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Abstract—Advances in machine intelligence revolutionized a
broad category of safety-critical and mission-critical applications,
but important challenges remain when applying these solutions at
the embedded network edge, as opposed to resource-rich contexts.
What challenges stem from deploying cost-sensitive applications
on lower-end devices to offer AI at the point of need? We present
an overview of key research challenges that must be addressed
to provide assurance of timing and other safety properties for
resource-constrained systems involving autonomy and artificial
intelligence on-line. We then describe a vision and agenda for
research targeting those challenges.

Index Terms—autonomy, AI, ML, neural networks, real-time

I. INTRODUCTION

Before safety-critical systems may be deployed in the field,

their safety properties must typically be verified. For many

safety-critical Cyber-Physical Systems (CPS’s), such safety

properties have an inherently “real-time” aspect (e.g., that

deadlines are met); the verification of such timing correctness

properties is usually done by applying analysis and modeling

techniques from real-time scheduling theory [1]. Real-time

scheduling theory was initially developed for the verification

of timing properties in relatively simple static systems that

were designed to operate in one of a limited number of

operational modes, and in reasonably predictable environ-

ments. Although the theory has since evolved significantly to

deal with more complex dynamic systems operating within

unpredictable environments, we believe additional effort is

needed to further extend the concepts, techniques, and methods

of real-time scheduling to make them applicable for the ver-

ification of timing safety properties of autonomous AI-based

CPS’s such as self-driving cars and unmanned aerial vehicles.

The aforementioned challenges are further compounded by

resource constraints in environments where the AI algorithms

must execute on embedded edge devices as opposed in a

resource-rich environment, such as the cloud.
For example, in drone cinematography, an unmanned aerial

vehicle not only performs low-level functions such as object

recognition and tracking, but also determines its own flight

path to optimize the quality of the video it is recording

of a subject, according to specific cinematographic objective

functions. All of the above must fit on an embedded computing

platform that is subject to size, weight, and power constraints

to promote cost-efficient design and fuel-efficient operation.

Similarly, self-driving cars must avoid collisions with other

manned and unmanned vehicles, pedestrians, and features of

the roadway while maintaining adequate rates of travel and

navigating efficiently to a target destination. Mass production

(at a scale of millions of units annually) implies that small per-

unit cost savings have significant financial implications. This

cost-sensitivity motivates careful use of lower-end computing

platforms where possible, as opposed to resorting to over-

provisioning. While many intelligent capabilities have been

demonstrated in particular contexts with limited sources of

potential interference, generalizing these capabilities and en-

suring safety properties of these systems within a diverse range

of complex operating environments and resource constraints

poses important new challenges for CPS research.

II. RESEARCH CHALLENGES AND APPROACHES

A new generation of CPS research must address the afore-

mentioned needs at the intersection of autonomy, AI, and

real-time assurance. First, timing characteristics of modern

AI components must be studied, and analytical models of

those components’ timing behavior must be developed so that

their contributions to overall timing properties of the system

can be gauged and verified. Second, especially for systems

operating in complex and evolving environments, notions of

prioritization must be expanded to encompass attention to the

external environment (object tracking, projecting future trajec-

tories) as well as the system’s internal resources (scheduling,

control, and system state estimation). Specifically, attention

should be given to more critical elements of the environ-

ment in accordance with their physical properties and related
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safety constraints. Third, managing resources efficiently in

the common cases, as well as in worst-case scenarios is

essential. Fourth, resource access and availability, from a

security perspective as well as a real-time one, also must be

addressed. Fifth, adapting to rapidly changing environments,

while maintaining adequate operational tempo should allow

safe operation while maintaining suitable performance. Sixth,

how to identify and mitigate side channel vulnerabilities in

perception and other interactions with the environment also

must be investigated. The combined impact of these advances

has significant potential to enable a new generation of au-

tonomous, artificially intelligent, safety-critical cyber-physical

systems whose performance and safety properties (including

timing, availability, security, and resilience) can be verified

formally and validated empirically.

A. Timing Characterizations of Execution Workloads

In order to be able to provide timeliness guarantees, it

is necessary that we have accurate characterizations of the

timing requirements of the kinds of computations that must be

performed in a time-sensitive manner. Obtaining such accurate

characterizations in particularly challenging for complex au-

tonomous safety-critical CPS’s that are intended for operation

in highly uncertain and widely dynamic environments, and that

are, for cost and related reasons, implemented upon general-

purpose computing platforms that are optimized for providing

superior average-case performance (rather than minimizing

worse-case timing durations).

In order to obtain strong empirical evidence of the compu-

tational resource requirements of modern AI components such

as deep neural networks, extensive measurement experiments

are needed upon a variety of implementation platforms of the

kind that are widely used in implementing safety-critical au-

tonomous CPS’s today. On the basis of the evidence obtained

via such measurements, abstract models can be constructed

of run-time timing behavior that are both able to accurately

characterize resource requirements and are amenable to the

forms of analysis (such as schedulability analysis, timing

analysis, etc.) that are needed in order to be able to prove

timing safety properties.

