1770

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

Real-Time Task Scheduling for Machine
Perception in Intelligent Cyber-Physical Systems

, Shuochao Yao", Xinzhe Fu

Simon Yu

Shengzhong Liu

Lui Sha

, Huajie Shao™, Rohan Tabish, Student Member, IEEE,
, Ayoosh Bansal
, Fellow, IEEE, and Tarek Abdelzaher™, Fellow, IEEE

, Heechul Yun™,

Abstract—This paper explores criticality-based real-time scheduling of neural-network-based machine inference pipelines in cyber-
physical systems (CPS) to mitigate the effect of algorithmic priority inversion. We specifically focus on the perception subsystem, an
important subsystem feeding other components (e.g., planning and control). In general, priority inversion occurs in real-time systems
when computations that are of lower priority are performed together with or ahead of those that are of higher priority. In current machine
perception software, significant priority inversion occurs because resource allocation to the underlying neural network models does not
differentiate between critical and less critical data within a scene. To remedy this problem, in recent work, we proposed an architecture
to partition the input data into regions of different criticality, then formulated a utility-based optimization problem to batch and schedule
their processing in a manner that maximizes confidence in perception results, subject to criticality-based time constraints. This journal
extension matures the work in several directions: (i) We extend confidence maximization to a generalized utility optimization
formulation that accounts for criticality in the utility function itself, offering finer-grained control over resource allocation within the
perception pipeline; (ii) we further instantiate and compare two different criticality metrics (distance-based and relative velocity-based)
to understand their relative advantages; and (iii) we explore the limitations of the approach, specifically how inaccuracies in criticality-
based attention cueing affect performance. All experiments are conducted on the NVIDIA Jetson AGX Xavier platform with a real-world

driving dataset.

Index Terms—Real-time scheduling, algorithmic priority inversion, cyber-physical systems (CPS), machine intelligence

1 INTRODUCTION

UR recent work [1] suggests that perception in modern

machine inference pipelines in intelligent cyber-physi-
cal systems (e.g., autonomous cars) suffers from algorithmic
priority inversion; all parts of a scene are allocated the same
processing priority. This is in contrast to directing focus
more to selected elements of the scene that are deemed
more critical. To remedy the above problem, we proposed a
utility-based scheduling framework to prioritize processing
of parts of the scene over others, which we call attention

o Shengzhong Liu, Rohan Tabish, Ayoosh Bansal, Lui Sha, and Tarek Abdel-
zaher are with the Department of Computer Science, University of Illinois
at Urbana-Champaign, Urbana, IL 61801 USA. E-mail: {sI29, rtabish,
ayooshb2, Irs, zaher}@illinois.edu.

e Shuochao Yao is with the Department of Computer Science, George Mason
University, Fairfax, VA 22030 USA. E-mail: shuochao@gmu.edu.

o Xinzhe Fu is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
E-mail: xinzhe@mit.edu.

o Huajie Shao is with the Department of Computer Science, College of Wil-
liam and Mary, Williamsburg, VA 23185 USA. E-mail: hshao@wm.edu.

o Simon Yu is with the Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA.
E-mail: jundayu2@illinois.edu.

o Heechul Yun is with the Department of Eclectrical Engineering and Com-
puter Science, The University of Kansas, Lawrence, KS 66045 USA.
E-mail: heechul yun@ku.edu.

Manuscript received 23 Nov. 2020; revised 20 May 2021; accepted 15 Aug. 2021.
Date of publication 20 Aug. 2021; date of current version 11 July 2022.
(Corresponding author: Shengzhong Liu.)

Recommended for acceptance by G. C. Sirakoulis.

Digital Object Identifier no. 10.1109/TC.2021.3106496

cueing. By “attention”, we do not mean Al mechanisms that
increase the logical weights of certain features over others [2]
(as such mechanisms do not change the amount of resources
expended on processing the weighted features). Rather, we
refer to changes in actual resource allocation by scheduling
the perception pipeline to process certain parts of the input
first. In our previous work, attention cueing was driven by
maximizing confidence in scene understanding subject to
time constraints [1].

This journal extension continues the above investigation
by (i) generalizing the proposed resource allocation frame-
work by incorporating criticality into the utility function
itself (as opposed to merely reflecting it in time constraints),
(ii) comparing the effects of different criticality assignments,
and (iii) exploring the implications of imperfect attention
cueing on performance. Incorporating criticality into the
utility function (not only the constraints) allows it to serve
as an optimization criterion as opposed to merely a satisficing
metric. Thus, as we show in the evaluation section, improve-
ments are possible in scheduling performance.

The general framework proposed in this paper allows
expressing arbitrary application-specific criticality metrics
(assigned to parts of input frames) to direct resource alloca-
tion. We implement and experiment with two instantiations
of such criticality metrics: distance-based criticality and rel-
ative velocity-based criticality. They are based on different
arguments inspired by path planning in autonomous driv-
ing. Comparing the results to our conference version [1], we
demonstrate improvements in both schedulability and
object classification accuracy thanks to resource savings

0018-9340 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: REAL-TIME TASK SCHEDULING FOR MACHINE PERCEPTION IN INTELLIGENT CYBER-PHYSICAL SYSTEMS

attained by reducing time spent on processing backgrounds
and far away objects. We then explore the impact of imper-
fections in attention cueing on algorithm performance and
show that these imperfections affect the perception pipeline
differently for different choices of neural network architec-
ture, demonstrating a trade-off between execution efficiency
and robustness to inaccuracies.

We focus on the perception subsystem because perception,
besides being a key component in enabling system autonomy,
is also a major efficiency bottleneck that accounts for a consid-
erable fraction of resource consumption [3]. The work
improves the design of mission-critical cyber-physical systems
that need to perceive their environment in real time (using
neural networks), such as self-driving vehicles [4], autono-
mous delivery drones [5], and military defense systems [6].

We note that, in perception pipelines, attention cueing may
appear to pose a “chicken and egg” problem. In order to
attend to more critical parts of the scene first, one needs to
identify regions of higher criticality. However, in order to
break down the scene into regions of different criticality, one
needs to have inspected the scene already. This circular
dependency is broken, in this paper, by using a second sensor
whose purpose is simply to identify places that deserve a bet-
ter look, much the same way that sound might cue a person to
look in one direction or the other. Specifically, we suggest to
use a ranging sensor. Ranging identifies depth and therefore
depth discontinuities, allowing one to quickly isolate fore-
ground objects from backgrounds [1]. LIDAR offers reliable
depth information for individual pixels under normal
weather conditions. Foreground objects in the scene can thus
be approximately localized depending on depth informa-
tion [7], offering a basis for prioritization (before any neural
network processing begins). We can then attend to the nearest
objects first, or the most rapidly approaching objects first,
roughly translating into distance-based and velocity-based
criticality resource allocation policies, respectively. Attention
cueing within the perception subsystem can be viewed as an
optimization to mission-critical perception functions. Our
work does not obviate safety-critical (emergency) overrides to
handle corner cases where safety becomes in jeopardy.

We implement the architecture on an NVIDIA Jetson
AGX Xavier platform, and do a performance evaluation
using real video traces collected from autonomous vehicles.
The results show that prioritization, by dropping inconse-
quential regions (e.g., sky, backgrounds, etc), significantly
improves the average quality of machine inference, while
nearly eliminating deadline misses, compared to a set of
state-of-the-art baselines under the same settings.

The rest of this paper is organized as follows. Section 2
introduces related work. Section 3 is a conceptual overview
of the proposed architecture. Section 4 describes the sched-
uling algorithms developed. We introduce the criticality-
based weight design in Section 5. System evaluation is pre-
sented in Section 6. We provide an open discussion about
other potential criticality designs in Section 7. The paper
concludes with Section 8.

2 RELATED WORK

The work is motivated by the large expansion of modern
cyber-physical systems (CPS) research into areas of machine

1771

intelligence and autonomy to enable progressively broader
categories of tomorrow’s mission-critical applications [8].
Current machine learning software has been very successful
at producing run-time inference algorithms that approach
or exceed capabilities of human perception [9]. Of particular
promise have been recent advances in neural networks [10].
However, mainstream deep neural network inference algo-
rithms are not designed explicitly with timing and criticality
constraints of cyber-physical systems in mind, generating a
need to refactor modern neural network software.

In the broader neural network research literature, much
work was done on deep model compression and accelera-
tion [11]. Examples include parameter quantization [12],
weight virtualization [13], node pruning [14], and low-rank
projection [15]. In addition, several advances have focused
on offloading parts of on-device neural network inference
to the cloud [16]. We complement that thread by introduc-
ing the notion of prioritization into the AI workflow. We
exploit physical aspects of the platform and the application
to enable additional reductions in cost while improving
predictability, and timeliness.

Recent efforts on Al-empowered real-time systems
addressed CPU/GPU scheduling for pipelined machine
inference [17], resource and energy management [18], [19],
and communication and collaboration protocol design [20].
Autonomous driving emerged as a flagship application
motivating Al-empowered real-time system design [21].
Extensive hardware and software evaluations have been
performed to understand and reduce the end-to-end pipe-
line delays [3], [22], as well as improve the robustness of
hardware accelerators [23]. Recent papers refactored deep
neural networks to satisfy dynamic execution-time con-
straints during inference [24], [25], [26] with heterogeneous
execution patterns. For example, Bateni et al. [27] applied a
combination of different layer-wise network approximation
techniques to meet target deadlines. Lee et al. [24] intro-
duced dynamic subnetwork construction for DNNs (where
the subnetwork with best performance that meets time con-
straints is selected at runtime). Liu et al. [1] were the first to
propose a prioritization pipeline to mitigate the priority
inversion problem in machine perception subsystems. We
further extend it by offering a generalized criticality assign-
ment mechanism to to achieve a better tradeoff between pri-
oritized responses (in terms of both time and quality) to
critical segments of input and the average model inference
quality. We also investigate limitations of the approach.

3 SYSTEM ARCHITECTURE

Consider an intelligent cyber-physical system (i.e., the
observer) equipped with a camera that observes its physical
environment, a neural network that processes the observa-
tions, and a control unit that must react in real time. In the
conventional machine perception pipeline, input data
frames captured by sensors are processed sequentially as
intact units. Network execution is typically non-preemptive.
It considers one frame at a time, producing an output on
each frame before the next frame is handled.

