
makespan is the same. Another metric, average response time,
measures the performance of a scheduler.We chart Figure 5 but with
average response time instead of Makespan in Table 1. We see that,
for the same Makespan, Priority has the lowest average response
time for both GNU sort and Sparse Matrix-Matrix Multiplication.
For both datasets, FIFO has the highest (worst) average response
time and Dynamic Priority and Cycle Priority both give about
the same average response time for reasonable values of) . This
provides further evidence that this low-thread count anomaly in
Figure 2 that is eliminated in Figure 4 by Dynamic Priority is due
to an artifact of using Makespan and Priority.

5 MODEL VALIDATION EXPERIMENTS
We validate our algorithmic model from §2 on Xeon Phi Knight’s
Landing processors, which have HBM accessible both directly (in
�at mode) and as a cache for DRAM (in cache mode).

One abstraction themodel makes is, instead of amesh connecting
all of HBM, DRAM, and the cores [56], HBM sits between DRAM
and the cores. This leads to several algorithmic properties:

P������� 1. HBM and DRAM have a similar latency when ac-
cessed directly.

P������� 2. HBM has higher bandwidth than DRAM (which can
be detected by normal programs).

P������� 3. The latency to access DRAM through a cache miss is
approximately double accessing HBM.

P������� 4. When too many HBM misses occur in cache mode,
the channel to DRAM becomes the bottleneck.

To show that Knight’s Landing has Properties 1-4 and is consis-
tent with the HBM Model, we measure and compare the latency

and bandwidth of HBM, DRAM, and HBM as a cache for DRAM.
Validating some of these properties, especially the bene�ts of HBM
(Property 2 and Property 4), has been done before [46, 47]. We
present our �ndings for due diligence. We perform two microbench-
marks (one latency-bound and one bandwidth-bound, described
below) on a range of allocation sizes, some of which �t within HBM
and some of which exceed HBM.

We perform these experiments on Xeon Phi Knight’s Landing
CPUs with 272 threads (4 hyperthreads per core) and 16GiB of
HBM. Each CPU has 6 DDR Channels and 8 HBM connections,
all connected to the cores via a mesh. We ensure we are access-
ing HBM (or DRAM) when the machine is in �at mode by using
numactl --membind.

5.1 Microbenchmarks

Measuring Latency: Pointer Chasing. To measure the latency
to a level of the KNL’s memory hierarchy, we record the average
time to chase a pointer on an array of a �xed size. We call the
operation G := 0[G] pointer chasing on the array 0. In order to
map the latency across the memory hierarchy (L1, L2, shared L2,
HBM, or DRAM), we run our pointer chasing experiment for arrays
whose sizes are the powers of two from 1KiB to 64GiB. We stop
the experiment early for HBM, which can only allocate an array of
size 8GiB. Each element in the array is initialized to the index of a
random element. To avoid loops without causing signi�cant CPU
usage from generating randomnumbers, we add a bit of randomness
every 32 pointer chasing operations. In total, we measure the time
to perform 227 pointer chasing operations, then divide by 227 to
get the average.

Measuring Bandwidth: GLUPS. To measure the bandwidth of
various levels of the KNL memory hierarchy, we record the average
MiB/s that can be read, xor’d, and written in randomly chosen
blocks of length 1024 bytes. To measure bandwidth, we introduce
GLUPS, or Giga-Large Updates per Second. GLUPS are closely
related to the standard GUPS benchmark (formally referred to as
RandomAccess) [44], but operates on sequential blocks of 1024
bytes (128 doubles) to ensure we fully saturate the HBM channels.

10

(a) Pointer chasing latencies for arrays sizes up to 64GiB. (b) Figure 6a zoomed in for array sizes larger than shared L2. See
Table 2a for data.

Figure 6: Pointer chasing on HBM, DRAM, and HBM as a cache for DRAM. Cache tier and size is marked by vertical dotted
lines with annotations above. There is a drastic change in latency after exceeding each level of cache.

Table 2: GLUPS and pointer chasing performance for array sizes within and exceeding HBM.
(a) Pointer chasing latency test for DRAM, HBM, and HBM as
Cache. Units are nanoseconds per update. See plotted version in
Figure 6b.

