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Abstract—Convolutional Neural Networks (CNN) have shown
great success in many sensing and recognition applications.
However, the excessive resource demand remains a major barrier
against their deployment on low-end devices. Optimizations,
such as model compression, are thus a need for practical
deployment. To fully exploit existing system resources, platform-
aware optimizations emerged in recent years, where an execution-
time model becomes a necessity. However, non-monotonicity over
the network configuration space makes execution time modeling
a challenging task. Data-driven approaches have the advantage of
being portable over different platforms by treating the hardware
and software stack as a black box but at the cost of extremely
long profiling time. On the other hand, analytical models can
be found in the architecture and system literature that do not
need heavy profiling but require laborious analysis by domain
experts. In this paper, we focus on building a general latency
model for convolutional layers that account for the majority
of the total execution time in CNN models. We identify two
major non-linear modes in the relationship between latency
and convolution parameters, and analyze the mechanism behind
them. The resulting model has better interpretability and can
reduce profiling workload. The evaluation results show that our
model outperforms baselines on different platforms and CNN
models.

I. INTRODUCTION

Convolutional neural networks (CNN) have shown great
success on various sensing and recognition applications. Due
to their high computational intensity, optimizations such as
model compression [1] are often required in deployment, espe-
cially on edge devices and mobile platforms. These platform-
aware optimizations exploit both the redundancy in the model
and characteristics of the underlying hardware and software
stack. Unfortunately, due to the very large parameter space of
deep learning models, it is infeasible to search for the optimum
by brute force. Therefore, a performance model that describes
the relationship between the network configuration and the
corresponding execution latency is needed.

In addition to the huge search space, a key factor that makes
latency prediction very challenging is the non-monotonic and
nonlinear relationship between latency and input scale [2, 3].
Yao et al. [2] reported that the convolution execution time on
a mobile CPU showed a jagged fluctuation as the number of
input and output channels increased. Zhang et al. [3] reported

that this phenomenon also exists on mobile GPUs and VPUs,
but with different modes. Existing latency models often ignore
such phenomena or use learning-based methods [2-7] to avoid
investigating the mechanisms that cause such irregularities.
Although some models have high accuracy, they usually need
a significant amount of profiling to collect enough training
data. Even models based on learning methods with strong
interpretability, such as decision trees [2, 3], often cannot
provide real insights to explain these irregularities. On the
other hand, analytical models [8-10] can be found in the
architecture and system community that have fewer parameters
and thus only need lightweight benchmarks to estimate. These
analytical models require in-depth analysis (e.g., cache miss
rate analysis, bottleneck analysis) of the hardware by domain
experts and they often consider only low-level software and
hardware factors, instead of covering the entire software and
hardware stack like the learning-based models.

In this work, we try to bridge the gap between the analytical
methods and learning-based methods. By comparing the profil-
ing results with various non-linear effects caused by hardware
and software factors, we find two major nonlinear modes
in convolutional layer execution latency (Fig. 1). The step-
like nonlinear mode is attributed to a hardware quantization
effect caused by block-level parallelism in the GPU. The other
non-monotonic change is caused by algorithm auto-tuning
that exists at multiple levels in the software stack. We then
propose a novel convolutional layer latency prediction model
that, given an input convolution configuration, predicts which
convolution kernel implementation will be used and uses the
corresponding latency profile to predict the execution time.

The main contributions of this work are: (1) we identify two
major nonlinear modes in the convolutional layer execution
latency on GPUs and analyze the mechanisms behind them.
(2) Based on the analysis, we propose a latency prediction
model for convolutional layers that consists of a kernel latency
model and a kernel selection model. The kernel latency model
utilizes the fact that the computation performed by a GPU
kernel is divided into fixed-size tiles. By estimating the size of
the tile, the latency model can predict where step-like changes
will occur thereby reducing profiling overhead (by avoiding
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Fig. 1: Nonlinear modes in the convolutional layer execution
time. The execution times and the cuDNN kernels used to
compute one convolutional layer on P1 (Section IV) are
recorded as we change the number of the output channels. The
curve overall shows a step-like nonlinear pattern but there is
also a non-monotonic pattern (marked by black arrows).

profiling the plateaus). The kernel selection model learns
the heuristics used by the algorithm auto-tuning from the
profiling dataset to predict where kernel switch will happen.
We evaluate the proposed model on two platforms and two
CNN models. The results show that the proposed method
can achieve 91.29% and 59.6% accuracy on two experiment
platforms, respectively (defined as the percent of predictions
that fell within £10% from ground truth). The accuracy of the
nearest competitor was less than 33%.

