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Abstract—Advances in machine intelligence revolutionized a
broad category of safety-critical and mission-critical applications,
but important challenges remain when applying these solutions at
the embedded network edge, as opposed to resource-rich contexts.
What challenges stem from deploying cost-sensitive applications
on lower-end devices to offer Al at the point of need? We present
an overview of key research challenges that must be addressed
to provide assurance of timing and other safety properties for
resource-constrained systems involving autonomy and artificial
intelligence on-line. We then describe a vision and agenda for
research targeting those challenges.

Index Terms—autonomy, AI, ML, neural networks, real-time

I. INTRODUCTION

Before safety-critical systems may be deployed in the field,
their safety properties must typically be verified. For many
safety-critical Cyber-Physical Systems (CPS’s), such safety
properties have an inherently “real-time” aspect (e.g., that
deadlines are met); the verification of such timing correctness
properties is usually done by applying analysis and modeling
techniques from real-time scheduling theory [1]. Real-time
scheduling theory was initially developed for the verification
of timing properties in relatively simple static systems that
were designed to operate in one of a limited number of
operational modes, and in reasonably predictable environ-
ments. Although the theory has since evolved significantly to
deal with more complex dynamic systems operating within
unpredictable environments, we believe additional effort is
needed to further extend the concepts, techniques, and methods
of real-time scheduling to make them applicable for the ver-
ification of timing safety properties of autonomous Al-based
CPS’s such as self-driving cars and unmanned aerial vehicles.
The aforementioned challenges are further compounded by
resource constraints in environments where the Al algorithms
must execute on embedded edge devices as opposed in a
resource-rich environment, such as the cloud.

For example, in drone cinematography, an unmanned aerial
vehicle not only performs low-level functions such as object
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recognition and tracking, but also determines its own flight
path to optimize the quality of the video it is recording
of a subject, according to specific cinematographic objective
functions. All of the above must fit on an embedded computing
platform that is subject to size, weight, and power constraints
to promote cost-efficient design and fuel-efficient operation.
Similarly, self-driving cars must avoid collisions with other
manned and unmanned vehicles, pedestrians, and features of
the roadway while maintaining adequate rates of travel and
navigating efficiently to a target destination. Mass production
(at a scale of millions of units annually) implies that small per-
unit cost savings have significant financial implications. This
cost-sensitivity motivates careful use of lower-end computing
platforms where possible, as opposed to resorting to over-
provisioning. While many intelligent capabilities have been
demonstrated in particular contexts with limited sources of
potential interference, generalizing these capabilities and en-
suring safety properties of these systems within a diverse range
of complex operating environments and resource constraints
poses important new challenges for CPS research.

II. RESEARCH CHALLENGES AND APPROACHES

A new generation of CPS research must address the afore-
mentioned needs at the intersection of autonomy, Al, and
real-time assurance. First, timing characteristics of modern
Al components must be studied, and analytical models of
those components’ timing behavior must be developed so that
their contributions to overall timing properties of the system
can be gauged and verified. Second, especially for systems
operating in complex and evolving environments, notions of
prioritization must be expanded to encompass attention to the
external environment (object tracking, projecting future trajec-
tories) as well as the system’s internal resources (scheduling,
control, and system state estimation). Specifically, attention
should be given to more critical elements of the environ-
ment in accordance with their physical properties and related
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safety constraints. Third, managing resources efficiently in
the common cases, as well as in worst-case scenarios is
essential. Fourth, resource access and availability, from a
security perspective as well as a real-time one, also must be
addressed. Fifth, adapting to rapidly changing environments,
while maintaining adequate operational tempo should allow
safe operation while maintaining suitable performance. Sixth,
how to identify and mitigate side channel vulnerabilities in
perception and other interactions with the environment also
must be investigated. The combined impact of these advances
has significant potential to enable a new generation of au-
tonomous, artificially intelligent, safety-critical cyber-physical
systems whose performance and safety properties (including
timing, availability, security, and resilience) can be verified
formally and validated empirically.

A. Timing Characterizations of Execution Workloads

In order to be able to provide timeliness guarantees, it
is necessary that we have accurate characterizations of the
timing requirements of the kinds of computations that must be
performed in a time-sensitive manner. Obtaining such accurate
characterizations in particularly challenging for complex au-
tonomous safety-critical CPS’s that are intended for operation
in highly uncertain and widely dynamic environments, and that
are, for cost and related reasons, implemented upon general-
purpose computing platforms that are optimized for providing
superior average-case performance (rather than minimizing
worse-case timing durations).