Array Size DRAM (ns) HBM (ns) Cache (ns)
16MiB 168.9 187.6 190.6
32MiB 171.9 194.1 196.1
64MiB 174.0 196.5 199.8
128MiB 198.8 222.3 228.1
256MiB 235.6 259.8 271.6
512MiB 269.7 293.8 311.9

1GiB 291.4 315.5 337.5
2GiB 304.4 328.6 352.8
4GiB 312.7 337.2 365.7
8GiB 318.3 343.1 378.3
16GiB 324.4 - 396.1
32GiB 338.0 - 430.5
64GiB 364.7 - 489.6

(b) 272 threads GLUPS bandwidth test for DRAM, HBM and HBM
as Cache. Units are SiH/s. HBM and Cache have a much higher
bandwidth than DRAM, but HBM as Cache drops o� sharply once
the working set exceeds HBM.

Array Size DRAM (MiB/s) HBM (MiB/s) Cache (MiB/s)
512MiB 70,627 299,593 308,103

1GiB 67,874 262,208 302,974
2GiB 66,459 315,227 313,730
4GiB 67,025 323,989 319,459
8GiB 67,118 323,318 309,988
16GiB 67,534 - 272,787
32GiB 67,931 - 148,989
64GiB 67,720 - 146,600

We use GLUPS instead of GUPS due to the machine quirks of
KNL. GLUPS ensures we’re using all the channels to HBM and
therefore all the bandwidth by loading in su�ciently large chunks.
It’s a machine speci�c reason. We expect GLUPS to be bandwidth-
bound when run multi-threaded (272 threads on KNL).

To measure GLUPS, we randomly pick a spot on the array, se-
quentially read, xor with a �xed but arbitrary number, and write
each of the next 128 doubles. For KNL machines, 128 doubles is 16
cache lines each of size 64 bytes. We perform this operation until
the entire array’s worth of data has been updated—that is, for a
2GiB experiment, we update a total of 2GiB of data. We implement
this benchmark in C++ using OpenMP for parallelization.

5.2 Results

Similar access latency to HBM and DRAM. Our model sets the
access latency to DRAM and HBM chips as the same (Property 1).
In the pointer chasing results in Figure 6a, the latencies for Flat
Mode DRAM and Flat Mode HBM di�er by approximately 24ns
for array sizes between 16MiB and 8GiB. While not exactly the
same, the latency di�erence is still su�ciently small to invalidate
standard caching assumptions. For the purposes of modeling, KNL
hardware is consistent with Property 1.

Bandwidth advantage of HBM over DRAM. One key reason to
use HBM over DRAM is the Higher Bandwidth o�ered (Property
2). This property is well studied [46, 47]—we present our �ndings
for due diligence. The model in §2 has ? channels between HBM
and the cores. We validate this in Table 2b by showing a 4.3 � 4.8⇥
bandwidth improvement over DRAM for array sizes between 512
MiB and 8GiB. While not the full ?⇥ bandwidth improvement the
model predicts, KNL has a su�ciently large bandwidth such that
the bottleneck is not transferring data from HBM to the processor
(or cache to processor) but transferring data from DRAM to HBM.
Thus, we �nd that KNL hardware is consistent with Property 2.

Latency penalty for HBM misses in cache mode. When in
cache mode, a memory access that misses HBM and goes to DRAM
will incur double the latency of an HBM hit (Property 3). In real
hardware (speci�cally KNL), there are several di�erent caches to
miss (L1, L2, shared L2) before HBM is accessed. In order to better
understand the penalty of missing various caches, we perform
pointer chasing on array sizes from 210 to 232 bytes in Figure 6a.
We zoom in on the same data in Figure 6b and tabulate it in Table 2a
to better show the latency to access HBM when the problem size is
larger than the previous levels of cache.

11

When accessing a random element of an array that is twice the
size of HBM in cache mode, there is a 50% chance of getting a cache
miss. Therefore, we expect to see the additional latency to DRAM
only half the time. However, as the array sizes grow far beyond each
boundary in the memory hierarchy, the latencies plateau. Using
the di�erences in heights of these plateaus, we can get an estimate
of the latencies to each level of the memory hierarchy.