II. BACKGROUND AND MOTIVATION

GPU Architecture and Programming Model. The graphics
processing unit (GPU) consists of many Streaming Multipro-
cessor (SMs) [11, 12] connected to a large last level cache
using a crossbar interconnect and a high bandwidth global
memory. Each SM consists of multiple sub-cores or threads,
tens of kilobytes of register space, tens of kilobytes of a unified
L1 cache and scratchpad. Modern GPU SMs [13, 14] consist of
many functional units such as arithmetic operators, load/store
engines and more recently, dedicated hardware accelerators
for matrix multiplication (termed as TensorCores in NVIDIA
GPUs).

A GPU programmer who uses CUDA can launch a compute
kernel on the GPU with thousands to millions of threads or-
ganized in a grid and thread-blocks [11]. A grid is nothing but
a collection of thread blocks organized to exploit parallelism
within and across SMs. Each thread-block is mapped to an SM
based on the resources available at run-time. When scheduling
work within the SM, each SM further divides the thread-
block into warps, groups of 32 threads. Modern GPU SMs
can have up to four parallel warp schedulers to execute the
work described in the compute kernel. Threads in a thread-
block can synchronize and share data within the SM using
shared memory. The dimensions and sizes of the gird and the
thread block are specified by the caller of the kernel.

GEMM-based Convolution. The forward convolutional layer
computes the convolution of an input tensor X € RYXCxHxW
and a filter tensor F € REXCXEXS " producing an output
tensor Y € RVXKXPXQ The computation is defined by the
following equation
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where N is the batch size, C' is the number of input channels,
H is the height of the input image, W is the width of the input
image, K is the number of output channels, P is the height
of the output image, () is the width of the output image, R is
the height of the filter and S is the width of the filter.
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Fig. 2: A GEMM-based convolution example.

An example [8] is illustrated in Fig. 2. The element Y .01
in the output tensor (the white y; in the purple channel) is
computed by elementwise multiplying the 3-D slice X . 1:2,1:2
of the input tensor (highlighted in white) with the 3-D slice
Fo,...,. of the filter tensor (highlighted in white), then summing
up the the result and offsetting by the bias @ .

The convolution kernel implementation on GPUs can be
performed in several ways: (a) shared-memory convolution
where the filter matrix F is stored in the shared memory, (b)
using wino-grad convolution algorithm and (c) with the help of
general matrix-multiplication (GEMM) implementation [15].
Among these implementations, GEMM-based convolution im-
plementation is the most efficient algorithm [15-17]. In this
implementation. the filter tensor F is reshaped into a matrix
F € REXCRS @ | The data in the input tensor X is unfolded
and replicated to shape into a matrix X € REBSXNPQ
according to the access pattern of the convolution @ . The
computation now becomes a single general matrix multiplica-
tion (GEMM) which can be computed with highly optimized
linear algebra routines. But lowering the input tensor into a
matrix requires data duplication increasing memory overhead
and requires two CUDA kernel launches which can become
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prohibitive. To address this, implicit-GEMM-based convolu-
tion performs conceptually the same computation but avoids
constructing the matrices explicitly in the global memory by
carefully manipulating pointers and predicates during compu-
tation [15, 18].
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Fig. 3: Tiled outer product GEMM [17]

As shown in Fig. 3, efficient GEMM implementation blocks
and tiles the matrices to fully exploit the concurrency in
hardware and improve memory locality. Each output tile
(yellow block of size blk s x blkn ) is computed by iterating the
tiles along the K dimension in the input and output matrix and
accumulating the results; at each iteration, the outer products
of the columns in the input tile (blue block of size blky; X blk )
and the rows in the filter tile (red block of size blkyx x blky)
are computed and accumulated. The computation of each
output tile is performed by a thread block and, therefore, the
computation of all tiles, i.e., the iteration along dimension M
and dimension N, can be performed in parallel. The tiling
technique can be further applied at warp-level and thread-
level to fully exploit parallelism and data locality, forming
a hierarchical GEMM structure [18].

