Session 5: Best Paper Session

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Online Parallel Paging with Optimal Makespan

Kunal Agrawal
Washington University in St. Louis
St. Louis, USA
kunal@wustl.edu

William Kuszmaul
MIT
Cambridge, USA
kuszmaul@mit.edu

ABSTRACT

The classical paging problem can be described as follows: given
a cache that can hold up to k pages (or blocks) and a sequence
of requests to pages, how should we manage the cache so as to
maximize performance—or, in other words, complete the sequence
as quickly as possible. Whereas this sequential paging problem has
been well understood for decades, the parallel version, where the
cache is shared among p processors each issuing its own sequence
of page requests, has been much more resistant. In this problem
we are given p request sequences R',R%, ..., RP, each of which
accesses a disjoint set of pages, and we ask the question: how
should the paging algorithm manage the cache to optimize the
completion time of all sequences (i.e., the makespan). As for the
classical sequential problem, the goal is to design an online paging
algorithm that achieves an optimal competitive ratio, using O(1)
resource augmentation.

In a recent breakthrough, Agrawal et al. [SODA °21] showed that
the optimal (deterministic) competitive ratio C for this problem
is in the range Q(logp) < C < O(log? p). This paper closes that
gap, showing how to achieve a competitive ratio C = O(log p). Our
techniques reveal surprising combinatorial differences between the
problem of optimizing makespan and that of optimizing the closely
related metric of mean completion time; and yet our algorithm
manages to be simultaneously asymptotically optimal for both
tasks.

CCS CONCEPTS

» Theory of computation — Caching and paging algorithms.

KEYWORDS

Paging; parallel paging; multicores; online algorithms

ACM Reference Format:

Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch
Peserico, and Michele Scquizzato. 2022. Online Parallel Paging with Optimal
Makespan. In Proceedings of the 34th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA °22), July 11-14, 2022, Philadelphia, PA,

SPAA °22, July 11-14, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9146-7/22/07.
https://doi.org/10.1145/3490148.3538577

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Michael A. Bender
Stony Brook University
Stony Brook, USA
bender@cs.stonybrook.edu

Enoch Peserico
Universita degli Studi di Padova
Padova, Italy
enoch@dei.unipd.it

205

Rathish Das
University of Waterloo
Waterloo, Canada
rathish.das@uwaterloo.ca

Michele Scquizzato
Universita degli Studi di Padova
Padova, Italy
scquizza@math.unipd.it

USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3490148.
3538577

1 INTRODUCTION

This paper considers the problem of parallel paging (2, 12, 14,
16, 19]: p processors share a fast memory (or cache) that can hold
up to k pages. When a processor accesses a location contained
in a page that is in cache, the access cost is small (the access is a
hit); when it accesses a location contained in a page that is not in
cache, the access cost is large (the access is a miss or a fault). As
with prior work on parallel paging [2, 14, 19], we assume that all p
processors access distinct sets of memory locations.! The paging
algorithm decides which pages (or blocks) remain in cache at any
point in time or, in other words, which page(s) to evict when a new
page is brought into cache. The goal is to share the cache among
the processors in a way that minimizes some objective function of
processors’ completion times.

Sequential vs. parallel paging. Whereas sequential paging (i.e.,
the paging problem with one processor) has been well understood
for decades [4, 5, 20, 24], the problem of obtaining tight bounds for
parallel paging has proved to be much more elusive [3, 6, 11, 12, 15-
17, 21]. The goal is to determine the best possible online competitive
ratio achievable using O(1) resource augmentation.?

Part of what makes parallel paging difficult is that the scheduler
must predict dynamically which processors are going to benefit
more from having more/less cache and then must solve the on-
line optimization problem of allocating memory optimally based
on those predictions. Some processors may benefit greatly from
having access to additional memory, while others might not. For
each individual processor, the marginal benefit of having access to
i + 1 space of cache, rather than i space, may be a non-monotonic
function in i; and these marginal benefits may also fluctuate unpre-
dictably over time as processors go through their respective request
sequences. The parallel-paging algorithm must also be careful to
not be too “sporadic” in its memory allocations; if a processor is
allocated a large amount of cache, but only for a short period of
time, that cache may be useless to the processor.

I This restriction represents the condition where each processor is running a distinct
program and these programs do not share pages with each other.

2Constant-factor resource augmentation means that the algorithm’s cache is a constant-
factor larger than the cache given to the optimal offline algorithm OPT. Even in the
sequential setting, resource augmentation is necessary, since otherwise any determin-
istic algorithm has competitive ratio © (k) [24].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3490148.3538577
https://doi.org/10.1145/3490148.3538577
https://doi.org/10.1145/3490148.3538577

Session 5: Best Paper Session

A second challenge is that the decisions made by the scheduler
can have unpredictable downstream effects on how the processors
interact later in their access sequences. If some processor x is given
more cache now, then it will proceed through its accesses faster
than another processor y that is given less cache now. This means
that, later on, the alignment between the two processors and their
respective access sequences will be shifted due to allocation deci-
sions that were made earlier. Even if an allocation decision seems
beneficial in the short term, it is difficult to assess whether it will
be a competitive decision in the long run.

The interactions between these two challenges make it so that
even the offline version of this problem is difficult—in fact, it is
NP-hard [19].

Finally, an interesting feature of the parallel paging problem
(as opposed to the sequential version) is that there is no single
best objective function. In the language of traditional scheduling
metrics, there are two natural objective functions: makespan (ie.,
maximum completion time) and mean completion time. Some
applications must wait on every processor to complete (e.g., parallel
threads with a synchronization barrier) before the application can
be considered finished, meaning that the objective is to minimize
makespan; other applications are more concerned with how long
the average processor spends on its task, meaning that the objective
to minimize is mean completion time. What makes these two objec-
tive functions especially interesting is that they yield fundamentally
different notions of what it means to allocate cache efficiently to
Pprocessors.

Past work on parallel paging. First articulated by Fiat and Karlin
in 1995 [12], the problem of achieving optimal competitive ratios
for parallel paging has remained open for nearly three decades [2,
14, 16, 19]. In the online setting, most of the early work focused
on simplifications of the problem [3, 6, 11, 12, 16, 17, 21] in which
the rate at which each processor progresses is fixed, rather than
being affected by how many hits and misses the processor incurs;
that is, a processor that incurs all hits is treated as progressing
through its access sequence at the same rate as if it incurred all
misses. The downside of this assumption is that it “sequentializes”
the interleaving between the access sequences, thereby removing
the interactions that occur between the scheduler’s decisions and
the interleavings between the processors.

Recent work has focused on understanding the more com-
plete version of the paging model in which the speed at which
a processor progresses is affected by whether it incurs hits or
misses [9, 10, 14, 19]. Agrawal et al. [1, 2, 8] achieved the first
general-purpose results in the online setting: for mean completion
time, they deterministically achieved a competitive ratio of O(log p)
and showed that no deterministic algorithm can do better.

The problem of determining the optimal deterministic compet-
itive ratio C for makespan has continued to be elusive, however,
with the best asymptotic bounds establishing that Q(logp) < C <
O(log? p) [1, 2]. The current paper closes this gap, introducing a
new parallel-paging algorithm that achieves an optimal ratio of
C =0(logp).

Before we describe our technical results in detail, it is helpful to
understand the structure of the recent results on mean completion

206

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

time [1, 2]. Indeed, a key technical element of this paper will be to
study the (somewhat surprising) ways in which these ideas do (and
do not!) extend to the makespan setting.

Understanding the recent progress on mean completion time.
The significant insight by [1, 2] was that the parallel paging prob-
lem is tightly connected to the seemingly unrelated green paging
problem.? In green paging, there is a single processor, and there
is a paging algorithm that decides the amount of cache allocated
to the processor over time. The goal is to service the processor’s
request sequence while minimizing the integral of the processor’s
cache capacity over time—a quantity known as memory impact.
(Notice that it is not optimal to minimize the cache size at all times,
since this can increase cache misses, which increases the integral
of cache size over time.)

There turns out to be an intimate connection between parallel
paging and green paging. Indeed, [1, 2] proved via reductions that
the best achievable deterministic competitive ratio for green paging
is asymptotically the same as that for parallel-paging mean comple-
tion time. By analyzing green paging, they were able to then deduce
that the optimal competitive ratio for both problems is ©(log p).

The main algorithmic takeaway from [1, 2] is that, if one wishes
to optimize parallel-paging mean completion time, one should in-
stead focus on optimizing the green-paging performance of each
individual processor: the competitive ratio that one achieves for
the latter problem directly translates to the former.