Speci�cally, in the cache mode latencies, a miss out the CPU’s
local L2, which requires traversing the mesh to another tile’s L2,
incurs about 200ns. This is a baseline latency that we subtract o�
for measuring latency to HBM and DRAM. Memory accesses that
miss shared L2 cache and go into HBM take about 160ns. While we
can’t see the �nal plateau for missing HBM and going into DRAM,
the �nal data point suggests that misses to DRAM take 300ns or
more. This shows the double latency penalty we expected—KNL
hardware is consistent with Property 3.

Bandwidth reduction for HBMmisses in cache mode. HBM
bandwidth su�ers when toomanyHBMmisses occur in cachemode
because of the bandwidth bottleneck between DRAM and HBM
when using HBM as cache (Property 4). We perform the GLUPS
experiment and plot the results in Table 2b. We see that bandwidth
halves when the array is 32GiB (2x larger than HBM), but still has
a higher bandwidth than DRAM. Thus, KNL hardware exhibits
enough of this bottleneck to be consistent with Property 4.

6 CONCLUSION
In this paper, we make a case for the bene�ts of cycling priorities as
a better method of managing HBM. We analyze how cycling a�ects
both fairness and makespan and determine that cycling priority
schemes are likely preferable to both FIFO-like and static-priority
management schemes. We investigate how to cycle by focusing on
two schemes, Dynamic Priority and Cycle Priority. These schemes
both have constant-competitive makespan when compared to opti-
mal; our experiments further show that they have su�ciently low
constants to outperform FIFO and Priority on common workloads.
We �nd compelling evidence that Dynamic Priority and Cycle Pri-
ority may out-perform current FIFO-like HBM management and
should be studied further. As Cycle Priority performs well and is
likely easier to implement in hardware than Dynamic Priority, we
�nd that Cycle Priority is especially promising.

6.1 Future Work
Our theoretical model is intentionally simple and does not admit all
of the complexity of real architectures. One important simplifying
assumption is that access sequences are disjoint. Theory on non-
disjoint access sequences is a promising avenue for future work.

We test our schemes on similar workloads across all cores. Future
work may test di�erent workloads; it will be especially interesting
to see how Cycle Priority behaves on di�erent distributions of work.

While we focused on KNL as a motivating example, we did not
attempt to simulate KNL hardware. Cycle-accurate simulations will
be essential to making informed decisions for speci�c architectures.

ACKNOWLEDGMENTS
This work was supported in part by the Laboratory-Directed Re-
search and Development program at Sandia National Laboratories.

Sandia National Laboratories is amulti-mission laboratorymanaged
and operated by National Technology and Engineering Solutions
of Sandia, LLC., a wholly owned subsidiary of Honeywell Interna-
tional, Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-NA0003525.

Kunal Agrawal was supported by the Department of Computer
Science and Engineering at Washington University in St. Louis
as well as the NSF grants CCF-2106699, CCF-1733873, and SPX-
1725647.

Michael Bender was supported by the National Science Founa-
tion grants CCF-2118832, CCF-2106827, CSR-1763680, CCF-1716252,
CNS-1938709, and CCF-1725543.

Rathish Das was supported by the Canada Research Chairs Pro-
gramme and NSERC Discovery Grants.

Benjamin Moseley was supported in part by NSF grants CCF-
1824303, CCF-1845146, CCF-2121744, CCF-1733873 and CMMI-
1938909. Benjamin Moseley was additionally supported in part by a
Google Research Award, an Infor Research Award, and a Carnegie
Bosch Junior Faculty Chair.

We would like to thank Mike Ferdman (Stony Brook University),
Gwen Voskuilen (Sandia National Laboratories), and especially Si
Hammond (Sandia National Laboratories) for helpful conversations
and pointers to relevant resources.

REFERENCES
[1] 2015. High-performance on-package memory. http://www.micron.com/

products/hybrid-memory-cube/high-performance-on-package-memory
Archived at https://web.archive.org/web/20150921170652/http://www.micron.
com/products/hybrid-memory-cube/high-performance-on-package-memory.