Unfortunately, the data frames captured by modern sen-
sors (e.g., colored camera images) carry information of differ-
ent degrees of criticality in every frame. Data of different

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

1772
Prioritized —>| Batching and
queues Utility
Maximization
D lPreemption
Input data Frames | Data Slicing m lanytime | Decisions
and Priority (Anytime)
Allocation Neural
Network
A
Camera : Criticality- Device L
| Rt'i"e?. evice Layer
| ention
: Cueing CPUs GPUs
777777777 |

Ranging Sensor

Real-time Architecture

Fig. 1. A Real-time Machine Perception Pipeline (originally suggested

in [1]).

degrees of criticality may favor a different processing latency
within the perception subsystem. For example, parts of the
image containing close objects may require a faster response
compared to parts containing distant objects, while static
background regions with no objects may not need processing
at all (at least not in every frame). To accommodate these dif-
ferences, we consider the perception architecture shown in
Fig. 1. It features three key components:

o The data slicing and priority allocation module: This
module breaks up newly arriving frames into
smaller regions with different degrees of criticalty
based on simple heuristics.

o The “anytime” neural network: This neural network
implements an imprecise computation model that
yields partial utility from the partially completed
computation. It allows saving resources on process-
ing less critical regions by the perception subsystem.

o The batching and utility maximization module: This
module sits between the data slicing on one end and
the neural network on the other. With data regions
broken by priority, it decides which regions to pass
to the neural network for processing. Since multiple
regions may be queued for processing, it also decides
how best to benefit from batching (that improves
processing efficiency).

For completeness, below we first describe all of the above
components of the observer, respectively. We then detail
the batching and utility maximization algorithm.

3.1 Data Slicing and Priority Allocation

This module breaks up input data frames into regions of dif-
ferent criticality. In this paper, we consider criticality
assignment based on output of a ranging sensor. The current
autonomous vehicle industry has an ongoing debate on the
best way to implement the ranging sensor [28], [29], [30],
[31].! Much of the industry, including Waymo, GM, Nuro,
Uber, Aurora, Zoox, Argo, and Lyft, have invested in
LiDAR. Apple announced (in late 2020) investing in an
autonomous car that may use the company’s own LiDAR
technology as well. On the opposition side, most

1. https:/ /www.automotiveworld.com/articles/lidars-for-self-
driving-vehicles-a-technological-arms-race/

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

prominently, Elon Musk’s Tesla openly opposes LiDAR on
several grounds, including cost. We do not take a position
on this debate. While in the rest of the paper, we shall call
our ranging sensor a LiDAR, we acknowledge that one can
alternatively reconstruct depth using other means such as
stereo cameras (similar to the human vision system),
although sometimes challenging [30], and even thermal
cameras [32]. On the advantage side, LiDAR directly esti-
mates distance without the need for synchronization or neu-
ral models [31]. It is therefore potentially more reliable in
avoiding accidents caused by failed distance prediction
under normal weather conditions [33]. LiIDAR, however, is
effectively blind in bad weather conditions. Under these
conditions, a different ranging sensor should be used
instead (or the driver should switch to a manual mode).
Finally, LiDAR point cloud based object localization techni-
ques have been proposed in recent literature [7]. They pro-
vide a fast (i.e., over 200 Hz) ranging and object localization
capability that do not require GPU processing.

The data slicing and priority allocation module needs
only to identify approximate locations of potential objects
from differences in depth, but does not need to recognize
object categories or determine exact outlines. A padding
margin can be added around the identified depth-based
foreground regions to allow for inaccuracies in capturing
object boundaries. We investigate the impact of such inaccu-
racies on algorithm performance (where larger inaccuracies
call for larger margin sizes, leading to efficiency loss). The
padded regions have rectangular shapes. They constitute
(approximate) bounding boxes for the respective objects. The
development and evaluation of specific object localization
algorithms is outside the scope of this paper, as they have
akready been addressed in prior work [7].

Each identified rectangular region, i, is associated with a
criticality weight w;. In this paper, we compare two instan-
tiations of object criticality, namely, distance-based criticality
and relative velocity-based criticality. Besides foreground
objects identified by depth irregularities (as mentioned
above), we can view the rest of the frame as a special seg-
ment of background priority, for example by allowing Al-
based perception algorithms to look at entire frames
(including the background) at a lower frequency. We can
control the scheduling of that special segment by manipu-
lating its associated wight function, w;. This modification
will also allow the perception subsystem to process static
parts of the scene and perform other functions such com-
puting geometric relations between objects.

3.2 The Anytime Neural Network

A perfect anytime algorithm is one that can be terminated at
any point, yielding utility that monotonically increases with
the amount of processing performed. Our neural network
approximates that model. Specifically, it implements an
imprecise computation model [35] that provides usable and
approximate partial results. In an imprecise computation
model, processing consists of two parts: a mandatory part
and an optional part. The optional part, or a portion thereof,
can be skipped to conserve resources. When the optional
part is skipped, the task is said to produce an imprecise (i.e.,
approximate) result.

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: REAL-TIME TASK SCHEDULING FOR MACHINE PERCEPTION IN INTELLIGENT CYBER-PHYSICAL SYSTEMS

1773

Stage 1

Stage 2

¥20[g AUOD
¥20[g AUOD
¥20[g AUOD

S o
o o
c E
- <
3 —
3)
2| |3
x 2

2 AUO) TX T

2AUOD EX €
o7 AUOD TX T

Stage 3 Stage 4

20|g AUOD

bt
¥20|g AUO)
¥20|g AUO)

3o0|g AUOD
3o0|g AUOD
}o0|g AUOD
}o0|g AUO)

~
Block number: 3

Conv Block

Block number: 3

Block number: 6

~
Block number: 4

Classifier 1

Fig. 2. ResNet [34] architecture with 4 stages and 50 layers.

Deep neural networks (e.g., image recognition mod-
els [34]) are a concatenation of many layers that can be
divided into several stages, as we show in Fig. 2. Ordinarily,
an output layer is used at the end to convert features com-
puted by earlier layers into the output value (e.g., an object
classification). Prior work has shown, however, that other
output layers can be forked off of intermediate stages pro-
ducing meaningful albeit imprecise outputs based on fea-
tures computed up to that point [36]. Neural network
inference can be divided into a mandatory part and optional
parts. The quality of outputs increases when the network
executes more optional parts.

Modeling neural networks as imprecise computations
allows the scheduling algorithm to stop the computation for
a task when its prediction quality is sufficiently high, or ter-
minate low-criticality tasks earlier (with more approximate
results) in favor of higher criticality tasks, facilitating
resource savings. The approach needs to be used with care.
Clearly, loss of fidelity can cause safety problems. Note,
however, that an obstacle viewed, say, for 5 seconds at a
frame rate of 30 frames/sec will be classified 150 times. As a
result, per-frame classification accuracy can be a bit more
relaxed, especially for objects that are a safe distance away
(i.e., lower criticality), which is precisely the insight being
exploited here. We adopt the algorithm proposed by Yao
et al. in RDeepSense [37] to estimate expected confidence in
outputs of future neural network stages. It allows an accu-
rate estimation of confidence at the output of a neural net-
work stage before the stage is executed, allowing us to
compute the expected utility of each stage upfront.

3.3 Batching and Utility Maximization

This module decides the schedule of processing of all
regions identified by the data slicing and prioritization
module and that pass de-duplication. Below, we describe
how the batching and utility maximization module sched-
ules the tasks that process the different bounding boxes.

4 THE SCHEDULING PROBLEM

In this section, we describe our task execution model and
formulate the scheduling problem studied in this paper. We
then derive a near-optimal solution.

4.1 The Execution Model

As alluded to earlier, the scheduled tasks in our system con-
stitute the execution of multi-layer deep neural networks
(e.g., ResNet [34]), each processing a different input data
region (a bounding box). As shown in Fig. 2, tasks are broken
into stages. Each stage includes multiple neural network

Classifier 2 Classifier 3

Classifier 4

layers. The unit of scheduling is a single stage. A task arrives
when a new object is detected by the ranging sensor (e.g.,
LiDAR) giving rise to a corresponding new bounding box in
the camera scene. Let the arrival time of task 7; be denoted by
a;. A deadline d; > a;, is assigned by the data slicing and pri-
ority assignment module denoting the time by which the
task must be processed. Both a; and d; are a multiple of frame
inter-arrival time, H. We do not pose periodicity assump-
tions on object arrival times and deadlines. No task can be
executed after its deadline. Future object sizes, arrival times,
and deadlines are unknown, which makes the scheduling
problem an online decision problem.

4.1.1 Batching

Stages of the neural networks are executed on a GPU. One
way of exploiting their computation capabilities is to execute
the same kernel on all GPU cores. This means that we can
run different tasks concurrently on the GPU as long as we run
the same kernel on all GPU cores. We call the assembly of such
concurrently executable task sets, batching. Running the
same kernel on all GPU cores means that we can only batch
tasks if both of the following applies: (i) they are executing
the same neural network stage and (ii) they run on the same size
inputs. Batching is advantageous because it allows us to bet-
ter utilize the GPU, so we want to take advantage of it in
scheduling. To increase batching opportunities, we limit the
size of possible bounding boxes after slicing to a finite set of
options. For a given size k, at most B") tasks can be batched
together before overloading GPU capacity. We call it the
batching limit for the corresponding input size.

4.1.2 Imprecise Computations

Let the number of stages in the neural network for task t; be
denoted by L,. We call the first stage mandatory and call the
remaining stages optional. Following a recent study [38],
tasks are written such that they can return a classification
result once the mandatory stage is executed. This result
then improves with the execution of each optional stage.
Earlier work presented an approach to estimate the
expected confidence in correctness of results of future
stages, ahead of executing these stages [37]. This estimation
offers a basis for assessing utility of future task stage execu-
tion. We denote by R;; the predicted confidence in correct-
ness of task 1; after executing j < L; stages. This quantity
can be computed as proposed by Yao ef al. [37]. Note that,
this confidence can be different among tasks (depending in
part on input size), but it is computable, non-decreasing,
and concave with respect to the network stage [37]. We
denote by 7 (t) the set of current tasks at scheduling period t.
A task, t;, is called current at period ¢, if a; <t < d;, and the

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

1774

task has not yet completed its last stage, L;. For task 7; of
input size, k, the execution time of the jth stage is denoted
by eﬁkb), where b is the number of batched tasks during exe-
cution. We obtain the stage execution time of each batching

size through offline profiling.