This paper: Obtaining tight bounds for makespan. Our first
result establishes a counter-intuitive lower bound—that green pag-
ing algorithms cannot, in general, be transformed into optimal
parallel-paging makespan algorithms without a loss in competitive
ratio. Specifically, Theorem 4 establishes that, even if we are given
an omniscient green paging algorithm that is constant-competitive,
then any black-box construction of a parallel-paging algorithm that
allocates cache using this green paging algorithm must incur a
competitive ratio of Q(log p/loglog p).*

This lower bound establishes that, when we consider makespan,
there are two separate sources that individually force a roughly
logarithmic loss in competitiveness—the first source is the lower
bound of Q(log p) for green paging [2], and the second source is the
conversion of green paging to parallel paging, which contributes a
factor of Q(log p/loglog p).

The main result of this paper is that it is possible to design a
parallel-paging algorithm in which these two logarithmic factors
add, instead of multiplying (as in [1, 2]).

We begin by constructing a randomized parallel-paging algo-
rithm with competitive ratio O(log p). This algorithm uses ran-
domization to “hide” any vulnerabilities that the parallel-paging
algorithm might have based on when it gives which processors
large/small amounts of cache. Each individual processor is allo-
cated cache using a specially-designed randomized green paging

3We remark that, although this paper studies green paging primarily for its relationship
to parallel paging, green paging has also been studied as a problem of independent
interest [7, 13, 18, 22, 23], since it closely relates to the amount of energy that a
processor consumes in its cache usage.

4This result requires a more careful definition of what an omniscient green paging
algorithm is able to do—Section 4 provides a natural definition.

Session 5: Best Paper Session

algorithm, and then the allocations are interleaved in such a way
that we do not pay an additional log p factor in competitive ratio.

Finally, we show that it is possible to deterministically emulate
our randomized algorithm in such a way that we still achieve a
competitive ratio of O(log p). Rather than being a direct derandom-
ization, our deterministic algorithm is instead obtained by formally
capturing the properties of the randomized algorithm that enable its
analysis, and showing how to achieve the same properties determin-
istically. Our deterministic competitive ratio of O(log p) matches a
lower bound by [1, 2].

Perhaps surprisingly, our O(logp) competitive ratio for
makespan is achieved without any loss of competitive ratio on
average completion time. This results in a single algorithm that si-
multaneously achieves the optimal deterministic competitive ratio
of O(log p) for both objectives.

An interesting feature of all of the algorithms in this paper (as
well as those in [1, 2]) is that they are oblivious, meaning that
they do not adapt to the specific request sequences given to them,
but instead use a “universal” strategy for how to allocate cache to
processors efficiently (each processor individually uses LRU on the
cache that it is allocated). This means that, rather than predicting
the behavior of individual processors, the algorithm must allocate
cache in such a way that it is O(log p)-competitive regardless of the
processors’ access sequences. The fact that such an algorithm can
achieve a competitive ratio of O(log p) (and that this is optimal) is
perhaps the most surprising takeaway of this line of work.

Outline. Section 2 presents preliminary definitions and modeling.
Section 3 presents our upper bounds for online parallel paging.
Finally, Section 4 presents our lower bound for parallel-paging
algorithms that make use of green paging as a black-box primitive.

2 PRELIMINARIES

This paper follows the same set of conventions and definitions as
in recent previous work [1, 2]. For completeness, we give a brief
overview of those definitions here.

The parallel paging model. The parallel paging model features p
processors connected to a shared cache of size k > p. Each processor
has a dedicated channel to the cache and to a main memory of
unlimited size. Each processor i issues a sequence of requests for
pages Ri = ré, r{, ré', ..., where r; is the j-th page request by the
i-th processor. The requests of each processor are served in order,
that is, request r;'. +1 can be requested only after ri has been served.
The request sequences are assumed to be disjoint, that is, for all
i # jand Vg,s, r(i] * rg,

When a processor requests a page, if that page is in cache then
it takes 1 unit of time to service this request. That is, if a page is
requested at time ¢ and it is in cache, then the request is served at
time ¢ + 1. If the requested page is not in cache, then it takes s > 1
units of time to transfer this page from main memory to cache.
Therefore, this request is served at time ¢ + s + 1 or later. Note that
the paging algorithm does not necessarily serve the block exactly
at time ¢ + s+ 1 because the paging algorithm can choose to hold off
retrieving the block from memory if it deems that the cache should
be used to hold other blocks.

207

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Parallel paging. A parallel-paging algorithm controls when
pages are evicted from cache—that is, whenever a new page is
brought into cache, the paging algorithm chooses which of the
pages currently in cache must be evicted (unless the cache is under-
full). The algorithm is also permitted to stall a processor if it wishes,
that is it can refuse to serve a page request until a later time.

The choices made by the parallel-paging algorithm determine
which processors incur hits/misses on their requests, and how long
each processor takes to complete. In this paper, the goal of a paging
algorithm will be to minimize makespan, which is the amount
of time that it takes for all of the processors to complete their
request sequences. We will use Topr(k) to denote the optimal
offline makespan on a cache of size k, and T#(f) to denote the
makespan of a given algorithm A on a cache of size £. We will be
interested in online algorithms, meaning that the algorithm does
not get to know what pages each processor will access until the
requests are made.

To analyze an online parallel-paging algorithm, we use competi-
tive analysis: an online algorithm A is said to achieve competitive
ratio C with resource-augmentation ¢ if for all request sequences
R, ..., RP such that max; |Ri| is sufficiently large as a function of
p, k, we have that T# (¢k) < C- Topr (k). In general, when proving
upper bounds, we will assume the resource-augmentation parame-
ter £ to be O(1). In this context, we will use as a shorthand Tppr to
denote Topr (k) and T4 to denote T4 (£k). We remark that, even
in the setting of p = 1, resource augmentation is needed if one
wishes to achieve a competitive ratio better than the trivial ©(k)
for deterministic algorithms [24].

A useful tool: Compartmentalized box profiles. Past work [1,
2] has shown that several simplifying assumptions can be made
without loss of generality about how the optimal parallel-paging
algorithm OPT behaves. Each individual processor can be assumed
to use LRU-eviction (i.e., evict the least-recently-accessed page)
on the portion of the cache that it is allocated, meaning that the
parallel paging problem is fundamentally about choosing how much
cache to allocate each processor at a time.

One can further assume that each individual processor is allo-
cated memory in boxes, where a box of height j < k means that
the processor has access to j pages in cache for s- j time steps (recall
that s is the time to transfer a page from main memory to cache
in the event of a cache miss). Moreover, without loss of generality,
every box can be assumed to have a power-of-two height. Finally,
boxes can also be assumed to be compartmentalized, meaning
that whenever a processor is first allocated a box of height j, any
pages that were formerly in those j positions in cache are initially
evicted (even if they would have been useful to keep around). As we
shall see, the assumption that each processor is allocated cache in
compartmentalized boxes significantly streamlines the discussion
of parallel-paging algorithms.

Green paging. Finally, we conclude the section by briefly defining
the related problem of green paging. In the green paging problem,
a single processor must service a single request sequence R using a
cache whose size changes dynamically over time within the range
[k/p, k], where p is a given parameter. A green-paging algorithm
dictates how the cache size evolves, as well as the replacement

Session 5: Best Paper Session

policy. The goal of the algorithm is to minimize the integral of the
cache size over time—a quantity called memory impact. That is,
if ¢; is the amount of cache allocated at time i, then we wish to
complete the request sequence R while minimizing }}; c;.

As for parallel paging, one can analyze an online green-paging
algorithm using competitive analysis with ¢ = O(1) resource
augmentation—this means that the algorithm allocates a cache
with size between &k/p and £k and is compared to an optimal of-
fline algorithm OPT that allocates a cache with size between k/p
and k. Also like parallel paging, one can assume without loss of
generality [1, 2] that the processor manages its cache with LRU;
that OPT allocates memory to the processor using compartmental-
ized boxes; and that the boxes have normalized sizes, so that each
box has a height of the form k/p - 2/ for j € [log p].

We will be interested in green paging primarily for its use as a
tool to solve parallel paging. We study this relationship in depth in
Section 4, where we also extend the definition of green paging to
the setting where k and p evolve over time.

