Real-Time Systems
https://doi.org/10.1007/s11241-022-09387-6

-

Check for
updates

Real-time task scheduling with image resizing
for criticality-based machine perception

Yigong Hu' - Shengzhong Liu' - Tarek Abdelzaher' - Maggie Wigness? -
Philip David?

Accepted: 23 June 2022
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract

This paper extends a previous conference publication that proposed a real-time task
scheduling framework for criticality-based machine perception, leveraging image
resizing as the tool to control the accuracy and execution time trade-off. Critical-
ity-based machine perception reduces the computing demand of on-board Al-based
machine inference pipelines (that run on embedded hardware) in applications such
as autonomous drones and cars. By segmenting inputs, such as individual video
frames, into smaller parts and allowing the downstream Al-based perception mod-
ule to process some segments ahead of (or at a higher quality than) others, limited
machine resources are spent more judiciously on more important parts of the input
(e.g., on foreground objects in lieu of backgrounds). In recent work, we explored
the use of image resizing as a way to offer a middle ground between full-resolution
processing and dropping, thus allowing more flexibility in handling less important
parts of the input. In this journal extension, we make the following contributions:
(i) We relax a limiting assumption of our prior work; namely, the need for a “perfect
sensor” to identify which parts of the image are more critical. Instead, we investigate
the use of real LIDAR measurements for quick-and-dirty image segmentation ahead
of Al-based processing. (i) We explore another dimension of freedom in the sched-
uler: namely, merging several nearby objects into a consolidated segment for down-
stream processing. We formulate the scheduling problem as an optimal resize-merge
problem and design a solution for it. Experiments on an Al-powered embedded plat-
form with a real-world driving dataset demonstrate the practicality and effectiveness
of our proposed framework.

Keywords Machine perception - Real-time scheduling - Cyber-physical systems

P4 Yigong Hu
yigongh?2 @illinois.edu

Extended author information available on the last page of the article

Published online: 08 August 2022 @ Springer

Real-Time Systems

1 Introduction

This paper describes the first practical framework for sub-frame resizing as a
means to implement criticality-based machine perception. In recent work (Liu
et al. 2020), the authors proposed the idea that data processing in Al-based per-
ception pipelines on edge devices, such as embedded GPUs (e.g., on drones and
autonomous cars) needs to be prioritized at a sub-frame level, because some sur-
rounding objects are more important than others. We call such a general frame-
work, criticality-based machine perception. Processing an entire frame at a time
is arguably not responsive to the relative importance of parts of the scene. For
example, in a real-time context, one may argue that nearby obstacles should be
inspected (by Al-based perception modules) ahead of background objects when
hardware parallelism is not sufficient for doing both concurrently. Our subsequent
conference paper (Hu et al. 2021) explored the use of image resizing (specifically,
downsizing) at a sub-frame level as a tool for finer-grained manipulation of accu-
racy and execution time trade-offs in criticality-based machine perception pipe-
lines. Resizing (to a smaller size) allows the use of lower complexity inference
models downstream, commensurately with the reduced input object size, thereby
associating different parts of a scene with different “levels of service”. The
added flexibility (of choosing an appropriate re-sizing level for different frame
segments) was shown to give rise to real-time resource allocation algorithms
that improve both responsiveness and perception accuracy for high-criticality
objects (Hu et al. 2021). Compared with imprecise computation methods that use
partially executed (i.e., early exit) neural networks (Yao et al. 2020), image resiz-
ing was shown to achieve better performance trade-offs thanks to more special-
ized neural network models and better resource utilization with improved image
batching on the GPU.

Despite the aforementioned promising results, our prior conference work on
the exploration of image resizing in criticality-based machine perception pipe-
lines made a limiting assumption (Hu et al. 2021): it assumed that the input to
the resizing and prioritization algorithm includes perfect bounding boxes for each
object in the frame. The assumption simplified the downstream algorithms. In
practice, this assumption suffers from a “chicken and egg" problem. On one hand,
the resizing and prioritization algorithm must run ahead of the Al-based percep-
tion module in order to reduce the size of inputs supplied to the latter (or else no
resource savings occur). On the other hand, the resizing and prioritization algo-
rithm needs object bounding boxes not produced until the Al-based perception
module is executed. In prior work (Hu et al. 2021; Liu et al. 2020, 2021), we
assumed that another sensor (e.g., a ranging sensor) is used to resolve this prob-
lem; foreground objects are separated from backgrounds based on distance using
a quick algorithm that does not rely on the Al-based (computationally demand-
ing) perception module. The distance-based segments are then resized and prior-
itized for processing by downstream Al.

This paper extends our previous image resizing framework (Hu et al. 2021)
by offering the first practical implementation of a criticality-based perception

@ Springer

Real-Time Systems

pipeline that uses input resizing at a subframe level. We remove the assumption of
perfect bounding boxes at the input of the resizing module. Instead, after obtain-
ing a frame from the camera, we slice the incoming scene into regions with the
help of a quick-and-dirty fast segmentation method that relies on a second sensor;
a LiDAR point cloud (Bogoslavskyi and Stachniss 2017). Ordinarily, LiDAR-
based point-cloud processing could be even slower than image processing. In this
work, however, we do not perform actual object identification from the LiDAR
point cloud. Rather, we only use LiDAR distance measurements merely to per-
form quick-and-dirty distance-based point clustering. Clusters of nearby points of
similar distance are then mapped to segments of the corresponding camera frame
and these (distance-based) frame segments are forwarded to the image resizing
and prioritization module. This module determines which segments to process by
subsequent Al-based perception and at what resolution.

While the above change appears to be cosmetic in nature, it leads to a fundamental
rethinking of the core contribution of our previous work (Hu et al. 2021); namely, it
calls for a new resizing and prioritization algorithm. The new algorithm must perform
optimal (distance-based) segment consolidation together with resizing because there is
no longer the assumption of one-to-one mapping between input regions (i.e., frame seg-
ments) and objects in the frame. A cluster of points that are roughly the same distance
away can include multiple objects. Similarly, a large object can give rise to LiDAR
points that are different distances away (over-segmentation). To adapt to the imperfect
mapping of distance-based segments to objects, two techniques are applied. First, small
segments are merged into larger segments that they connect to, so that over-segmented
objects are restored. Second, detected bounding boxes are filtered both at the per-seg-
ment and whole-frame scale. We also observe that many segments are located in close
proximity to each other in the camera frame, so it is possible to combine them together
and detect multiple objects at once (using a neural network such as YOLO). Thus, we
allow the scheduler to both resize and merge segments before invoking the neural net-
work for detection. We formulate a scheduling optimization problem and design an
algorithm to approximate the solution. We then look at cases where the LiDAR seg-
mentation fails, and discuss the inherent shortcomings of using LiDAR for quick-and-
dirty distance-based input segmentation. Comparing the results with our initial confer-
ence paper (Hu et al. 2021) (when fed the imperfect LIDAR inputs), the new proposed
framework achieves significant improvements in execution efficiency and robustness,
thanks to adapting to noisy segmentation results and considering object merging.