4.2 Problem Formulation

The problem addressed in this paper, which we call the
Weighted Batched Online Object-recognition Scheduling with
Imprecise Computation (Weighted BOOSIC) problem, is to
decide on the number of stages [; < L; to execute for each
task 7; and to schedule the batched execution of those task
stages on the GPU such that the total weighted utility,
> wiR;y, of executed tasks is maximized, and batching
constraints are met. In this formulation, the weighted utility
of executing /; stages of task, t;, by the deadline is given by
w;R;;;, where R;; is the confidence in correctness of task
output (computed after /; stages) and w; is a weight that
depends on task criticality. In summary:

The Weighted BOOSIC Problem. With online task arrivals,
the optimization objective is to derive a schedule = to maxi-
mize the weighted sum of task utilities, where the weight is
defined as the object criticality. The schedule decides three
outputs: task stage execution order, task execution depth
(i.e., number of stages to execute of each task), and task
batching (which tasks to execute together). Specifically, for
each scheduling period ¢, we use z.(i,j) € {0,1} as an indi-
cator variable to denote whether the jth stage of task 7; is
executed. Besides, we use P to denote a batch of tasks,
where |P| denotes the number of tasks being batched. The
mathematical formulation is

Weighted BOOSIC :

m;ix Z Z wil't(ia J) (Ri,j - Ri’jfl)
o

1)
T
st.o@y(iy §) € {0,1}, Y my(i,j) <1, Vi, j
t=1
xt(%]) = 07 vt ¢ [aivdi)v Vl,j (2)

t—1
x/(ivj_ 1) - -Z’f(’l/,]) Z Oa
t,; ' 3)

Vi,jg > 1,t > 1

8; = Syt :k, l; :li’a |P| Sbk’

4
VieP,ieP, JkeS. @

The following set of constraints have to be satisfied: (1) Each
network stage for each task can only be executed once; (2)
No task can be executed after its deadline; (3) The execution
of different stages of the same task must satisfy their prece-
dence constraints; (4) Only tasks with the same (image size,
network stage) can be batched, and the number of batched
tasks can not exceed the batching constraint of their image
size. Only one batch can be executed on the GPU at any
time. However, multiple batches can be executed sequen-
tially in one period, as long as the sum of their execution
times does not exceed the period length, H.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

4.3 An Online Scheduling Framework

Our scheduler is invoked upon frame arrivals, which is once
every H units of time. We thus call H the scheduling period.
We assume that all task stage execution times are multiples
of some basic time unit §, thereby allowing us to express H
by an integer value. We further call the problem of schedul-
ing current tasks within the period between successive
frame arrivals, the local (weighted) scheduling problem:

Definition 1 (The Local Weighted BOOSIC Problem).
Given the set of current tasks, T (t), within scheduling period,
t, the local weighted BOOSIC scheduling problem seeks to max-
imize the total weighted utility gained within this scheduling
period only.

Liu et al. proved in [1] that an online scheduling algo-
rithm that optimally solves the local scheduling problem
can have a good competitive ratio relative to a Clairvoyant
optimal scheduler (that has full knowledge of all future task
arrivals). They correspondingly propose a locally optimal
dynamic programming algorithm (named OnlineDP). How-
ever, it is too slow to run in real time, so we focus on a
greedy algorithm that is computationally efficient and
shows similar performance as OnlineDP in experiments.

Algorithm 1. Local Weighted Greedy Scheduling

Input: Available task set 7 (¢) with their weighted utilities,
the batch limit B" for each size k.
Output: Local task schedule x;

1: while until the end of the period do
2: fork=1,...,Kdo
3 forj=1,...,L% do
4 T},;(t) == available tasks of size k at stage j.
5 if |74,(t)| < BY then
6: gk,j(t) := weighted utility of 7 ;(¢),
7 T}w(t) = Tk,]‘(t).
8 end
9: else
10: T1;(t): = B® tasks with the max weighted utility
in Tk'j(t),
11: Up,;(t): = weighted utility of tasks in ’j'kJ(t)
12: end
13: end
14: end

15: Select the pair (k, j) and execute the tasks in 7 1;(t) with
the maximum weighted utility Uy, ;(t).

16: end

17: return x;

The scheduling decision is made stage-wise, which
means that the selected tasks will execute for only one stage
before making the next scheduling decision. The greedy
online scheduling algorithm solves the local BOOSIC sched-
uling problem following a simple greedy selection rule. In
order to maximize the benefit of task batching, instead of
selecting one task with the maximum marginal utility (for
its next stage), the greedy algorithm executes the eligible

2. By eligible we mean: 1) The tasks belonging to the batch all have
the same image size and (valid) network stage; 2) No task has passed
its deadline; 3) The number of batched tasks is no greater than the
batching limit for their image size; 4) The batch can finish executing the
next stage before the end of current period.

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: REAL-TIME TASK SCHEDULING FOR MACHINE PERCEPTION IN INTELLIGENT CYBER-PHYSICAL SYSTEMS

batch with the maximum utility next. The pseudo-code of
the greedy scheduling algorithm is shown in Algorithm 1.
The greedy scheduling algorithm is simple to implement
and has a very low computational overhead. We show that
it achieves a comparable performance to the optimal algo-
rithm in practice.

5 CRITICALITY-BASED WEIGHT DESIGN

The scheduling objective defined in the vanilla BOOSIC
problem [1] aims to optimize the overall confidence in
model predictions. It allocates computational resources to
tasks whose execution attains the largest increase in confi-
dence. Tasks are split into two groups (critical or non-criti-
cal) by thresholding on object distance. Critical tasks are
assigned a relatively high but fixed weight.

This paper generalizes the above by considering a fine-
grained task-specific criticality weight w; for each task that
is multiplied by confidence. If we set the weight factor w; =
1 for each task, then the algorithm always prioritizes tasks
with high confidence increase. On the contrary, if we set the
predictive confidence x; = 1 for each task, then the task exe-
cution order strictly complies with task criticality. By con-
sidering both factors, we achieve more effective utilization
on limited computation resources: We allocate resources
preferentially to more critical tasks that also observe a sub-
stantial increase in prediction confidence.

We instantiate two different mechanisms for computing
weight, w;, in this paper: distance-based criticality, and rela-
tive velocity-based criticality. They are discussed below.

5.1 Distance-Based Criticality

As a straightforward instantiation, we first propose and use
distance-based criticality. It is tempting to assume that (in a
purely distance-based criticality assignment algorithm)
closer objects should monotonically receive a higher priority
because they induce a higher risk of future collisions. As
suggested by one of our anonymous reviewers, however,
this reasoning is flawed. Objects closer than a certain mini-
mum threshold, /,;,,, might already be too close to comfort-
ably avoid. It is thus imperative to account for them while
they are are still sufficiently far way. In other words, the
value function for determining criticality is shifted. Namely,
assume the distance of the ith object is /; and the maximum
LiDAR detection range is /,,,,, the distance-based criticality
weight is defined as

07 if l7 S lmin;
1 s k > 17 if li > lmim (5)

W= 7 NE
li=lmin
(lmn.ﬁlmm e

where € is a small positive term for stabilization. The thresh-
old l,,;, is the minimal safe object distance, defined as

U2

2-a’ ©

lin =v- HS +
where v is the current velocity of the AV, and a is the largest
acceleration of the AV when it makes a hard brake. Equa-
tion (6) computes the minimum safe distance [, in a
velocity-dependent fashion, for the vehicle to avoid an
obstacle. Below that distance, a safety-critical override (e.g.,

1775

a collision avoidance system) should immediately intervene
and stop the car or reduce speed (to increase [,,;,). Note
that, if the car is stopped, l,,;, is zero. We henceforth call
lmin a (distance) shift point, since the weight assignment, w;
is effectively shifted by I, to focus on more distant objects.

One limitation of the above design is that it does not
account for the velocity of the other objects. In general, an
object that is decelerating might be more of a concern than
one that is accelerating (away from the AV), even if both are
presently the same distance away. Below, we describe a
modification of the above algorithm that accounts for rela-
tive velocity.

5.2 Relative Velocity-Based Criticality

We can estimate relative velocity information by computing
distance change between consecutive frames. We need an
efficient object tracking module to calculate relative velocity
of surrounding objects. We follow the SORT algorithm pro-
posed by Bewley et al. [39] for object tracking. It adopts a
tracking-by-detection strategy to track multiple objects in
parallel. At each frame, we try to map each bounding box to
an existing object track through a data association algorithm
(the Hungarian algorithm [40] in our implementation),
based on the intersection-over-union (IOU) matrix between
new bounding boxes and predicted locations for object
tracks. The assumption is that, if a new bounding box is
highly overlapped with the projected location of a previous
object according to the motion model extracted from its past
trajectory, then we believe they belong to the same object.
No semantic information (i.e., category of the object) is
needed during the mapping. The relative velocity is

-

YT T Hs ™

where [; and I/ denote the distance of object ¢ in current
period and the previous period respectively. A positive
value means the object is approaching while a negative
value means the object is moving away. We further remove
object mappings that lead to an abnormally high relative
velocity. We correspondingly define the object deadline as

o~ I
4 = d7;zaz 1f v; < ? or 1712 > dmal'; (8)
ﬁ if 0 < # < d7nam7
where d,,,,; = l'ﬁ% is defined as the maximum deadline. It is
calculated using the maximum LiDAR range I,,,, and the
observer velocity v,. The object weight is

0 lf dz S dmin;
w; = - k Z 1, if d, > dm’i,n- (9)

k ’
(d—d e

As in the previous section, we assume when an object dead-
line falls below the threshold d,,;,, the safety-critical system
should immediately interfere and take corresponding
action. We call d,,,;, a (deadline) shift point.

