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Abstract—This paper presents a self-cueing real-time frame-
work for attention prioritization in AI-enabled visual perception
systems that minimizes a notion of state uncertainty. By attention
prioritization we refer to inspecting some parts of the scene before
others in a criticality-aware fashion. By self-cueing, we refer to
not needing external cueing sensors for prioritizing attention,
thereby simplifying design. We show that attention prioritization
saves resources, thus enabling more efficient and responsive real-
time object tracking on resource-limited embedded platforms. The
system consists of two components: First, an optical flow-based
module decides on the regions to be viewed on a subframe level,
as well as their criticality. Second, a novel batched proportional
balancing (BPB) scheduling policy decides how to schedule these
regions for inspection by a deep neural network (DNN), and how
to parallelize execution on the GPU. We implement the system on
an NVIDIA Jetson Xavier platform, and empirically demonstrate
the superiority of the proposed architecture through an extensive
evaluation using a real-word driving dataset.

I. INTRODUCTION

Attention prioritization and scheduling is a novel problem
in real-time systems literature [1] that refers to algorithms for
prioritizing and scheduling of data processing at a subframe
level in data intensive workflows, such as neural-network-
based camera or LiDAR processing. The problem is cyber-
physical in nature in that our physical understanding of the
importance of observed objects in various parts of the scene
drives the needed fidelity of their real-time tracking and thus
the frequency/priority at which they need to be inspected and
localized by the AI in the loop. This is as opposed to applying
the AI to entire (video or LiDAR) frames in a FIFO manner.

This paper introduces a self-cueing attention prioritization
and scheduling framework for visual machine perception
pipelines in cyber-physical systems that minimizes a notion
of uncertainty in object location. Modern machine percep-
tion pipelines rely on neural networks (e.g., YOLO [2]),
to perform object detection, localization and classification
tasks (thereafter collectively called detection tasks for short,
where no ambiguity arises), and feed downstream components
such as navigation control. Attention prioritization reduces
the area inspected by the detection neural network in some
criticality-dependent fashion to improve perception efficiency.
It mimics the allocation of human cognitive capacity to focus
on elements that matter most in a complex scene, as opposed
to giving all elements of the scene the same level of attention.

Unlike previous work that relied on an external ranging sensor
to cue attention [1], in this paper, we do it without external
cueing.

Interestingly, removing the external cueing sensor funda-
mentally changes the attention scheduling problem. External
cuing (e.g., based on LiDAR distance) yields, for every frame,
an estimate of locations or regions of interest to be inspected
by the AI, thereby reducing the amount of processing needed.
In contrast, in the absence of such an external cue, a full
frame needs to be processed occasionally to detect all objects
of interest first. Uncertainty in object locations then keeps
growing with duration elapsed since the last time a full frame
was processed. To bound the growing uncertainty in each
object’s location, inspection of more uncertain regions (e.g., of
faster or more erratically-moving objects) must be scheduled
more often. Thus, scheduling is coupled to uncertainty growth;
smaller inspection periods reduce accumulated uncertainty and
vice versa (where the rate of uncertainty accumulation depends
on the object). This coupling between scheduling policy and
uncertainty accumulation levels is different than in the case
of an external cueing sensor, in that the sensor decouples the
two – uncertainty does not accumulate but rather becomes
a function of the cueing sensor only (that is always on).
The problem of attention scheduling to bound uncertainty
accumulation does not arise.

We formulate our scheduling problem as one of minimiz-
ing maximum weighted (location) uncertainty, and develop
a near-optimal real-time scheduling algorithm to schedule
the selected regions for processing (by the perception neural
network) on the GPU. Autonomous driving is used as an
example application, although the design generalizes to other
cyber-physical applications as well, such as delivery drones
and surveillance applications.

The work is motivated by the increasing popularity of
visual machine perception (i.e., the process of extracting
relevant knowledge of immediate surroundings from camera
images) as the foundation for many intelligent cyber-physical
applications [3]–[5]. Advances in deep neural networks have
significantly improved the perception quality of many vision
tasks, such as image recognition [6], object detection [7], [8],
and semantic segmentation [9]. However, delivering real-time
results by running computationally intensive neural network
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models on resource-limited embedded platforms has remained
a key challenge that significantly increases the cost of au-
tonomy. Additionally, as pointed out by Huang et al. [10],
objects in driving scenarios are about three times smaller on
the image plane than objects in general detection scenarios.
Thus, downsizing image resolutions to improve the inference
efficiency is an unreliable solution with respect to the detection
quality in autonomous driving.

Many existing efforts on enabling real-time neural network
inference on embedded platforms focus on neural network
compression [11], [12] and cloud offloading [13], [14]. There
are a couple of limitations with these approaches. On one hand,
in compression, detection quality of all parts of the scene
is affected with no regard to criticality. On the other hand,
offloading (part of) the computation to the cloud requires a
stable and fast network connection, which is not guaranteed in
many critical application scenarios. As an alternative approach,
Liu et al. [1] proposed to slice input images into regions
of different criticality, so that inspection of critical regions
can be prioritized. The work relied on an external ranging
sensor (e.g., LiDAR) to determine which parts of the scene
are more critical to inspect first. Unfortunately, LiDARs are
expensive, have a limited range, and are not available on all
platforms (e.g., Tesla has famously opposed using LiDAR).
Furthermore, reliance on multiple sensors increases cost and
requires precise calibration and synchronization, where the
degradation of either could cause downstream detection issues.
By introducing a self-cueing attention scheduling framework
that works without dependency on external sensor inputs, we
side-step the above fusion challenges.

We implement the proposed framework on NVIDIA Jetson
Xavier, and empirically evaluate its performance using real
world driving datasets. The results show that the proposed
policy achieves high detection, localization, and classification
quality (compared to baselines) under different workloads. It
also provides better responses to physically close objects.

The rest of this paper is organized as follows: In Section II,
we briefly review the related literature. We give an overview
of the architecture in Section III, then explain the data slic-
ing module in Section IV and the scheduling algorithm in
Section V. We discuss some adopted empirical optimizations
in Section VI, before presenting the evaluation results in
Section VII. Finally, we conclude the paper in Section VIII.

II. RELATED WORK

A. Real-time Machine Perception

Most previous research to support real-time machine per-
ception focused on compressing neural networks to reduce
the inference latency [11], [12], [15]–[17]. However, existing
compression approaches do not offer the flexibility to tailor
the degree of compression at a subframe level. Recently,
real-time scheduling has emerged as a key challenge in AI-
based perception systems [18]. Related work can be divided
into three categories: (i) system-level scheduling; (ii) model-
level scheduling; and (iii) data-level scheduling. System-level
scheduling algorithms try to optimize CPU-GPU interactions

by appropriately allocating and pipelining the computational
stages [19]–[22]. In contrast, model-level scheduling algo-
rithms dynamically adjust the utilized neural network struc-
tures to meet inference deadlines [23]–[26]. Finally, the data-
level scheduling algorithms slice the data into partial regions,
and process them at a fine-grained and criticality-aware man-
ner. One drawback of existing approaches [1], [27], [28] lies
in their reliance on an external attention cueing sensor (e.g., a
ranging LiDAR), which may be not be an option in some
autonomous systems. In this paper, we build a self-cueing
system that only relies on the original data flow without
external secondary sensor cues.