3 UPPER BOUNDS

In this section we present a online parallel-paging algorithms that
achieves an O(log p)-competitive makespan. We break the section
into three parts. As a motivation, we begin by constructing a new
green-paging algorithm which uses a very simple random process
to generate a memory profile that is O(log p)-competitive with
optimal. We then show how to use a similar random process for
parallel paging without any additional loss in the competitive ratio.
Finally, we show how to derandomize our algorithm to obtain
optimal deterministic online parallel paging, with a competitive
ratio of O(log p) for makespan.

3.1 Randomized Online Green Paging

As a warm-up, we present a new algorithm for the closely related
problem of green paging. This algorithm, which we call RAND-
GREEN, achieves the same O(log p) competitive ratio as in past
work [2], but with a remarkably simple randomized approach—
this same approach will play an important role in our strategy for
parallel paging in subsequent sections.

Consider a green-paging instance with minimum memory
size k/p and maximum memory size k. Recall that, without loss
of generality (and with O(1) resource augmentation), we can as-
sume that k and p are powers of two and that boxes have heights
k/p,2k/p,4k/p, ... k.

The RAND-GREEN algorithm generates a sequence of boxes,
where the height of each box is selected independently from a
fixed probability distribution O designed so that the probability
of a given box-height j being selected is inversely proportional to
the memory impact sj2 of that box. In more detail, whenever it
is time to select a new box, the algorithm randomly selects a box
height j € {k/p,2k/p,4k/p, ..., k} so that each j has probability
@ (k?/j%p?).

The intuition behind the algorithm is as follows. If a box has
height j, then it will contribute sj? to the memory impact incurred
by the algorithm. By selecting each box height j to occur with prob-
ability ~ 1/j2, we equalize the expected contribution to memory
impact of all the different box heights. The result is that, if some

208

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

part of the request sequence requires a box of some height j, then
the expected memory impact that we will incur until we get a box
of that size j is only O(log p) - j2. We now prove this formally, and
analyze the competitive ratio of the algorithm.

Lemma 1. Let j € {k/p,2k/p,4k/p,...,k}, and consider a box
whose height is j with probability © (k?/j2p?). Let X be the indicator
random variable for the event that the box has height j, and let Y be
the memory impact of the box. Then

E[XY] :@(%2;).

ProOOF.

k? 2 k?s
J°p p
THEOREM 1. With O(1) resource augmentation, RAND-GREEN
is O(log p)-competitive in expectation.

Proor. With O(1) resource augmentation, we can assume with-
out loss of generality that OPT uses a compartmentalized box pro-
file with power-of-two sized boxes, and that k and p are powers
of two. Let S be the sequence of boxes that OPT uses, and let R
be the sequence of boxes that RAND-GREEN uses. Observe that
RAND-GREEN finishes the request sequence if S is a subsequence
of R.

At each time ¢, let z be the dynamically changing variable that
specifies the height of the next box in S. That is, at time t = 0, z is
the height of the first box in S. Once RAND-GREEN allocates a box
of height z, the value z changes to the height of the next box in S,
and so on. The box that was allocated prior to z changing (i.e., the
box of height z) is called a useful box, and the memory impact of
any useful box is said to be useful memory impact.

We now calculate the expected memory impact of RAND-GREEN
until RAND-GREEN finishes the request sequence. Let j be the
height of a box chosen randomly by RAND-GREEN. If j = z, then
the box is useful. Lemma 1 (with j = z) tells us that the expected
useful memory impact of a randomly chosen box is ©(k?s/p?). On
the other hand, the expected (useful and wasted) memory impact of
a given box chosen by RAND-GREEN is ©(k?s/p? - log p)—which
can be seen by summing Lemma 1 across all ©(log p) options for j.

Thus the expected memory impact that a given box contributes
is precisely a ©(log p)-factor larger than the expected useful mem-
ory impact that the box contributes. By linearity of expectation, it
follows that the expected total memory impact of RAND-GREEN
is at most an O(log p)-factor larger than the total useful memory
impact of RAND-GREEN. However, the latter quantity is determin-
istically at most the cost of OPT, implying that RAND-GREEN is
O(log p)-competitive in expectation. O

3.2 Randomized Online Parallel Paging

We now give a randomized online parallel-paging algorithm RAND-
PAR that achieves an O(log p) competitive ratio. Algorithm RAND-
PAR has at most log p phases, where phase i ends and phase i +
1 begins once half of the processors that were active (i.e., still
running) at the start of phase i finish.

Session 5: Best Paper Session

Breaking each phase into algorithmic chunks. Let r be the
number of active processors at the start of a chunk. Each phase pro-
ceeds in chunks, where each chunk has a primary part followed
by a secondary part. The length ¢; of the primary part is fixed,
and only depends on r. In particular, the length of the primary part
of the chunk is ©(sk log r/r) and in the primary part of the chunk,
RAND-PAR gives each active processor exactly k/r memory for
for its entire length #;. Another way of thinking about it is that
RAND — PAR gives each processor log r the minimum size boxes
of height k/r.

In the secondary part, RAND-PAR randomly chooses a box size
according to the randomized online green-paging algorithm RAND-
GREEN, that is, the box’s area (i.e., memory impact) is inversely
proportional to the probability of it being chosen. Thus the probabil-
ity that the box has height j € {k/r,2k/r,4k/r, ..., k} (where each

of the heights is rounded up to the next power of two) is © (%)

Then RAND-PAR allocates a box of this size to each processor. That
is, if j is the randomly selected box height, then the secondary part
of each chunk consists of one height-j box for each of the ©(r)
processors that remain. Note that the total memory impact of these
boxes is ©(sr j2). The length of the secondary part of the chunk is
thus & = ©(srj?/k).

Based on the way the primary and secondary parts of the algo-
rithm are designed, we can make the following observation which
simply states that the primary and secondary parts of each chunk
have the same length and the same cache impact (in expectation).

Observation 1. For any chunk II the length of the primary part of
each chunk ¢y is equal to the expected length of the secondary part of
the chunk E[{,]. In addition, since RAND-PAR always makes use of
at least a constant fraction of memory, the cache impact of its primary
part is the same as the expected cache impact of its secondary part.

Intuition for why the algorithm does well. We now describe
the intuition for why RAND-PAR achieves a good competitive ratio.

We shall argue that there are essentially two possible modes that
a given processor can be in at any given moment: the first mode
is when the processor is time-bound, and any size box will suffice
for the processor to make progress; the second mode is when the
processor is memory-impact bound, and it needs a relatively large
box in order to continue making substantial progress.

If most of the processes are in the first mode (i.e., time-bound),
then we want to assign every process the minimum box size (this
is what the primary part of each chunk does). On the other hand, if
most of the processes are in the second mode (i.e., memory-impact
bound) then we want to assign boxes to them using a green-paging
algorithm (this is what the secondary part of each chunk does).
Whenever a chunk is in the former case, we call it time-efficient,
and whenever a chunk is in the latter case, we call it impact-
efficient. Time-efficient chunks benefit from their primary parts,
and impact-efficient chunks benefit from their secondary parts.

In other words, each chunk has one part (out of its primary and
secondary parts) that is “useful” and one part that is not. This is
why we design the two parts to have the same expected lengths as
each other, that way the time spent on the non-useful part can be
amortized to the time spent on the useful part.

209

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Before we perform the formal analysis, let us remark on the
important role that randomization plays in this algorithm. There
are certain points in time when a parallel-paging algorithm should
be viewed as “vulnerable”, in particular, these are the times when
the parallel-paging algorithm has selected a large box size for some
processor. If the processor doesn’t need that large box size, then
the parallel-paging algorithm has just wasted a large amount of
resources. In the context of our algorithm, if an adversary knew
which chunks were going to allocate (very) large boxes within their
secondary parts, then the adversary could choose those specific
chunks to be time-efficient (rather than impact-efficient), thereby
rendering the large boxes wasted. The purpose of randomization is
to make it so that the adversary cannot predict which chunks will
contain large boxes until it is too late for the adversary to exploit
that knowledge. That is, randomization prevents the adversary
from strategically choosing which chunks are time-efficient versus
which chunks are impact-efficient in any way that could thwart
the parallel-paging algorithm’s effectiveness. As we shall see in
the next section, this randomization can actually be eliminated by
designing a paging algorithm with the property that it is never “too
vulnerable”.

Analysis. We now prove that RAND-PAR is O(log p) competitive.