One limitation of this mechanism is that we need at least
two appearances of the same object to calculate its relative
velocity. In the data association step, if the new bounding
box can not be mapped to any existing tracks, then it is

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

1776

considered as a potential new object. In this case, we assume
the object to be static.

6 EVALUATION

In this section, we verify the effectiveness and efficiency of
our proposed scheduling framework by comparing it with
several state-of-the-art baselines on a large-scale self-driving
dataset, Waymo Open Dataset.

6.1 Experimental Setup
6.1.1 Hardware Platform

All experiments are conducted on an NVIDIA Jetson AGX
Xavier SoC. It's equipped with an 8-core Carmel Arm v8.2
64-bit CPU, a 512-core Volta GPU, and 32 GB memory. Its
mode is set as MAXN with maximum CPU/GPU/memory
frequency budget, and all CPU cores are turned on.

6.1.2 Dataset

Our experiment is performed on the Waymo Open Data-
set [41], which is a large-scale autonomous driving dataset
collected by Waymo self-driving cars in diverse geographies
and conditions. It includes driving video segments of 20s
each, collected by LiDARs and cameras at 10 Hz. All LiDAR
and camera data are synchronized. Only the front camera
data is used in our experiment. Since we do not need the
added resolution, objects with size larger than 256 are
down-scaled to 256 while preserving its aspect ratio. All
remaining images are padded to the target size bins.

6.1.3 Neural Network

Unless otherwise stated, we use ResNet proposed by He
et al. [34] for object classification. The network is trained on
a general-purpose object detection dataset, COCO.? It con-
tains 80 object classes that include those of the Waymo data-
set. An advantage of ResNet is that its architecture is
amenable to modification to support the imprecise compu-
tation model as noted in our prior work [38]. A disadvan-
tage of ResNet is that it is a classification neural network.
Thus, if a region of interest contains multiple objects of dif-
ferent types, ResNet will not be able to individually identify
them. To avoid this problem, one can use YOLO [42]. Unlike
ResNet, YOLO first detects where the individual objects are,
then classifies each. With YOLO, it becomes possible to han-
dle regions (returned by the ranging sensor) that contain
multiple objects. As we show later, this flexibility increases
robustness to inaccuracies in object localization. A disad-
vantage is that YOLO does not lend itself well to separation
into mandatory and optional parts. This limitation results in
a loss of efficiency because one has to execute either all
stages of the YOLO neural network or nothing. For space
limitations, we restrict most of the evaluation to ResNet, but
offer a comparison of ResNet and YOLO in Section 6.7.

6.1.4 Scheduling Load and Evaluation Metrics

We extract the distance between objects and the autono-
mous vehicle (AV) from the projected LiDAR point cloud.

3. https:/ /cocodataset.org/#home

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

The deadlines of object classification tasks are set as the
time to collision (TTC) with the AV. To simulate different
loads for the scheduling algorithms, we manually change
the sampling period (i.e., frame rate) from 40 ms to 160 ms.
We consider a task to miss its deadline if the scheduler fails
to run the mandatory part by the deadline. Otherwise, we
consider the task to return a timely but possibly imprecise
result. In following evaluations, we present both normalized
accuracy and deadline miss rate for compared algorithms. The
normalized accuracy is defined as the ratio between
achieved accuracy and the maximum accuracy when all
neural network stages are executed for the object.

6.2 Compared Scheduling Algorithms

The following scheduling algorithms are compared.

o OnlineDP: It refers to the online scheduling algo-
rithm proposed in [1]. The optimal local scheduling
in each period is conducted by the hierarchical
dynamic programming algorithm. We use it as an
upper bound on average model accuracy, since its
optimization objective is equivalent to maximizing
the achieved average model accuracy with no regard
to criticality.

e Greedy-Uni: This is a simplification of the online
scheduling algorithm proposed in [1], wherein the
local scheduling conducted by an unweighted but
batched greedy algorithm. The task weight is uni-
formly set as w; = 1 for all tasks. Its scheduling objec-
tive is also equivalent to (approximately) maximizing
the achieved model accuracy on all objects.

o Greedy-WeiD/WeiV: This is the proposed online
scheduling algorithm in this paper, with the local
scheduling conducted by the weighted and batched
greedy algorithm. Its scheduling objective is a trade-
off between prioritizing execution for critical objects,
and the overall model accuracy on all objects. In the
following experiments, we use -WeiD to denote the
distance based-criticality assignment and use -WeiV
to denote the relative velocity-based criticality
assignment. The default implementation neglects the
shift point (i.e., sets l,,;, and d;, to zero). We use
-SFT to denote algorithm variations with a non-zero
shift point (i.e., [,y # 0 Or dypin, # 0).

o Greedy-NB: It always executes the single (task, stage)
with maximal marginal utility. No batching is per-
formed. Utility is set proportional to the achieved
predictive confidence. In other words, task weight is
uniformly set to w; = 1, for all tasks.

o Greedy-NB-WeiD/WeiV: Same as Greedy-NB, except
that the weight, w; is calculated according to dis-
tance-based criticality (-WeiD) or velocity-based crti-
cality (-WeiV).

e EDF: It always chooses the single task stage with the
earliest deadline (without considering task utility).
To offer immediate service, no batching is performed
(in EDF and subsequent algorithms below).

e Non-Preemptive EDF (NP-EDF): Unlike regular EDF,
this algorithm does not allow preemption. Once a
task starts executing, it continues until it is finished
or its deadline is reached. It is included to

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

LIU ETAL.: REAL-TIME TASK SCHEDULING FOR MACHINE PERCEPTION IN INTELLIGENT CYBER-PHYSICAL SYSTEMS

100
80
60
40

CDF (%)

—— Partial Frames + Batch
—— Full Frames

20

0 50 100 150 200 250 300 350
Per-frame Latency (ms)

Fig. 3. Cumulative distribution of end-to-end latency on full frames
between full frame inference and batched partial frame inference. The
execution time for frame slicing, batching, and neural network inference
are all counted.

understand the impact of allowing preemption on
stage boundaries compared to not allowing it.
e FIFO:It runs the task with the earliest arrival time first.
All stages are performed if the deadline is not violated.
e RR: Round-robin scheduling algorithm. Runs one
stage of each task in a round-robin fashion.

6.3 Slicing and Batching

Next, we compare the inference time for full frames and
batched partial frames. In full frame processing, we directly
run the neural network on camera-captured full images,
whose size is 1920 x 1280. In batched partial frames, we do
the slicing into bounding boxes within one frame first, and
then batch execution of objects with the same size. Each
frame is evaluated independently. No imprecise computa-
tion is considered. The end-to-end latency for each full
frame, including both preprocessing and network inference
time, is reported here. Our results show that the average
latency for full frames is 350ms,* while the average latency
for (the sum of) batched partial frames is 105ms. The cumu-
lative distributions of frame latencies for the two methods
are shown in Fig. 3. Data slicing and batching, although
induce extra processing delays, can effectively reduce the
end-to-end latency. This experiment quantifies the mini-
mum amount of improvement one can expect due to slicing
and batching alone. Batching is done among same-frame
regions only (in FIFO order). The results already show sig-
nificant reduction in response latency compared to full
frame execution. The imprecise computation model, and
the utility-based scheduling algorithm would further
reduce the response time by implementing better prioritiza-
tion and allowing cross-frame batching.

6.4 Scheduling Policy Comparisons

Next, we evaluate the scheduling algorithms in terms of
achieved classification accuracy and deadline miss rate. We
change the replayed camera frame rate to vary the load. The
scheduling results are presented in Fig. 4. The batched algo-
rithms, OnlineDP, Greedy-WeiD/WeiV and Greedy-Uni,
clearly outperform all non-batched baselines with a large
margin in both metrics. The improvement comes for two
reasons: First, the integration of imprecise computation
model makes the neural network execution partially pre-
emptive. Second, the task batching mechanism significantly
increases the task processing throughput. The deadline
miss rates of OnlineDP and Greedy-WeiD/WeiV/Uni are

4. There can be small variations in full frame inference time due to
the system dynamics.

1777
100 /—“" ' 100 —e— OnlineDP NP-EDF
—8— Greedy-WeiD —e— EDF
80 80 —— Greedy-WeiV FIFO
—— Greedy-Uni —— RR

—e— Greedy-NB

(o))

o
(o))
(=]

I
o

Normalized Accuracy (%)

Deadline Miss Rate (%)

40 —e— OnlineDP NP-EDF
=~ Greedy-WeiD —e— EDF
20 —+— Greedy-WeiV FIFO 20
—— Greedy-Uni —— RR
—o— Greedy-NB 0 ~__
G40 60 80 100 120 140 160 40 60 80 100 120 140 160

Sampling Period (ms) Sampling Period (ms)

(a) Normalized accuracy. (b) Deadline miss rate.

Fig. 4. Accuracy and deadline miss rate comparisons on all objects.

1001 s——— —o~ onlinenr

=
o
o

NP-EDF

3 —
I — 8 —=— Greedy-WeiD ~ —e— EDF
> 80 —+— Greedy-WeiV FIFO
] 80 2 —— Greedy-Uni —— RR
2 60 ﬁ 60 —o— Greedy-NB
1) %)
g s
g 40 —e— OnlineDP weeor | o 40
XN —8— Greedy-WeiD —e— EDF £
E 20 —i— Greedy-WeiV FIFO 3 20
= —4— Greedy-Uni —4&— RR [0}
§ oL—+— —e— Greedy-NB a
40 60 80 100 120 140 160 40 60 80 100 120 140 160

Sampling Period (ms) Sampling Period (ms)

(a) Normalized accuracy of critical (b) Deadline miss rate of critical
objects. objects.

Fig. 5. Accuracy and deadline miss rate comparisons on critical objects.

pretty close to 0 under any task load. However, we also find
that Greedy-WeiD and Greedy-WeiV present a small degra-
dation in both normalized accuracy and deadline miss rate
when the sampling period is small (i.e., 40ms). As we will
show in Fig. 5, the degradation mainly comes as a cost of
prioritizing processing the critical tasks. Greedy-Uni and
OnlineDP show similarly the best performance, because
their scheduling objective (i.e., unweighted sum of task util-
ities) is equivalent to maximizing the overall accuracy.
Instead, in the scheduling objective of Greedy-WeiD/WeiV,
low-criticality tasks have smaller weight factors and are
more likely to be skipped. Essentially, Greedy-WeiD/WeiV
trade part of prediction quality on low-criticality tasks for
timely and high-quality prediction on critical objects,
though their definitions of criticality differ.

