Multi-View Scheduling of Onboard Live Video
Analytics to Minimize Frame Processing Latency

Shengzhong Liuf, Tianshi Wang!, Hongpeng Guof, Xinzhe Fut,
Philip David®, Maggie Wigness®, Archan Misra*, Tarek Abdelzaher!
tUniversity of Illinois at Urbana-Champaign, ¥Massachusetts Institute of Technology,
$US Army Research Labs, *Singapore Management University
Email: {s]29, tianshi3, hg5} @illinois.edu, xinzhe @mit.edu,
{philip.j.david4.civ, maggie.b.wigness.civ} @mail.mil, archanm@smu.edu.sg, zaher@illinois.edu

Abstract—This paper presents a real-time multi-view schedul-
ing framework for DNN-based live video analytics at the edge
to minimize frame processing latency. The work is motivated by
applications where a higher frame rate is important, not to miss
actions of interest. Examples include defense, border security,
and intruder detection applications where sensors (in this paper,
cameras) are deployed to monitor key roads, chokepoints, or
passageways to identify events of interest (and intervene in real-
time). Supporting a higher frame rate entails lowering frame pro-
cessing latency. We assume that multiple cameras are deployed
with partially overlapping views. Each camera has access to
limited onboard computing capacity. Many targets cross the field
of view of these cameras (but the great majority do not require
action). We take advantage of the spatial-temporal correlations
among multi-camera video streams to perform target-to-camera
assignment such that the maximum frame processing time across
cameras is minimized. Specifically, we use a data-driven approach
to identify objects seen by multiple cameras, and propose a
batch-aware latency-balanced (BALB) scheduling algorithm to
drive the object-to-camera assignment. We empirically evaluate
the proposed system with a real-world surveillance dataset on
a testbed consisting of multiple NVIDIA Jetson boards. The
results show that our system substantially improves the video
processing speed, attaining multiplicative speedups of 2.45x to
6.85 %, and consistently outperforms the competitive static region
partitioning strategy.

Index Terms—Edge Computing, Live Video Analytics, Collab-
orative Sensing

I. INTRODUCTION

This paper introduces a scheduling framework that opti-
mizes the frame processing latency for DNN-based analytics
of live video streams associated with a multi-camera infras-
tructure deployment, where an overall region is collectively
monitored by a set of cameras with partial spatial field-of-
view (FoV) overlaps (e.g., CityFlow [1]). One such example
is shown in Figure 1. The work is motivated by defense
and security applications that push an increasing amount of
autonomy to the edge. For example, in a future conflict,
cameras might be deployed around key roads and chokepoints
to identify unauthorized or trespassing targets. The areas
surveyed by these cameras might see a lot of traffic. Only
targets of interest require immediate responding actions. The
decision of whether a target is “of interest” requires processing
the video by a DNN (such as YOLO) to identify target type.

Faster frame processing speed not only improves the object
recognition and tracking fidelity, but also helps reduce the end-
to-end system response delay to physical events.

Centralized video processing approaches [2]-[5], where
camera video streams are transferred for DNN execution to
a powerful cloud server, impose significant bandwidth and
energy overheads and also suffer from higher communication
latency and privacy concerns. Accordingly, we consider a
decentralized computing paradigm, where the captured high-
quality video frames are processed by each individual camera
node, using limited onboard computing capacity, likely includ-
ing a lower-end GPU. Our general idea is to reduce the DNN
execution latency by eliminating the redundant DNN pipeline
inspections, on multiple cameras, on such overlapping regions.
Recent approaches [6], [7] for eliminating or minimizing
such redundant DNN inspections have utilized a static, spatial
partitioning approach to turn off some of the cameras. In
contrast, we propose a finer-grained object-level, workload-
aware, latency-balancing approach, where the responsibility
for tracking distinct objects in the overall shared region, is
dynamically and periodically redistributed among the set of
collaborating cameras. It is motivated by two key limitations
observed with the static approaches:

o The overall frame processing latency of an individual cam-
era, proportional to the number of objects it currently tracks,
shows significant variability across time. As an illustration,
Figure 2 plots the number of objects/frame (sampled once
every 2 secs) across the FoV of 5 distinct cameras in Fig-
ure 1: both the absolute workload of individual cameras, and
the relative workload between camera pairs show significant
temporal variation.

o Due to the opportunistic, progressive nature of such in-the-
wild infrastructure deployments, there is often significant
heterogeneity in the processing capability across cameras—
e.g., the memory capacity and GPU cores available. As a
result, an identical object-level workload may generate very
different processing latency on distinct devices.