B. Prioritization of Attention

An important challenge brought about by the need for

resource efficiency is one of prioritizing machine attention [2].

Current execution pipelines of machine intelligence tasks (such

as perception) generally treat the sensory input data stream as

a uniform stream of the same priority. In reality, elements of

the scene could be prioritized at a sub-frame level according

to some notion of criticality. For example, intuition suggests

that in autonomous driving, trees on the side of the road are

not as important to track as pedestrians. Thus, trees could

be observed at a much lower frame rate than the individuals.

In general, static and immobile objects need not be observed

as frequently as fast unpredictably-moving objects. In current

systems, both are observed at the same frame rate, which is

wasteful to resources and needlessly increases cost.

On the other hand, objects that may seem unimportant in

the short term, may prove important in the near future. For

example, a truck may obscure a vehicle that is passing it

on the other side, relative to an autonomous vehicle that is

tracking all nearby vehicles. Even though that other vehicle

may be obscured from the autonomous vehicle’s cameras

and other sensors for a minute or more, its prior trajectory

and the potential for it to emerge ahead of the truck and

even move directly into the path of the autonomous vehicle

must be considered, and attention and resources thus must be

devoted to tracking it when it is visible and projecting its likely

trajectory when it is not.

Addressing the above challenges introduces a “chicken-and-

egg” problem. In order to segment the input and assign impor-

tance levels, priorities, deadlines, or effective observation rates

to different objects or segments, these objects or segments

must first be identified in the scene. Such identification,

in itself, requires perception processing, thus negating the

resource savings. In principle, however, it may possible to

use auxiliary cueing sensors to determine areas of input that

are more critical to observe. For example, a ranging sensor

could be used to efficiently detect nearby obstacles and/or

quickly-approaching objects allowing the corresponding areas

of the visual input to be prioritized before any heavy-weight

processing is done by the video perception pipeline [2], [3].

The above idea introduces several challenges. For example,

what cueing sensors are appropriate? How to make cueing

efficient so we do not end up spending the same amount

of resources on cueing as we would have on actual whole

seen processing? How to mitigate false positives and eliminate

false negatives? What is a meaningful priority assignment?

How to take advantage of redundancy among successful

frames to further reduce processing overhead? In addition

to model-based (and thus potentially explainable) tracking,

prediction, and reasoning approaches, we believe real-time

scheduling theory, which has studied priority-based resource-

assignment extensively, is uniquely suited to answer some of

these questions. Thus, it is important to investigate the use of

concepts and techniques from real-time scheduling theory to

better understand the role of priorities in achieving real-time

assurance in autonomous AI-based CPS’s.

C. Mechanisms for Resource Economy

Intelligent systems are data driven. Most computation is

attributed to the processing of data-intensive pipelines to

compute decisions based on observations. Given appropriate

attention management mechanisms discussed above, another

design decision is thus how to reduce resource consumption

attributed to less critical input data segments. Several degrees

of freedom can be explored, as discussed below.

1) Region-of-Interest Selection and Subsampling: One

mechanism for reducing resource consumption is to process

less critical data segments less frequently (i.e., sub-sample

parts of the input stream). Other mechanisms are possible that

rely on processing quality, not frequency. In essence, reducing

processing frequency can be thought of as an extreme point
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in the quality space, where the quality of processing of some

inputs (namely, those that were skipped) has been reduced

to zero. Examples of other points in that design space are

presented below.

2) Early Exit and Imprecise Computations: A simple so-

lution that is a compromise between full processing and

total skipping of regions of input is to apply the concept of

imprecise computations [4]. Since modern perception pipelines

are based on neural networks, it becomes possible to design

networks where processing additional layers increases the

quality of outputs incrementally. Such a design was recently

proposed for classification tasks [5]. The resources consumed

by processing of lower-criticality inputs can thus be reduced

by early exit mechanisms that stop neural network processing

of less critical segments before all network layers have been

executed, thus producing intermediate output quality.

3) Input Resolution Adjustment and Model Switching:
Recent work demonstrated that another effective solution for

reducing the amount of resources spent on processing less

critical inputs is to simply reduce the resolution of such in-

puts [6] and use smaller neural networks to process the smaller

inputs. It was shown, in fact, that this approach beats imprecise

computations, described above, because for each network (of a

different size), network weights can be specifically optimized

for its corresponding tailored input size. This optimization is as

opposed to early exit networks, where multiple exit points exist

in the same neural network making it impossible to optimize

neural network architecture and weights for each specific exit

point. Rather, the choice of used weights becomes more of

a compromise that jointly considers all possible exit points,

making the network up to each exit point somewhat suboptimal

for its size.