To better see the above trade-off, we now focus our atten-
tion on more critical objects. In this section, we first define
critical objects as those whose distance is within 10m. Since
such objects might already be too close (as pointed out by
one of the anonymous reviewers), in the next section, we
explore the impact of shifting criticality weights to favor
more distant objects. Results are shown in Fig. 5. We notice
that the accuracy and deadline miss rate of FIFO and RR are
much worse on critical objects, because severe priority
inversion occurs in these two algorithms. The deadline-
driven algorithms (NP-EDF and EDF) can effectively
resolve priority-inversion. However, their performance on
critical objects is inferior due to the limited task processing
throughput without task batching. Greedy-NB, although
obtains better general performance than EDF and NP-EDF,
shows worse performance on critical objects when the sam-
pling period is short. The batched scheduling algorithms
(Greedy-WeiD/WeiV/Uni and OnlineDP) show better per-
formance for critical objects than non-batched algorithms
because of the increased task processing capacity that comes
with batching. A performance difference between different
batched algorithm flavors appears at high load (i.e., for

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

1778

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

100 == 1200 <100 100
;\3 —e— Greedy-NB-WeiD = —e— Greedy-NB-WeiD s —e— Greedy-NB-WeiD = —eo— Greedy-NB-WeiD
; 801 —=— Greedy-NB-WeiD-SFT g 900 —=— Greedy-NB-WeiD-SFT .g 80 —=— Greedy-NB-WeiD-SFT | & 80 —a— Greedy-NB-WeiD-SFT
5 —+— Greedy-NB-Uni o —+— Greedy-NB-Uni g —+— Greedy-NB-Uni 'E —+— Greedy-NB-Uni
007 —— Greedy-NB-WeiV E 600 —+— Greedy-NB-WeiV g 60 Greedy-NB-WeiV S 60 —4+—' Greedy-NB-WeiV
0 g
= 40 & & 40 % 40
c 1<) ° L
35 20 g 300 2 2 T 20
i & 3 &
2 9 0 S0 0

0 15 30 45 60 75 0 15 30 45 60 75 0 15 30 45 60 75 0 15 30 45 60 75

Object Distance (m)

(a) Unbatched deadline miss.

Object Distance (m)

(b) Unbatched response time.

Object Distance (m) Object Distance (m)

(c) Unbatched executed stage. (d) Unbatched predictive conf.

10 100 <100 100
§ —e— Greedy-WeiD % —eo— Greedy-WeiD = —_
o 8 —=— Greedy-WeiD-SFT | £ 80 —=— Greedy-WeiD-SFT | .2 90 8 90
T —— Greedy-Uni o —— Greedy-Uni s W
3 ! ; c
o 6 —— Greedy-WeiV E 60 Greedy-WeiV o 80 o
@ F = < 80
% 4 § 40 »n 70 —e— Greedy-WeiD E —e— Greedy-WeiD
£] 3 —=— Greedy-WeiD-SFT | = —=— Greedy-WeiD-SFT
= o] 5 70
T2 o 20 3 60 —— Greedy-Uni o —— Greedy-Uni
2 « 2 —— Greedy-WeiV & —— Greedy-WeiV
So 0 & 50 v 60 y-

0 15 30 45 60 75 0 15 30 45 60 75 0 15 30 45 60 75 0 15 30 45 60 75

Object Distance (m) Object Distance (m)

(e) Batched deadline miss. (f) Batched response time.

Object Distance (m) Object Distance (m)

(g) Batched executed stage. (h) Batched predictive conf.

Fig. 6. Scheduling results of greedy algorithms on objects with different distances, when applying distance-based weight (WeiD), relative velocity-
based weight (WeiV) and uniform (Uni) weight. We separately report the results with and without task batching. The range highlighted with green
shows the advantage of Greedy(-NB)-WeiD, and the range highlighted with orange shows the advantage of Greedy(-NB)-WeiD-SFT.

shorter sampling periods), because task batching manages
to accommodate (almost) all tasks within capacity, when
the sampling period is long enough. Focusing on short peri-
ods, among the batched algorithms, Greedy-WeiD shows
the best performance on critical objects, with near-optimal
accuracy and almost no deadline misses. Greedy-Uni and
OnlineDP are inferior because their scheduling objective
assigns the same importance (weight) to all tasks. Under
uniform scheduling, critical objects with shorter deadlines
are more likely to execute fewer neural network stages or
pass their deadlines, thus receiving inferior quality (i.e.,
accuracy). Similarly, Greedy-WeiV does not show optimal
performance on close objects (defined as critical in Fig. 5) as
Greedy-WeiD, because it prioritizes the fast approaching
objects over the close objects (with slow approaching veloc-
ity). The results demonstrate the trade-off involved in favor-
ing critical tasks by Greedy-WeiD at the cost of a minor
degradation in average model performance, shown in Fig. 4.

6.5 Impact of Criticality Assignment Mechanisms

In this subsection, we implement and evaluate the distance-
based criticality assignment and relative velocity-based crit-
icality assignment, and separately compare their different
versions, including a weight shift corresponding to the min-
imum distance [,,,;, and the minimum relative deadline %
respectively.

In following experiments, we simulate the critical driving
scenarios by setting the frame replay period to 60ms. Four
metrics are compared: 1) Deadline miss rate; 2) Mean
response time (i.e., the execution time of the first network
stage); 3) Mean executed stage (i.e., the average ratio of exe-
cuted network stage over its maximum network stage); 4)
Mean predictive confidence (i.e., the mean ratio of achieved
predictive confidence over the maximum confidence when
all stages are executed). In the last two metrics, we compute
the relative ratio to resolve the impact of specific task
instances.

6.5.1 Case 1: Distance-Based Criticality

We compare the scheduling results on objects at every distance
range when different weight mechanisms are applied in Fig. 6.
We first look at the greedy algorithms without batching. When
using uniform utility, objects are not differentiated according
to their distances besides the predictive confidence, so we see
close objects show much higher deadline miss rate and lower
predictive confidence. Insufficient computation resources are
assigned to close objects within their short deadline, who are
actually more critical to the system safety. The issue is resolved
in weighted greedy by partially trading the performance of
distant objects. Close objects are strictly prioritized over distant
objects since no task batching is applied. For close objects, sig-
nificantly more computation resources are allocated, leading
to the significant decrease in deadline miss, and increase in
prediction quality (reflected in both executed stage and predic-
tive confidence). The shifted version also properly adjusts the
focus (i.e., prioritization) of the algorithm as expected. The pri-
oritized distance range moves from 0-10m (highlighted in
green) to 15-25m (highlighted in orange) after applying the
shift. We can conclude that the weighted greedy algorithm
without batching perfectly solve the problem of priority inver-
sion, but its general performance is inferior.

Then we also compare the batched algorithms. Since
batching significantly increases the task processing capacity
of GPU, the deadline misses and response times of all
objects are significantly reduced in the batched greedy algo-
rithm with uniform-weight. However, there are still dead-
line misses on very close objects (5m) in Greedy-Uni. Our
objective is to resolve deadline misses at close objects, and
increase their prediction quality, considering their impor-
tance to the system safety. Misclassification at such objects
can lead to serious safety issues. After applying the weight
mechanism, the deadline misses on close objects are
resolved, and their response times are also further reduced.
More executed stages and higher predictive confidence on
close objects indicate that more computation resources are
allocated to them by Greedy-Wei compared to Greedy-Uni.

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: REAL-TIME TASK SCHEDULING FOR MACHINE PERCEPTION IN INTELLIGENT CYBER-PHYSICAL SYSTEMS 1779
100 ——== 1200 =100 100
;\? —eo— Greedy-NB-WeiV % —e— Greedy-NB-WeiV > —e— Greedy-NB-WeiV — —e— Greedy-NB-WeiV
; 80| —=— Greedy-NB-WeiV-SFT £ 900 —=— Greedy-NB-WeiV-SFT .g 80 —a— Greedy-NB-WeiV-SFT § 80 —=— Greedy-NB-WeiV-SFT
© —+— Greedy-NB-Uni ; —+— Greedy-NB-Uni 2 —+— Greedy-NB-Uni uE ~—+— Greedy-NB-Uni
ﬁ 60{ —— Greedy-NB-WeiD £ —4+— Greedy-NB-WeiD o 60 Greedy-NB-WeiD o 60 —+— Greedy-NB-WeiD
@ v = 600 > < -~
= 40 & & 40 2 40
£ 2 300 5 2
5 20 & s 20 ? 20
©] o et
] 4 b] o
2 9 0 S0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Relative Deadline (%)

(a) Unbatched deadline miss.

Relative Deadline (%)

(b) Unbatched response time.

Relative Deadline (%) Relative Deadline (%)

(c) Unbatched executed stage. (d) Unbatched predictive conf.

10 80 =100 100
;\? —e— Greedy-WeiV % —e— Greedy-WeiV s =
o 8 —=— Greedy-WeiV-SFT | £ o —=— Greedy-WeiV-SFT | S 90 = 20
zu —~— Greedy-Uni o —+— Greedy-Uni 2 "E
6 —+— Greedy-WeiD £ —+— Greedy-WeiD o 80 S
0 =40 = o 80
% 4 § & 70 —e— Greedy-WeiV ; —e— Greedy-WeiV
£ 820 T —=— Greedy-WeiV-SFT | 2 70 —=— Greedy-WeiV-SFT
T2 g é 60 —— Greedy-Uni o —— Greedy-Uni
8 o o« 0 L% 50 —+— Greedy-WeiD o 60 —4— Greedy-WeiD

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Relative Deadline (%) Relative Deadline (%)

(e) Batched deadline miss. (f) Batched response time.

Relative Deadline (%) Relative Deadline (%)

(g) Batched executed stage. (h) Batched predictive conf.