B. Temporal Correlations in Video Object Detection

Our self-cueing scheme fundamentally relies on objects
permanence to hypothesize that object observed in earlier
frames will still be located some bounded distance away in
the current frame. In other words, frames are highly correlated.
Video temporal correlations have been extensively studied in
continuous object detection. Some papers, including [29]–[32],
rely on motion vectors between consecutive frames to reduce
the network depth to extract features on new frames. They
utilized motion vectors to map (part of) past features into the
new frame. Buckler et al. [33] proposed an optical flow-based
hardware solution to propagate latent features from previous
frames to the new frame. The uncertainty in the estimated
motions is not counted. Some work also leverages pairwise
image differences to guide an object detector to focus on
changing areas in the new frame [34], [35]. However, they are
only applicable to statically mounted cameras, which no longer
works in autonomous driving systems. Song et al. [36] applied
different quantization levels to process regions with different
sensitivity on the same frame, which was only limited to image
classification models. Both Kumar et al. [37] and Mao et
al. [38] proposed to use object tracker projections to extract
regions of interest in the new frame. We build on such prior
solutions, using them to determine possible object locations
in the current frame, ahead of actual frame inspection by the
(AI-based) perception subsystem, thus providing an input into
our attention prioritization and scheduling problem.

III. SYSTEM OVERVIEW

Assume the system uses a camera to continuously observe
its surroundings at a fixed frame rate. An object detector (e.g.,
YOLO) is used to localize and categorize all objects in the
captured image frames. The detector can accept variable image
sizes as input and has an inference latency that depends on
input size. The deployed detector is computationally intensive
such that inspection of a full image can not finish before the
next frame arrives. Instead, we inspect full frames at a longer
interval T (say, 1-2 seconds). We refer to processing of full
frames as full-frame inspections. Between them, we identify
regions of interest using optical flow [39], a much faster
algorithm (than neural networks) that compares successive
frames and estimates approximate motion vectors for pixels.
It is used to guess (within some error margin) where objects
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Fig. 1. The overview of the proposed scheduling framework. It is generally
applicable to any object detector.

of interest, detected in previous frames, might have moved
to in the current one. The attention scheduler then decides
which of these regions are to be inspected by the AI-based
perception subsystem (the detector) for exact localization of
the corresponding objects. We call such selective processing
partial-frame inspections. We define the time between two
full-frame inspections as a scheduling horizon, and propose a
novel scheduling algorithm to decide the schedule of partial-
frame inspections within each horizon to minimize the maxi-
mum weighted location uncertainty.

Two core components are included in the proposed architec-
ture: (i) the frame slicing and region tracking module, and (ii)
the partial-frame inspection scheduling module. An overview
of the architecture is shown in Figure 1.

Frame Slicing and Region Tracking: This module slices
image frames (between full-frame inspections) into regions
where objects may be present. After a full-frame inspection
localizes all objects in a frame, an optical-flow based tracking
algorithm tracks the object locations in subsequent frames
(until the next full-frame inspection). Within each frame, the
module determines the approximate regions that contain these
tracked objects, taking into account the uncertainty in their
predicted locations. These regions are the candidates to be
inspected by the detector. Background regions are filtered out.

Partial-Frame Inspection Scheduling: This module se-
lectively schedules the appropriate (partial frame) regions for
inspection by the detector, in order to maintain bounded low
uncertainty in the location each tracked object. Every object
is associated with a criticality indicating its application-level
importance, and an uncertainty growth rate. Object uncertainty
increases monotonically (at possibly different rates) with time
if no new inspection is performed. Partial-frame inspections
of objects with low criticality or slow uncertainty growth are
scheduled less frequently. In other words, the inspection of
regions containing these objects is skipped in some frames.
In addition, when making decisions, the scheduling algorithm
considers task batching on modern GPUs, which means multi-
ple regions can be batched together and submitted as a single
GPU request, as long as they have the same size (because low-
end GPUs can only batch identical computational kernels).
Batched processing can achieve much lower latency than

serialized processing.

IV. FRAME SLICING AND REGION TRACKING

In this section, we introduce the optical flow-based tracking
algorithm, and explain how it induces location uncertainties.

A. Optical Flow Background

Optical flow algorithms take two consecutive frames as
input and estimate the pixel-level motion vectors between
them, as caused by the relative movement between objects and
the observer. They return a map of single pixel motions, which
is called optical flow map. The RGB image is first converted to
gray scale, where each pixel value represents the light intensity
at that location. We use I(x, y, t) to denote the image intensity
at pixel (x, y) of frame t. The optical flow map is a matrix of
coordinate displacements (dx, dy), such that,

I(x, y, t) = I(x+ dx, y + dy, t+ 1). (1)

Optical flow assumes that the pixel intensities of an object are
constant across two consecutive frames. In this paper, we use
the DIS method [39], which is a widely used and efficient
optical flow estimation algorithm.

In autonomous driving, although the relative movement
between the camera, object and light sources may cause drastic
change on the lighting and reflection on objects (especially
during night driving), optical flow tends to err on the safe side.
Specifically, it may introduce false positives (e.g., spurious
areas may be highlighted for visual inspection), but is less
likely to produce false negatives (i.e., missing actual changes
in locations of visible objects). Merging the trajectory-based
tracking (or a physical mobility model) with optical flow
observations can indeed reduce false positives (similar to the
way Kalman filters leverage both imperfect models and im-
perfect empirical observations to produce improved trajectory
estimates), and we leave it as one of our future directions.

B. Optical Flow-based Object Tracking

The motivation of using optical flow for tracking primarily
comes from its high reliability in identifying an appropri-
ately expanded region around the predicted object location
for further DNN inspection without experiencing an model
converging period. We use optical flow as a non-parametric
motion model to estimate possible object locations in interme-
diate frames based on observed pixel movement. We chose it
over conventional parametric tracking models, such as Kalman
Filters (e.g., in SORT [40]), because the latter models often
require a sequence of past observations to correctly estimate
trajectories, which might fail to correctly predict location
in the presence of sudden unexpected movement (such as
swerves to avoid an obstacle). Instead, as discussed above, the
sensitive property of optical flow makes it less likely to miss
actual object movement and achieve higher recall on retaining
tracking.

Algorithm 1 details our tracking algorithm. We start from
the set of objects detected by the last full-frame inspection.
Each time a new frame arrives, we first compute its optical
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Fig. 2. Comparison between different regions used in the tracking.

Algorithm 1: Optical Flow-based Object Tracking

Input: Set of object {1, . . . , N}, K − 1 frames between two
full-frame inspections, object detector.