The rest of the paper is organized as follows. Section 2 introduces related work. Sec-
tion 3 discusses the architecture of the system and the reasons for the proposed design
choices. Section 4 describes the implementation details and presents the evaluation and
comparison with experiments. Section 5 discusses limitations of curing with a LiDAR
sensor. Concluding remarks are made in Sect. 6.

@ Springer

Real-Time Systems

2 Related work

This work is motivated by the rise of “edge Al,” where machine intelligence algo-
rithms (e.g., deep neural networks) are introduced into Cyber-Physical Systems
(CPS) and Internet of Things (IoT) applications, promoting the need for efficient
execution on embedded edge devices (Yao et al. 2018a). The ability to run edge
Al algorithms on embedded devices gives rise to many new applications such as
self-driving vehicles (Sun et al. 2020), delivery robots (Bamburry 2015), auton-
omous drones (Floreano and Wood 2015), and military defense systems (Abd-
elzaher et al. 2018). These applications involve perception tasks such as object
detection, identification, and tracking using machine learning models. Perception
happens to be one of the more resource-consuming machine intelligence tasks. It
is no coincidence that after thousands of years of biological evolution, more than
50% of the human brain cortex (the part of the brain typically associated with
higher-level cognitive functions) is the visual cortex (i.e., a perception subsys-
tem). The resource demands of machine perception models make them a major
bottleneck to system performance (Alcon et al. 2020; Lin et al. 2018).

Recent work has focused on reducing the neural network model size and
increasing perception speed. Examples include parameter pruning techniques
to remove small-weight connections (Han et al. 2016); pruning network struc-
ture with a compressor-critic framework (Yao et al. 2017); incremental learning
based on a grow-and-prune neural network synthesis paradigm (Dai et al. 2020);
quantizing weights and activations to adapt to different resource budgets (Jin
et al. 2020); speeding up convolutional layers with approximations using linear
structure present within the convolutional filters (Denton et al. 2014); leverag-
ing the sparsification of fully connected layers and separation of convolutional
kernels to reduce the resource requirements (Bhattacharya et al. 2016); project-
ing the filter channels to a unified low dimensional space (Minnehan et al. 2019);
and compressing convolutional neural networks in the frequency domain (Wang
et al. 2016). Combining several of the compression and acceleration methods can
potentially achieve superior performance (Han et al. 2016; Jung et al. 2019).

While the above solutions have been effective at reducing neural network
resource demands, they are generally not concerned with real-time execution
under criticality and/or time constraints. To address this gap, work on real-time
systems offered optimizations and approximations of deep neural networks with
consideration for real-time performance. For example, Yang et al. (2019) reim-
plement the YOLO neural network to optimize system utilization and GPU work-
load allocation on NVIDIA DRIVE PX2 to achieve higher throughput; Bateni
and Liu (2018) propose an approximation approach that trades off accuracy and
cost on a per-layer basis to guarantee deadlines of DNN workloads; and Heo et al.
(2020) build a worst-case execution time model for DNNs on a GPU and propose
a multipath network that can dynamically select different execution paths at run-
time to meet time constraints. Other flavors for adaptively trading off computa-
tion time and solution quality have been proposed (Kim et al. 2020a), including
a framework for learning abstract information early and learning more concrete

@ Springer

Real-Time Systems

information as time allows (Kim et al. 2020b) and a framework for casting neural
network workflows as imprecise computations (Yao et al. 2020).

Efforts have also been made to understand the GPU platform and firmware behav-
ior, so as to optimize system performance. For example, Otterness et al. (2017)
evaluate the suitability of the NVIDIA TX1 platform for real-time computer vision
workloads and (later) suggest AMD GPUs as a viable alternative for real-time GPU
research (Otterness and Anderson 2020); Yang et al. (2018) identify the pitfalls of
the NVIDIA CUDA GPU software and provide best practices for applying real-time
safety-critical principles; Olmedo et al. (2020) investigate hierarchical scheduling
policies of NVIDIA GPUs and their proprietary CUDA application programming
interfaces; and Yao et al. (2018b) identify non-linear relations between neural net-
work structure and execution time, and exploit them to find network configurations
with the best trade-off between execution time and accuracy.

The above solutions adapt neural network structure to better optimize for the
urgency and criticality of inputs. However, they do not consider segmenting the input
at a sub-frame level in a manner that separates segments of different criticality, such
that different levels of adaptation could be applied to different segments. Liu et al.
(2020) propose a prioritization pipeline to remove priority-inversion in machine
perception pipelines by slicing the input frame into sub-areas of different priorities.
Our conference publication (Hu et al. 2021) then investigates criticality-based input
resizing as a universally applicable adaptation to enhance the flexibility of trade-offs
between perception quality and timeliness.

Criticality-based machine perception relies on cues (e.g., from another sensor)
that allow quick identification of regions of interest in each frame (Liu et al. 2020).
However, these cues must themselves be computed very efficiently, calling for
“quick-and-dirty" algorithms. As a result, the accuracy of these cues is (in practice)
relatively low; a topic that has not been the focus of prior our work. We extend our
conference publication (Hu et al. 2021) by relaxing the assumption of perfect data
segmentation, and changing the scheduling algorithm accordingly.

Work that bears some (superficial) similarity to this paper is a recent arXiv
manuscript on LiDAR-based segmentation and resizing (Chen et al. 2021). How-
ever, the resizing approach in that work is not criticality-based. Instead, it is purely
quality-based. Closer objects are down-sized more, irrespective of their criticality,
as opposed to downsizing less important parts of the frame. We also investigate the
general limitations of cueing with a LiDAR sensor.

3 System architecture

In this section, we describe the system architecture and the reasons behind our
design choices. We consider an application running on an embedded platform
equipped with a camera and a LiDAR sensor. The application requires timely pro-
cessing of the input frames to detect and classify objects in the surrounding envi-
ronment. A data slicing module provides noisy bounding boxes generated from
the LiDAR measurements and a scheduling algorithm makes optimal resizing and
merging decisions. An overview of the system architecture is shown in Fig. 1.

@ Springer

Real-Time Systems

Segmentation, Resizing, Merging, 32:
(()) =P | Pre-processing, batching, and utility
and projection maximization
a (=]
= | O e E o
o =]
G [

Fig. 1 An overview of the system architecture

64:

;r

Detection
Post-processing >

3.1 LiDAR segmentation and pre-possessing

We apply real-time LiDAR point-cloud-based object segmentation meth-
ods (Bogoslavskyi and Stachniss 2017) to slice the input frame and generate
candidate bounding boxes. Due to the physical properties of the laser beams
used in LiDAR sensors, the measurement results can be easily affected by factors
including the multi-path effect, the object surface type, and the weather. Also,
compared with image sensors, LiIDARs usually have a much shorter operation
range and lower resolution. In order to achieve a very small computation over-
head, the segmentation module has to run in real-time on the CPU, preventing
the use of more sophisticated neural network-based LiDAR semantic segmenta-
tion methods (Milioto et al. 2019). As a result, the segmentation algorithm is
unable to distinguish between objects of interest such as cars, from other objects
such as trees. Moreover, the output could be over-segmented, i.e., one object
could be split into several segments, or under-segmented, i.e., several objects
may appear in one segment.