[2] Alok Aggarwal, Bown Alpern, Ashok K. Chandra, and Marc Snir. 1987. A Model
for Hierarchical Memory. In Proceedings of the Nineteenth Annual ACM Sympo-
sium on Theory of Computing. 305–314.

[3] A. Aggarwal, A.K. Chandra, and M. Snir. 1990. Communication Complexity of
PRAMs. Theoretical Computer Science (March 1990), 3–28.

[4] Alok Aggarwal and Je�rey Scott Vitter. 1988. The Input/Output Complexity of
Sorting and Related Problems. Commun. ACM 31, 9 (Sept. 1988), 1116–1127.

[5] Kunal Agrawal, Michael Bender, Rathish Das, William Kuszmaul, Enoch Peserico,
and Michele Scquizzato. 2020. Brief Announcement: Green Paging and Paral-
lel Paging. In Proc. 32st ACM on Symposium on Parallelism in Algorithms and
Architectures.

[6] Kunal Agrawal, Michael Bender, Rathish Das, William Kuszmaul, Enoch Peserico,
and Michele Scquizzato. 2022. Online Parallel Paging with Optimal Makespan.
In Proc. 34th ACM on Symposium on Parallelism in Algorithms and Architectures.

[7] Kunal Agrawal, Michael A Bender, Rathish Das, William Kuszmaul, Enoch Pe-
serico, and Michele Scquizzato. 2021. Tight bounds for parallel paging and green
paging. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM, 3022–3041.

[8] Zafar Ahmad, Rezaul Chowdhury, Rathish Das, Pramod Ganapathi, Aaron Gre-
gory, and Mohammad Mahdi Javanmard. 2021. Low-Span Parallel Algorithms
for the Binary-Forking Model. In Proceedings of the 33rd ACM Symposium on
Parallelism in Algorithms and Architectures. 22–34.

[9] Matthew Andrews, Michael A. Bender, and Lisa Zhang. 1996. New Algorithms
for the Disk Scheduling Problem. In Proc. 37th Annual Symposium on Foundations
of Computer Science (FOCS). 580–589.

[10] Matthew Andrews, Michael A. Bender, and Lisa Zhang. 2002. New Algorithms
for the Disk Scheduling Problem. Algorithmica 32, 2 (February 2002), 277–301.

[11] Lars Arge, Michael T Goodrich, Michael Nelson, and Nodari Sitchinava. 2008.
Fundamental parallel algorithms for private-cache chip multiprocessors. In Pro-
ceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and
Architectures (SPAA). 197–206.

[12] Mahsa Bayati, Miriam Leeser, and Ningfang Mi. 2020. Exploiting GPU Direct
Access to Non-Volatile Memory to Accelerate Big Data Processing. In 2020 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE, 1–6.

[13] Michael A. Bender, Jonathan Berry, Simon D. Hammond, K. Scott Hemmert,
Samuel McCauley, Branden Moore, Benjamin Moseley, Cynthia A. Phillips, David
Resnick, and Arun Rodrigues. 2015. Two-Level Main Memory Co-Design: Multi-
Threaded Algorithmic Primitives, Analysis, and Simulation. In Proc. 29th IEEE
International Parallel and Distributed Processing Symposium (IPDPS). Hyderabad,

12

http://www.micron.com/products/hybrid-memory-cube/high-performance-on-package-memory
http://www.micron.com/products/hybrid-memory-cube/high-performance-on-package-memory
https://web.archive.org/web/20150921170652/http://www.micron.com/products/hybrid-memory-cube/high-performance-on-package-memory
https://web.archive.org/web/20150921170652/http://www.micron.com/products/hybrid-memory-cube/high-performance-on-package-memory

INDIA.
[14] Michael A. Bender, Jonathan W. Berry, Simon D. Hammond, K. Scott Hem-

mert, Samuel McCauley, Branden Moore, Benjamin Moseley, Cynthia A. Phillips,
David S. Resnick, and Arun Rodrigues. 2017. Two-level main memory co-design:
Multi-threaded algorithmic primitives, analysis, and simulation. J. Parallel and
Distrib. Comput. 102 (2017), 213–228. https://doi.org/10.1016/j.jpdc.2016.12.009

[15] Michael A. Bender, Alex Conway, Martín Farach-Colton,William Jannen, Yizheng
Jiao, Rob Johnson, Eric Knorr, Sara McAllister, Nirjhar Mukherjee, Prashant
Pandey, Donald E. Porter, Jun Yuan, and Yang Zhan. 2019. Small Re�nements to
the DAM Can Have Big Consequences for Data-Structure Design. In Proc. 31st
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA). Phoenix,
AZ, 265–274.