1 Maintain a set of object tracks for target objects;
2 for frame k = 2, . . . ,K do
3 Calculate the flow map between frame k and k − 1;
4 for object i = 1, . . . , N do
5 Calculate object representative flow (dx

(k)
i , dy

k)
i ) by

taking the median flow of previous object location;
6 Update tracked object center location

c̃x := cx
(k−1)
i + dx

(k)
i , c̃y := cy

(k−1)
i + dy

(k)
i ;

7 end
8 Generate set of partial detections by the object detector;
9 Data association using Hungarian algorithm between

object tracks and new detections using IoU metric;
10 for object i = 1, . . . , N do
11 if mapped with a new detection then
12 new object location := mapped detection location
13 end
14 else
15 new object location := predicted object location
16 end
17 end
18 end

flow map compared to its preceding frame, then calculate the

following three regions for each tracked object:

1 Predicted Object Location: It tightly bounds the most

likely (predicted) object location from the optical flow map.

We use this updated location as a best guess of current object

location in the absence of an actual object inspection.

2 Expanded Candidate Region: It expands the predicted

location on account of uncertainty. This is the area that

should be inspected by the detector if we want to localize

the object again. It is a box whose area keeps expanding until

an inspection of this region is scheduled.

3 Quantized Candidate Region: We pad the expanded

candidate region to the nearest quantized size from a preset

set. This is done to improve subsequent batching opportunities,

since same-size images can be processed in parallel (batched)

as will be discussed in more detail in Section V.

Figure 2 illustrates the difference between the three regions.

Next, we explain how they are calculated.

1) Computing Predicted Object Locations: To compute the

predicted location for an object, we compute the median

motion vector of all pixels within the previous object bounding

box, and move the bounding box by that vector. The median

motion is chosen over the mean motion to eliminate the impact

of outliers and static background pixels (e.g., road or sky).

2) Computing Expanded Candidate Regions: This region

starts from a previously detected object location, and then
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Fig. 3. The object uncertainty comes from both wait intervals and inspection
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keeps expanding, until a new detection is made. Specifically,

at a new frame k, we use [x
(k)
min, y

(k)
min, x

(k)
max, y

(k)
max] to denote

the new object location, and use D = [Dx̂,Dŷ] to denote

the partial flow matrix corresponding to its previous expanded

candidate region, say [x̂
(k−1)
min , ŷ

(k−1)
min , x̂

(k−1)
max , ŷ

(k−1)
max ]. If the

previous expanded candidate region completely covers the

previous object location, then the new object location satisfies:

x̂
(k−1)
min + min

dx̂∈Dx̂

dx̂ ≤ x
(k)
min ≤ x(k)

max ≤ x̂(k−1)
max + max

dx̂∈Dx̂

dx̂,

ŷ
(k−1)
min + min

dŷ∈Dŷ

dŷ ≤ y
(k)
min ≤ y(k)

max ≤ ŷ(k−1)
max + max

dŷ∈Dŷ

dŷ.

Thus, we define the new expanded candidate region as:

[x̂
(k−1)
min + min

dx̂∈Dx̂

dx̂, ŷ
(k−1)
min + min

dŷ∈Dŷ

dŷ,

x̂(k−1)
max + max

dx̂∈Dx̂

dx̂, ŷ(k−1)
max + max

dŷ∈Dŷ

dŷ].

The expansion considers the possibly different pixel motions

for different parts of an object. Since the expanded candidate

region starts from the exact object location, it holds by

induction that the expanded candidate region will cover the

(groundtruth) object location at every future frame, if the

estimated optical flows are accurate.

3) Computing Quantized Candidate Regions: To facilitate

batching of image processing, we pad the expanded candidate

region to the nearest quantized target size si chosen from a

finite set, si ∈ {s1, . . . , sM}. The padded region is then called

the quantized candidate region. We assign a fixed padded

target size si to each object within a scheduling horizon. We

provide two justifications for this choice: First, the quantized

size is larger than the initial object size, so it leaves space

for object size increase in upcoming frames. Second, if the

expanded candidate region increases beyond si, we reduce

its resolution to make it fit into si, because downsizing large

objects does not degrade their perception quality [41].

4) Data Association: After we receive the detected object

locations from the detector, we perform data associations be-

tween the existing object tracks (represented by their predicted

object locations) and the newly detected bounding boxes. We

do so by using the Hungarian algorithm based on their location

overlaps with an Intersection-over-Union (IoU) metric. We

then update the mapped object locations to the newly detected

locations. Those objects not inspected by the detector in a

given frame will retain their predicted object locations.
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C. Object Location Uncertainty

The object location uncertainty reflects our confidence on
the predicted object location. Intuitively, if the size of the
expanded candidate region is close to the predicted object
location, we have a low uncertainty (i.e., high confidence)
on the predicted object location; otherwise, if the object can
appear at much larger area than the predicted object location,
we have a high uncertainty (i.e., low confidence) on the
predicted object location.

We assign an object weight wi = vi · ui to each tracked
object Oi, where: (1) vi is the object criticality representing
the application-specific importance, which is static within a
scheduling horizon. This is a policy decision that is outside
the scope of this paper. Even though the visual images do
not directly contain distance information, it is still possible
to distinguish the nearby and distant objects by combining
object locations with background (i.e., the road), which we
assume is separately solved by other AI techniques. (2) ui
is the uncertainty growth rate, defined as the average rate
of its candidate region expansion. After we obtain the full-
frame inspection result, we calculate the uncertainty growth
rate as ui =

√
SECRi /SDi /tf , where SECR is the area of

the expanded candidate region, SDi is the area of the detected
location, and tf is the latency of full-frame inspection. The
uncertainty grows linearly with time if no new inspection is
performed, which relies on the assumption that we have a suf-
ficiently small gap between consecutive inspections, such that
the concatenation of linear segments can closely approximate
the actual uncertainty growth.

As shown in Figure 3, the overall object uncertainty comes
from two sources: wait intervals and inspection latencies. Wait
interval is defined as the elapsed time since we obtained
the last inspection result. Inspection latency refers to the
time running the last inspection task. The second part exists
because the obtained object location does not correspond to
the finish time of the inspection task, but its start time. After
each inspection task, the uncertainty is reset to the value
solely caused by the inspection latency. By separating the
uncertainty into the weight factor and the elapsed time, we
can simply denote the weighted uncertainty of object Oi as
Ui(t) = wi(t− ti) +ui, where t− ti is the elapsed time since
the end of its last inspection, and ui is the uncertainty resulted
from its inspection latency.

V. PARTIAL-FRAME INSPECTION SCHEDULING

In this section, we formulate the partial-frame inspection
scheduling problem, and introduce the proposed algorithm.