First, we give some notation. With O(1) resource augmentation,
we can assume without loss of generality that OPT uses a compart-
mentalized box profile for each processor (and that the box sizes are
powers of two). Let S; be the sequence of boxes that OPT uses for
processor i. Let R; be the sequence of boxes that RAND-PAR uses
for processor i. By construction, up until the time when processor i
or processor j finishes, the box sequences for R; and R; are the
same. Observe that RAND-PAR finishes the request sequence for
processor i if S; is a subsequence of R;. In this case, some boxes in
sequence R; correspond to boxes in sequence S;—these are called
useful boxes. The rest are called wasted boxes. As in the previous
subsection, we say that the memory impact from a useful box is
useful memory impact; the memory impact from a wasted box is
wasted memory impact.

At each time t, let z; be the dynamically changing variable that
specifies the height of the next box in sequence S;. That is, at time
t = 0, z; is the height of the first box in S;. Once RAND-PAR
allocates a box of height z;, the value z; changes to the height of
the next box in S;, and so on.

We now divide the algorithm’s chunks into two categories,
namely, time-efficient and impact-efficient, as defined next. Con-
sider a time-step in the primary part of a chunk. If more than r/4
of the processors i satisfy z; < k/r, then we call the step time-
efficient. Otherwise, we call the step impact-efficient. A chunk
is time-efficient if all the time steps in its entire primary part are
time-efficient; otherwise the chunk is impact-efficient. Note here
that the primary part of a chunk contains several boxes (in particu-
lar, ©(log r) boxes, each of size k/r) — therefore, it is possible for
some steps in a chunk to be time-efficient while others are not. It
is important to note that even if only some, but not all, steps are
time-efficient, the chunk can still be impact efficient.

Since every chunk is either time-efficient or impact-efficient, we
can bound the makespan of RAND-PAR by separately analyzing

Session 5: Best Paper Session

the total length of the time-efficient and impact-efficient chunks.
We first bound the total length of time-efficient chunks.

Lemma 2. Let Topr be the makespan of the optimal algorithm OPT.
Then the total length of all the time-efficient chunks of RAND-PAR is
O(log p - Topy) in expectation.

Proor. Each time-efficient step in RAND-PAR can be viewed as
making one time-step of progress on each of at least r/4 processors
in OPT. It follows that each phase can have at most 4TopT time-
efficient steps. The total number of time-efficient steps in the full
algorithm is therefore O(logp - Topr). This means that the sum
of the lengths of the primary parts of the time-efficient chunks is
at most O(log p - Topt). On the other hand, the expected length
of the secondary part of each time-efficient chunk is equal to the
length of the primary part. Thus the expected total length of all the
time-efficient chunks is O(log p - Topt)- o

We now bound the total length of the impact-efficient chunks.
We first show that in any impact-efficient chunk II, in expectation,
the total useful memory impact that RAND-PAR makes in the chunk
is at least a ©(1/log p)-factor of the total memory impact.

Lemma 3. Let IT be an impact-efficient chunk, and let r be the
number of active processors at the start of the chunk. Then the ex-
pected useful memory impact that RAND-PAR makes in chunk I is
a ©(1/logr)-factor of the expected total memory impact that RAND-
PAR makes in chunk II.

ProoF. The proof is similar to that of Theorem 1 in the way it
compares useful memory impact to wasted memory impact. Con-
sider an impact-efficient chunk, and let j be the height of the random
boxes used by (all) the active processors in the secondary part of
the chunk. Since the chunk is impact-efficient, at some point in the
primary part of the chunk there is an impact-efficient time step,
which means that there are at least r/2 — r/4 = Q(r) processors i
that all satisfy z; > k/r in that time step.

For each of those Q(r) processors, if j = z; then the box con-
tributes szl? useful memory impact. By Lemma 1 (with j = z;),
the expected useful memory impact that a given box makes for
processor i is ©(k?s/r?). Since there are Q(r) processors, the to-
tal expected useful memory impact of a randomly chosen box is
O(k?/r).

Since there are log r different box sizes, and each box size con-
tributes expected memory impact ©(k?s/r?) to each processor
(by Lemma 1), the expected memory impact (whether useful or
wasted) of a randomly chosen box for a particular processor is
O(logr - (k/r)?). Hence, the total expected memory impact of all r
processors in the (secondary part of the) chunk is ©(log r - k2/r).

From Observation 1, the impact of the primary part of a chunk
is the same as the expected impact of its secondary part. Thus the
expected total memory impact incurred by the algorithm across all
processors is ©(log r - k2/r). O

Lemma 4. Let Topr be the makespan of the optimal algorithm OPT.
Then the total length of all the impact-efficient chunks of RAND-PAR
is O(log p - Topr) in expectation.

Proor. From Lemma 3, in any impact-efficient chunk II, in ex-
pectation the total useful memory impact that RAND-PAR makes

210

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

in the chunk is a ®(1/log p)-factor of the total expected memory
impact (whether useful or wasted). Summing over all the impact-
efficient chunks, we get the expected total useful memory impact A
that RAND-PAR makes is a ©(1/log p)-factor of the total expected
memory impact B that RAND-PAR makes. Notice, however, that A
is deterministically equal to the memory impact of OPT, which is
O(ks - Topt). On the other hand, B is ©(ks - TRAND-PAR)- Thus the
total length of all the impact-efficient chunks is O(log p - Topt). O

THEOREM 2. Assuming O(1) resource augmentation, the expected
makespan of RAND-PAR is O(log p - Topr)-

Proor. It follows immediately from Lemmas 2 and 4, since each
chunk of RAND-PAR is either time-efficient or impact-efficient. O

An interesting feature of our algorithm is that, although it
achieves competitive ratio O(log p), it also fits into the mold de-
scribed by Theorem 4, i.e., our algorithm uses a green-paging algo-
rithm as a black box. Thus we have:

Corollary 1. RAND-PAR is a randomized parallel paging algo-
rithm that assigns boxes to each processor using a black-box ©(log p)-
competitive green paging algorithm, that uses a factor of O(1) re-
source augmentation, and that achieves competitive ratio O(log p)
for makespan.

This corollary comes as a surprising complement to Theorem 4.
Recall that Theorem 4 says that the use of a black-box green paging
algorithm (even a clairvoyant O(1)-competitive green-paging al-
gorithm) forces a competitive ratio of Q(log p), where notation Q
hides a 1/polyloglog(p) factor. Given that we are using a ©(log p)-
competitive green-paging algorithm (which in past work [2] has
been shown to be the best possible online green-paging algorithm),
it is tempting to assume that we must incur a competitive ratio of
Q(log? p). Remarkably, this intuition ends up being wrong, and as
shown by the previous corollary, the two Q(log p) factors can be
made to add rather than multiply.

3.3 Deterministic Online Parallel Paging

In this section, we give a deterministic parallel-paging algorithm,
called DET-PAR, that achieves competitive ratio O(logp) for
makespan. The basic idea behind our algorithm is to derandomize
the construction from the previous subsection, by first formalizing
the necessary set of properties that the parallel-paging algorithm
must satisfy in order to for it to deterministically achieve the same
results as the randomized algorithm RAND-PAR, and by then show-
ing how to achieve those properties deterministically.

As before, we will break our parallel-paging algorithm into
phases such that the number of processors that are active at the
end of each phase is half as large as the number of processors that
are active at the beginning of each phase. Within each phase Q,
define pg to be the number of processors active at the end of the
phase, and define bg = k/pg to be the base height for the phase.

A parallel-paging algorithm using O(k) memory is well-
rounded if two properties hold. The first is that, at any given
moment in any given phase Q, every processor that is active is
currently allocated a box with height at least bQ. The second is that,
at any given moment in time t, for any given processor x that is

Session 5: Best Paper Session

still active, and for any given box height z > b, at least one of the
following holds:

e we are within the final O(z%s/ bg log p) time steps of the
current phase;

e we are within the final O(z%s/bg log p) time steps of x’s life;

e x is currently allocated a box with height at least z;

o x will be allocated a new box with height at least z within
the next O(z%s/bg log p) time steps.

A key insight is that, if an algorithm is well-rounded, then we
can analyze the algorithm’s makespan in a similar way to how we
analyzed RAND-PAR in the previous subsection.

Lemma 5. Any well-rounded parallel-paging algorithm A is
O(log p)-competitive for makespan.

Proor. For each processor x, let oy be the box sequence that
the optimal parallel-paging algorithm OPT allocates to x. For each
box in oy (we refer to these as the OPT-boxes), there is some set S
of paging requests that OPT processes with that box. We say that
A has completed an OPT-box once A has completed all of the
paging requests associated with that box. We say that processor
x is working on an OPT-box if some partial subset of the paging
requests associated with the box are complete.