Since multiple objects may appear in one segment, simply using a classifi-
cation model to inspect each segment is no longer adequate. Instead, a detec-
tion model such as YOLO is needed because of its ability to detect multiple
objects in a scene. Using YOLO as the inference model could filter out non-
target objects. However, accurate detection of an object requires a segment to
cover the entire region of the object. YOLO is capable of detecting multiple
objects within one segment, but over-segmented objects need to be merged first.
In addition to affecting detection accuracy, over-segmenting produces a larger
number of segments, increasing the workload of the inference model. Thus, pre-
processing the LiDAR segmentation is necessary. We start from the largest seg-
ment and merge any smaller neighboring segments that are within a 3D distance
threshold to it. Any segments that are smaller than a predefined size threshold
and are not merged into a larger segment are removed, as they are most likely
not an object of interest. We observe that when the bounding boxes are fit tightly
to the objects, YOLO does not produce the best detection results, likely because
YOLO is trained to detect smaller objects from larger images. Thus, we expand
each segment slightly for better detection performance. An example of a frame
region before and after pre-processing is shown in Fig. 2.

@ Springer

Real-Time Systems

Fig.2 An example of a segment before (a) and after (b) pre-processing

3.2 Segment merging

Bounding boxes of segments in the camera frame may overlap with each other.
Instead of processing each of the overlapping segments separately, we can merge
several closely located segments into a consolidated region and process them
together. As a result, fewer segments are needed to cover all objects present in the
camera frame. However, if the size of a merged box increases into a larger quan-
tized size, the increase in processing time will be greater than the combined execu-
tion time of several separated smaller objects and merging is not beneficial. Fur-
thermore, a merged box will be downsized if it exceeds the largest quantized size,
and the detection accuracy will be affected. Considering these observations, we only
allow merging if the merged segment is smaller than the largest allowed size and
still within the same quantization interval. We start from the largest segment and
iteratively find and merge segments within its proximity. Once a segment is merged
into another segment, it is not eligible to be merged again so that one object will not
be detected multiple times. Segments in a merged region will be detected together
if they all have the same resize scale and detected separately otherwise. We call
these rules the merging constraints. An example is shown in Fig. 3, where the green
bounding boxes are merged together into the red bounding box. The largest seg-
ment is quantized to 256 X 256 size and the merged bounding box is also 256 X 256,
thus satisfying the merging constraint. When all objects have the same resize scale,
all the segments within the red bounding box are processed together. In contrast to
batching where several segments of the same size are processed in parallel, merged
segments only require running YOLO once to detect multiple objects.

3.3 Imageresizing
Our previous work (Hu et al. 2021) argues that imprecise computation based

approaches (Yao et al. 2020) (that vary the number of deep neural network stages
to adapt quality depending on input) are inferior to model switching approaches that

@ Springer

Real-Time Systems

Fig.3 An example of bounding box merging

simply pick a different neural network model from a range of alternatives to offer
different points in the quality/latency trade-off space. In addition to that, imprecise
computation does not extend well to some architectures. For example, YOLO intro-
duces different key functions at different downstream parts of the network, making
the separation of mandatory and optional components quite complicated. In our
design, we choose to use YOLO as the perception model in order to accommodate
noisy segments generated with LIDAR measurements, and use image resizing as a
tool to control the modulating of execution time assigned to input segments of dif-
ferent criticality. The average accuracy when resizing objects of different sizes is
profiled offline as an input to the scheduling algorithm.

3.4 Batching

The GPU of the embedded platform is capable of executing multiple jobs in paral-
lel, by processing inputs (e.g., multiple segments) in batches. On some lower-end
embedded device GPUs, batching is often constrained by the requirement that all
inputs must be processed by the same processing kernels [34]. Since the choice of
kernel depends on the input size, in practice this means that (processing of) only
same-size images can be batched together. We observe that when the number of
images batched together increases, the total inference time increases but at a slower
rate than that for sequential execution (until the GPU gets fully utilized). Thus, it is
always beneficial to batch as many images (of the same size) as possible together.

@ Springer

Real-Time Systems

100 1

80 1

60

40

20 1

Normalized Confidence (%)

0 2 4 6 8 10
Frame

Fig.4 The change of classification confidence with tracking

In other words, consider a collection of n images with the same size s. Let the
total time required to process this batch be denoted by T(s, n). If we divide the
batch into two sequential batches, each containing n; and n, images, respectively,
where n; + n, = n, then the time needed to execute these two batches sequentially
is T(s,n;)+ T(s,n,) > T(s,n). This observation indicates that maximum batch-
ing should always be used for same-size inputs. This insight reduces the problem
complexity.

3.5 Redundancy between frames

When the sampling rate of the sensors is relatively high, there will be a large amount
of redundancy between frames. An object that appeared in the previous frame will
likely also appear in the current frame. Thus, opportunities arise to track an object’s
trajectory given its identified class and location in a number of previous (not neces-
sarily consecutive) frames. In turn, such a trajectory can be extrapolated into the
future to yield a region, where the object might currently be found. When a new
frame arrives and a sensor, such as a LiDAR, identifies all regions of interest (e.g.,
parts of the point cloud that are at a different distance from their surroundings, sug-
gesting the presence of an obstacle), if one such region coincides with the expected
location of a previously tracked object, one may assume that the object has been
(re-)identified and skip sending the segment to the perception module. There is pres-
ently a large volume of literature on object tracking that allows computing future
expected locations of objects (Bar-Shalom and Tse 1975). A review of these solu-
tions is outside the scope of this paper. We simply use their results to compute track-
ing confidence and consequently determine whether or not a given segment needs
to be sent to the perception module. This determination is part of the optimization
problem formulated in Sect. 3.7, where the scheduling model is discussed.

If a segment is inspected by the perception module, the object class is deter-
mined with some (classification) confidence. If the segment is not sent (on account
of it being found a continuation of a previous trajectory), the previous classification

@ Springer

Real-Time Systems

Table 1 Table of notations

Symbol Meaning

H Frame interval

T Available jobs

T; Sub-task related to the i-th object

i Object index

S Set of legal image sizes

s Image size

n Number of images in a batch

k Number of frame

Cix System classification confidence of object i in frame k
E, Model classification confidence of object i with size s
Fix Tracking confidence of object i in frame k

s? Original size of the i-th object

w; Criticality weight for object i

R Utility of executing object i with size s

U Total utility

G, Incremental efficiency at size s of task i

T, Total time to process a batch of n images with size s
B, Slope of linear fit for total processing time

D, Intercept of linear fit for total processing time

X Schedule choice for the i-th object and new size s

confidence for that object is discounted by the additional uncertainty arising from
the possibility of misclassification due to association errors in tracking (as would be
common in multi-target tracking environments).

Figure 4 shows an example of the confidence trail in the classification of an
object. At times 0, 4, and 6, the object is processed by the perception module, and
the inference results are updated. At other times, the perception task is skipped
and the confidence decays from frame to frame. Some computation is thus saved
by leveraging tracking, at the cost of potential classification error caused by incor-
rect object association across frames. A mathematical formulation of the underlying
optimization is discussed later in Sect. 3.8.