Fig. 7. Scheduling results of greedy algorithms on objects with different relative deadlines, when applying relative velocity-based weight (WeiV), dis-
tance-based weight (WeiD), and uniform (Uni) weight. We separately report the results with and without task batching. The range highlighted with
green shows the advantage of Greedy-WeiV, and the range highlighted with orange shows the advantage of Greedy-WeiV-SFT.

The improvement comes at the cost of increased deadline
miss and degraded prediction quality at distant objects (i.e.,
45-60m). In addition, the shifted algorithm successfully
ignore the closest objects (i.e., <15m) and prioritizes objects
between 15-30m. Note that we set [,,,;,=15m for better visu-
alization effect.

Finally, we briefly analyze the performance of Greedy-
WeiV w.r.t objects at different distance ranges. Greedy-
WeiV, though being better than Greedy-Uni in prioritizing
close objects because objects with short relative deadlines
are mostly close, is not optimal as Greedy-WeiD because it
can prioritize far objects as well if they have a fast relative
velocity. In conclusion, Greedy-WeiD is the best option if
we simply want to prioritize the closest objects.

6.5.2 Case 2: Relative Velocity-Based Criticality

Next we compare the scheduling performance when rela-
tive velocity-based criticality is applied. The associated
results are presented in Fig. 7. In this experiment, we use
the relative deadline diiz as the z-axis, which is decided by
both the object distance and its relative velocity. In the
shifted weighted greedy algorithm, we set the shift j:;;’; =
20%. Without applying the weight mechanism, Greedy-Uni
still has some deadline misses on critical objects (i.e., rela-
tive deadline < 20 percent, as highlighted in green), even
though the values are already much lower than Greedy-NB-
Uni. The application of relative velocity-based criticality
effectively reduces the deadline miss rate of critical objects
to zero. Both response efficiency and prediction quality (i.e.,
executed stages and prediction confidence) on critical
objects with short relative deadline are improved after
applying the relative velocity-based weight mechanism. In
addition, Greedy-WeiV-SFT successfully skips the objects
with deadlines below d,i,, and only prioritizes those with
their deadlines larger than but close to d,,;,, as highlighted
in orange. Regarding the cost, Greedy-WeiV induces
slightly higher deadline miss rate and longer response times
on objects with long deadlines, compared to the Greedy-

Uni. The prediction qualities are quite similar between
Greedy-WeiV and Greedy-Uni on objects with long relative
deadlines.

We further investigate the performance of Greedy-WeiD
in this experiment. It presents small deadline miss rates
between 5 to 40 percent, where Greedy-WeiV shows no
deadline miss. The average response time and prediction
quality of Greedy-WeiD is also inferior to Greedy-WeiV in
this range. Therefore, we can conclude that although
Greedy-WeiD shows similar performance as Greedy-WeiV
in some cases (e.g., both give no deadline miss on objects
with the shortest relative deadlines), it can not replace
Greedy-WeiV to provide timely and high-quality responses
to all fast-approaching objects.

6.6 Breakdown Latency Quantification

In this subsection, we quantify and report the breakdown
latency overhead for each step in the proposed pipeline.
The frame period is set as the default 100 ms. We show the
latency distribution for data slicing, and the scheduling
algorithm respectively in Fig. 8. Slicing is very efficient,
with an overhead below 5 ms in most cases. The average
slicing latency is 2.04 ms. Object criticality computation is
included in the slicing step. No noticeable latency is
induced by the criticality allocation. The scheduling algo-
rithm shows relatively higher overhead, but it is still effi-
cient compared to the network inference time. It shows an
average latency of 5.09 ms and is below 15 ms in most cases.

6.7 System Robustness Test

In this subsection, we test the system robustness to inaccu-
racies in bounding box location due to the approximate
nature of LiDAR-based image slicing/segmentation. We
test with the batched online greedy algorithm with dis-
tance-based criticality. Inaccuracy is represented by a shift
ratio, R, from ground truth. Specifically, starting with the
ground truth object location, we first randomly shift the
bounding box center by some ratio r € [1,1+ %], and then

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

1780

100
80

R 60
w
o 40
o

20 —— Slicing and Priority Allocation

—— Scheduling
0
0 5 10 15 20 25
Latency (ms)

Fig. 8. Cumulative distribution of breakdown latency for each step within
the proposed pipeline.

0 n <10
9 - A”_(_)bJeCtS_ B —e— All Objects
S 3 %~ Critical Objects | @ g| _u- critical Objects "
2 s
5 -6 56
(9] 0]
wn
T -9 s 4
e @
3 [=
£ 2
:
—-15 a0
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Bounding Box Shift Ratio Bounding Box Shift Ratio

(a) Accuracy degradation. (b) Deadline miss rate change.

Fig. 9. Accuracy and deadline miss change on ResNet.

upscale the box size by a multiplicative factor of r + 1 of its
original size. The expansion in size reflects the intuition that
when the system incorporates a less accurate (say, LIDAR-
based) object localization mechanism, it makes sense to
compensate by inspecting a larger area (by the camera)
around the location indicated by the LiDAR. We first con-
sider ResNet. The changes in accuracy and deadline miss
rate for all objects (classified by ResNet) and for critical
objects are shown in Fig. 9. Generally, the scheduling algo-
rithm is robust against location inaccuracies, showing only
about 9-13 percent degradation in accuracy and 4-8 percent
increase in deadline misses for 0.6 < r < 0.8. Critical objects
show a higher increase in deadline miss rate because they
are associated with tighter deadlines and larger bounding
boxes. As mentioned earlier, ResNet performs classification.
Thus, it cannot handle siuations where multiple objects
appear in an image segment. To handle these conditions,
one may use YOLO instead. Thus, we replace the classifica-
tion network, ResNet, with a general object detection net-
work (namely, YOLOv3 [42]). It can automatically localize
and classify presented objects in the given image. No impre-
cise computations are used, since we do not have an impre-
cise computation model for YOLO. Accordingly, we also
remove the predictive confidence term from utility, leaving
only the criticality term. Results are shown in Fig. 10. An
object is considered correctly classified if we have a detec-
tion that is highly overlapped with it (i.e., IoU > 0.5), and
has the same predicted class as the groundtruth class. On
average, YOLOvV3 shows a higher deadline miss rate com-
pared to ResNet, because tasks are no longer preemptive
without an imprecise computation model. However, critical
objects suffer much fewer deadline misses with increased
inaccuracy. We believe this is because the scheduling algo-
rithm always prioritizes critical objects, since we no longer
use the prediction confidence term. Interestingly, we also
see that location inaccuracies (resulting in larger bounding
boxes) can actually improve the prediction quality of
YOLOvV3. A much smaller average degradation is seen than
with ResNet. Moreover, for critical objects, we observe an

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

N
o

=
o
[
1
u

—e— All Objects
—m - Critical Objects

w
-
=
[=2]

Accuracy Change (%)
o
P }
Deadline Miss Change (%)
© N

|
[0
IS

—e— All Objects
—m- Critical Objects P T Ry "

0.0 0.2 0.4 0. 0.8 0.0 0.2 0.4 0.6 0.8
Bounding Box Shift Ratio Bounding Box Shift Ratio

o

-10

(a) Accuracy degradation. (b) Deadline miss rate change.

Fig. 10. Accuracy and deadline miss change on YOLOv3.

improvement on accuracy, while their deadline miss rate
maintains roughly stable. This is because YOLO is designed
to find smaller objects in larger images. The experiment has
profound implications: We do not need an accurate ranging
and localization mechanism to direct the attention of the
camera. An inaccurate one actually works very well (with
YOLO), leading to improvements in accuracy of critical
objects without degradation in schedulability.

7 DISCUSSION

The main contribution of the proposed architecture lies in
partitioning the perception input into local regions of differ-
ent criticality based on a ranging sensor, and performing
prioritized inference on partial data frames. Below, we first
discuss the conceptual advantages and disadvatages of this
research direction, followed by suggestions for future work.

7.1 To Cue or Not to Cue? That is the Question

The fundamental idea of cueing the perception module by a
ranging sensor to inspect part of the scene first can be criti-
cized from at least two different reliability standpoints. It is
important to discuss those considerations.

First, using LiDAR (or another ranging sensor) to cue the
attention of the perception module creates a dependency of
the more intelligent neural-network on the more primitive
ranging sensor. This dependency might seem to decrease
reliability. For example, given its reduced capabilities, what
if the ranging sensor misses an object? The proposed archi-
tectural change, therefore, seems to counter best-practices
in building reliable systems. A counter-argument might be
that we do not actually use LiDAR for detection/classifica-
tion but rather as a rough cue to alert the camera to approxi-
mate regions where one might want to look for objects
(based on distance anomalies). The LiDAR is good at telling
distance. The camera (together with the neural network) is
good at detection/classification. In fact, ranging is a simpler
function than neural network-based classification, and so is
likely to be more reliable at what it does. Thus, we use each
sensor for what it's good at. The dependency is, in fact, one
where a likely less reliable component (a complex neural
network performing a complex cognitive function) depends
on a more reliable one (simple distance measurements to
guide where to look). Prior work on cyber-physical systems
calls this a well-formed dependency [43], and argues for sim-
plicity when higher-reliability is needed [44] (for reasons
such as ease of verifiability and freedom from unintended
complexity-induced bugs). It should also be possible to
skew the ranging sensor towards false positives, not false

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: REAL-TIME TASK SCHEDULING FOR MACHINE PERCEPTION IN INTELLIGENT CYBER-PHYSICAL SYSTEMS

negatives. The hope is that it can eliminate at least some
areas from consideration based on absence of low-distance
measurements for those areas.

Another way the proposed architecture seems to counter
best practice in reliable system design is that it makes per-
formance optimizations that decrease accuracy (of some
perception tasks) and thus, on the surface, may jeopardize
safety. Jeopardizing safety to save resources is the wrong
type of trade-off. A possible counter-argument is twofold:
First, we view camera-based perception (and Al in general)
as a mission-critical component, not a safety-critical compo-
nent. A separate safety override is needed and ideally
should be as simple as possible. Taking inspiration from
evolution, simple human reflexes typically handle immedi-
ate threats based on simple stimuli (flinching to protect eyes
from nearby projectiles, rejecting contact with very hot sur-
faces, coughing when objects land in the trachea, etc). Cog-
nitive (Al-like) processing usually does higher-level
planning. We make cognitive processing more efficient, but
we do not touch the safety overrides, so safety should
remain as is. The second observation is that the work merely
prioritizes the processing. The real question therefore does
not seem to be whether having critical stimuli handled
more quickly is a good idea. Rather it seems to be whether
the way we determine criticality of the stimulus is accept-
able. The latter, however, is a somewhat orthogonal prob-
lem to the generalized mechanisms we develop to enforce
prioritization. Hence, there may still be merit in describing
those mechanisms, as well as examples of their use. With
those observations, we believe that the work may promote a
discussion of best design practices for real-time autono-
mous perception. Below, we suggest some extensions.