More work is needed to understand the advantages and

limitations of imprecise computations versus model switching

approaches. An obvious disadvantage of the latter, for exam-

ple, is that all the different network versions need to fit in

GPU memory upfront to avoid excessive context switching

overhead. This need increases memory requirements compared

to imprecise computations. Recent work attempts to reduce

this problem by techniques such as weight virtualization [7].

It is also not clear if imprecise computations can be applied

to all neural network functions, such as, for example, object

detection. More work is needed to develop good imprecise

computation models for different deep neural network infer-

ence tasks.

4) Neural Network Compression: Another solution to

trade-off neural network quality for resource savings is neural

network compression. Many algorithms for compressing neu-

ral networks have been proposed in recent years [8], [9]. It is

therefore possible to use compressed networks for processing

less important inputs, notwithstanding input size. While some

compression techniques simply rely on numerical approxima-

tions (such as quantizing weights, using integer arithmetic

instead of floating point, or removing smaller weights), other

approximations are trained with specific loss functions in

mind. For example, a network approximation can be trained in

a manner that optimizes detection performance for a subset of

object types [8]. Such approximations are particularly well-

suited to a context where the compressed network should

retain a higher level of output (e.g., classification) quality for

a subset of object classes.

5) Computational Offloading: When applicable, some neu-

ral network computation can be offloaded to remote nodes.

This solution is especially well-suited (as an alternative or

supplement to quality reduction) for processing less critical

regions, where challenges such as network outages will not

interfere with critical operation. Neural network offloading

brings about challenges in deciding the degree of compression

for offloaded feature vectors and efficiently navigating the

trade-off between the computational overhead of compression,

the bandwidth needed for compressed data, and the degree

of quality loss entailed. For example, recent work introduced

an asymmetric encoder/decoder framework [10], where the

compression of feature vectors to be offloaded is much more

efficient than decoding of the compressed signal, motivated by

the asymmetry between the edge nodes and central services.

6) Surrogate Sensing: Another idea in the trade-off space is

to optimize for the common-case by using simpler sensors and

inference algorithms in that case, and escalating processing

to more computationally-complex components and sensors

only when needed. For example, a security system might

consume fewer resources when no motion is detected. Motion

detection does not require complex neural network processing

and thus can be used to short-cut the rest of the pipeline

when appropriate. This simple concept can be scaled to other

common scenarios, such as, for example, motion signatures

that are limited in size making them unlikely to be caused by

a human. In general, simple (e.g., compressed) neural networks

can be used to detect a set of common conditions. When

deviations from these conditions are detected, larger networks

may be invoked.

The above performance differentiation mechanisms give

rise to new models of computation that differentiate both

the quality and resource consumption, on subframe basis,

depending on input criticality. These capabilities present inter-

esting modeling and resource allocation challenges that allow

giving quality and timeliness guarantees to the processing of

more critical data regions, while optimizing some aggregate

performance measure, subject to capacity constraints, for other

objects.

D. Timely Resource Access and Availability

A fundamental difference between CPSs and conventional

computing systems is their interactions with the physical

world. While many computation tasks in IT systems can be

suspended for an extended period of time, calculations in CPSs

often have hard deadlines, since time continues to elapse in the

physical world. Computationally correct, but untimely results

often have little to no value for system control, and can even

destabilize the physical system.

The security of AI has received significant attention in

recent years, where attacks often focus compromising the
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confidentiality (such as membership interference attacks) and

the integrity (such as adversarial examples and data poi-

soning). Little attention has been given to the availability

aspect. However, with the growing importance of AI in cyber-

physcial systems and the emergence of ubiquitous autonomy,

the availiability of AI components is a pressing open challenge

for the security and safety of these critical systems. Recently,

it has been demonstrated that timing manipulation can lead to

control destablization of cyber-physical systems [11]–[13].

Availability often implies timely access to system resources

in the cyber-physical systems. There are two general attack

vectors, attacking the AI components or the system it relies on

to impact of timing behavior of the system. In [11], Shumailov

et al. explored the use adversarial samples to cause significant

(up to 30x) amount of additional energy consumption and

delay on the DNN. The key observation behind the attack is

that inputs of the same size can cause a DNN to consume

significantly different amounts of energy and time due to

use of hardware and algorithmic optimizations. In [12], Li

et al. considers a different attack vector where the attacker

leverages the resource contention to cause significant delay in

the run-time characteristics of AI-powered control algorithms,

leading to control destablization. We envision that in order

to provide full system availability, it is important to take a

hollistic approach in order to not only secure against timing

anomalies in neural network execution but also to protect the

platform the AI runs on.