In order to obtain strong empirical evidence of the compu-
tational resource requirements of modern Al components such
as deep neural networks, extensive measurement experiments
are needed upon a variety of implementation platforms of the
kind that are widely used in implementing safety-critical au-
tonomous CPS’s today. On the basis of the evidence obtained
via such measurements, abstract models can be constructed
of run-time timing behavior that are both able to accurately
characterize resource requirements and are amenable to the
forms of analysis (such as schedulability analysis, timing
analysis, etc.) that are needed in order to be able to prove
timing safety properties.

B. Prioritization of Attention

An important challenge brought about by the need for
resource efficiency is one of prioritizing machine attention [2].
Current execution pipelines of machine intelligence tasks (such
as perception) generally treat the sensory input data stream as
a uniform stream of the same priority. In reality, elements of
the scene could be prioritized at a sub-frame level according
to some notion of criticality. For example, intuition suggests
that in autonomous driving, trees on the side of the road are
not as important to track as pedestrians. Thus, trees could
be observed at a much lower frame rate than the individuals.
In general, static and immobile objects need not be observed
as frequently as fast unpredictably-moving objects. In current
systems, both are observed at the same frame rate, which is
wasteful to resources and needlessly increases cost.
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On the other hand, objects that may seem unimportant in
the short term, may prove important in the near future. For
example, a truck may obscure a vehicle that is passing it
on the other side, relative to an autonomous vehicle that is
tracking all nearby vehicles. Even though that other vehicle
may be obscured from the autonomous vehicle’s cameras
and other sensors for a minute or more, its prior trajectory
and the potential for it to emerge ahead of the truck and
even move directly into the path of the autonomous vehicle
must be considered, and attention and resources thus must be
devoted to tracking it when it is visible and projecting its likely
trajectory when it is not.

Addressing the above challenges introduces a “chicken-and-
egg” problem. In order to segment the input and assign impor-
tance levels, priorities, deadlines, or effective observation rates
to different objects or segments, these objects or segments
must first be identified in the scene. Such identification,
in itself, requires perception processing, thus negating the
resource savings. In principle, however, it may possible to
use auxiliary cueing sensors to determine areas of input that
are more critical to observe. For example, a ranging sensor
could be used to efficiently detect nearby obstacles and/or
quickly-approaching objects allowing the corresponding areas
of the visual input to be prioritized before any heavy-weight
processing is done by the video perception pipeline [2], [3].

The above idea introduces several challenges. For example,
what cueing sensors are appropriate? How to make cueing
efficient so we do not end up spending the same amount
of resources on cueing as we would have on actual whole
seen processing? How to mitigate false positives and eliminate
false negatives? What is a meaningful priority assignment?
How to take advantage of redundancy among successful
frames to further reduce processing overhead? In addition
to model-based (and thus potentially explainable) tracking,
prediction, and reasoning approaches, we believe real-time
scheduling theory, which has studied priority-based resource-
assignment extensively, is uniquely suited to answer some of
these questions. Thus, it is important to investigate the use of
concepts and techniques from real-time scheduling theory to
better understand the role of priorities in achieving real-time
assurance in autonomous Al-based CPS’s.

C. Mechanisms for Resource Economy

Intelligent systems are data driven. Most computation is
attributed to the processing of data-intensive pipelines to
compute decisions based on observations. Given appropriate
attention management mechanisms discussed above, another
design decision is thus how to reduce resource consumption
attributed to less critical input data segments. Several degrees
of freedom can be explored, as discussed below.

1) Region-of-Interest Selection and Subsampling: One
mechanism for reducing resource consumption is to process
less critical data segments less frequently (i.e., sub-sample
parts of the input stream). Other mechanisms are possible that
rely on processing quality, not frequency. In essence, reducing
processing frequency can be thought of as an extreme point
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in the quality space, where the quality of processing of some
inputs (namely, those that were skipped) has been reduced
to zero. Examples of other points in that design space are
presented below.

2) Early Exit and Imprecise Computations: A simple so-
lution that is a compromise between full processing and
total skipping of regions of input is to apply the concept of
imprecise computations [4]. Since modern perception pipelines
are based on neural networks, it becomes possible to design
networks where processing additional layers increases the
quality of outputs incrementally. Such a design was recently
proposed for classification tasks [5]. The resources consumed
by processing of lower-criticality inputs can thus be reduced
by early exit mechanisms that stop neural network processing
of less critical segments before all network layers have been
executed, thus producing intermediate output quality.

3) Input Resolution Adjustment and Model Switching:
Recent work demonstrated that another effective solution for
reducing the amount of resources spent on processing less
critical inputs is to simply reduce the resolution of such in-
puts [6] and use smaller neural networks to process the smaller
inputs. It was shown, in fact, that this approach beats imprecise
computations, described above, because for each network (of a
different size), network weights can be specifically optimized
for its corresponding tailored input size. This optimization is as
opposed to early exit networks, where multiple exit points exist
in the same neural network making it impossible to optimize
neural network architecture and weights for each specific exit
point. Rather, the choice of used weights becomes more of
a compromise that jointly considers all possible exit points,
making the network up to each exit point somewhat suboptimal
for its size.