[16] Guy E Blelloch, Rezaul A Chowdhury, Phillip B Gibbons, Vijaya Ramachandran,
Shimin Chen, and Michael Kozuch. 2008. Provably good multicore cache per-
formance for divide-and-conquer algorithms. In Proceedings of the nineteenth
annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and
Applied Mathematics, 501–510.

[17] Allan Borodin and Ran El-Yaniv. 1998. Online Computation and Competitive
Analysis. Cambridge University Press.

[18] Allan Borodin, Prabhakar Raghavan, Sandy Irani, and Baruch Schieber. 1991.
Competitive paging with locality of reference. In Proceedings of the twenty-third
annual ACM symposium on Theory of computing. Citeseer, 249–259.

[19] Aydin Buluç and John RGilbert. 2012. Parallel sparsematrix-matrixmultiplication
and indexing: Implementation and experiments. SIAM Journal on Scienti�c
Computing 34, 4 (2012), C170–C191.

[20] Neil Butcher, Stephen L Olivier, Jonathan Berry, Simon D Hammond, and Peter M
Kogge. 2018. Optimizing for KNL Usage Modes When Data Doesn’t Fit in MC-
DRAM. In Proceedings of the 47th International Conference on Parallel Processing.
ACM, 37.

[21] Chansup Byun, Jeremy Kepner, William Arcand, David Bestor, Bill Bergeron,
Vijay Gadepally, Michael Houle, Matthew Hubbell, Michael Jones, Anna Klein,
et al. 2017. Benchmarking data analysis and machine learning applications on
the Intel KNL many-core processor. arXiv preprint arXiv:1707.03515 (2017).

[22] Shimin Chen, Phillip B Gibbons, Michael Kozuch, Vasileios Liaskovitis, Anastassia
Ailamaki, Guy E Blelloch, Babak Falsa�, Limor Fix, Nikos Hardavellas, Todd C
Mowry, et al. 2007. Scheduling threads for constructive cache sharing on CMPs.
In Proceedings of the Nineteenth Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA). 105–115.

[23] Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. 2018. Format abstrac-
tion for sparse tensor algebra compilers. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 1–30.

[24] Rathish Das, Kunal Agrawal, Michael A Bender, Jonathan Berry, Benjamin Mose-
ley, and Cynthia A Phillips. 2020. How to manage high-bandwidth memory
automatically. In Proceedings of the 32nd ACM Symposium on Parallelism in Algo-
rithms and Architectures. 187–199.

[25] Rathish Das, Shih-Yu Tsai, Sharmila Duppala, Jayson Lynch, Esther M Arkin,
Rezaul Chowdhury, Joseph SB Mitchell, and Steven Skiena. 2019. Data races
and the discrete resource-time tradeo� problem with resource reuse over paths.
In The 31st ACM on Symposium on Parallelism in Algorithms and Architectures.
359–368.

[26] Alejandro Strejilevich de Loma. 1998. New results on fair multi-threaded paging.
Electronic Journal of SADIO 1, 1 (1998), 21–36.

[27] Mehmet Deveci, Christian Trott, and Sivasankaran Rajamanickam. 2018. Multi-
threaded sparse matrix-matrix multiplication for many-core and GPU architec-
tures. Parallel Comput. 78 (2018), 33–46.

[28] Esteban Feuerstein and Alejandro Strejilevich de Loma. 2002. On-line multi-
threaded paging. Algorithmica 32, 1 (2002), 36–60.