A. Task Execution Model

We divide the time into fixed-length segments, where each
segment is called a scheduling horizon T . K frames are
captured within each scheduling horizon. The platform is
equipped with a single GPU that runs the detector. We run
a full-frame inspection at the first frame of each scheduling
horizon, which identifies N objects {O1,O2, . . . ,ON}. We
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Fig. 4. YOLO execution latencies of 128× 128 images with different batch
sizes on Jetson Xavier. The inflection point is highlighted in red, where the
batch size is 14. We set the batch limit and batch latency correspondingly.

subtract the latency of the preprocessing steps and the full-
frame inspection to get the time budget for partial-frame
inspections. Each object Oi is associated with a target size
si ∈ {s1, . . . , sM}, within horizon T , which restricts the size
of its quantized candidate regions and facilitates batching.
For each target size s, there exists a maximum number of
regions that can be batched and processed in parallel on the
GPU. We call it the batching limit κs for size s. Although
the detector execution time can increase with the number of
batched regions, by appropriately setting the batching limit,
we operate in a region where execution time changes only
slightly with batching (before an inflection point is reached
where the slope increases, as shown in Figure 4). We denote
the worst-case batch execution time by τs. In other words, the
GPU can simultaneously run partial-frame inspections for κ
(1 ≤ κ ≤ κs) objects of target size s within time τs.

B. Scheduling Problem Formulation

A good perception system should selectively run partial-
frame inspections to maintain low location uncertainty on
each object throughout the scheduling horizon. Recall that
the (weighted) location uncertainty of object Oi at time t is
Ui(t) = wi(t− ti)+ui. Without loss of generality, we assume
w1 ≤ . . . ≤ wN . The maximum uncertainty for object Oi over
the scheduling horizon is denoted by Ui = maxt∈[0,T ] Ui(t).
Our goal is to minimize the maximum weighted uncertainty
over all objects, which we refer to as the system uncertainty
U . It is defined as U = maxi∈{1,...,N} Ui. The problem we
study, is to design a schedule of partial-frame inspections such
that the system uncertainty is minimized. A schedule specifies
the ordering and batching of partial-frame inspections.

Definition 1 (Schedule). A schedule is a sequence of tuples
(N 1, s1, t1, k1), (N 2, s2, t2, k2), . . . , (N I , sI , tI , kI). Both
t1, . . . , tI and k1, . . . , kI are in non-decreasing order. For a
generic j-th tuple, it represents the j-th batch, where:
• N j is the subset of objects that get inspected in the batch.

No object can appear more than once in the subset.
• sj denotes the target size of the batch.
• tj ∈ [tf , T ] is the start execution time of the batch.
• kj ∈ {2, . . . ,K} represents the frame on which the

partial-frame inspection is run.

A schedule is feasible if it satisfies for each batch j: (1) The
number of batched regions is within the batching limit, i.e.,
|Nj | ≤ κsj . (2) We define the valid period of a frame as the
interval between its arrival and the arrival of the next frame.
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Algorithm 2: The BPB Policy
Input: Object set {O1, . . . ,ON}, weights {w1, . . . , wN},

number of frames K−1 for partial-frame inspections.
Output: A feasible schedule with minimized uncertainty.

1 Sort and reindex the objects such that w1 ≤ . . . ≤ wN ;
2 for i = 1, . . . , N do
3 xi := 2blog2(wi/w1)c;
4 end
5 C = { 1

xN
, 1
xN−1

, . . . , 1, 2, 3, . . . , bK−1
xN
c, K−1

xN
} ;

6 Binary search for the maximum c ∈ C such that the schedule
computed by Algorithm 3 for task set {bcx1c, . . . , bcxNc}
is feasible (i.e., the finishing time is no larger than T );

7 Return the schedule for the task set of the maximum c.

Any batch can only run on the currently valid frame. (3) The
start time of the batch is no earlier than the finish time of its
previous batch, i.e., tj ≥ tj−1 + τsj−1 . (4) The finish time of
the last batch is no later than T , i.e., tI + τsI ≤ T .

Note that each feasible schedule can be executed on the
physical machine, and each execution on the physical machine
can be translated to a feasible schedule. With the above
preliminaries, we formulate our problem as follows.

Definition 2 (Partial-Frame Inspection Scheduling Problem).
The Partial-Frame Inspection Scheduling (PFIS) problem asks
for a feasible schedule that minimizes the system uncertainty
within a scheduling horizon.

The PFIS problem requires us to carefully select subsets
of objects to run and batch on each frame. Although it can
be optimally solved by the dynamic-programming paradigm,
the resulted computational complexity would be high. Instead,
we will propose a low-complexity policy, called the Batched
Proportional Balancing (BPB) policy, that computes approxi-
mately optimal schedules with provable uncertainty guarantee.

C. Scheduling Policy

The general idea of the proposed Batched Proportional
Balancing (BPB) policy is to set the number of partial-frame
inspection tasks for each object proportional to its object
weight, such that the objects with high criticality or high
uncertainty growth would receive more attention. For object
Oi, we use the inspection frequency xi to denote its number of
scheduled partial-frame inspection tasks within the scheduling
horizon. The inspection frequency set, is thus defined as:

Definition 3 (Inspection Frequency Set). The inspection fre-
quency set {x1, . . . , xN} is a set of inspection frequencies
corresponding to the number of partial-frame inspection tasks
of all objects in the scheduling horizon where, for each object
Oi, xi partial-frame inspection tasks are scheduled.

We aim at computing an inspection frequency test where
the inspection frequency xi for object Oi is approximately
proportional to its weight wi (i.e., Proportional), and
make sure the intervals between consecutive partial-frame in-
spections of each object are evenly distributed in the schedule
(i.e. Balancing) The design so far seems similar to the well-
studied pinwheel scheduling problem [42]. However, we go a

Algorithm 3: Batching-Aware Scheduling (BAS)
Input: Inspection frequency set {x1, . . . , xN}
Output: A schedule for the inspection frequency set
// (1) Calculate the task-bin mapping.

1 L := xN ;
2 for i ∈ {N,N − 1, . . . , 1} (decreasing order of xi) do
3 Let Li be the first L/xi bins {B1, . . . , BL/xi

};
4 si := the target size of Oi;
5 if ∃Bl ∈ Li with incomplete batch of size si then
6 Add the first task of Oi to Bl;
7 end
8 else
9 Add the first task of Oi to the bin in Li with the

minimum load;
10 end
11 Replicate the mapping of the remaining tasks of n to the

remaining subset of bins;
12 end

// (2) Convert the task-bin mapping to a schedule.

13 j = 1, tj = 0, schedule S = ∅;
14 for l ∈ {1, . . . , L} do
15 tj := max{tj , start of valid period of the l-th frame}.
16 for s ∈ {s1, . . . , sM} do
17 κ := the number of objects of size s in Bl;
18 while κ > 0 do
19 N j := min{κ, κs} objects of size s in Bl;
20 k := the most recent camera frame at tj
21 Add (N j , s, tj , k) to S;
22 tj+1 := tj + τs, j := j + 1;
23 Remove the selected objects from Bl;
24 end
25 end
26 end
27 Return the schedule S

step further by considering task batching (i.e., Batched),
where we need to simultaneously decide when to detect each
object and how to batch the inspections of objects such that
the system uncertainty is minimized. Improper batching may
result in low utilization on the GPU and much higher system
uncertainty. The pseudocode of the BPB policy is presented
in Algorithm 2. It searches for an inspection frequency set
with the minimum system uncertainty, and invokes the Batch-
Aware Scheduling (BAS) algorithm (Algorithm 3) as a sub-
procedure to derive an optimal schedule for a given inspection
frequency set.