Note that if a processor x is working on an OPT-box of some
height z, and if the processor spends sz steps with a memory of
size z or larger, then the processor is guaranteed to complete the
OPT-Box. One consequence of this is that, if an algorithm A is
well-rounded, then the maximum amount of time that it can spend
working on any given OPT-box of some height z is at most

O(zzs/bQ log p + sz). (1)

We will make use of this fact later in the proof.

Say that a processor is time-efficient during a given time step of
a phase Q if, during that time step, the processor works exclusively
on OPT-boxes with heights bg or smaller. Say that a time step is
time-efficient if at least half of the remaining processors are time-
efficient during that time step. Say that a phase is time-efficient if
for at least half of the time steps in the phase are time efficient.

We will now argue that each time-efficient phase Q can take
time at most 8Tppr. Since A is well-rounded, it must always allo-
cate every processor a box with height at least bg. It follows that,
whenever a processor x is working on an OPT-box with height
bo or smaller, the processor is guaranteed to complete that box
within the same amount of time that OPT completed it. Thus each
processor x can be time-efficient during at most Tppr time steps in
Q. If 2pg is the number of processors active at the beginning of Q,
then each time-efficient time step in Q requires at least a po/2 of
them to be time-efficient. The number of time-efficient time steps
in Q is therefore at most 4Tppr. Since Q is itself time-efficient, at
least half of its time steps must be time-efficient. Thus the length
of Q is at most 8Tppr.

The total length of all time-efficient phases is therefore at most
8Topr log p. To complete the proof, we turn our attention to the
phases Q that are not time-efficient.

For each processor x, and each time-inefficient phase Q, let I o
be the total memory impact across all OPT-boxes that x works on
during Q. A key claim is that, if x is time-inefficient for s, o steps

211

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

of some phase Q, then

Ix,Q log P
bo

We can prove (2) using (1). In particular, for each OPT-box of some

height z that x works on, it spends time at most

)

Sx,0 <

ifz < bQ

= 0(2%s/bo |
ifz > bg (zs/bg logp)

0
{O(zzs/bQ logp) + hs
on that box. On the other hand, that same box contributes z%s to
I,0, hence (2).
We now use (2) to relate the length of each time-inefficient phase
Q to the sum }, Iy . During any time-inefficient phase Q of some
length tg, we have that 3, sy,0 = @(potg). It follows by (2) that

Z Ix,Q log p)
~ bo
which, using that bQ =k/ po, means that

Ix,Qlogp
o[1|

X

poto =0

Summing over all time-inefficient phases, we get that their total

length is at most
Lo log p
o 3 ecer]

xQ
Now let I be the total memory impact of all boxes in OPT’s box
sequence oy for processor x. Then,

D Leolk <) I/k + poly(pk),
x,Q x

where the final term accounts for the fact that adjacent phases may
overlap on up to p boxes that they work on. Notice, however, that
Yx Ix/k < Topr. So, assuming that Topr is sufficiently large as a
function of p and k,

> Ieqlk < Topr + poly(pk) = O(Topr).

xQ
Since the total length of A’s time-inefficient phases is
O(2x,0 Ix,0 log p/k), the proof is complete. O

Next we construct a well-rounded parallel-paging algorithm.

Lemma 6. There exists a deterministic well-rounded parallel-paging
algorithm using O(k) memory.

Proor. Without loss of generality, we can focus on the task of
constructing a single phase Q in which the number of processors
falls from 2pg to po.

Since we are only interested in a single phase, we will simplify
the discussion by using p to denote pp and b to denote bg.

Our new task is the following. We wish to assign boxes with
heights b, 2b, 4b, 8b, . . ., pb = k to p processors so that, at any given
moment, the total height of all assigned boxes is at most O(pb).
Once a box of height z is assigned, it sticks around for time z. (Note
that we can also feel free to allocate multiple boxes to a given
processor if we want, while still assuming that OPT only allocates
one at a time.) In order so that our algorithm is well-rounded, we

Session 5: Best Paper Session

need two properties: (1) that every processor is always assigned a
box (this is trivial, since we can use pb = k extra memory to give
out boxes of size b to whomever needs them); and (2) that, for each
box height z > b, for each processor x, and for any point in time,
x is guaranteed to be allocated a box of height > z at some point
within the next O(z%s/blog p) time steps (unless, of course, x is
currently allocated such a box). We will ignore the first property,
since it is trivial to achieve, and focus on achieving the second.
The boxes of heights z > k/log p = pb/log p are easy to handle.
Indeed, for each such height z, we only need a box of height z every

sz*(log p) /b > s(pb/log p)z(log p) /b = szp

time steps. So we can just allocate one box of height z at a time,
and cycle through which processor is allocated that box. The boxes
of heights z > k/log p therefore contribute at most k + k/2 + - -- +
k/log p = O(k) total allocated height at any given moment.

The boxes of heights z < k/logp = pb/logp require a dif-
ferent approach. We cannot get away with allocating only one
box of each height at a time. For each of the O(logp) heights
z € {b,2b,4b,...,pb/logp}, we allocate k/log p memory to boxes
of that height z. We refer to this memory as the z-strip of memory.

We use the z-strip of memory as follows: using the fact that

z < k/log p, we allocate zl(’fgp

the total time needed to allocate p boxes is

boxes of height z at a time, so that

spz _szzlogp
k/(zlogp) b

The boxes allocated in the z-strip are assigned in a round-robin
fashion to the p processors, so each processor gets a box of height
z every sz?/blog p time steps.

In summary, it is possible to allocate O(k) memory at a time
while ensuring that for each box size z € {b, 2b,4b, ..., k}, each
processor gets a box of size z every sz?/blog p time steps. This
completes the proof of the lemma. O

We define DET-PAR to be the deterministic well-rounded al-
gorithm from the previous lemma. We remark that DET-PAR is
oblivious, meaning that it does not adapt to the specific access
sequence of processor: the only information that it uses is how
many processors are present at any given moment.

Combining the previous two lemmas, we obtain the following:

THEOREM 3. DET-PAR is a deterministic parallel-paging algo-
rithm that uses a factor of O(1) resource augmentation and that
achieves competitive ratio O(log p) for makespan.

Connections to green paging, and other implications. We
conclude the section by proving an interesting relationship between
arbitrary well-rounded paging algorithms and the green-paging
problem. This relationship will then allow us to obtain several
interesting corollaries.

Call an algorithm balanced if (1) the parallel-paging algorithm
always allocates at least a constant fraction of memory to proces-
sors; and (2) within each phase Q, the total amount of memory
impact allocated to each of the (remaining) processors is always
equal up to xpoly(pk). We now observe that any balanced well-
rounded algorithm is necessarily green:

212

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Lemma 7. Any well-rounded balanced parallel paging algorithm A
must have the following property: the box sequence allocated by A to
a given processor x during a given phase Q is O(log p)-competitive
for green paging (with O(1) resource augmentation).

Proor. Consider a processor x during a phase Q, and assume
that the length Tp of Q is at least poly(pk). Let us compare to
a paging algorithm OPT that assigns each processor an optimal
green-paging box sequence during phase Q (rather than optimiz-
ing for parallel paging). Because A is well-rounded, the total
amount of time that x spends working on a given OPT-box of some
height z € {k/pg, 2k/pg, ..., k} is at most O(zzs/bQ logp +sz) =
O(zzs/bQ log p). On the other hand, the box of height z incurs a
memory impact of ©(z%s). Thus, if we let I,0 be the total memory
impact across all OPT-boxes that x works on during Q, then

Ix,Q = Q(bQTQ/logp).
Since A is balanced, the total amount of memory impact ¢ that
x incurs in phase Q is O(Tgk/pg). Thus
Top=Q (gﬁpQ/k),
Chaining together the inequalities,

b
Lo=0 QPPO
klogp

) - Q(¢/log p).

This implies that the box sequence allocated by A to x during phase
Q is O(log p)-competitive for green paging. O

As an immediate consequence, we get a deterministic analogue
of Corollary 1.

Corollary 2. DET-PAR is a deterministic parallel-paging algorithm
that assigns boxes to each processor using a black-box ©(logp)-
competitive green paging algorithm, that uses a factor of O(1) re-
source augmentation, and that achieves competitive ratio O(log p)
for makespan.