[29] Amos Fiat, Richard M Karp, Michael Luby, Lyle A McGeoch, Daniel D Sleator,
and Neal E Young. 1991. Competitive paging algorithms. Journal of Algorithms
12, 4 (1991), 685–699.

[30] Matteo Frigo, Charles E Leiserson, Harald Prokop, and Sridhar Ramachandran.
1999. Cache-oblivious algorithms. In Proc. 40th Annual ACM Symposium on
Foundations of Computer Science (FOCS). 285–297.

[31] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
2012. Cache-Oblivious Algorithms. ACM Transactions on Algorithms 8, 1 (Jan.
2012), 4. https://doi.org/0.1145/2071379.2071383

[32] Mohsen Ghasempour, Aamer Jaleel, Jim D Garside, and Mikel Luján. 2016. Happy:
Hybrid address-based page policy in drams. In Proceedings of the Second Interna-
tional Symposium on Memory Systems. 311–321.

[33] AvinatanHassidim. 2010. Cache Replacement Policies forMulticore Processors. In
Proc. Innovations in Computer Science (ICS), Andrew Chi-Chih Yao (Ed.). 501–509.

[34] Nicole Hemsoth. 2014. Micron, Intel reveal memory slice
of Knight’s Landing. http://www.hpcwire.com/2014/06/24/
micron-intel-reveal-memory-slice-knights-landing/.

[35] Mohammad Mahdi Javanmard, Pramod Ganapathi, Rathish Das, Zafar Ahmad,
Stephen Tschudi, and Rezaul Chowdhury. 2019. Toward E�cient Architecture-
Independent Algorithms for Dynamic Programs. In International Conference on

High Performance Computing. Springer, 143–164.
[36] Song Jiang, Feng Chen, and Xiaodong Zhang. 2005. CLOCK-Pro: An E�ective Im-

provement of the CLOCK Replacement.. In USENIX Annual Technical Conference,
General Track. 323–336.

[37] Wenbin Jiang, Pai Liu, Hai Jin, and Jing Peng. 2020. An E�cient Data Prefetch
Strategy for Deep Learning Based on Non-volatile Memory. In International
Conference on Green, Pervasive, and Cloud Computing. Springer, 101–114.

[38] Dimitris Kaseridis, Je�rey Stuecheli, and Lizy Kurian John. 2011. Minimalist
open-page: A DRAM page-mode scheduling policy for the many-core era. In 2011
44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 24–35.

[39] Anil Kumar Katti and Vijaya Ramachandran. 2012. Competitive cache replace-
ment strategies for shared cache environments. In 2012 IEEE 26th International
Parallel and Distributed Processing Symposium. IEEE, 215–226.

[40] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amaras-
inghe. 2017. The tensor algebra compiler. Proceedings of the ACM on Programming
Languages 1, OOPSLA (2017), 1–29.

[41] Mohammad Laghari and Didem Unat. 2017. Object placement for high bandwidth
memory augmented with high capacity memory. In 2017 29th International Sym-
posium on Computer Architecture and High Performance Computing (SBAC-PAD).
IEEE, 129–136.

[42] Ang Li, Weifeng Liu, Mads RB Kristensen, Brian Vinter, Hao Wang, Kaixi Hou,
AndresMarquez, and Shuaiwen Leon Song. 2017. Exploring and analyzing the real
impact of modern on-package memory on HPC scienti�c kernels. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. 26.

[43] Alejandro López-Ortiz and Alejandro Salinger. 2012. Paging for multi-core shared
caches. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference (ITCS). ACM, 113–127.

[44] Piotr Luszczek, Jack Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas,
Jeremy Kepner, John McCalpin, David Bailey, and Daisuke Takahashi. 2004.
Introduction to the HPC Challenge Benchmark Suite. (12 2004).

[45] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cam-
bridge University Press, Cambridge, England.

[46] Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydın Buluç. 2018. High-
performance sparse matrix-matrix products on Intel KNL and multicore architec-
tures. In Proceedings of the 47th International Conference on Parallel Processing
Companion. 1–10.