To reduce the search effort, the BPB policy first proportion-
ally derives the normalized inspection frequencies of objects
such that the object with the smallest weight is detected only
once. They are computed by dividing the object weights by the
minimum weight, and rounding down to the nearest power of 2
if they are not1. Let the normalized inspection frequency set be
{x1, . . . , xN}. BPB then searches a maximum scaling factor
c such that the schedule returned by the BAS algorithm for
the inspection frequency set {bcx1c, . . . , bcxNc} is feasible.
Note that the scaling factor c can be smaller than one, and
thus in the resulting inspection frequency set, bcxnc can be
zero for some objects. Such objects will not be scheduled. As

1This operation is used to align the inspection times among objects to
trigger more batching opportunities.
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Fig. 5. Graphical illustration on how BAS generates the task-bin mapping.
We have four objects denoted by (object, inspection frequency, target size):
(O1, 4, s1), (O2, 2, s1), (O3, 2, s2), (O4, 1, s3). We have 4 (virtual) bins,
which are not aligned with the frame boundaries. For object O2, its first task
is assigned to bin B1 because there is an incomplete batch with size s1, and
the decision is replicated to bin B3. For object O3, its first task is assigned
to bin B2, and the decision is replicated to bin B4. The task for object O4

is assigned to bin B1 with the min load.

we will show in the sequel, if the schedule calculated by the
BAS algorithm for c is feasible, so is the schedule calculated
by the BAS for any c′ ≤ c. Thus, the maximum c can be
identified via binary search due to this monotonicity property.

The Batch-Aware Scheduling (BAS) algorithm (Algorithm
3) computes an optimal schedule that minimizes the system
uncertainty for a given inspection frequency set {x1, . . . , xN}.
BAS works as a two-step procedure. First, BAS maps the
partial-frame inspection tasks for objects to L = xN tempo-
rally distributed virtual bins {B1, . . . , BL}. The virtual bins
do not correspond to camera frames. No object can have more
than K − 1 partial-frame inspections in a scheduling horizon,
so we assume L ≤ K − 1. BAS sequentially assigns the
tasks of each object Oi in decreasing order of xi. Since each
xi is an integer power of 2 multiple of the minimum non-
zero element in C, when mapping tasks for object Oi, BAS
only designates the mapping of its first task to the first L/xi
bins2 and replicates the mapping for the remaining tasks to the
corresponding bins in remaining subsets. By doing so, when
assigning tasks of an object, the matched bins in different
subsets always have perfectly symmetric load. The first task of
each object is assigned in a batch-aware load-balanced fashion.
At object Oi, BAS first checks whether there is a bin that has
incomplete batch with size si , i.e., the number of tasks with
size si in the bin is not a multiple of κsi . If such a bin exists,
it assigns the task to that bin; otherwise, it assigns the task
to the bin with the minimum load. The bin load λl is the
execution time sum for batches in bin Bl. The assignment
process is visually illustrated in Figure 5. Second, it converts
the generated task-bin mapping to a schedule by sequentially
executing the bins, and greedily batching tasks with the same
target size in each bin. When compositing a batch, we select
the valid frame at that time to run partial-frame inspection.

2L/xi is an integer since both L and xi are powers of 2 multiples of the
minimum non-zero element in C and xi ≤ L.

D. Theoretical Analysis

In this part, we analyze the approximation ratio on achieved
system uncertainty by BPB, with the following theorem.

Theorem 1. Let U be the overall system uncertainty under
the BPB policy, Ũ∗ be the optimal uncertainty caused by
wait intervals, and Uf be the uncertainty caused by full-frame
inspection latency, where Ũ∗ � Uf

3. We use U∗ to denote the
optimal overall uncertainty. If the object weights w1, . . . , wN
are integer powers of 2, then U ≤ (1 + 2Ũ∗

Uf
)U∗; otherwise in

general case, U ≤ (1 + 4Ũ∗

Uf
)U∗.

We reindex the objects in the decreasing order of their
weight factors, i.e., w1 ≥ · · · ≥ wN . We first utilize the
symmetric structure of the schedule computed by BAS (i.e.,
the mapping of each subsequent task of an object is a duplicate
of the first task to the corresponding subset of bins), to bound
the uncertainty caused by wait intervals. Then, we include the
uncertainty caused by inspection latency, and derive the bound
for overall uncertainty. The proof consists of four steps:

• Step 1: The load difference λ̄l(i) − λl(i), between the
max bin load λ̄l(i) := maxl λl(i) and the min bin load
λl(i) := minl λl(i), is always bounded, where λl(i) is
the load for bin Bl after assigning the first i objects.

• Step 2: Given a inspection frequency set, BAS is optimal
in minimizing the overall execution latency.

• Step 3: We prove the bound on the system uncertainty
caused by wait intervals, by bounding the maximum bin
load with the optimal system uncertainty.

• Step 4: We include the uncertainty caused by inspection
latency, and prove the overall uncertainty bound.

Next, we go through the above steps one by one. Due to
the space limitation, we skip the proof of some lemmas here.

Step 1: We first claim that the bin load difference is bounded
at every step of BAS execution.

Lemma 1. For each object Oi, λ̄(i)−λ(i) ≤ max{λ̄(i−1)−
λ(i−1), τsi}, where si is the target size for the object Oi and
τsi is its corresponding batch execution time.

Step 2: We give the optimality of BAS schedule in mini-
mizing the system load of given inspection frequency set.

Lemma 2. Given an inspection frequency set
{x1, x2, . . . , xN}, we use λBAS to denote the total load of
the schedule computed by the BAS algorithm (Algorithm 3).
It minimizes the total load over all feasible schedules for the
given inspection frequency set, i.e., λBAS ≤ λ, with λ being
the total load of any other feasible schedule.

Step 3: We prove the bound on system uncertainty caused
by wait intervals only.

Lemma 3. Let Ũ∗ be the optimal system uncertainty caused by
wait intervals, and Ũ be that part in BPB policy, respectively.

3We base on the assumption that it is beneficial to slice the image and run
the inspection tasks at the sub-frame level.
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If the object weights are all integer powers of 2, then Ũ ≤
2Ũ∗; otherwise in general case, Ũ ≤ 4Ũ∗.

Proof. Let {x̃∗1, . . . , x̃∗N} be the inspection frequency set that
achieves Ũ∗. We construct its proportional adaptation using
the following procedure.