Our proposed approach for low-latency, distributed execu-
tion is built on two inter-related concepts.

Low-latency DNN execution. First, we reduce the average

Fig. 1: An example of camera view overlaps. We use yellow boxes to highlight an object observable to every camera.

—— Cam2 —— Cam3 —— Cam4 —— Cam5

N

o
o
o
3
=

Object Number
=
o

o

0 25 50 75 100 125 150 175 200
Time (s)

Fig. 2: Temporal variation of object workload across cameras.

computation load by running full-frame DNN inspection (a
comparatively high latency task) only sporadically, e.g., once
per second, and use motion flow-based estimation techniques
to confine the DNN inspection on remaining frames to only
extracted salient regions (an approximate area around each
detected object that the camera is responsible for). Figure 3
illustrates this mechanism of full-vs.-partial frame inspec-
tion. It eliminates the needs for repetitive DNN scanning on
background regions and reduces the frame processing latency
to a degree that is proportional to the number of tracked
objects. Second, we accelerate the DNN inference on GPUs by
leveraging the task batching mechanism [8], [9] (see Figure 4)
to process multiple confined partial frames with the same
size in parallel on the GPU, thereby achieving notably lower
latency than the traditional serialized processing approach.

Dynamic latency-balancing scheduling. We dynamically
partition the tracking workloads of objects in the overlapped
regions among cameras to balance their frame processing
latency under batched execution. Different from the static par-
titioning strategy, our approach performs a load-and-resource
aware assignment of object tracking responsibilities across the
camera nodes, taking both the hardware processing capacity
and relative object tracking workload, into the consideration.
It minimizes the processing latency on heavy-loaded cameras,
by skipping tracking objects in the overlapping regions, which
are instead tracked by light-loaded cameras.

Specifically, we formulate the scheduling problem that

decides the object-to-camera assignment as a multi-view
scheduling (MVS) problem with task batching. It seeks to
minimize the maximum processing latency - the time it takes
to process a frame - across all cameras. We prove the MVS
problem to be strongly NP-hard, and correspondingly propose
a batch-aware latency-balanced (BALB) scheduling algorithm
to approximately solve it.

The BALB algorithm employs a hybrid centralized-cum-
distributed scheduling mechanism to intelligently utilize the
observed spatial redundancy to reduce and distribute the
object tracking workload (latency) across the collective set of
camera nodes. First, all cameras communicate with a central
scheduler, which can be an edge node. After a full frame
inspection, each camera uploads its list of detected objects to
the central scheduler. The central scheduler first associates the
detected bounding boxes and identifies the common objects
across cameras, and then runs a central stage of the BALB
algorithm to derive an initial object-to-camera assignment. The
individual computing capacities and inspection workload of
cameras, as well as the task batching opportunities are all
considered in the optimization.

To additionally tackle the unforeseen object dynamics be-
tween such periodic assignments (such as a new object enter-
ing the monitored region), in between full-frame inspections,
each camera independently runs a distributed stage of the
BALB algorithm to decide whether to track a new object or
not. To minimize the need for frequent, per-frame communi-
cation, this distributed scheduler employs spatial partitioning
to update the assignment for new objects and apportions the
responsibility for tracking such object dynamics.

We implement the proposed scheduling framework on a
testbed consisting of multiple heterogeneous NVIDIA Jetson
(Nano, TX2, Xavier) boards. We comprehensively evaluate
the system performance using the AI City Challenge 2021
(AIC21) multi-camera video surveillance dataset [1], [10].
The results show that our system consistently improves the
frame processing speed by by 2.45x to 6.85X, at the cost

Object
Detector
on GPU

Input Image Output Bbox

Object
Detector
on GPU

B—a

GPU Reg. 2 GPUReq. 1

Full-Frame Inspection

Object
Detector
on GPU

% Input

Image

Partial-Frame Inspection

Fig. 3: Full-frame inspection vs. partial frame inspection.

Serialized Execution

»

GPU Req. 1

Object
Detector
on GPU

Batch Det.

Batched Execution
Fig. 4: Serialized vs. batched exec.