III. SYSTEM DESIGN AND IMPLEMENTATION
A. Kernel Latency Model

We run benchmarks and analyze various software and
hardware factors that can lead to non-linearity. The step-like
mode can best be described by a quantization effect caused
by the GPU architecture and execution model. Fig. 4 shows
the execution time and grid size (number of thread blocks
launched) of each kernel in Fig. 1, respectively. Execution
times are visualized as scatters and the black curve shows
how the gird size changes.

The tile quantization effect refers to the phenomenon of
“discontinuous” changes in execution time when the input
size is changed “continuously” (minimum step size) because
of the fixed tile size [19]. An example of matrix multipli-
cation computed with kernel of size blky; x blky (blkys >
1 and blky > 1) is illustrated in Fig. 5. The image on the left
shows the ideal situation where the dimensions of the output
matrix, M = 2blky; and N = 2blky, are divisible by the tile
dimensions. In this case, the computation requires four fully-
utilized thread blocks. However, if we increase the number of
columns of the matrix by one, instead of allocating just enough

resources to compute the additional M x 1 elements, two more
thread blocks are created. Because of the SIMT execution
model, the two additional thread blocks marked in red take
the same amount of time to finish as the fully-loaded ones,
even though most of the threads are not doing meaningful
work. As a result, increasing one dimension of the input by
one leads to a 50 % increase in execution time.

We can see clearly that the change in execution time in
Fig. 5 matches the change in grid size, which is consistent
with the tile quantization effects. These observations imply
that we can estimate the execution time by calculating the
grid size required for a given workload.

Let s; denote the configuration of layer [ of a L-layer CNN
model. S = {s; | I € [1, L]} represents the configuration of the
whole network and S,y represents the set of configurations
of the convolutional layers. The configuration of a convolu-
tional layer s; € Scony is a tuple of parameters that define
the convolution s; = (N,C, H,W, K, R, S, P,Q) where the
convolution parameters have the same meaning as shown in
Fig. 2. For brevity, the subscript of each parameter is omitted.

As introduced in Section II, the convolution described by
s, is lowered into a GEMM of an input matrix X € RM*K
and a filter matrix F € REXN where M = NPQ, N = K
and K = CRS.

The tiling parameters blkyy, blky of the kernel ¢ describe the
tile size along M and N. Tiling parameters of different kernels
can take different values. For brevity, we omit the subscript
1 in the tile size parameters. The gird size g to compute the
given convolution workload can be calculated as follows:
ST m

M N
Then the execution time of the kernel is estimated as follows:

g=1T

t= gRtK + Mouttout + Mintin + ¥ ()

ti is the average execution time of each tile; moytoy and
Mintin are the memory operation overhead of input and output,
respectively; the amount of memory operations is estimated
as my, = NCHW + KCRS and myy = NPQK; v is a
constant.

The results of the profiling tasks form a dataset denoted by
D

D ={d, | (sj,g;,tj,w}), j€[1,J]}

where s; is the convolution configuration of the task j; g;» is
the measured grid size; and t;- is the measured execution time.
The tiling factors can be obtained by solving the following
optimization problem:

J
T:argminzmg- — gj| (3)

T =1

where 7 = (blkyr,blky) and g; is the grid size calculated
with 7 using Eq. (1). Finally, the remaining parameters are
calculated as

J
¢ = arg;ninz \t; — ] ()
j=1
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Fig. 4: Grid size

where ¢ = (tx,tou,tin,7y) and t; is the execution time
calculated with ¢ using Eq. (2).

B. Kernel Selection Model

Let 0; = (1, ¢) denote the parameters of the Kernel Latency
Model of kernel i. We define ¢(s;; ;) to be the function that,
given a convolution configuration s; as the input, computes
the execution time estimate using #; and Eq. (1) to Eq. (2).
What we need next is an overall model, a function ¢(s;) that
gives the estimate only based on the input.