7.2 Criticality Assignment and Other Extensions
While the paper discussed some ways of assigning criticality,
other possibilities exist that may be of interest. For example,
one can generalize relative velocity to a broader notion of
change (beyond the change in distance). Since the visual
information on consecutive frames is highly redundant, we
do not need to track everything all the time. Instead, combin-
ing distance and visual changes, we only need to be sensitive
to changes in the 3D scene (beyond those that occur due to ego-
motion). For example, when we are waiting at a traffic light,
pedestrians crossing the road or flashing lights would catch
more of our attention than stopped vehicles. They are not
necessarily close to us or moving at a fast relative speed.
Focus on areas that exhibit a bigger change essentially maxi-
mizes information flow. This would enable the system to
react quickly to changes, including changes in distance that
result from fast-approaching objects.

The necessity to build a tracking module, mentioned in
the context of computing relative velocity (and other types
of change) alludes to another possibility in computing util-
ity weights. Namely, weights can be computed based on an
information-theory-inspired metric related to information
gain and surprise. This policy is inspired by the observation
that if one is tracking an object, one is able to predict its
future state. When the observed state of the object matches
this prediction (regardless of the amount of change from the
previous frames), it means that the change that occurred

1781

reflects no additional information besides what can be
extrapolated from the object’s past trajectory and state. In
contrast, if an object appears where it was not predicted,
then something unexpected has occurred that requires
attention. In other words, the policy does not focus on areas
of change. Rather, it focuses on areas of unexpected change.
It is a surprise-based policy. A hybrid scheme, integrating
multiple criticality policies might be another choice. How to
effectively combine multiple policies in a context-driven
fashion, properly adjust their composition, and resolve their
conflicts is a very promising but challenging research prob-
lem. We defer this problem to future work.

Finally, there may be other ways to save resources on
less-critical tasks. An example explored in a different paper
is input resizing [45]. Less critical parts of the scene can be
reduced in resolution, leading to downstream savings. It is
also of interest to explore the design of criticality-based pri-
oritization in the absence of LiDAR, as well as faster algo-
rithms for distance-based clustering (for attention cueing)
and use of other ranging sensors.

8 CONCLUSION

We investigated the advantages and limitations of a utility-
based real-time task scheduling framework for machine
perception pipelines to mitigate the priority inversion prob-
lem. Two core components were introduced: (a) a prioritiza-
tion scheme that enables more timely response to more
critical stimuli, and (ii) a batching scheme that explores the
maximum parallel capacity on GPUs to improve both the
response speed and inference quality. Two criticality
designs (a distance-based criticality, and a relative velocity-
based criticality) were proposed and implemented. Exten-
sive evaluations on the large-scale Waymo driving dataset
validates the effectiveness and efficiency of the proposed
scheduling framework in removing priority inversion with-
out sacrificing average inference quality. The sensitivity to
the inaccuracies of LiDAR segmentation is a limitation of
current scheduling framework, but it can be enhanced by
utilizing an object detection network (e.g., YOLO). We look
forward to integrating more criticality designs in our gen-
eral framework in the future.

ACKNOWLEDGMENTS

Research reported in this paper was sponsored in part by
DARPA award WO911NF-17-C-0099, the Army Research
Laboratory under Cooperative Agreement W911NF-17-
20196, NSF CNS 18-15891, NSF CNS 19-32529.

REFERENCES

[11 S. Liu ef al., “On removing algorithmic priority inversion from
mission-critical machine inference pipelines,” in Proc. IEEE Real-
Time Syst. Symp., 2020, pp. 319-332.

[2]].Sun,]. Jiang, and Y. Liu, “An introductory survey on attention
mechanisms in computer vision problems,” in Proc. 6th Int. Conf.
Big Data Inf. Analytics, 2020, pp. 295-300.

[3] M. Alcon, H. Tabani, L. Kosmidis, E. Mezzetti,]. Abella, and F. J.
Cazorla, “Timing of autonomous driving software: Problem anal-
ysis and prospects for future solutions,” in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp., 2020, pp. 267-280.

[4] Driverless guru, 2020. [Online]. Available: https://www.
driverlessguru.com/self-driving-cars-facts-and-figures

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

1782

[5]
[6]
[7]

[8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

D. Bamburry, “Drones: Designed for product delivery,” Des. Man-
age. Rev., vol. 26, no. 1, pp. 40-48, 2015.

T. Abdelzaheretal, “Toward an internet of battlefield things: A
resilience perspective,” Computer, vol. 51, no. 11, pp. 24-36, 2018.
1. Bogoslavskyi and C. Stachniss, “Fast range image-based seg-
mentation of sparse 3D laser scans for online operation,” in Proc.
IEEE/RS] Int. Conf. Intell. Robots Syst., 2016, pp. 163-169.

T. Abdelzaheretal, “Five challenges in cloud-enabled intelligence and
control,” ACM Trans. Internet Technol., vol. 20, no. 1, pp. 1-19, 2020.

T. Baltrusaitis, C. Ahuja, and L.-P. Morency, “Multimodal
machine learning: A survey and taxonomy,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 41, no. 2, pp. 423-443, Feb. 2019.

W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A
survey of deep neural network architectures and their
applications,” Neurocomputing, vol. 234, pp. 11-26, 2017.

S. Yao et al., “FastDeeploT: Towards understanding and optimiz-
ing neural network execution time on mobile and embedded
devices,” in Proc. 16th ACM Conf. Embedded Netw. Sensor Syst.,
2018, pp. 278-291.

Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard,
“Adaptive quantization for deep neural network,” in Proc. 32nd
AAAI Conf. Artif. Intell., 2018, pp. 4596—4604.

S. Lee and S. Nirjon, “Fast and scalable in-memory deep multitask
learning via neural weight virtualization,” in Proc. 18th Int. Conf.
Mobile Syst. Appl. Serv., 2020, pp. 175-190.

S. Yao, Y. Zhao, A. Zhang, L. Su, and T. Abdelzaher, “DeeploT:
Compressing deep neural network structures for sensing systems
with a compressor-critic framework,” in Proc. 15th ACM Conf.
Embedded Netw. Sensor Syst., 2017, Art. no. 4.

B. Minnehan and A. Savakis, “Cascaded projection: End-to-end
network compression and acceleration,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2019, pp. 10 715-10 724.

S. Yao et al., “Deep compressive offloading: Speeding up neural
network inference by trading edge computation for network
latency,” in Proc. Int. Conf. Embedded Netw. Sensor Syst., 2020,
pp. 476-488.

N. Capodieci, R. Cavicchioli, M. Bertogna, and A. Paramakuru,
“Deadline-based scheduling for GPU with preemption support,”
in Proc. IEEE Real-Time Syst. Symp., 2018, pp. 119-130.

S. Bateni, H. Zhou, Y. Zhu, and C. Liu, “PredJoule: A timing-pre-
dictable energy optimization framework for deep neural
networks,” in Proc. IEEE Real-Time Syst. Symp., 2018, pp. 107-118.
B. Islam and S. Nirjon, “Zygarde: Time-sensitive on-device deep
inference and adaptation on intermittently-powered systems,”
Proc. ACM Interactive Mobile Wearable Ubiquitous Technol., vol. 4,
no. 3, pp- 1-29, 2020.

M. Khayatian, M. Mehrabian, and A. Shrivastava, “RIM: Robust
intersection management for connected autonomous vehicles,” in
Proc. IEEE Real-Time Syst. Symp., 2018, pp. 35-44.

M. Bojarski et al., “End-to-end learning for self-driving cars,”
CoRR, vol. abs/1604.07316, 2016.

W.Jang, H. Jeong, K. Kang, N. Dutt, and].-C. Kim, “R-TOD: Real-
time object detector with minimized end-to-end delay for autono-
mous driving,” in Proc. IEEE Real-Time Syst. Symp., 2020, pp. 191
204.

I. Baek, Z. Zhu, S. Panda, N. K. Srinivasan, S. Samii, and R. R. Raj-
kumar, “Error vulnerabilities and fault recovery in deep-learning
frameworks for hardware accelerators,” in Proc. IEEE 26th Int.
Conf. Embedded Real-Time Comput. Syst. Appl., 2020, pp. 1-10.

S. Lee and S. Nirjon, “SubFlow: A dynamic induced-subgraph
strategy toward real-time DNN inference and training,” in Proc.
IEEE Real-Time Embedded Technol. Appl. Symp., 2020, pp. 15-29.

S. Heo, S. Cho, Y. Kim, and H. Kim, “Real-time object detection
system with multi-path neural networks,” in Proc. IEEE Real-Time
Embedded Technol. Appl. Symp., 2020, pp. 174-187.

R. Pujol, H. Tabani, L. Kosmidis, E. Mezzetti,]. Abella, and F. J.
Cazorla, “Generating and exploiting deep learning variants to
increase heterogeneous resource utilization in the NVIDIA xavier,”
in Proc. 31st Euromicro Conf. Real-Time Syst., 2019, Art. no. 23.