3.6 Criticality weight and utility

Many heuristics are possible for the assignment of criticality weights to segments.
This topic is orthogonal to our work in that no matter how one decides to assign
criticality, we offer a mechanism for allowing higher criticality segments to receive
preferential treatment. For better generalizability, we incorporate an abstract criti-
cality weight into our utility function and let the scheduling algorithm optimize the
cumulative utility of the executed jobs. In our implementation, we use (a function
of) object distance from the sensor as the criticality value. The scheduling problem
is now described more formally below (Table 1).

@ Springer

Real-Time Systems

3.7 Scheduling problem

Consider a perception system that processes segments of successive frames on a
GPU. Let H denote the frame interarrival interval (or frame interval for short). The
processing of one segment is referred to as one perception task. In our implementa-
tion, the perception task executes the YOLO neural network on one segment to gen-
erate an object detection result. The main assumption we require is that the neural
network architecture must accommodate inputs of different sizes. YOLO is a fully
convolutional network and allows for multiple sizes of inputs (selected from a pre-
defined set of allowable sizes). Each input size corresponds to a different network
structure, where smaller sizes result in smaller neural networks. As is common to
lower-end GPUs, only same-size inputs can be batched (i.e., executed concurrently).
This is because lower-end GPUs generally require that the same kernel be executed
on all threads. Since frames arrive periodically, all segments of one frame must
either be processed or discarded before the next frame arrives.

Consider a single scheduling period corresponding to the processing of one input
frame, k. We call it period k. We denote the set of arrived jobs (input segments gen-
erated by LiDAR processing) within a scheduling period k by set 7[k]. A single task
is denoted by 7,[k] € 7[k]. The function of the task is to process one segment of the
frame by the perception module. Let S denote the set of legal image/segment sizes
(that the neural network of the perception module can accept). All segments must
first be padded to fit one of the legal sizes (which is done in a best-fit manner). In
order to improve batching, only a handful of different sizes are supported. Let the
segment corresponding to task z;[k] have an initial (padded) size s? [k] and a critical-
ity weight w,[k]. The criticality weight might be assigned, for example, based on
the distance to the object that appears in that segment, as computed by the LiDAR.
The scheduler is allowed to resize the input image to a size s;[k] € S, that satisfies,
s;[k] < s? [k], in order to save processing time, at the cost of lowering accuracy. Also,
the scheduler is allowed to merge objects together if they satisfy the merging con-
straints, where close-by objects with the same resize scale are combined for detec-
tion. The merging decision is denoted as M = {M, M,, ...,Mj}, where M_,- is the set
of segments to be merged together. When segments are merged, only one run of
YOLO on the merged segment is required to detect all objects in the segment.

Let E, be the average model classification confidence for an input segment of
size s, (based on prior empirical testing of the neural network).! Also, let F ix be
the multiplicative drop in tracking confidence for object i, from frame to frame,
in the absence of re-identification by the perception module. For each segment
that matches a previous object trajectory, the scheduler can either choose to exe-
cute the perception task (possibly after resizing) or use the previous object clas-
sification result (after discounting it by F;,). In the latter case (i.e., if the task is
not selected for execution), for notational convenience, we say that the selected

! Note that in the presence of multiple objects in the segment, this empirically computed number can be
the average of per-object confidence values.

@ Springer

Real-Time Systems

resizing is s; = NULL. The estimated confidence, at interval k, in the classifica-
tion of the object in segment, i, denoted C; , is thus computed as follows:

_ J FiyCiyy if s; = NULL
Cia = { E, otherwise)

Si

The utility collected by a task operating on input of size, s;, denoted R; ; [k], is then
defined as:

Ri,s,. [k] = w;C;y (2)

where w; is the criticality weight (higher for more critical objects), and C; is the
confidence, computed from Equation (1). Note that, the utility expressed in Equa-
tion (2) depends on three scheduling choices for each task:

e Whether to run the task or not (i.e., whether s; = NULL or not). This choice
determines the estimated C;, that enters the utility calculation.

e How the input is resized (what value to choose if s; is not NULL). This choice
affects E; ; and thus C;,.

e The set of objects to be merged and detected together. This merging decision
M affects the execution time of the chosen segments.

The algorithm optimizes the total utility of all jobs in frame k. We call it the opti-
mal resizing-merging problem, defined below.

The Optimal Resizing-Merging Problem: In each scheduling period, k, of
length H, given a set of arrived perception jobs, Tk, where each task t;[k] € T[k]
has a criticality weight, w;, and a classification confidence C;;, given by Equa-
tion (1), find an optimal (resized) input size s; (no bigger than the original) for
each t;[k] and segment merging choices M, such that all jobs are processed
within interval H, and the sum of utilities is maximized. In other words, find:

arg max Z R, [k] =w,C;,
Vi:s: i >
AL

3.8 Solution algorithm

The total time required to process a batch of n images of size s is denoted by
T(s, n). This value is available from offline system profiling for the worst-case
execution time. Let x(7, s) € {0, 1} indicate whether or not the i-th task is executed
with input resized to size s. Skipping the execution of task, i, is denoted by set-
ting s = NULL (i.e., x(i, NULL) = 1). Thus, for any one task, Zx x(i,s) = 1, since
the corresponding segment is either omitted altogether (s = NULL), or resized to
exactly one size. For each image size s, the batch size n, is calculated considering
the merging choices. The mathematical formulation of the optimization problem
becomes:

@ Springer

Real-Time Systems

max Z Z X1, $)R; 3)

i

s.t. Vi, Vs > s? s x(i,5) =0, “4)
Vi, Vs : x(i,s) € {0,1}, Zx(i,s)= 1, (5)
Z T(s,n,) < H, (6)
where:
Vs :n, = Z x(i, s) + Z x(arg max;s?, s). %
©EM MeM

In the above formulation, (3) is the optimization objective, (4) constrains that input
segments can only be downsized; (5) constrains that each segment can only be pro-
cessed at one size (or dropped); (6) constrains that the total time cannot exceed the
frame interarrival interval, H; and (7) simply defines the number of images sized s,
considering the merging decisions M.

We apply reasonable approximation to simplify the scheduling problem for
real-time execution. We observe that the total executing time for a batch 7(s, n,) of
images increases close to linearly with the number of images in the batch. We fit a
linear function to the total execution time, resulting in the empirical approximation,
TG, ng), given by the expression:

T(s, ng) =D, + Bn, ®)

where D, and B, are constants, obtained from linear regression, that depend only
on image size, s. Note that the linear increase of T(s, n,) with batch size, n, is not
attributed to sequential execution (since the batch is processed in parallel). Rather,
the linear slope is attributed to copying data into and out of the GPU. Naturally, the
amount of data copied grows linearly with the size of the batch. Adding up Eq. (8)
overall legal image sizes, we get:

Z T(s,n,) = Z D, + Z By, <H ©)

where the inequality (on the right) is from Eq. (6). The inequality can be rewritten
as:

ZBsns SH—ZDS (10)

Substituting for n, from Eq. (7), we get:

@ Springer

Real-Time Systems

. ° o® [] °® *® ° ° o
-89 L o® o®
[] [] [] [] []
LI L gt° 8 .
> ° >
= ". " 2 .' E| o
A =
=1 =1
!‘ [° °
[] []
Execution time Execution time

(a) (b)

Fig. 5 Resize combinations before (a) and after (b) LP-dominance removal

> Zx(i, B, <H=-) D, (a1

N

Let us call the right-hand-side, # = H — >, D,. Note that the right-hand side is a
constant. The original optimization objective (3), combined with the above con-
straint forms the optimization problem. Due to added dimension of freedom for
merging, solving the optimization problem is hard. In order to simplify the problem,
for each available merging set M, we consider all the possible combinations and treat
each of them as a choice for the merged segment. Each itemv € V = {1,2,3,...} in
this class represents a combination of resizing and merging choices, with a corre-
sponding time cost 7, and utility gain R,,,. Then we can formulate the optimization
problem as a Multi-Choice Knapsack Problem (MCKP) (Kellerer et al. 2004), where
the goal of the MCKP is to choose from a set of multiple-choice items, and choices
are limited by constraint (5), such that the sum of “rewards” (3) is maximized.