A second corollary of Lemma 7 is that we can analyze the compet-
itive ratio that DET-PAR incurs with respect to average completion
time. Indeed, [2] showed that, in order for a deterministic parallel-
paging algorithm (with 1+ ©(1) resource augmentation) to achieve
an optimal competitive ratio of O(log p) for average completion
time, it needs only to satisfy two requirements: (1) that it is bal-
anced, as defined above; and (2) that it is green, meaning that within
each phase it allocates memory to processors using an O(log p)-
competitive green-paging algorithm. On the other hand, Lemma
7 tells us that, if a parallel-paging algorithm is well-rounded and
balanced, then green-ness is automatic. Thus we can conclude that
DET-PAR achieves the same (optimal) competitive ratio for average
completion time as it achieves for makespan.

Corollary 3. DET-PAR achieves a competitive ratio of O(log p) for
average-completion-time using O(1) resource augmentation.

4 A LOWER BOUND ON BLACK-BOX
APPLICATIONS OF GREEN PAGING
In [2], the authors show how “good” green paging algorithms can

be transformed into parallel paging algorithms with good perfor-
mance under several metrics. In particular, starting from any green

Session 5: Best Paper Session

paging algorithm that is c-competitive (including an algorithm e.g.
1-competitive because it is offline, or because it is only required to
service “easy” request sequences) one can obtain a parallel paging
algorithm with comparable resource augmentation that is O(c)-
competitive for mean completion time. The black-box transforma-
tion involves using the green paging algorithm for each of the p
sequences in the parallel paging problem. Without loss of gener-
ality, this produces for each processor a sequence of boxes. Any
parallel paging algorithm that packs these boxes fairly (with no
request sequence having had, at any point in time, more than O(1)
times the memory impact of any other uncompleted sequence) and
efficiently (with boxes taking an Q(1) fraction of the “available”
impact) yields the requisite result.

This result does not apply to makespan. In general, to complete
a fraction greater than (1 — ¢) of all sequences, the black-box trans-
formation yields a competitive ratio with an upper bound no better
than O(clog 1/¢). Therefore the additional overhead is not a con-
stant if ¢ = 0(1); in particular, for makespan ¢ = 1/n, yielding a
multiplicative ~ log n overhead on top of that stemming from the
suboptimality of online green paging. We now show that a signifi-
cant portion of this overhead is inherent to using such a black-box
approach: roughly speaking, if each processor is allotted any opti-
mally or almost optimally green memory profile, then makespan
on some sequences is inevitably suboptimal by a factor Q(log n).

A deeper look at green paging. To state more formally the lower
bound we must first make the definition of green paging more
precise. In general, the green paging problem is well defined only
when we specify the maximum and minimum memory to service a
sequence. Intuitively, the closer the two thresholds are, the fewer
choices the algorithm has, and thus the more easily it can be optimal
or almost optimal. Indeed, the competitive ratio achievable by a
deterministic online green paging algorithm with constant resource
augmentation is logarithmic in the ratio between the two thresholds
[2]. Crucially, if the ratio is small because the minimum threshold
is high, an algorithm can achieve better relative performance not
because it can have lower impact, but because there are fewer
possible choices - in other words, because the optimal strategy is
forced to have higher impact.

When using green paging black-box to allocate memory to each
sequence in a parallel paging algorithm, the threshold for the mini-
mum memory allotted to each sequence grows over time — since
when v sequences remain uncompleted, an extra factor 2 of resource
augmentation allows each sequence to receive k /v memory at all
times. In practice, this is easily addressed (both in previous sec-
tions and in earlier work [2]) with yet another factor 2 of resource
augmentation by simply “rebooting” the green paging algorithm
whenever the minimum threshold doubles — so that it is always
effectively running with fixed thresholds.

Note that the memory thresholds encountered when servicing
one sequence might be influenced by the choices of the algorithm
for other sequences. Thus, one might in principle encounter a green
paging algorithm used for parallel paging that appears greener
by “cheating” as follows: it allots excessive memory early on to
some sequences so as to end them as soon as possible, and thus
becomes comparatively greener on the suffixes of the remaining
sequences (and in aggregate over the whole execution) — not by

213

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

being intrinsically greener on those suffixes, but simply by making
the lowest-impact allocations not viable. As we are trying to prove
that employing “really” green paging algorithms in parallel paging
is a source of a logarithmic overhead, we would like to rule out this
“greenwashing”.

We stress that this issue is not present if considering green paging
in isolation, when (ignoring constant factors) servicing a prefix of
a sequence with higher impact can never lower the impact of the
remaining suffix and thus of the sequence in its entirety; so that
being greedily green is always the most efficient strategy. This is
true even if the memory thresholds can change over time, as long
as the changes do not depend on the algorithm’s choices. Thus,
even in the context of parallel paging we would like to consider
only “greedily green” allocations — which is also the only option
when dealing with online algorithms, which cannot know when a
sequence might end.

Thus, we refine our definition of green paging as follows:

Definition 1. A green paging algorithm ALG is g-greedily com-
petitive for green paging if for some g’ (which might depend on the
minimum and maximum memory thresholds, and on the relative
overhead s of faults), for any sequence o, it services o incurring on
any prefix & of ¢ an impact no larger than g - copr () + g’, where
copr () is the minimum offline cost to service 7.

Note that this is a very general definition. A green paging online
algorithm that is c-competitive is necessarily greedily c-competitive
since a sequence can end at any time (and thus the algorithms in [2]
are exactly of this type). But a greedily competitive algorithm is not
necessarily online: it can make decisions taking the entire sequence
into consideration - in fact, in the context of parallel paging base
its decisions on the entirety of all p sequences.

Being green forces a logarithmic makespan overhead. Con-
sider a parallel paging algorithm PAR that uses a greedily green
paging algorithm GREEN as a black box. As mentioned before,
we can assume without loss of generality GREEN is simply a nor-
malized and compartmentalized memory allocation strategy, that
given a sequence of requests produces a sequence of boxes and
services the sequence within those boxes e.g. with LRU (which is
2-competitive with resource augmentation 2). At any time PAR
can allocate a memory box for one or more sequences not under
execution, it does so (prioritizing among the possible choices, if nec-
essary, in some fashion), and begins servicing those sequences until
the end of the respective boxes, or of the sequences. In fact, with
O(1) resource augmentation, we can simply assume PAR keeps
every sequence constantly in execution by simply allocating, to any
that would receive no memory, a box of capacity k /v where v is the
(smallest power of 2 at least as large as the) number of surviving
sequences. Note that the parallel paging algorithms obtained in [2]
are exactly of this type. We can then prove:

THEOREM 4. For anyc > 1, and for any arbitrarily large number
of request sequences p and memory size k > p, there exist sequences
00 - - -, 0p—1 and a parallel paging algorithm OPT that can serve these
sequences with memory k which has the following property.

If PAR is greedily competitive within a factor c, then for any ¢ > 0,
s > ck, the time necessary for PAR to complete more than a fraction
(1 — ¢) of all sequences, even with memory K = ck, is a factor Q(1 +

Session 5: Best Paper Session

log(1/¢)/loglog p) larger than that necessary for OPT to complete
all sequences.

Let us briefly examine the theorem’s statement. First, if ¢ is a
constant (i.e. GREEN is O(1)-competitive), PAR’s competitive ra-
tio for makespan is Q(log p/loglog p). Second, note the order of
quantifiers in Theorem 4, and in particular how the adversarial
request sequences depend (obviously) on the memory and number
of processors, and on the maximum “slack” we allow the green
paging algorithm — but not on the green paging algorithm itself or
its parallel scheduler. Thus, the sequences are universally bad even
against offline (but sufficiently green) algorithms; i.e. the subopti-
mality factor stems not from ignorance of future requests, but from
being green. We then have:

Corollary 4. Any parallel paging algorithm with constant resource
augmentation c, exploiting black-box a c—greedily competitive green
paging algorithm, has a competitive ratio Q(1 + log p/loglog p).

Proof idea. The theorem’s proof is short, but requires careful
coordination of many parameters; so we first try to provide an
intuition of where we are going and why. For simplicity, we focus
on the case ¢ = 1/n, i.e. makespan.

Our generic sequence oj is the concatenation of a possibly empty
prefix 7; and of a suffix ;. Suffixes of all sequences have the same
length; each of their pages is requested only once, so they run at the
same speed however little memory they are given. And since even
with minimal memory suffixes are designed to consume the bulk
of impact, the key to optimality lies in executing them in parallel.