[47] Ivy Bo Peng, Roberto Gioiosa, Gokcen Kestor, Pietro Cicotti, Erwin Laure, and
Stefano Markidis. 2017. Rthms: A tool for data placement on hybrid memory
system. ACM SIGPLAN Notices 52, 9 (2017), 82–91.

[48] Harald Prokop. 1999. Cache-Oblivious Algorithms. Master’s thesis. Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology.

[49] Scott Rixner, William J Dally, Ujval J Kapasi, Peter Mattson, and John D Owens.
2000. Memory access scheduling. In ACM SIGARCH Computer Architecture News,
Vol. 28. 128–138.

[50] Ruchira Sasanka. 2022. Enabling High-Bandwidth Memory in
Future Intel Processors. https://hpcevents.intel.com/devhub/
Enabling-High-Bandwidth-Memory-in-Future-Intel-Processors.

[51] Steven S Seiden. 1999. Randomized online multi-threaded paging. Nordic Journal
of Computing 6, 2 (1999), 148–161.

[52] Anton Shilov. 2021. Intel Shows O� Multi-Chiplet Sapphire
Rapids CPU with HBM. https://www.tomshardware.com/news/
sapphire-rapids-with-hbm-pictured.

[53] Johannes Singler and Benjamin Konsik. 2008. The GNU libstdc++ parallel mode:
software engineering considerations. In Proceedings of the 1st international work-
shop on Multicore software engineering. 15–22.

[54] Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized E�ciency of List Update
and Paging Rules. Commun. ACM 28, 2 (Feb. 1985), 202–208. https://doi.org/10.
1145/2786.2793

[55] George M Slota and Siva Rajamanickam. 2018. Experimental Design of Work
Chunking for Graph Algorithms on High Bandwidth Memory Architectures. In
2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 875–884.

[56] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod,
Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. 2016.
Knights landing: Second-generation intel xeon phi product. Ieee micro 36, 2
(2016), 34–46.

[57] TACC. 2022. Stampede2 User Guide. https://portal.tacc.utexas.edu/user-guides/
stampede2

[58] Ti�any Trader. 2018. Requiem for a Phi: Knights Landing Discontinued. https:
//www.hpcwire.com/2018/07/25/end-of-the-road-for-knights-landing-phi/

[59] Jack Wells, Buddy Bland, Je� Nichols, Jim Hack, Fernanda Foertter, Gaute Hagen,
Thomas Maier, Moetasim Ashfaq, Bronson Messer, and Suzanne Parete-Koon.
2016. Announcing supercomputer summit. Technical Report. ORNL (Oak Ridge
National Laboratory (ORNL), Oak Ridge, TN (United States)).

13

https://doi.org/10.1016/j.jpdc.2016.12.009
https://doi.org/0.1145/2071379.2071383
http://www.hpcwire.com/2014/06/24/micron-intel-reveal-memory-slice-knights-landing/
http://www.hpcwire.com/2014/06/24/micron-intel-reveal-memory-slice-knights-landing/
https://hpcevents.intel.com/devhub/Enabling-High-Bandwidth-Memory-in-Future-Intel-Processors
https://hpcevents.intel.com/devhub/Enabling-High-Bandwidth-Memory-in-Future-Intel-Processors
https://www.tomshardware.com/news/sapphire-rapids-with-hbm-pictured
https://www.tomshardware.com/news/sapphire-rapids-with-hbm-pictured
https://doi.org/10.1145/2786.2793
https://doi.org/10.1145/2786.2793
https://portal.tacc.utexas.edu/user-guides/stampede2
https://portal.tacc.utexas.edu/user-guides/stampede2
https://www.hpcwire.com/2018/07/25/end-of-the-road-for-knights-landing-phi/
https://www.hpcwire.com/2018/07/25/end-of-the-road-for-knights-landing-phi/

	Abstract
	1 Introduction
	1.1 Two Components of HBM Management
	1.2 Results
	1.3 Related work

	2 HBM Model and Management
	3 Simulating HBM as Cache
	3.1 Simulating HBM
	3.2 Generating Data

	4 Model Simulation Results
	5 Model validation experiments
	5.1 Microbenchmarks
	5.2 Results

	6 Conclusion
	6.1 Future Work

	Acknowledgments
	References