The MCKP problem is NP-hard, as it contains the well-known NP-hard knapsack
problem as a special case. As a result, it is not possible to solve the problem in
real time due to its high complexity. One solution is to approximate the problem by
quantization and use dynamic programming to solve it in polynomial time. In prac-
tice, we find the overhead of this solution unacceptable for sufficiently fine-grained
quantization. Instead, we adopt a greedy algorithm to approximate the optimal solu-
tion. The greedy algorithm starts with an empty set of jobs (s = NULL for all), and
incrementally upgrades the task with the highest incremental reward per unit of
incremental cost. When we consider merging, in order to apply the greedy algo-
rithm, LP-dominated resizing-merging choices in each merged segment need to be
removed so that the remaining choices form an upper left convex hull on the
utility-time plane. LP-dominance between items j k,/ €V is defined

i . . . Ry—u Rye—upgi .
as: ifitems j, k, [with ty;; <ty <ty and Ry;; < Ry < Ry satisfy: —42Mk > M W thep item k
J Mj < vk < Imi Mj Mk Mi Y e = Y

is LP-dominated by items j and /. When calculating the points on the upper left con-
vex hull, instead of calculating execution time and utility for all possible combina-
tions, we only need to consider the best resizing choices for executing all objects
separately and all the merging options. An example with execution time

@ Springer

Real-Time Systems

and utility of combinations in a segment before and after LP-dominance removal is
shown in Fig. 5.

Now, for each segment we define:

k_ = { Ri,s - Ri,s—l ifs > Smin

LS R; if s =5,,;,
and
B = B,—B,_, ifs>s,,,
S B, if s = 5,,,

where s — 1 denotes the size one level smaller than s. Then we calculate the
incremental efficiency as G;; = f?i’s /B, for each task i and size s. We sort G, for
all 7, s in decreasing order, with each value of G associated with the indices i, s
during the sorting. The incremental efficiency for resizing-merging choices in a
merged segment containing multiple segments is calculated in similar manners.

Next, we iteratively pick out the highest incremental efficiency G;, update
the corresponding size decision for task i: x;; =1, x;;_; =0, and calculate the
amount of time left as A = H —l?s. When a resizing-merging combination in
a merged segment is chosen, the decision and execution time are also updated
accordingly. The incremental efficiency G;; within each task z; monotonically
decreases as execution time increases. This ensures that for each class, a smaller
execution time will always be picked first. When the time is used up, we get a
near-optimal scheduling decision. The jobs with the same new sizes are batched
together and executed on the GPU. Algorithm 1 presents the pseudo-code. We
should observe that the above greedy solution is among the standard heuristics
for solving multiple-choice knapsack problems (Sinha and Zoltners 1979).

A careful reader might have noticed a fallacy in the presented approach.
Namely, in Eq. (11), the summation term on the right-hand side depends on the
number of batches used. Specifically, it should range only over the values of D,
for those image sizes, s, for which image batches have been constructed after
resizing. One batch is constructed per distinct size. However, we do not know
which sizes have been chosen before running the optimization. In some cases,
the optimal resizing might not utilize all sizes, resulting in a number of batches
that are smaller than the number of supported image sizes. For example, when
the scheduling period is very short, the optimal decision could be to resize every
segment to the smallest size. If we still subtract D, for the sizes not chosen, time
will be wasted. With four possible sizes supported by ResNet, there are 2* = 16
possible combinations of sizes used.

Solving 16 optimization problems (and comparing achieved utility to find the
global maximum) is costly. Instead, we loop through a linear number of cases,
where we limit the maximum image size (e.g., to 32X32, 64x64, 128%x128, and
256x256 for ResNet) and assume that all sizes up to that size are used. We pick
the solution with the highest cumulative utility as the optimal solution of the lin-
ear number of solutions considered.

@ Springer

Real-Time Systems

Algorithm 1 Proposed Scheduling Algorithm

Input Available task set 7, execution time function variables D and B,
utility of jobs R, frame interval H

Output Optimal task and size choice z, optimal total utility U

. H=H-Y..D,,U=0

2: Remove LP-dominant resizing-merging choices for merged segments
3: for 7, in 7 do

4: for s in S do

5: Calculate Bi,sa]—A%Z-,s and

6: Gi’S

7: end for

8: end for

9: P = Sort((¢, s), order = G, 5, inverse = True)
10: for p in P do

n H=f—B.

12. if H <0 then

13: break

14: else

15: x(i,j) =1

16: x(i,j—1)=0

17: U=U+R;;

18: end if

19: end for

3.9 Detection post-processing

Because objects may overlap in the camera frame, in addition to the targeted
object, a frame segment often contains incomplete parts of other objects. Also,
an object can be present in multiple frame segments. As a result, multiple (some-
times partial) detections of the same object will be produced in different seg-
ments. We filter these bounding boxes in two steps. First, for each segment, we
remove all the detections that intersect with the segment edges, as these detec-
tions correspond to objects splitted between segments. An example is illustrated
in Fig. 6. Then we apply a standard global non-maximum suppression (NMS)
step on the entire frame to remove all the remaining repeated detections.

@ Springer

Real-Time Systems

(a)

Fig.6 The detection result of a segment before (a) and after (b) filtering

4 Evaluation
4.1 Experiment setup
4.1.1 Hardware platform

To test the above algorithm. we use an NVIDIA Jetson AGX Xavier SoC, which
is an Al-powered embedded platform widely used in the industry. It is equipped
with an 8-core Carmel Arm v8.2 64-bit CPU, a 512-core Volta GPU, and 32 GB
memory shared by both the CPU and the GPU. When running at 30 Watts, the
Jetson AGX Xavier can deliver over 30 TOPS for deep learning applications. We
set the GPU to run at a constant clock frequency for more stable performance.

4.1.2 Dataset

We perform our experiments on the Waymo Open Dataset (Sun et al. 2020),
which is a large-scale autonomous driving dataset collected with self-driving cars
in various conditions. Each data sequence in the dataset has a length of 20 sec-
onds, with synchronized camera frames and LiDAR measurements collected at 10
Hz. There are 4 types of objects in the dataset: vehicles, pedestrians, cyclists, and
signs. We only use the front camera data for our experiment. The objects of dif-
ferent sizes are rounded up and padded to 32x32, 64x64, 128x128, and 256x256,
to be processed by YOLO.