A natural and straightforward attempt to define t(s;) may
look like the following:

i' = arg min t(s;[¢;) )]
t(s;) = t(s;;0i) - (6)

However, to optimize performance, most deep learning frame-
works and low-level math libraries will try to find the most
performant algorithm for the computational workload. This
process is often abstracted away from the user; hence the name
“algorithm auto-tuning”.

There are two ways to auto-tune the algorithm. The first one
is profiling-based auto-tuning, which executes the workload
with algorithms/kernels available and chooses the fastest one.
It is accurate but slow since the computation is executed for
multiple times. Alternatively, the runtime can use predefined
heuristics to determine which algorithm/kernel should be cho-
sen. It is fast because the workload is not really computed,
and accurate in many cases, but the decisions are not always
optimal [20]. Unfortunately, the heuristics used by cuDNN are
not publicly available.

To overcome the uncertainty in the heuristics and the
visibility issue, we use a learning-based method for the kernel
selection modeling. The features used to train the model are
(1) convolution parameters s;, (2) GEMM dimensions M, N
and K, (3) Kernel Latency Model features g, my, and mgy,
and (4) latency predictions of each kernel.

IV. EVALUATION

We evaluate the proposed method on ResNet50 V2 and
Inception V3 on two platforms: P1 is a desktop server
equipped with a GeForce RTX 2080 Ti GPU and running
Ubuntu 18.04 (Linux Kernel 5.4.0-73-generic-x86_64), CUDA
10.2.89, NVIDIA Driver 460.80 and cuDNN 7.6.5. P2 is
NVIDIA Jetson TX2 equipped with a NVIDIA Tegra X2,
running Ubuntu 18.04 (Linu kernel 4.9.201-tegra-aarch64),
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Fig. 5: Tile Quantization Effect

CUDA 10.2.89, NVIDIA Driver L4T 32.5.1, and cuDNN
8.0.0.

The proposed method is compared with two baselines. The
first is a FLOPs-based estimator obtained by fitting a linear
model of total number of multiply and add operations using the
profiling data. The second is FastDeeploT. The metrics used
are Root Mean Square Error (RMSE) and £10% accuracy,
defined as the percentage of the predictions that fall within
the range of ground truth £10%.

We generate test cases from the convolution configurations
in each neural network model by finding the unique combina-
tions of H, W, R, S, stride size, dilation size and padding size.
For each test case we generate profiling tasks with different
number of input channels and output channels. We profiled
and collected results from 10,945 ResNet50 V2 tasks and
5,912 Inception V3 tasks. Due to the step-like pattern, we
only need to sample near the rising edge of the step, which
greatly reduces the profiling workload.

The predictions accuracy and RMSE of the proposed
method and baselines on ResNet50 V2 and Inception V3
on platform 1 and 2 are reported in Table I. On average,
our method achieved 91.28% and 59.60% accuracy on each
platform respectively. In comparison, the +10% accuracy of
FastDeeploT is only 22.25% and 15%; the +10% accuracy of
FLOPs-based baseline is just 2.56% and 7.57%. The results
of ResNet50 V2 on P1 and Inception V3 on P1 show that our
method can adapt to CNN models with various convolution
configurations.

Fig. 6 shows the detailed result of Case 0 of ResNet50
V2 on PI. The performance of each method under different
input channels is plotted separately. Our method utilizes the
knowledge about the quantization effect and thus can fit the
step-like curve well with a small amount of profiling data. On
the other hand, FastDeeploT uses a binary tree structure to
model the latency where each leaf is a linear regression model.
It works well on mobile CPUs, where the non-linearity is
mainly zig-zags caused by memory-related factors. However,
on a GPU, it struggles to fit the step-like curve with its tree
structure model. Another reason that FastDeeploT does not
work well is that the profiling dataset is not large enough. To
prevent overfitting, FastDeeploT stops growing the tree when
the leaf has too few data points or the fitting error is below
5%. When the dataset is small, the tree stops growing more
often due to the lack of data, instead of meeting the accuracy
condition. There are a few cases where our model has low
accuracy. We find that in those cases the convolution filter
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TABLE I: Prediction accuracy and root mean square error.