More work is needed to understand the advantages and
limitations of imprecise computations versus model switching
approaches. An obvious disadvantage of the latter, for exam-
ple, is that all the different network versions need to fit in
GPU memory upfront to avoid excessive context switching
overhead. This need increases memory requirements compared
to imprecise computations. Recent work attempts to reduce
this problem by techniques such as weight virtualization [7].
It is also not clear if imprecise computations can be applied
to all neural network functions, such as, for example, object
detection. More work is needed to develop good imprecise
computation models for different deep neural network infer-
ence tasks.

4) Neural Network Compression: Another solution to
trade-off neural network quality for resource savings is neural
network compression. Many algorithms for compressing neu-
ral networks have been proposed in recent years [8], [9]. It is
therefore possible to use compressed networks for processing
less important inputs, notwithstanding input size. While some
compression techniques simply rely on numerical approxima-
tions (such as quantizing weights, using integer arithmetic
instead of floating point, or removing smaller weights), other
approximations are trained with specific loss functions in
mind. For example, a network approximation can be trained in
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a manner that optimizes detection performance for a subset of
object types [8]. Such approximations are particularly well-
suited to a context where the compressed network should
retain a higher level of output (e.g., classification) quality for
a subset of object classes.

5) Computational Offloading: When applicable, some neu-
ral network computation can be offloaded to remote nodes.
This solution is especially well-suited (as an alternative or
supplement to quality reduction) for processing less critical
regions, where challenges such as network outages will not
interfere with critical operation. Neural network offloading
brings about challenges in deciding the degree of compression
for offloaded feature vectors and efficiently navigating the
trade-off between the computational overhead of compression,
the bandwidth needed for compressed data, and the degree
of quality loss entailed. For example, recent work introduced
an asymmetric encoder/decoder framework [10], where the
compression of feature vectors to be offloaded is much more
efficient than decoding of the compressed signal, motivated by
the asymmetry between the edge nodes and central services.

6) Surrogate Sensing: Another idea in the trade-off space is
to optimize for the common-case by using simpler sensors and
inference algorithms in that case, and escalating processing
to more computationally-complex components and sensors
only when needed. For example, a security system might
consume fewer resources when no motion is detected. Motion
detection does not require complex neural network processing
and thus can be used to short-cut the rest of the pipeline
when appropriate. This simple concept can be scaled to other
common scenarios, such as, for example, motion signatures
that are limited in size making them unlikely to be caused by
a human. In general, simple (e.g., compressed) neural networks
can be used to detect a set of common conditions. When
deviations from these conditions are detected, larger networks
may be invoked.

The above performance differentiation mechanisms give
rise to new models of computation that differentiate both
the quality and resource consumption, on subframe basis,
depending on input criticality. These capabilities present inter-
esting modeling and resource allocation challenges that allow
giving quality and timeliness guarantees to the processing of
more critical data regions, while optimizing some aggregate
performance measure, subject to capacity constraints, for other
objects.

D. Timely Resource Access and Availability

A fundamental difference between CPSs and conventional
computing systems is their interactions with the physical
world. While many computation tasks in IT systems can be
suspended for an extended period of time, calculations in CPSs
often have hard deadlines, since time continues to elapse in the
physical world. Computationally correct, but untimely results
often have little to no value for system control, and can even
destabilize the physical system.

The security of AI has received significant attention in
recent years, where attacks often focus compromising the
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confidentiality (such as membership interference attacks) and
the integrity (such as adversarial examples and data poi-
soning). Little attention has been given to the availability
aspect. However, with the growing importance of Al in cyber-
physcial systems and the emergence of ubiquitous autonomy,
the availiability of Al components is a pressing open challenge
for the security and safety of these critical systems. Recently,
it has been demonstrated that timing manipulation can lead to
control destablization of cyber-physical systems [11]-[13].

Availability often implies timely access to system resources
in the cyber-physical systems. There are two general attack
vectors, attacking the AI components or the system it relies on
to impact of timing behavior of the system. In [11], Shumailov
et al. explored the use adversarial samples to cause significant
(up to 30x) amount of additional energy consumption and
delay on the DNN. The key observation behind the attack is
that inputs of the same size can cause a DNN to consume
significantly different amounts of energy and time due to
use of hardware and algorithmic optimizations. In [12], Li
et al. considers a different attack vector where the attacker
leverages the resource contention to cause significant delay in
the run-time characteristics of Al-powered control algorithms,
leading to control destablization. We envision that in order
to provide full system availability, it is important to take a
hollistic approach in order to not only secure against timing
anomalies in neural network execution but also to protect the
platform the Al runs on.