• Let T ′ = T − tf . Under the optimal schedule, we have
Ũ∗ ≥ maxi

wiT
′

x̃∗i
. Let î = arg maxi

wiT
x̃∗i

. For each i,
wi

x̃∗i
≤ wî

x̃∗
î

. Since each x̃∗i is an integer, it follows that

x̃∗i ≥
wix̃
∗
î

wî
≥
⌊
wix̃
∗
î

wî

⌋
. We set ĉ =

⌊
wN x̃

∗
î

wî

⌋
≥ 1.4

• Let xi = 2blog2(wi/wN )c, that is, {x1, . . . , xN} is the
output of step 3 of Algorithm 2, i.e., the ratios of the
inspection frequency set of BPB. By definition, xN = 1.
According to the construction, for each i, we have
xi = 2blog2(wi/wN )c ≤

⌊
wi

wN

⌋
.

• We define {ĉx1, . . . , ĉxN} as the proportional adaptation
of the optimal inspection frequency set. Since both ĉ and
xi are both integers, we have bĉxic = ĉxi.

We next prove that the constructed proportional adaptation
is feasible that can finish within T ′. For each object Oi,

ĉxi ≤ ĉ
⌊
wi
wN

⌋
=

⌊
wN x̃

∗
î

wî

⌋⌊
wi
wN

⌋
≤
⌊
wix̃

∗
î

wî

⌋
≤
wix̃

∗
î

wî
≤ x̃∗i

Since the optimal schedule is feasible, there also exists a feasi-
ble schedule for the inspection frequency set {ĉx1, . . . , ĉxN}.

We have proved (Lemma 2) that BAS minimizes the system
load, thus the factor c by BAS is at least ĉ, i.e., c ≥ ĉ.
In the BPB policy, the object uncertainty is bounded by
wi(maxl λl)

L
xi

= wi(maxl λl)
x1

xi
, where λl is the load of bin

Bl. We bound the maximum bin load of the BPB schedule,
under the following two cases.

(Case 1): If λ̄(N) ≤ 2λ(N), we have

max
l
λl = 2 min

l
λl ≤

2λBAS
L

≤ 2T ′

cx1
≤ 2T ′

ĉx1
,

From the construction of {x1, . . . , xN}, we have for each
object Oi, xi

xN
≤ wi

wN
≤ 2xi

xN
. Its uncertainty satisfies,

wix1
xi
·max

l
λl ≤

wix1
xi
· 2T

′

ĉx1
≤ 4wNT

′

ĉxN
=

4wNT
′

wN x̃∗î /wî
≤ 4Ũ∗.

(Case 2): If λ̄(N) > 2λ(N), consider the last i where
λ̄(i) increases (i.e., λ̄(i) > λ̄(i−1), we have λ̄(N)−λ(N) ≤
λ̄(i) − λ(i) ≤ τsi . We have τsi ≥ maxl

λl

2 . Even under the
optimal schedule, the maximum uncertainty of object O1 is at
least w1τsi ≤ Ũ∗, so we have maxl λl ≤ 2Ũ∗

w1
. Hence,

wix1
xi
·max

l
λl ≤

wix1
xi
· 2Ũ∗

w1
≤ 2wN

xN
· xN
wN
· 2Ũ∗ = 4Ũ∗.

Specially, if each wn is integer power of 2, we have xi

xN
= wi

wN
,

then it holds Ũ ≤ Ũ∗ in both cases.

4Without loss of generality, we assume that
⌊

wN x̃∗
î

w
î

⌋
≥ 1 and

x̃∗
î

w
î

is an

integer; otherwise, we can just take the largest i with non-zero value of this
equation and leave out the remaining objects.
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Fig. 6. Distributions on number of newly arrived objects and departured
objects, as well as the (quantized) new object size distribution, at each
frame. Results obtained on Waymo Open dataset [43].

Previous Frame Current Frame New Pixels Highlighted in Red

Fig. 7. An example of new pixels in the current frame highlighted in red.

Step 4: We prove the bound on the overall system uncer-
tainty, including uncertainty caused by inspection latencies.

Proof. We use tf to denote the full-frame inspection latency.
Recall that Ũ∗ is the optimal uncertainty caused by inspection
intervals, U∗ is the optimal overall uncertainty, and Ũ∗ ≤ U∗.
They can correspond to two different schedules. We have,

U = max{U1, . . . , UN} ≤ max{Ũ1 + w1tf , . . . , ŨN + wN tf}
≤ max{Ũ1, . . . , ŨN}+ Uf

≤ 4Ũ∗ + Uf = (
4Ũ∗

Uf
+ 1)Uf

≤ (
4Ũ∗

Uf
+ 1)U∗.

Since every schedule includes the full-frame inspection, which
induces uncertainty Uf , we have Uf ≤ U∗. The proof follows.
Similarly, when all wn’s are integer power of 2, we have U ≤
(1 + 2Ũ∗

Uf
)U∗. This completes the proof of Theorem 1.

VI. EMPIRICAL OPTIMIZATION

In this section, we list some practical considerations and
empirical optimizations we performed in our implementation.

1) New Object Arrival: We first show in Figure 6 that there
is no object arrival or departure in most (≈ 80%) frames. Most
new objects have very small sizes so they only cause minor
extra workload. Some existing objects can disappear during the
scheduling horizon. The slots for these objects, together with
the idle slots in incomplete batches, can be used to schedule
the new object regions. To (roughly) localize new objects,
we apply a lightweight mechanism based on optical flow. We
define the pixels in the new frame that are not mapped to any
pixel in the previous frame as the newly appeared pixel, and
then use connected component analysis [44] to extract new
object regions. An example is shown in Figure 7.

2) Downsizing Large Objects: For the tracked large objects,
we can safely downsize their resolutions without affecting the
detection quality, because large objects are known to be easy
to detect [45], [46]. We set an upper bound (e.g., 256) on the
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Current Full Frame 

Quantized Candidate Region

Unfiltered Partial Detections Filtered Partial Detections

1) Detect 2) Filter

Fig. 8. An example of bounding box filtering. Note we preserve the yellow
box although its bottom edge lies on the bottom border of the partial image,
because the partial image bottom coincides with the full image bottom.

target sizes, where the candidate regions larger than this size
will be downsized and fit into the size.

3) Partial Region Merge: If two candidate regions are
highly overlapped, it is beneficial to merge them into one,
so we can avoid repetitively scanning the same area. In our
case, if there is an unscheduled region that its overlap ratio
with a scheduled region is above a threshold I , we use the
merged region to replace the scheduled region.

4) Bounding Box Filtering: We perform a bounding box
filtering procedure, as a postprocessing step, to remove frag-
mented detections that correspond to only part of a physical
object. Specifically, we will remove detected bounding boxes
that lie on the partial image boundaries, unless the partial
image boundaries coincide with the full image boundaries. We
provide an illustrative example in Figure 8. Intact redundant
inspections can be easily removed by the non-maximum
suppression (NMS) step of the detector.

VII. EVALUATION

In this section, we evaluate the effectiveness and efficiency
of the proposed architecture on an NVIDIA Jetson Xavier
board with a real-world self-driving dataset.