Our FLOPs FastDeeploT
+10% RMSE +10% RMSE +10% RMSE
Accuracy  (ms) Accuracy  (ms) Accuracy  (ms)
ResNet50 V2 on P1  91.34% 0.10 2.25% 4.70 11.90% 1.90
ResNet50 V2 on P2 59.60% 6.70 7.57% 48.35 15.00% 42.58
Inception V3 on Pl 91.22% 0.03 2.87% 2.31 32.60% 0.40
1e7 Ground truth FLOPs --- FastDeeploT —:- Our 1e8 Ground truth, O o= TasbeapeT = O 1e9 Ground truth FLOPs ~--- FastDeeploT ~—:- Our
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Fig. 6: The predictions and ground truth of three different C values of ResNet50 V2 on RTX 2080 Ti. The proposed method
out performs the baselines in all situations. (a) FLOPs-based method only captures the general trend. FastDeeploT struggles to
fit the step-like curve. (b) When the training data is not sufficiently large, FastDeeploT may produce false non-linearity which
will misguide the compressor in model compression. (c) In certain case, FastDeeploT degenerates into FLOPs baseline.

size is 1 X 1 and the image size is very small ( e.g., 10 x 10)
thus computed as a normal matrix multiplication, instead of
convolution.

Our method achieved 59.60% accuracy on P2. On platform
P2, the measured latency curve is more “noisy”. The GPU on
P2, NVIDIA Tegra X2, is an embedded/mobile GPU, much
weaker than the RTX 2080 Ti on P1. Therefore, it is easier to
encounter resource bottlenecks such as bandwidth and memory
on this platform, resulting in non-linearities not modeled by
our method.

The results of Case O in all three experiments have high
accuracy as well as high RMSE. The reason is that overall our
method gives predictions close to ground truth but diverged
from the ground truth when K > 600. However, it still
correctly predicted the positions of the raising edge of the step.
It means that the height of the step ¢ is underestimated. Case
0 is the first convolutional layer in ResNet50 where the filter
size is 7 x 7 and image size is 230 x 230. Its computation
intensity is significantly higher than that of the later layers
where both image size and filter size are small. This type of
layers usually appear only once in the network and can be
fitted separately.

V. RELATED WORK

There are analytical performance models proposed by pre-
vious work for GEMM-based algorithms [8, 9] or general
workload on GPU [10]. It usually requires a great amount of
details of the hardware and in-depth analysis of memory traffic
pattern and various computation bottlenecks which is difficult
to port to various platforms. These models also do not consider

factors that can cause non-linearity existed in the upper level
of the software stack, such as algorithm auto-tuning.

Much existing work uses learning-based models to predict
neural network execution latency. There are methods that use
FLOPs as the main feature to predict latency [4, 5]. Although
simple and intuitive, they are not accurate. More sophisticated
methods also consider other features such as IO overhead
and use linear model [6], decision tree based models [2, 3],
or neural networks [7] to predict latency. However, none of
these methods considers and analyzes the mechanisms that
cause non-linearities. Our work is distinguished from these
approaches in that we attribute a dominant non-linearity to
the hardware quantization effect and algorithm auto-tuning and
utilize this information to reduce profiling workload.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel hybrid latency model
for convolutional neural networks. Different from existing
pure data-driven approaches, we attribute the dominant non-
linearity in convolutional layer execution latency found on
GPUs to the hardware quantization effect caused by the GPU’s
execution model and algorithm auto-tuning in the software
stack. With this knowledge, the proposed method reduces the
profiling workload and provides better model interpretability.

The experimental results show that our method outperforms
the baselines significantly across the platforms and across
different neural network models used in the evaluation. The
average (+10%) accuracy that the proposed method achieved
is 91.28% on a desktop/server GPU and 59.60% on an
embedded GPU, which is 4.01 x and 3.97x better than the
baselines, respectively. The proposed method is able to model
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the non-linearities caused by hardware quantization effects and
algorithm auto-tuning. In the case of an extreme computational
workload, the prediction accuracy may be further improved by
dynamically adjusting model parameters. The nonlinear modes
observed and the proposed performance model should also be
applicable to other deep learning models that use convolutional
layers. Evaluation on other types of neural network models,
such as NLP models, and the impact of reducing latency on
battery life are left for future work.
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