S. Bateni and C. Liu, “ApNet: Approximation-aware real-time neu-
ral network,” in Proc. IEEE Real-Time Syst. Symp., 2018, pp. 67-79.
Anyone relying on lidar is doomed, Elon Musk says, 2019.
[Online]. Available: https://techcrunch.com/2019/04/22/anyone-
relying-on-lidar-is-doomed-elon-musk-says

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 8, AUGUST 2022

Lidar vs. camera — which is the best for self-driving cars? 2020.
[Online]. Available: https://medium.com/Oxmachina/lidar-vs-
camera-which-is-the-best-for-self-driving-cars-9335b684f8d

Is Elon wrong about lidar? 2019. [Online]. Available: https://
scale.com/blog/is-elon-wrong-about-lidar

Billionaire austin russell’s lidar firm luminar threatens tesla, 2021.
[Online]. Available: https://www.flowbank.com/en/research/
billionaire-austin-russells-lidar-firm-luminar-threatens-tesla

J. Zhang, P. Siritanawan, Y. Yue, C. Yang, M. Wen, and D. Wang,
“A two-step method for extrinsic calibration between a sparse 3D
Lidar and a thermal camera,” in Proc. 15th Int. Conf. Control Autom.
Robot. Vis., 2018, pp. 1039-1044.

Tesla in Taiwan crashes directly into overturned truck, ignores
pedestrian, with autopilot on, 2020. [Online]. Available: https://
www.forbes.com/sites/bradtempleton/2020/06/02/tesla-in-
taiwan-crashes-directly-into-overturned-truck-ignores-pedestrian-
with-autopilot-on

K. He, X. Zhang, S. Ren, and]. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770-778.

J. W. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise
computations,” Proc. IEEE, vol. 82, no. 1, pp. 83-94, Jan. 1994.

S. Yao et al., “Eugene: Towards deep intelligence as a service,” in
Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst., 2019, pp. 1630-1640.
S. Yao et al., “RDeepSense: Reliable deep mobile computing mod-
els with uncertainty estimations,” Proc. ACM Interactive Mobile
Wearable Ubiquitous Technol., vol. 1, no. 4, pp. 1-26, 2018.

S. Yao et al., “Scheduling real-time deep learning services as
imprecise computations,” in Proc. IEEE Int. Conf. Embedded Real-
Time Comput. Syst. Appl., 2020, pp. 1-10.

A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in Proc. IEEE Int. Conf. Image Process., 2016,
pp- 3464-3468.

J. Wang, P. He, andW. Coo, “Study on the hungarian algorithm
for the maximum likelihood data association problem,” J. Syst.
Eng. Electron., vol. 18, no. 1, pp. 27-32, 2007.

P. Sun et al., “Scalability in perception for autonomous driving:
Waymo open dataset,” in Proc. IEEE/CVF Conf. Comput. Vis. Pat-
tern Recognit., 2020, pp. 2446-2454.

J.Redmon and A. Farhadi, “YOLOvV3: An incremental improvement,”
2018, arXiv:1804.02767.

H. Ding and L. Sha, “Dependency algebra: A tool for designing
robust real-time systems,” in Proc. 26th IEEE Int. Real-Time Syst.
Symp., 2005, pp. 11-pp.

L. Sha, “Using simplicity to control complexity,” IEEE Softw., vol.
18, no. 4, pp. 20-28, Jul./Aug. 2001.

Y. Hu, S. Liu, T. Abdelzaher, M. Wigness, and P. David, “On
exploring image resizing for optimizing criticality-based machine
perception,” in Proc. IEEE Int. Conf. Embedded Real-Time Comput.
Syst. Appl., 2021.

Shengzhong Liu received the BS degree in com-
puter science from Shanghai Jiao Tong University,
China, in 2017. He is currently working toward the
PhD degree of computer science at the University
of lllinois at Urbana-Champaign, Champaign, llli-
nois. His research interests include machine learn-
ing for Internet of Things (loT) and Cyber-Physical
Systems (CPS), intelligent real-time systems, deep
sensor fusion, and social network analysis.

Shuochao Yao received the PhD degree in com-
puter science from the University of lllinois at
Urbana-Champaign, Champaign, lllinois. He is
an assistant professor with the Department of
Computer Science, George Mason University,
Fairfax, Virginia. His research interests include
building efficient and reliable artificial intelligence
systems for intelligent Internet of Things (loT)
and Cyber-Physical Systems (CPS).

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

LIU ETAL.: REAL-TIME TASK SCHEDULING FOR MACHINE PERCEPTION IN INTELLIGENT CYBER-PHYSICAL SYSTEMS

Xinzhe Fu received the BS degree in computer
science from Shanghai Jiao Tong University,
China. He is currently working toward the PhD
degree in the Laboratory for Information and
Decision Systems, and the Interdisciplinary Doc-
toral Program of Statistics, Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts.
His research interests include scheduling and
optimization problems in stochastic networks.

Huajie Shao received the BS and MS degrees
from Jiangnan University, China, and Zhejiang
University, China, in 2011 and 2014, respectively.
He is currently working toward the PhD degree of
computer science at the University of lllinois at
Urbana-Champaign, Champaign, lllinois. His
research interests include data mining, deep
learning based recommender system, social
sensing. He has published more than 20 papers
such as INFOCOM, Ubicomp, VLDB, Sensys,
IEEE Transactions on Signal Processing and
IEEE Transactions on Parallel and Distributed Systems. He received
ICCPS’17 Best Paper Award and FUSION’19 Best Student Paper Award.

i

Rohan Tabish (Student Member, IEEE) is work-
ing toward the graduate degree in the Depart-
ment of Computer Science, University of lllinois
at Urbana-Champaign, Champaign, lllinois. His
research interests include real-time and embed-
ded systems with a focus on the use of OS-level
techniques in multi-core processors to achieve
predictability and strong timing guarantees such
that they can be deployed in safety-critical auto-
motive and avionics applications. Recently, he
has also been exploring Neural-Networks based
software stacks to build real-time and safe Al. He is also interested in
wireless communications and sensor networks.

Simon Yu received the bachelor's degree in
computer engineering from the University of Illi-
nois at Urbana-Champaign, Champaign, lllinois,
in 2019. He is currently working toward the doc-
toral degree at the Department of Electrical and
Computer Engineering, University of lllinois at
Urbana-Champaign, Champaign, lllinois. His
research interests include safe and fault-tolerant
system design of cyber-physical systems for
applications such as unmanned aerial vehicles,
autonomous driving, etc.

Ayoosh Bansal received the bachelor's degree
in electrical engineering from the Birla Institute of
Technology and Science, Pilani, India, and the
master’s degree in electrical and computer engi-
neering from the University of Wisconsin-Madi-
son, Madison, Wisconsin. He is currently working
toward the PhD degree in the Department of
Computer Science, University of lllinois at
Urbana-Champaign, Champaign, lllinois. He is a
recipient of the Saburo Muroga Endowed Fellow-
ship. His research interests include cyber-physi-
cal systems and real-time systems, including safety, fault tolerance,
security and hardware-software co-design.

1783

Heechul Yun received the PhD degree in com-
puter science from the University of lllinois at
Urbana-Champaign, Champaign, lllinois, in 2013.
He is an associate professor with the Department
of Electrical Engineering and Computer Science,
University of Kansas, Lawrence, Kansas. His
research interests include OS, computer architec-
ture, and real-time embedded systems with spe-
cial emphasis on addressing real-time, security,
and safety related issues on safety-critical cyber-
physical systems (e.g., autonomous cars and
UAVs). His work has appeared in top embedded real-time systems ven-
ues such as RTAS, ECRTS and Transactions on Computers; and
received multiple awards and recognition (Outstanding Paper Award
from RTAS’19, Best Paper Award and Outstanding Paper Award from
RTAS’16, Editor’'s Pick of the Year Award from the IEEE Transactions on
Computers, in 2016, Best Student Paper Nomination from RTCSA’16,
and Best Paper Nomination from ECRTS’10). Prior to his PhD, he
worked at Samsung Electronics as a senior software engineer.

Lui Sha (Fellow, IEEE) received the PhD degree
from Carnegie Mellon University, Pittsburgh, Penn-
sylvania, in 1985. He worked at the Software Engi-
neering Institute from 1986 t01998. He joined the
University of lllinois at Urbana-Champaign, Cham-
paign, lllinois, in 1998 as a full professor. Currently,
he is Donald B. Gillies chair professor of Computer
Science Department and Daniel C. Drucker emi-
nent faculty at UIUC’s College of Engineering. He
was a member of National Academic of Science’s
Committee on Certifiably Dependable Software
Systems and a member of NASA Advisory Council. He led the research,
development, and the transition to practice on real-time and embedded
computing technologies, which were cited as a major accomplishment in
the selected accomplishment section of the 1992 National Academy of
Science’s report, ”A Broader Agenda for Computer Science and Engineer-
ing” (P193). He led a comprehensive revision of IEEE standards on real-
time computing, which have since become the best practice in real-time
computing systems. Now it has been widely used in real-time systems
such as airplanes, robots, cars, ships, trains, medical devices. His work on
real-time and safety-critical system integration has impacted many high
technology programs, including GPS, Space Station, and Mars Pathfinder.
He is a fellow of ACM.

Tarek Abdelzaher (Fellow, IEEE) received the
PhD degree in computer science from the Univer-
sity of Michigan, Ann Arbor, Michigan, in 1999.
He is currently a professor and willett faculty
scholar at the Department of Computer Science,
the University of lllinois at Urbana Champaign,
Champaign, lllinois. He has authored/coauthored
more than 300 refereed publications in real-time
computing, CPS/IoT, distributed systems, intelli-
gent networked sensing, machine learning, and
control. He served as editor-in-chief of the Jour-
nal of Real-Time Systems for 20 years, and as associate editor of IEEE
Transactions on Mobile Computing, IEEE Transactions on Parallel and
Distributed Systems, IEEE Embedded Systems Letters, the ACM Trans-
action on Sensor Networks, ACM Transactions on Internet Technology,
ACM Transactions on Internet of Things, and Ad Hoc Networks Journal.
He chaired (as program or general chair) several conferences in his
area including RTAS, RTSS, IPSN, Sensys, DCoSS, ICDCS, Infocom,
and ICAC. His research interests include understanding and influencing
performance and temporal properties of networked embedded, social,
and software systems in the face of increasing complexity, distribution,
and degree of interaction with an external physical environment. He is a
recipient of the IEEE Outstanding Technical Achievement and Leader-
ship Award in Real-time Systems (2012), Xerox Award for Faculty
Research (2011), as well as several best paper awards. He is a fellow of
ACM.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of lllinois. Downloaded on August 14,2022 at 01:41:48 UTC from IEEE Xplore. Restrictions apply.