A. Experimental Setup

1) Hardware Platform: All experiments are conducted on
an NVIDIA Jetson Xavier SoC, which is designed for auto-
motive platforms. It is equipped with an 8-core Carmel Arm
v8.2 64-bit CPU, a 512-core Volta GPU, and 32 GB memory.
The mode is set as MAXN.

2) Dataset: Our experiment is performed on the Waymo
Open Dataset [43], a large-scale autonomous driving dataset
collected by Waymo self-driving cars in diverse geographies
and conditions. It consists of driving video segments of 20s
each, collected by onboard cameras at 10Hz with resolution
1920×1280. Only front camera data is used.

3) Neural Network for Detection: We use the YOLOv55

model in PyTorch as the object detection network, which was
pretrained on the general-purpose COCO [47] dataset. We
specifically use the default “large” config in the evaluation,
with both depth and width multipliers set to 1. The model
precision is set to FP16. The YOLO inference latency with
different target sizes are profiled in advance.

5https://github.com/ultralytics/yolov5

4) Workload Manipulation: Unless otherwise indicated, we
choose our scheduling horizon to be 10 frames, and manually
change the time interval P between two consecutive frame ar-
rivals to induce different workload. Intuitively, a shorter frame
interval leads to a higher scheduling load. Our experiments use
three interval lengths (150ms, 100ms, and 70ms) to denote the
easy, moderate, and hard scheduling situations (corresponding
to frame rates of roughly 6.67Hz, 10Hz, and 14Hz).

5) Object Criticality: The object criticality is the product
of two terms: 1) Class criticality, 2) Approximated object
distance. The class criticality is manually assigned to simulate
how humans prioritize different types of object. For example,
“human” class has a much higher criticality than “vehicle”
class. Besides, we assume the physical sizes of objects be-
longing to one class are similar, so we use the bounding box
size (i.e., width) as an approximation of object distance. We
separately evaluate the detection performance on all objects
and critical objects. A separate object size threshold for critical
objects is set for each class.

6) Evaluation Metrics: Our metrics distinguish between
performance of detection, localization, and classification. Here
detection means discovering whether an object exists (at
a location) or not, regardless of type. Localization means
identifying the position of the object. Finally, classification
is the process of identifying object type. Given a list of
detections and a list of groundtruth object locations, we match
the detections with the groundtruth objects based on their
bounding box overlaps. A detection is said to be matched
with a groundtruth object if their IoU ratio is larger than a
predefined threshold (set as 0.5 in this paper), in which case
we say that the object is successfully detected. The following
set of metrics are then defined:

• Detection Recall (DR): The ratio between the number of
successful detections (matched with groundtruth objects)
and the count of all groundtruth objects.

• Detection Precision (DP): The ratio between the num-
ber of successful detections (matched with groundtruth
objects) and the count of all detections.

• Classification Accuracy (CA): For each successful de-
tection, we test whether the predicted object class is
correct and report ratio of correct classifications.

• Localization Error (LE): For each successful detection,
its location error is the distance between the estimated
and ground truth object center points, as fraction of the
object size (i.e., diagonal length).

• Mean Average Precision (mAP): It is used as an end-
to-end metric, which simultaneously captures the error in
both location and classification. An open sourced mAP
evaluation engine6 is used.

The YOLO performance on full frames is listed in Table I,
which serves the ceiling condition for the proposed framework.

6https://github.com/Cartucho/mAP
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TABLE I
YOLOV5 PERFORMANCE ON WAYMO DATASET. ALL VALUES IN THIS

TABLE ARE IN PERCENT, EXCEPT THE LATENCY.

Model Ove. Det. Rec. Ove. Det. Pre. Ove. Cls. Acc. Ove. Loc. Err.

YOLOv5l

70.09 87.54 99.88 4.68
Cri. Det. Rec. Cri. Det. Pre. Cri. Cls. Acc. Cri. Loc. Err

82.29 92.05 99.96 3.97
Ove. mAP Cri. mAP Xavier Latency

62.76 78.14 239ms
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Fig. 9. Impact of image resolution on detection quality and inference latency.

B. Impact of Image Downsizing

One intuitive question is, why not just downsize the images
such that full-frame inspections can run in real time. In this
section, we investigate the impact of image downsizing on
achieved detection quality and inference latency. We downsize
the images to different resolutions, and evaluate the mAP on
objects of different sizes, as well as the corresponding latency.
The results are shown in Figure 9. We have the following
observations: First, reducing image resolutions results in de-
graded detection quality, especially on small objects. However,
recognizing small objects is still important in autonomous
driving. Second, large objects are more robust to image
downsizing. After image slicing, we can safely reduce the
resolution of candidate regions for large objects to achieve
better efficiency. Therefore, we set 256 as the largest target
size, where larger objects are downsized and fit into it.

C. Impact of Image Slicing

A good slicing module should be lossless and lead to
no degradation in detection quality. To isolate the impact
of image slicing, we run inspections on all sliced candidate
regions. Besides, two empirical optimizations are considered:
(i) bounding box filtering, and (ii) candidate region merge. We
evaluate the detection recall and precision with/out bounding
box filtering, under different candidate region merge criteria
(i.e., the intersection ratios) in Figure 10. First, the detection
precision is degraded after slicing, because more false positive
detections (i.e., fragmented object parts) are generated. The
region merge does help partially improve detection precision,
but bounding box filtering is the key factor that makes the
slicing lossless. The red curve of Figure 10(b) indicates the
slicing with bounding box filtering shows negligible degrada-
tion on detection precision under different merging criteria.
The fragmented detections are mostly removed. Second, the
detection recall is not affected no matter whether bounding
box filtering is applied, which indicates the sliced partial
frames completely cover the groundtruth objects. We set the
intersection ratio for merge as 0.5, to achieve a good tradeoff
between detection recall and precision.
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Fig. 10. Impact of slicing on detection quality.
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Fig. 11. The impact of tracking algorithms on the detection quality of overall
objects and critical objects.
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Fig. 12. The impact of missing frames on our slicing and partial inspection
approach.

D. Tracking Algorithm

We compare our flow-based tracker (denoted by “Flow”)
with a state-of-the-art tracking algorithm, SORT [40], which
uses a Kalman filter to model object motions. It extrapolates
future object locations from the past object trajectories. The
results are presented in Figure 11. We separately show the
results on overall objects and critical objects, under three
workloads (i.e., frame intervals). We found that optical flow
generally works better than SORT in tracking. They show
similar detection precision under each workload, but the de-
tection recall and mAP of Flow are clearly better than SORT,
especially when the frame interval is short. We rely more on
the tracking algorithm to predict object locations when there
is no GPU resource to run their partial-frame detection tasks.
Flow is more accurate in estimating object motions, because
it proactively extracts the information from newly captured
frames, as opposed to the extrapolated motions in SORT.