@ Springer

Real-Time Systems

4.1.3 Neural network

We use YOLOVS5? for detecting and classifying objects in the segments. For each set
of experiments, we have four networks with input sizes at 32x32, 64x64, 128x128,
and 256Xx256, respectively, to process segments with various sizes. The models are
trained with the COCO dataset (Lin et al. 2014), which contains 80 classes, and the
output is mapped to the object types of the Waymo Open Dataset. To ensure fairness
of comparison and to isolate the effect of design differences, we use the same model
for all scheduling algorithms.

4.1.4 Load and evaluation metrics

Similar to our conference publication, we follow the method in Liu et al. (2020)
and vary the frame interval from 40ms to 160ms, to simulate different loads for
the scheduling algorithm. This is equivalent to replaying the recorded video seg-
ments in “slow motion" or “fast-forward" mode. We compare the average normal-
ized accuracy, average response time, and deadline miss rate for each algorithm. We
consider a task to miss its deadline if it is not executed within the frame interval, H.
We define normalized accuracy as the ratio between the achieved mAP and the full-
frame detection mAP with the original frame resolution.

4.2 Scheduling algorithms comparison

We compare the performance of different scheduling algorithms under the same set-
tings, with different frame intervals. The compared algorithms include:

e Proposed: The proposed greedy scheduling algorithm with resizing and merg-
ing. It uses our greedy heuristic to choose a near-optimal subset of jobs, their
new sizes, and corresponding merging options, and batches the jobs with the
same new size together for execution.

e No-merge: The proposed algorithm with merging turned off. It still applies the
empirical optimizations to adapt to noisy LiDAR segmentation results.

e RTCSA2021: Our previous work using a greedy scheduling algorithm with
resizing. We use LiDAR-generated bounding boxes and replace ResNet with
YOLO as the perception model. No empirical optimization is used.

e RTSS2020: The greedy scheduling algorithm proposed by Liu et al. (2020). We
use LiDAR-generated bounding boxes and replace ResNet with YOLO as the
perception model. Imprecise computation is not available because of the use of
YOLO. No empirical optimization is used.

e Full: It resizes the whole camera frame to the largest size that can finish within
the frame interval and use YOLO to detect the objects. It serves as a baseline for
comparison.

2 https://github.com/ultralytics/yolov3

@ Springer

Real-Time Systems

Fig.7 Evaluation results com-
parison 1501 —*— Proposed
- —— No_merge
£ 1251 — RTCSA2021
> —— RTSS52020
g 1007 Full
g u
8 754
[
(o]
© 501
2
< 25
O“ T T T T T T T
40 60 80 100 120 140 160
Sampling Period (ms)
(a) Average inference latency.
100 -
=
>
(9]
o
3
o]
%]
<
® 40- Proposed
-% —»— No_merge
g 20 - —<— RTCSA2021
S —— RTS52020
—eo— Full
0. u
40 60 80 100 120 140 160
Sampling Period (ms)
(b) Average normalized accuracy.
100 - —+— Proposed
= —»— No_merge
O\ 80-
> —<+— RTCSA2021
] —— RTS552020
o .
., 60 Full
n
=
o 40
=
o
o 20
a
0+ ™ L L L

T T T

40 60 80 100 120 140 160
Sampling Period (ms)

(¢) Average deadline miss rate.

We evaluate the scheduling algorithms in terms of achieved classification accu-
racy, average latency, and deadline miss rate. A deadline is considered missed if
a task does not execute (i.e., s = NULL) and the object has not been seen before.

@ Springer

Real-Time Systems

This is as opposed to a situation where a task is not executed because tracking
decides to inherit object classification from the previous frame. This way, we do
not penalize the algorithm for skipping a task due to temporal redundancy. The
results are presented in Fig. 7. Most of the time, the Proposed algorithm outper-
forms the other algorithms by a clear margin in terms of normalized accuracy,
especially when the frame interval is shorter. Only when the sampling rate is
much lower, full-frame detection could catch up because it is allowed enough
time to run YOLO on the full frame on a larger scale. The difference between
RTCSA2021 and No-merge is solely attributed to the empirical optimizations.
Because of the lack of empirical optimization to adapt to the noisy segmentation
results, RTSS2020 and RTCSA2021 cannot achieve desired accuracy even if the
sampling rate is low.

All the compared algorithms except RTSS2020 achieve no deadline misses for
all tested frame intervals. The algorithms with resizing ability can resize all seg-
ments to the most efficient size and execute all of them in one batch. RTSS2020,
however, no longer has imprecise computation as a tool to control execution
time and accuracy trade-off and is essentially reduced to a greedy algorithm that
always picks the segment with the highest utility gain. This demonstrates the
importance of the scheduler’s ability to trade off between inference quality and
execution time. On the other hand, resizing is a more versatile approach for con-
trolling the execution time assigned to different segments. When the sampling
period is very short, the scheduler is able to resize all the segments to the most
efficient 32 X 32 size and process them all together in one batch.

As the sampling period extends, the average latency for inference of all algo-
rithms increases. While the average latency of full-frame detection closely fol-
lows the sampling period, that of all other algorithms increases at a slower rate,
as more segments are executed at larger sizes. Note that the difference between
Proposed and No_merge is attributed solely to segment merging. As can be seen,
segment merging improves accuracy and reduces inference latency at the same
time. However, as only a small number of segments can be merged together, the
improvement is not significant.

4.3 Scheduling algorithm overhead

As mentioned in Sect. 3, the greedy algorithm has a much smaller time complex-
ity than the dynamic programming algorithm. Its time complexity is O(n log n),
where n is the number of all possible choices. We evaluate the overhead of the
proposed scheduling algorithm with different numbers of objects in the scene.
The results in Fig. 8 show that the algorithm takes less than 12 ms for schedul-
ing 70 objects, which accounts for a small fraction of the scheduling period. It is
also worth noting that scheduling runs on the CPU, whereas machine perception
runs on the GPU. Thus, perception accuracy and throughput will not be affected
as long as the scheduling algorithm runs faster than the frame interval.

@ Springer

Real-Time Systems

12 1

10 1

Running Time (ms)

T T T T T T T T

0 10 20 30 40 50 60 70
Number of Objects

Fig.8 Scheduling overhead

5 Limitations and discussion

Optimizing real-time perception systems running on embedded platforms is a chal-
lenging technical problem. Our proposed algorithm can significantly improve the
trade-off between perception accuracy and response time. Nevertheless, there are
several limitations of our approach, especially using LiDAR as the cueing sensor.
First, we observe that the LIDAR sensor only covers a limited portion of the camera
scene. Specifically, the LiDAR only scans the lower half of the scene closer to the
ground. This is not a problem when the car is on flat ground. However, when there is
an uphill slope in front of the car, the LiDAR will fail to scan the objects at a higher
position. Second, the LiDAR sensor has a limited operating range. For example, the
long-range LiDAR used in the Waymo Open Dataset only covers a maximum of
75 meters. The camera is able to pick up very far away objects, but objects out of
the range will never be detected by the LiDAR. As a result, those objects will be
omitted when LiDAR cueing is used. Lastly, the LiDAR sensor is more sensitive
to the ambient environment, because of the physical properties of the laser beam.
The multi-path effect, the object surface type, and the weather can easily affect the
performance of the LiDAR. Because of these problems, using LiDAR as the cueing
sensor will inevitably affect the system’s performance. Instead, other more robust
but still fast cueing mechanisms can be used. The investigation of such cueing mech-
anisms remains an open research challenge.