Prefixes of different sequences vary in length and are designed
to achieve two goals. First, any “sufficiently green” memory alloca-
tion must be an almost minimal one: i.e. GREEN can allocate only
few boxes of size > K /v when v sequences are still uncompleted.
Second, it is only slightly less green to execute a prefix with the
largest possible memory (the size K box) than with the minimal
one (the size K /v box). OPT takes advantage of this by allocating
large boxes to prefixes so as to complete each very quickly without
being too wasteful; it can then execute all suffixes in parallel. PAR,
on the other hand, to be green must give roughly the same memory
(the minimal one) to each executing prefix; since prefixes are of
different length, this prevents PAR from executing all suffixes in
parallel.

Let us now have a first look at the sequences. The generic prefix
7r; accesses two types of pages: repeaters and polluters. Polluters
are pages that are accessed only once; thus, they replace in memory
potentially useful data with data that will never be accessed again.
Repeaters are k — 1 pages that we keep cycling over — except that,
every so often, instead of a repeater we access a polluter. Note that
these are common access patterns, and not at all pathological.

If we had no polluters, for a sufficiently large s and sufficiently
long prefixes, the greenest strategy would obviously be to allocate
a~ k memory and only incur a negligible fraction of misses (on the
very first cycle). By adding a fraction of polluters, we can increase
the miss rate incurred by this allocation so that it is just high enough
to have GREEN reject it. More specifically, denoting by v the number
of sequences not yet completed by GREEN at a point in time, we
want roughly every v/cth page to be a polluter. Then, the minimum
memory GREEN can assign to a sequence is ~ K/v - forcing a miss

214

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

on most accesses, for a total impact on L requests of sKL/v. With
memory k or larger, every v/cth access (involving a polluter) is a
miss, for a total impact slightly larger than cskL/p. Since GREEN
must be optimal within a factor ¢ in terms of impact, it cannot
choose the large boxes (nor mid-sized boxes that incur almost as
many misses as the small box, but more impact).

OPT can then complete the prefixes one at a time with boxes
of size k. Once all prefixes are completed, all suffixes can be exe-
cuted in parallel. Suffixes involve roughly ak? loglog p requests,
with a sufficiently large « that the suffix cost dominates the entire
computation, so OPT finishes in time O(ask? loglog p).

We want PAR to take significantly more time, which leads us to
the next insight. Prefixes are of different lengths so that the follow-
ing property (approximately) always holds: PAR runs over = log p
eras of roughly the same duration, with the number of uncom-
pleted prefixes halving each era until only suffixes remain. Roughly
speaking, if ~ v sequences remain uncompleted during an era, then
at most a fraction 1/log p of them are executing prefixes and all
others are executing suffixes. Our sequences will force each era to
take approximately ~ ask? time, for a total time of ~ ask?log p.
This is a factor ~ log p/loglog p larger than OPT - due to the fact
that suffixes, the dominant cost in both cases, for PAR spread over
~ log p eras rather than over loglog p.

How do we design sequences to make the above happen?
We divide all sequences into phases, such that, in general, each
alive sequence executes one phase in each era. Each phase has
about X = O(ak?) requests. All suffixes have the same number
O(loglog p) of phases; so every suffix has ©(ak? log log p) requests,
all to polluters.

As for prefixes, those of most sequences are empty and only
p/log p sequences are prefixed. The prefixed sequences are divided
into roughly log p — loglog p families Fy, Fy, ... where sequences
in a family are isomorphic. Family F; has 2! sequences, but each
sequence in this family has log p — loglog p — i phases. That is, the
number of sequences in the family increases geometrically with
i but the number of phases that the sequences in the family have
decreases linearly with i. Therefore, family Fy has 1 sequence, but
is very long — it has approximately log n — loglog n phases. On
the other hand, the last prefixed family has about half the prefixed
sequences, but each of these prefixes has only 1 phase.

Remember that we are designing sequences so that GREEN (and
therefore PAR) is forced to choose mostly small boxes for all the
sequences that are in their prefix phases. To do so, we must ensure
first, that there are at least p/2/ sequences in the jth phase, and
second, that the pollution level of the sequences executing their
prefix in the jth phase is just high enough — in particular, the jth
prefixed phase for all sequences (where it exists) has a pollution level
of approximately ~ 2/¢/p. Now consider PAR’s execution. In the
first era, all sequences are alive. p—p/log p prefix-free sequences are
executing their first suffixes and the remaining p/log p sequences
are executing their first prefix phase. At this point, the smallest
available box size is K/p and the pollution level is high enough
that GREEN should choose small boxes for all the p/log p prefixed
sequences. The first phase takes O(ask?) time since each sequence
always misses with small boxes. After the first phase, about half the
prefixed sequences enter their suffix phases, but all sequences are

Session 5: Best Paper Session

still alive. The pollution level keeps doubling in each phase over the
next log log n phases, so GREEN must keep choosing small boxes.

At this point, the prefix-free sequences start completing. How-
ever, most of the prefixed sequences are now in their suffix phases
— in particular, only a 1/log p fraction of the originally prefixed
sequences are still executing their prefixes, since suffixes last for
about loglog p phases, and during each of those the number of
surviving prefixes roughly halved. Also, the pollution level has
increased enough by this time (for prefixed phases) that GREEN
must keep choosing smallest available boxes (which are size about
K/(p/log p) by now since only p/log p sequences are now alive. By
carefully picking constants, we keep increasing the pollution level
just enough as sequences complete so that GREEN keeps picking
small boxes and each phase keeps taking ~ ask? time to complete.
Since there are a total of ©(log p) phases, PAR takes O (ask? log p)
time to finish all sequences.

Let us go back to OPT now. It executes all the prefixed sequences
one at a time giving it a box of size k. Therefore, its miss rate in
the jth phase is about ¢2//p, and the jth phase only takes time
O(a2/ sk? /p). Adding over all sequences, it can finish all the prefixes
in only O(ask?) time. It can then execute all suffixes together and
complete all sequences in O(ask? loglog p) time.

The actual proof requires us to carefully pick constants so that
it all works exactly as needed. The details can be found in the
appendix.

5 CONCLUSIONS

We settled the problem of minimizing makespan for online paral-
lel paging when p processors access distinct sets of pages, with a
single algorithm that simultaneously achieves the optimal deter-
ministic competitive ratio of O(log p) for both makespan and mean
completion time.

An obvious open question is whether our result can be improved
(for either metric) via randomization; we conjecture this is not the
case. Another direction for future research is to consider scenarios
where the p sequences running on different processors can share
pages (in the resource-augmentation framework). This problem
appears to be difficult to solve in the general case; however, it
may be tractable under limited conditions of sharing. An even more
difficult problem would be that of sharing a cache among processors
executing a parallel program with inter-thread dependencies, so
that paging decisions interact with scheduling decisions.

Acknowledgments

The authors gratefully acknowledge support from the following
grants.

Agrawal was supported by the Department of Computer Science
and Engineering at Washington University in St. Louis as well as
the NSF grants CCF-2106699, CCF-1733873, and SPX-1725647.

Bender was supported by NSF grants CCF-2118832, CCF-2106827,
CSR-1763680, CCF-1716252, CNS-1938709, and CCF-1725543.

Das was supported by the Canada Research Chairs Programme
and NSERC Discovery Grants.

Kuszmaul was funded by an NSF GRFP fellowship, a Fannie and
John Hertz Fellowship; the research was also funded by the United
States Air Force Research Laboratory and the United States Air

215

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Force Artificial Intelligence Accelerator and was accomplished un-
der Cooperative Agreement Number FA8750-19-2-1000. The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies,
either expressed or implied, of the United States Air Force or the
U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstanding
any copyright notation herein.

Peserico was supported, in part, by the University of Padova
project “Internet of Things” (MIUR grant “Dipartimenti di Eccel-
lenza” L. 232/2016).

Scquizzato was supported, in part, by the University of Padova
under grant BIRD197859/19.

REFERENCES

[1] Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch
Peserico, and Michele Scquizzato. Brief announcement: Green paging and parallel
paging. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 493-495, 2020.

Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch
Peserico, and Michele Scquizzato. Tight bounds for parallel paging and green
paging. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3022-3041, 2021.

Rakesh D. Barve, Edward F. Grove, and Jeffrey Scott Vitter. Application-controlled
paging for a shared cache. SIAM Journal on Computing, 29(4):1290-1303, 2000.
Laszlo A. Belady. A study of replacement algorithms for a virtual-storage com-
puter. IBM Systems Journal, 5(2):78-101, 1966.

Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 1998.

Pei Cao, Edward W. Felten, and Kai Li. Application-controlled file caching policies.
In Proceedings of the USENLX Summer 1994 Technical Conference (USTC), pages
171-182, 1994.