E. Robustness of Flow-based Tracking and Slicing

In this experiment, we explicitly evaluate the robustness
of the proposed flow-based tracking algorithm, by answer-
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Fig. 13. Scheduling algorithms comparison. The first row shows detection results on overall objects, and the second row shows results on critical objects.

ing the following question: Does missing frames during a
scheduling horizon affect the detection result? We randomly
delete different portions (from 10% to 60%) of frames from
each scheduling horizon (i.e., 10 frames), and compare the
relative detection performance between our approach and full-
frame inspection on the remaining frames. All sliced candidate
regions are inspected. If the key frame is missing, we regard
the next available frame as the key frame instead. The results
are summarized in Figure 12. We use reproducible random
number generator to generate the same subset of missing
frames between the two compared approaches. Our flow-
based tracking and slicing approach consistently shows a close
performance on both overall mAP and critical mAP to the full-
frame inspection approach, when different portions of frames
are missing within a scheduling horizon. Only negligible
relative degradation is observed as the frame missing ratio
increases. When intermediate frames are missing, the optical
flow algorithm would directly compute the flow map between
two consecutive available frames, and the proposed expansion
steps further consider the potential uncertainty contained in
the estimated flow map.

F. Scheduling Algorithm Comparison
1) Baselines: We compare with the following algorithms.
• Downsizing (DS): It always runs full-frame inspections

at the largest resolution that can finish in real-time.
• Highest Uncertainty First (HUF): It always sched-

ules the partial frame inspection task with the highest
weighted uncertainty. Batching is not used.

• Batched Highest Uncertainty First (BHUF) [1]: It
always schedules the partial frame inspection tasks with
the highest weighted uncertainty, and batches the tasks
under the same target size in a greedy manner.

2) Results: The corresponding results are summarized in
Figure 13. We test the scheduling algorithms at different
workloads (i.e., frame intervals). We report the following
observations: First, note that the new algorithm (BPB) sub-
stantially improves mAP, a metric that captures both location
and classification errors. This is consistent with the goal
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Fig. 14. The normalized detection recall on physically close objects.

of this work to improve location accuracy (without hurting
classification accuracy). Second, BPB does not do worse on
other metrics. For example, although DS maintains a similar
localization error, it does worse on recall because it loses
small objects. BPB achieves the best recall, but at the cost
of minor degradation in precision. One can argue that in
autonomous driving, recall is more important than precision,
because false negatives are more of a safety problem than
false positives. Furthermore, compared to BHUF, BPB does
better at planning when to invoke the detector to minimize
location error without hurting recall. As a result, BPB achieves
both a lower location error and a higher recall, especially at
higher frame rates (i.e., when P = 70ms). Finally, there are
almost no misclassifications of object types with BPB, and the
localization error roughly ties on lowest.

G. Responsiveness to Physically Close Objects

We evaluate the achieved detection recall on all objects
within 30 meters to the ego-vehicle (according to data set
ground truth). The results are normalized by the detection
recall achieved on full frames, and reported in Figure 14. The
proposed BPB algorithm outperforms the baselines, especially
when the frame interval is short. The evaluation demonstrates
that the absence of a physical ranging sensor is not a hindrance
and that (visual) size-based assignment of priority offers higher
recall on close objects compared to baselines such as whole
image resizing.

H. Breakdown of Overhead Quantification

Next, we report the breakdown latency overhead induced
by our framework. The results are shown in Figure 15. Since
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Fig. 16. The impact of the scheduling horizon length on detection quality.

the BPB policy only executes once per scheduling horizon,
its overhead is divided into each frame, which turns out
to be minimized in our implementation. The preprocessing
steps include new object localization, image slicing, candi-
date region merge and batching at each frame, while the
postprocessing steps filter the generated detections and map
the remaining detections to the full frame coordinates. The
optical flow estimator runs in an independent process on the
CPU and poses no overhead to the detection pipeline on GPU.
Both preprocessing and postprocessing overhead is very small
in most cases. We also notice the preprocessing delays are
relatively high in some heavy traffic scenarios, where a large
amount of candidate regions are extracted.

I. Choice of Scheduling Horizon Length

Here, we investigate the impact of the scheduling horizon
length in BPB policy. We change the horizon length from 5 to
20, and see how the detection quality are affected. We set the
frame arrival interval P = 100ms. The results are summarized
in Figure 16. Our BPB policy is generally resilient to the hori-
zon length, and does not show a large variation on achieved
detection quality. The moderate lengths (8 or 10) show sightly
better detection recall on both types of objects. When the
scheduling horizon is too short, we only have very limited time
to schedule partial-frame inspection tasks. Too much time is
spent on full-frame inspections. When the scheduling horizon
is too long, we do not have timely updates on the object
presence and criticality, and may waste time tracking objects
that are not critical anymore. Thus, shorter horizons ensure
better freshness on object list, while longer horizons provide
more scheduling flexibility. We believe choosing a moderate
length (i.e., 10 frames or 1 second) is most beneficial that
achieves a good tradeoff between scheduling flexibility and
freshness on object list.

J. Impact of Object Detector

Finally, we evaluate the impact of the object detection
model. In addition to YOLOv5, we use three representative ob-
ject detectors: RetinaNet [48], FasterRCNN [49], and MaskR-
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Fig. 17. The impact of object detection models on our approach.
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Fig. 18. Batch latency curve for different object detectors with input size
256× 256. The batch latency is normalized by the model full-frame latency.

CNN [50]. To evaluate the model impact, we use 60% of the
full-frame inference latency of each model as the simulated
frame sampling period. The achieved overall and critical mAPs
are presented in Figure 17. We found our approach generally
works with different models, which results in 2.1% to 8.1%
degradation on overall mAP, and 2.8% to 8.3% degradation on
critical mAP. The degradation differs among models because
of their difference in computation parallelizability. To illustrate
this fact, we show how the batch latency increases with the
batch size in Figure 18 with 256× 256 input. YOLOv5 is the
state-of-the-art model with highly optimized GPU implemen-
tation, so we can observe a flat curve when the batch size is
within 5. Comparatively, RetinaNet, although a single-stage
detector, has serialized implementation in its preprocessing
steps. The parallelizability of FasterRCNN and MaskRCNN
are even worse because of the two-stage nature in their design,
which divide the computation into the region proposal and
classification. More serialized execution is included in the
classification step, thus the associated overhead may partially
consume the efficiency saving by slicing and batching.

VIII. CONCLUSIONS

We described a self-cueing attention scheduling framework
to optimize the efficiency of visual machine perception (on
resource-limited embedded platforms) at minimizing location
error without hurting recall. A scheduling algorithm with a
theoretically proven approximation ratio (in terms of maxi-
mum location uncertainty) was described and implemented on
an NVIDIA Jetson Xavier board. Empirical evaluation using a
real-world driving dataset indicates the feasibility of the self-
cueing approach. The work advances attention scheduling liter-
ature by allowing AI-based perception pipelines to selectively
schedule data processing at the subframe level (consistently
with tracking and/or safety needs) without external cueing.
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