6 Conclusion
We proposed a Real-Time task scheduling framework with image resizing for criti-

cality-based machine perception. We made the argument that resizing input images
(to enable the use of lighter inference models) is a powerful tool to manipulate

@ Springer

Real-Time Systems

resource demand for objects of different criticality. We applied empirical optimiza-
tions to adapt the framework to the imperfect and noisy segmentation results gener-
ated using a real LiDAR sensor. In addition to resizing, we allowed the scheduler to
merge nearby segments into one consolidated segment to prevent over-segmenta-
tion. We designed a new scheduling algorithm and evaluated our framework using
extensive experiments on a large-scale real-world autonomous driving dataset, the
Waymo Open Dataset. The evaluation demonstrated substantial improvements in
effectiveness and efficiency over the state of the art. We conclude that the use of
LiDARs as ranging sensors is a viable approach in practice for segmenting images
into smaller regions of different criticality in order to enable the implementation
of criticality-based machine perception. Specifically, we explored a solution where
resources are allocated differently at a sub-frame level by virtue of LiDAR-based
segment consolidation and resizing in a manner that reflects the criticality of objects
in the corresponding parts of the scene. The paper therefore confirms the practi-
cal feasibility of implementing criticality-based machine perception using sub-frame
resizing techniques.

Acknowledgements This research was sponsored in part by DARPA award W911NF-17-C-0099 and the
Army Research Laboratory under Cooperative Agreement W911NF-17-2-0196.

References

Abdelzaher T, Ayanian N, Basar T, Diggavi S, Diesner J, Ganesan D, Govindan R, Jha S, Lepoint T,
Marlin B, Nahrstedt K, Nicol D, Rajkumar R, Russell S, Seshia S, Sha F, Shenoy P, Srivastava M,
Sukhatme G, Swami A, Tabuada P, Towsley D, Vaidya N, Veeravalli V (2018) Toward an internet of
battlefield things: a resilience perspective. Computer 51(11):24-36

Alcon M, Tabani H, Kosmidis L, Mezzetti E, Abella J, Cazorla FJ (2020) Timing of autonomous driving
software: problem analysis and prospects for future solutions. In: 2020 IEEE real-time and embed-
ded technology and applications symposium (RTAS), pp 267-280

Bamburry D (2015) Drones: designed for product delivery. Des Manag Rev 26(1):40-48

Bar-Shalom Y, Tse E (1975) Tracking in a cluttered environment with probabilistic data association.
Automatica 11(5):451-460

Bateni S, Liu C (2018) Apnet: approximation-aware real-time neural network. In: 2018 IEEE real-time
systems symposium (RTSS), pp 67-79

Bhattacharya S, Lane ND (2016) Sparsification and separation of deep learning layers for constrained
resource inference on wearables. In: Proceedings of the 14th ACM conference on embedded net-
work sensor systems CD-ROM. SenSys *16. Association for Computing Machinery, New York, NY,
USA, pp 176-189

Bogoslavskyi I, Stachniss C (2017) Efficient online segmentation for sparse 3d laser scans. PFG J Photo-
gramm Remote Sens Geoinf Sci 85:41-52

Chen J, Yu S, Tabish R, Bansal A, Liu S, Abdelzaher T, Sha L (2021) Lidar cluster first and camera infer-
ence later: a new perspective towards autonomous driving. arXiv preprint arXiv:2111.09799

CUDA Concurrent Kernel Execution. https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.
html#concurrent-kernel-execution

Dai X, Yin H, Jha NK (2020) Incremental learning using a grow-and-prune paradigm with efficient neu-
ral networks. IEEE Trans Emerg Top Comput. https://doi.org/10.1109/TETC.2020.3037052

Denton E, Zaremba W, Bruna J, LeCun Y, Fergus R (2014) Exploiting linear structure within convolu-
tional networks for efficient evaluation

Floreano D, Wood RJ (2015) Science, technology and the future of small autonomous drones. Nature
521:460-466

@ Springer

Real-Time Systems

Han S, Mao H, Dally W.J (2016) Deep compression: compressing deep neural networks with pruning,
trained quantization and Huffman coding

Heo S, Cho S, Kim Y, Kim H (2020) Real-time object detection system with multi-path neural net-
works. In: 2020 IEEE real-time and embedded technology and applications symposium (RTAS), pp
174-187

Hu Y, Liu S, Abdelzaher T, Wigness M, David P (2021) On exploring image resizing for optimizing
criticality-based machine perception. In: 2021 IEEE 27th international conference on embedded and
real-time computing systems and applications (RTCSA). IEEE, pp 169-178

Jin Q, Yang L, Liao Z (2020) Adabits: neural network quantization with adaptive bit-widths. In: Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR)

Jung S, Son C, Lee S, Son J, Han J-J, Kwak Y, Hwang S.J, Choi C (2019) Learning to quantize deep net-
works by optimizing quantization intervals with task loss. In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition (CVPR)

Kellerer H, Pferschy U, Pisinger D (2004) The multiple-choice knapsack problem. Springer, Berlin, pp
317-347

Kim J-E, Bradford R, Shao Z (2020a) Anytimenet: controlling time-quality tradeoffs in deep neural net-
work architectures. In: 2020 design, automation test in Europe conference exhibition (DATE), pp
945-950

Kim J-E, Bradford R, Yoon M-K, Shao Z (2020b) Abc: abstract prediction before concreteness. In: 2020
design, automation test in Europe conference exhibition (DATE), pp 1103-1108

Lin T-Y, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollar P, Zitnick L (2014) Microsoft coco:
common objects in context. In: European conference on computer vision (ECCV)

Lin S-C, Zhang Y, Hsu C-H, Skach M, Haque ME, Tang L, Mars J (2018) The architectural implications
of autonomous driving: constraints and acceleration. SIGPLAN Not 53(2):751-766

Liu S, Yao S, Fu X, Tabish R, Yu S, Bansal A, Yun H, Sha L, Abdelzaher T (2020) On removing algo-
rithmic priority inversion from mission-critical machine inference pipelines. In: 2020 IEEE real-
time systems symposium (RTSS), pp 319-332

Liu S, Yao S, Fu X, Shao H, Tabish R, Yu S, Bansal A, Yun H, Sha L, Abdelzaher T (2021) Real-time
task scheduling for machine perception in intelligent cyber-physical systems. IEEE Trans Comput.
https://doi.org/10.1109/TC.2021.3106496

Milioto A, Vizzo I, Behley J, Stachniss C (2019) Rangenet++: fast and accurate lidar semantic segmenta-
tion. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE,
pp 4213-4220