E. Rapidly Changing Operating Environments

We have seen above that time-critical execution workloads
in autonomous safety-critical CPS’s may change significantly
and rapidly; strategies are needed for accommodating such
time-varying computational demands in an effective and effi-
cient manner. Elastic task models [14]-[17], widely studied in
the real-time scheduling literature, appear particularly appro-
priate for representing such workloads: these models possess
the expressive capabilities to represent both the variation in
the amount of computing that is needed by each individual
task, and the task’s resilience to being under-served (i.e., not
receiving its entire requested amount of execution). Scheduling
and schedulability-analysis algorithms have been developed
for these task models that then seek to schedule them in
a robust/ resilience manner as the workload changes during
system execution time. We believe such elastic task models,
suitably adapted, may prove useful for representing the kinds
of dynamic workloads that are found in many safety-critical
Al-based autonomous CPS’s.

Another approach to dealing with a CPS’s rapidly-changing
computational needs would be to adapt the CPS’s operational
tempo in response to an increase/ decrease in the availability
of computation. However, trade-offs between performance
objectives and safety constraints make such elastic adaptation
an ongoing consideration. For example, a self-driving car
may slow down in dense and complex urban settings, while
maintaining reasonable progress towards a planned destination
- how to incorporate deadlines (time of arrival) as well as
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constraints (maximum safe rate of travel based on proximity
and movement of pedestrians and other vehicles) within a
constrained optimization procedure that runs continuously to
shape overall system behavior as it moves is an important
research challenge.

This in turn suggests that new formal models for cyber-
physical elasticity through which a system may adapt its
operational tempo or other timing aspects to respect constraints
and optimize performance are needed. Tractability of exact
techniques (e.g., full state space exploration) for off-line or on-
line use of model-based approaches, and the potential role of
stochastic and/or approximate approaches that can give strong
probabilistic bounds on response timing, solution quality, etc.,
must be investigated to determine what can be done at run-
time as the system is operating, versus what must be done a
priori off-line.

These models also will have security implementations, and
platform level approaches for applying them must minimize
timing-based attack surfaces, e.g., through control algorithms
that can accommodate additional timing jitter, because events
they receive are time stamped. For both verification and
mitigation of adversarial vulnerabilities, hardware-in-the-loop
simulation platforms (e.g., combining ROS components run-
ning on a Jetson board with AirSim or CARLA) are likely to
be valuable for studying timing induced vulnerabilities of self-
driving cars, and autonomous drones, and other autonomous
systems, under various scenarios.

E. Perceptual Side-Channel Vulnerabilities

While leveraging perceptual data streams for adaptive
scheduling, such as in order to prioritize attention, presents
tremendous opportunities for increasing the efficacy of re-
source utilization in real-time systems, these also create a new
side-channel vulnerability in the form of physical attacks on
Al-based perception processing. In particular, modern neural
network architectures engaged in a variety of perceptual tasks
have been shown to be vulnerable to adversarial example
attacks, where digital inputs or even the external physical
environment are maliciously manipulated to effect a change
in prediction semantics, such as misclassification of objects
in scenes [18]-[20]. One of the key research challenges in
adaptive scheduling schemes will be to provide adequate
assurance that these do not fall prey to such attack vectors,
for example, by composing perceptual robustness guarantees
(which are, by their nature, input-varying) with real-time
scheduling guarantees.

III. CONCLUDING REMARKS AND FUTURE WORK

This paper briefly outlined challenges in adapting Al for
CPS applications, with a focus on deploying Al at the point
of need — namely, on the embedded edge, where data are
collected by a myriad of sensors that execute a new breed
of analytics, accommodate resource constraints, optimize for
a dynamic environment, and survive an expanded range of
threats. The rationale for pushing intelligent computations to
the edge in a broad category of CPS applications lies in
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operational efficiency and resilience. By pushing computations
to where data originate, needless dependence on remote or
centralized resources is removed, thereby simultaneously im-
proving end-to-end latency, robustness, security, and resource
economy. The paper calls for a research agenda on resource
management in the above context. In general computing
systems, streamlining application development and operation
necessitates the introduction of operating systems to address
common challenges such as efficiency, robustness, scalability,
and responsiveness. In systems, where cyber-physical capa-
bilities intertwine physical edge resource management with
intelligent computational artifacts, a new operating-system-
like construct is needed in order to ensure that the execution
of various decision loops involved at different spatial and
temporal scale meets the challenges named above. Fundamen-
tally, these challenges are partitioned onto (i) performance
optimizations to significantly reduce the end-to-end latency,
and computational and communication resource needs of in-
telligent components, and (ii) resilience solutions to guarantee
correctness in the presence of a myriad of cyber threats. The
paper invites multi-disciplinary efforts to address the above
challenges.
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