E. Rapidly Changing Operating Environments

We have seen above that time-critical execution workloads

in autonomous safety-critical CPS’s may change significantly

and rapidly; strategies are needed for accommodating such

time-varying computational demands in an effective and effi-

cient manner. Elastic task models [14]–[17], widely studied in

the real-time scheduling literature, appear particularly appro-

priate for representing such workloads: these models possess

the expressive capabilities to represent both the variation in

the amount of computing that is needed by each individual

task, and the task’s resilience to being under-served (i.e., not

receiving its entire requested amount of execution). Scheduling

and schedulability-analysis algorithms have been developed

for these task models that then seek to schedule them in

a robust/ resilience manner as the workload changes during

system execution time. We believe such elastic task models,

suitably adapted, may prove useful for representing the kinds

of dynamic workloads that are found in many safety-critical

AI-based autonomous CPS’s.

Another approach to dealing with a CPS’s rapidly-changing

computational needs would be to adapt the CPS’s operational

tempo in response to an increase/ decrease in the availability

of computation. However, trade-offs between performance

objectives and safety constraints make such elastic adaptation

an ongoing consideration. For example, a self-driving car

may slow down in dense and complex urban settings, while

maintaining reasonable progress towards a planned destination

- how to incorporate deadlines (time of arrival) as well as

constraints (maximum safe rate of travel based on proximity

and movement of pedestrians and other vehicles) within a

constrained optimization procedure that runs continuously to
shape overall system behavior as it moves is an important

research challenge.

This in turn suggests that new formal models for cyber-
physical elasticity through which a system may adapt its

operational tempo or other timing aspects to respect constraints

and optimize performance are needed. Tractability of exact

techniques (e.g., full state space exploration) for off-line or on-

line use of model-based approaches, and the potential role of

stochastic and/or approximate approaches that can give strong

probabilistic bounds on response timing, solution quality, etc.,

must be investigated to determine what can be done at run-

time as the system is operating, versus what must be done a
priori off-line.

These models also will have security implementations, and

platform level approaches for applying them must minimize

timing-based attack surfaces, e.g., through control algorithms

that can accommodate additional timing jitter, because events

they receive are time stamped. For both verification and

mitigation of adversarial vulnerabilities, hardware-in-the-loop

simulation platforms (e.g., combining ROS components run-

ning on a Jetson board with AirSim or CARLA) are likely to

be valuable for studying timing induced vulnerabilities of self-

driving cars, and autonomous drones, and other autonomous

systems, under various scenarios.

F. Perceptual Side-Channel Vulnerabilities

While leveraging perceptual data streams for adaptive

scheduling, such as in order to prioritize attention, presents

tremendous opportunities for increasing the efficacy of re-

source utilization in real-time systems, these also create a new

side-channel vulnerability in the form of physical attacks on

AI-based perception processing. In particular, modern neural

network architectures engaged in a variety of perceptual tasks

have been shown to be vulnerable to adversarial example
attacks, where digital inputs or even the external physical

environment are maliciously manipulated to effect a change

in prediction semantics, such as misclassification of objects

in scenes [18]–[20]. One of the key research challenges in

adaptive scheduling schemes will be to provide adequate

assurance that these do not fall prey to such attack vectors,

for example, by composing perceptual robustness guarantees

(which are, by their nature, input-varying) with real-time

scheduling guarantees.

III. CONCLUDING REMARKS AND FUTURE WORK

This paper briefly outlined challenges in adapting AI for

CPS applications, with a focus on deploying AI at the point

of need – namely, on the embedded edge, where data are

collected by a myriad of sensors that execute a new breed

of analytics, accommodate resource constraints, optimize for

a dynamic environment, and survive an expanded range of

threats. The rationale for pushing intelligent computations to

the edge in a broad category of CPS applications lies in

166

Authorized licensed use limited to: University of Illinois. Downloaded on August 14,2022 at 01:13:11 UTC from IEEE Xplore.  Restrictions apply. 



operational efficiency and resilience. By pushing computations

to where data originate, needless dependence on remote or

centralized resources is removed, thereby simultaneously im-

proving end-to-end latency, robustness, security, and resource

economy. The paper calls for a research agenda on resource

management in the above context. In general computing

systems, streamlining application development and operation

necessitates the introduction of operating systems to address

common challenges such as efficiency, robustness, scalability,

and responsiveness. In systems, where cyber-physical capa-

bilities intertwine physical edge resource management with

intelligent computational artifacts, a new operating-system-

like construct is needed in order to ensure that the execution

of various decision loops involved at different spatial and

temporal scale meets the challenges named above. Fundamen-

tally, these challenges are partitioned onto (i) performance

optimizations to significantly reduce the end-to-end latency,

and computational and communication resource needs of in-

telligent components, and (ii) resilience solutions to guarantee

correctness in the presence of a myriad of cyber threats. The

paper invites multi-disciplinary efforts to address the above

challenges.
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