Minnehan B, Savakis A (2019) Cascaded projection: end-to-end network compression and acceleration.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR)

Olmedo IS, Capodieci N, Martinez JL, Marongiu A, Bertogna M (2020) Dissecting the cuda schedul-
ing hierarchy: a performance and predictability perspective. In: 2020 IEEE real-time and embedded
technology and applications symposium (RTAS), pp 213-225

Otterness N, Anderson JH (2020) Amd gpus as an alternative to nvidia for supporting real-time work-
loads. 32nd Euromicro conference on real-time systems (ECRTS 2020), vol 165. Leibniz Interna-
tional Proceedings in Informatics (LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, pp 10-11023

Otterness N, Yang M, Rust S, Park E, Anderson JH, Smith FD, Berg A, Wang S (2017) An evaluation
of the nvidia tx1 for supporting real-time computer-vision workloads. In: 2017 IEEE real-time and
embedded technology and applications symposium (RTAS), pp 353-364

Sinha P, Zoltners AA (1979) The multiple-choice knapsack problem. Oper Res 27(3):503-515

Sun P, Kretzschmar H, Dotiwalla X, Chouard A, Patnaik V, Tsui P, Guo J, Zhou Y, Chai Y, Caine B, Vas-
udevan V, Han W, Ngiam J, Zhao H, Timofeev A, Ettinger S, Krivokon M, Gao A, Joshi A, Zhang
Y, Shlens J, Chen Z, Anguelov D (2020) Scalability in perception for autonomous driving: Waymo
open dataset. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion (CVPR)

Wang Y, Xu C, You S, Tao D, Xu C (2016) Cnnpack: packing convolutional neural networks in the fre-
quency domain. In: Lee D, Sugiyama M, Luxburg U, Guyon I, Garnett R (eds) Advances in neural
information processing systems, vol 29. Curran Associates, Inc

Yang M, Otterness N, Amert T, Bakita J, Anderson JH, Smith FD (2018) Avoiding pitfalls when using
nvidia gpus for real-time tasks in autonomous systems. In: Altmeyer S (ed) 30th Euromicro confer-
ence on real-time systems (ECRTS 2018), vol 106. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp 20-12021

@ Springer

Real-Time Systems

Yang M, Wang S, Bakita J, Vu T, Smith FD, Anderson JH, Frahm J-M (2019) Re-thinking cnn frame-
works for time-sensitive autonomous-driving applications: addressing an industrial challenge. In:
2019 IEEE real-time and embedded technology and applications symposium (RTAS), pp 305-317

Yao S, Zhao Y, Zhang A, Su L, Abdelzaher T (2017) Deepiot: compressing deep neural network struc-
tures for sensing systems with a compressor-critic framework. In: Proceedings of the 15th ACM
conference on embedded network sensor systems. SenSys ’17. Association for Computing Machin-
ery, New York, NY, USA

Yao S, Zhao Y, Zhang A, Hu S, Shao H, Zhang C, Su L, Abdelzaher T (2018a) Deep learning for the
internet of things. Computer 51(5):32—41

Yao S, Zhao Y, Shao H, Liu S, Liu D, Su L, Abdelzaher T (2018b) Fastdeepiot: towards understanding
and optimizing neural network execution time on mobile and embedded devices. In: Proceedings
of the 16th ACM conference on embedded networked sensor systems. SenSys *18. Association for
Computing Machinery, New York, NY, USA, pp 278-291

Yao S, Hao Y, Zhao Y, Shao H, Liu D, Liu S, Wang T, Li J, Abdelzaher T (2020) Scheduling real-time
deep learning services as imprecise computations. In: 2020 IEEE 26th international conference on
embedded and real-time computing systems and applications (RTCSA), pp 1-10

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Yigong Hu received the BS degree from Shanghai Jiao Tong Uni-
versity and the MS degree from Columbia University, in 2018 and
2020, respectively. He is currently working toward a Ph.D. degree
in computer science at the University of Illinois at Urbana-Cham-
paign (UIUC). His current research interests include intelligent
Real-Time Systems, Internet of Things (IoT), and Cyber-Physical
Systems (CPS).

Shengzhong Liu is currently a postdoc research associate at the
University of Illinois at Urbana-Champaign (UIUC). He received
his Ph.D. from UIUC in 2020. His current research interests include
machine learning for Internet of Things (IoT) and Cyber-Physical
Systems (CPS), intelligent real-time systems, deep sensor fusion,
and social network analysis.

@ Springer

Real-Time Systems

Tarek Abdelzaher (Ph.D., UMich, 1999) is a Sohaib and Sara Abbasi
Professor of Computer Science and a Willett Faculty Scholar at the
University of Illinois, with over 300 refereed publications in Real-
time Computing, Distributed Systems, Sensor Networks, and IoT,
and an H-index of 94. He served as Editor-in-Chief of the Journal of
Real-Time Systems for 15 years, and as an Associate Editor of mul-
tiple journals including IEEE TMC, IEEE TPDS, ACM ToSN,
ACM TIoT, and ACM TolT. He also chaired several top conferences
in his field, including RTSS, Sensys, Infocom, ICDCS, IPSN,
RTAS, DCoSS, and ICAC. Abdelzaher received the IEEE Outstand-
ing Technical Achievement and Leadership Award in Real-time
Systems (2012), a Xerox Research Award (2011), and several best
paper awards. He is a fellow of IEEE and ACM.

Maggie Wigness Maggie Wigness is a Senior Computer Scientist at
the U.S. Army Combat Capabilities Development Command (DEV-
COM) Army Research Laboratory (ARL). She earned her Ph.D. in
Computer Science from Colorado State University in 2015. Maggie
has led and shaped research directions in many ARL collaborative
alliances including the Robotics Collaborative Technology Alliance,
the Scalable, Adaptive, and Resilient Autonomy Collaborative
Research Alliance (CRA), and most recently as the Collabora-
tive Alliance Manager for the Internet of Battlefield Things CRA.
Maggie’s research efforts are in the cross-section of machine learn-
ing, computer vision, edge computation, and robot autonomy.

Philip David received the B.S. (1985) and Ph.D. (2006) in computer
science from the University of Maryland, College Park. Since 1985,
he has worked as a scientist in the Computational and Informa-
tion Sciences Directorate of the U.S. Army Research Laboratory.
His research is focused on providing visual perception and intelli-
gent planning capabilities to small mobile robots. Dr. David is the
author of several peer-reviewed publications spanning the areas of
3D object recognition, GPS-denied localization, machine learning,
and vision and LIDAR-based perception for unmanned ground
vehicles.

@ Springer

Real-Time Systems

Authors and Affiliations

Yigong Hu' - Shengzhong Liu' - Tarek Abdelzaher' - Maggie Wigness? -
Philip David?

Shengzhong Liu

sI29 @illinois.edu

Tarek Abdelzaher
zaher @illinois.edu

Maggie Wigness
maggie.b.wigness.civ@army.mil

Philip David
philip.j.david4.civ@army.mil

University of Illinois at Urbana-Champaign, Champaign, USA
2 US DEVCOM Army Research Laboratory, Adelphi, USA

@ Springer