Marek Chrobak. SIGACT news online algorithms column 17. SIGACT News,
41(4):114-121, 2010.

Rathish Das. Algorithmic Foundation of Parallel Paging and Scheduling under
Memory Constraints. PhD thesis, State University of New York at Stony Brook,
2021.

Rathish Das, Kunal Agrawal, Michael A Bender, Jonathan Berry, Benjamin Mose-
ley, and Cynthia A Phillips. How to manage high-bandwidth memory automati-
cally. In Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 187-199, 2020.

Daniel DeLayo, Kenny Zhang, Kunal Agrawal, Michael A Bender, Jonathan
Berry, Rathish Das, Benjamin Moseley, and Cynthia A Phillips. Automatic hbm
management: Models and algorithms. In Proceedings of the 34th ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), 2022.

Esteban Feuerstein and Alejandro Strejilevich de Loma. On-line multi-threaded
paging. Algorithmica, 32(1):36-60, 2002.

Amos Fiat and Anna R. Karlin. Randomized and multipointer paging with locality
of reference. In Proceedings of the 27th annual ACM Symposium on Theory of
Computing (STOC), pages 626-634, 1995.

Anupam Gupta, Ravishankar Krishnaswamy, Amit Kumar, and Debmalya Pani-
grahi. Elastic caching. In Proceedings of the 30th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 143-156, 2019.

Avinatan Hassidim. Cache replacement policies for multicore processors. In
Proceedings of 1st Symposium on Innovations in Computer Science (ICS), pages
501-509, 2010.

Shahin Kamali and Helen Xu. Beyond worst-case analysis of multicore caching
strategies. In Symposium on Algorithmic Principles of Computer Systems (APOCS),
pages 1-15, 2021.

Anil Kumar Katti and Vijaya Ramachandran. Competitive cache replacement
strategies for shared cache environments. In Proceedings of the 26th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pages 215-226,
2012.

Ravi Kumar, Manish Purohit, Zoya Svitkina, and Erik Vee. Interleaved caching
with access graphs. In Proceedings of the 31st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1846-1858, 2020.

Alejandro Lopez-Ortiz and Alejandro Salinger. Minimizing cache usage in paging.
In Proceedings of the 10th Workshop on Approximation and Online Algorithms
(WAOA), pages 145-158, 2012.

Alejandro Lopez-Ortiz and Alejandro Salinger. Paging for multi-core shared
caches. In Proceedings of the 3rd Innovations in Theoretical Computer Science
conference (ITCS), pages 113-127, 2012.

—_
&,

[10

[11

[12

(13]

[14

[15

[16]

[18

[19

Session 5: Best Paper Session

[20

Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. Evaluation
techniques for storage hierarchies. IBM Systems Journal, 9(2):78-117, 1970.
Ishai Menache and Mohit Singh. Online caching with convex costs. In Proceedings
of the 27th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 46—54, 2015.

Enoch Peserico. Paging with dynamic memory capacity. In Proceedings of the
36th International Symposium on Theoretical Aspects of Computer Science (STACS),
pages 56:1-56:18, 2019.

Michele Scquizzato. Paging on Complex Architectures. PhD thesis, University of
Padova, 2013.

Daniel Dominic Sleator and Robert Endre Tarjan. Amortized efficiency of list
update and paging rules. Communications of the ACM, 28(2):202-208, 1985.

[21

[22]

[23

[24]

APPENDIX

Let us now provide all the missing details of the proof of Theorem 4;
in particular considering all the constants. Assume without loss
of generality that p = 241 — 1, ¢ = 27%, and k = p2%~! for some
positive integers ¢, t, a. In addition, assume y = 2ka. Each suffix has
4log ¢ phases, each in turn consisting of (k — 1)y requests, all for
new pages for a total number of requests equal to 4y(k — 1) log £.

The prefixed sequences are divided into ¢ — log¢ families
Fo, ..., Fp1og¢, With F; containing 2! isomorphic sequences (i.e.
identical in structure but requesting different pages). The generic
sequence in family F; has ¢ — logf — i + 1 phases, namely,
0?, .. .,af_lOg e as i increases, the number of phases that the
sequences in the family contain decreases. That is, family Fy has
only one sequence, but this sequence is long, while family Fy_joq ¢
has almost p/log p sequences, but the sequences have only one
phase.

For all i, all O’lJ are isomorphic to a single subsequence o/. The
latter is formed by y = 2ka cycles of requesets for the same k — 1
repeater pages p1, ..., pk_1, replacing every n/ = p/2/th request
with one to a polluter. Note that the level of pollution increases
as the computation advances. Thus, phase 0 sequence ¢° for all
prefixes sequences (for which it exists) requests a polluter page
every p requests, g every p/2 requests, and o108 _ the last

subsequence of the longest prefix — every p2_([_1°g 0=y requests.

Lemma 8. OPT can complete all p sequences in O(sk?log¢) =
O(ask? loglog p) time.

ProoF. Phase j of any sequence (for which it exists), o/, can
then be completed in isolation by first bringing the cycle’s k — 1
pages into memory (at cost s(k — 1)), so that the subsequent y — 1
cycles incur at most one fault every n j requests. Remembering that
s >y = p, then ¢/ can be completed in time no larger than

TV =yk-1)+(s—1)(k-1)+(s—1)(k - Dy/n;
<k(y+s+sy/nj) < sk(2/y/p +2) = O(2/sky/p).

Recall that2/108¢=J sequences have o;j in the first place (all

prefixed sequences have ¢°, but only about half have ¢!, and so on).

Therefore, the total time for prefix j to complete for all sequences
is 20-logt=J T;. Also, all suffixes can execute in parallel in time
4log ts(k — 1)y since they don’t reuse any pages. Therefore, the
total cost to complete all prefixes one after the other, followed by

216

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

all suffixes in parallel, is at most

t—log ¢
Topr = Z 207108 ETT; 4 4log £5(k — 1)y
j=0
< (t-logt+1)(p/t)sk(y/p) + 4sk + 4logts(k — 1)y
= O(skylog?). O

Lemma 9. PAR takes time Q(log ¢ + log(1/¢)sky) to complete a
fraction at least 1 — ¢ of all sequences.

Proor. Intuitively, in PAR, there are always at least ~ ¢ times
as many active suffixes as prefixes; this guarantees that any “suf-
ficiently green” memory allocation must have service a fraction
bounded away from 0 of each prefix’s requests with minimal mem-
ory, causing each phase to take time Q(sky) time.

More formally, say S; = js(k — 1)y/4. We can easily prove by
simultaneous induction on j that:

(1) No sequence serviced by PAR completes its (j — 1)th

and enters its j th before S -

(2) There are at least p2~/ uncompleted sequences at all times
before Sj41.

(3) For any sequence, at any given point in time before Sj41,
PAR must have serviced at least half the requests with the
minimum available memory at that time.

(4) For any sequence, at any given point in time before Sj41,
PAR has incurred at least 1 page fault every 4 requests.

stage

Note that (1) is trivially true for j = 0, and (for any given j)
(2) follows immediately from (1), since there are at least p2~/
sequences with at least j stages.

(3) follows from (2) since, as long as u; = 4c2nj sequences
remain unfinished, with memory K < ck GREEN must service at
least half the requests of any prefix in F; with blocks of capacity at
most 2ck /u;. To see how this is the case, note that the minimum-cost
green strategy is the one servicing the sequence with the strictly
minimal blocks of size (at most) k/u;, with a per-request cost of
at most sk/u; < sck/u;. Larger blocks smaller than k/2 do not
reduce faults by more than a factor of two, since cycles involve
k — 1 distinct pages. Blocks of size at least k/2 can incur fewer
faults, but at least 1/n; times as many as with minimal memory
(due to new page requests); then, the per-request cost of any block
with capacity at least k/2 is still at least (k/2)(1+ (s — 1)/nj) >
sk/(2nj) > (2c)sck/u;, and thus no more than half of all requests
can be serviced via such large blocks.

Then (4) immediately follows, and from it (1) follows for j + 1
since Sj+1—S; = s(k—1)y/4 and every stage sports (k—1)y requests,
at least half of which incur faults and thus take time s to service. O

Theorem 4 is implied from Lemmas 8 and 9.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Upper Bounds
	3.1 Randomized Online Green Paging
	3.2 Randomized Online Parallel Paging
	3.3 Deterministic Online Parallel Paging

	4 A Lower Bound on Black-Box Applications of Green Paging
	5 Conclusions
	References