~

P
I,,Camera il Detected a= Central Scheduler
Full Frame Image Detection Objects o=
g Model 1) l
Camera ¢y Camera ¢, Camera cy
Optical Flow Assigned Objects Prediction |—> Task ObJrCtS Objects ObjrCtS
Estimation New Regions [{ Distributed BALB |>| Batching
A
T
'Camera cy Detected Cross-Camera Object Association
Ii . A Objs
Full Frame Image Detection Objects oS 0 0, on
Model @& boxy; | boxi, None
4—| cy boxyy None box,y
Optical Flow Assigned Objects Prediction |—) Tl - -
a q " N
Estimation New Regions | >{ Distributed BALB }» Batching toLm e ot
A
1
thamera M Detected Central BALB
Detection Objects Scheduler
Full Frame Image %{ Model
E j Optical Flow Assigned Objects Prediction |—) Tl O/I:;ject—Camera Camera Mask
A A q ssighment
Estimation New Regions [{ Distributed BALB |>| Batching gl I
A A J
[[I

Scheduling Decisions

Fig. 5: Framework overview. For the block colors: The tracking-based slicing module is highlighted in orange, the cross-camera
association module is shown in purple, and the BALB scheduler related operations are highlighted in green.

of minor degradation on detection quality. We also show that
this dynamic, object-level scheduling approach is superior to
a competitive static spatial partitioning baseline, providing an
average of 1.88x reduction in processing latency.

The rest of this paper is organized as follows: We first
give an overview of the proposed framework in Section II.
In Section IIlI, we formulate the scheduling problem and
introduce the proposed BALB algorithm. Evaluations results
are presented in Section IV. After discussing the limitations in
Section V and reviewing the related literature in Section VI,
we conclude the whole paper in Section VII.

II. SYSTEM ARCHITECTURE

In this section, we first give a brief overview of the proposed
architecture, then introduce the individual components that
constitute our system.

A. System Overview

Assume we have a set of static cameras deployed around
a local area, such as a shopping mall or a traffic intersection.
The cameras share complementary views to obtain compre-
hensive perception of the target area. They capture image

frames regularly at the same frequency, e.g., 10FPS. Further,
their views are partially overlapped so one object may be
simultaneously observable from multiple cameras. One such
example is given in Figure 1. Each camera is equipped with
limited computing capacity, e.g., low-end GPUs, so they can
run object detection and tracking locally. Each object needs
to be localized, classified, and tracked at every frame. Since
deep neural detection models, like YOLO [11], are resource
consuming, we regard them as the main workload to optimize.
The heterogeneous computing resources among cameras might
lead to different DNN processing speed. The detection model
accepts input images with various spatial sizes and batch sizes
(i.e., number of images in a batch), where smaller images
achieve shorter execution latencies. Only the images with the
same spatial sizes can be put into a single batch.

The objective of the scheduling is to achieve real-time live
video analytics on cameras under limited computing capacity
and network bandwidth. We assume that, on one hand, the
onboard GPUs are not powerful enough to process every
full camera frame in real-time, because running the detection
model on the full frames takes longer than the camera sam-

pling interval. On the other hand, the cameras do not have
enough network bandwidth to stream high-resolution videos
to the cloud in real-time for centralized processing.

We optimize the analytics efficiency by taking advantage of
the spatial-temporal correlations in multi-view video streams
to reduce the workload, and by applying effective task batching
on GPUs to accelerate the DNN inference. An overview of the
proposed system is given in Figure 5. Instead of running full-
frame inspection on every sampled image, we only run it on
some frames (which we call the key frames, blue arrows in
Figure 5) at a fixed low frequency (e.g., once per second). At
the remaining frames (which we call the regular frames, black
arrows in Figure 5), we run a set of partial-frame inspections to
search the exact object locations around their approximately
predicted locations. The period of frames between two key
frames is called a scheduling horizon. When an object appears
in multiple cameras, we only schedule one camera to track it.
We refer to the scheduling decision about the subsets of objects
each camera track as the object-camera assignment, which
should consider both the latency balancing among cameras
and GPU task batching opportunities at each camera. It is
comprised of three main modules:

« Tracking-based image slicing: At regular frames, we
slice frames into partial regions around predicted object
locations, according to the projection from a tracking
algorithm, and the regions outside the regions of interest
are not inspected by the DNN.

« Cross-camera object association: We associate individ-
ually detected object bounding boxes across cameras to
identify the common objects, and further reduce redun-
dant tracking of the same object.

o Multi-view scheduling: We decide the subset of objects
to track by each camera and their corresponding batching
decisions, to minimize the maximum camera latency.

B. Optical Flow-based Tracking and Image Slicing

We apply the optical flow-based tracking algorithm in [12].
It follows a general tracking-by-detection paradigm [13],
where object tracking is achieved by first detecting all objects
in the new frame and then associating them with previ-
ously tracked object trajectories based on the location over-
laps [14], where applicable. The approach uses an optical
flow model [15] to predict the current locations for previously
detected objects. Optical flow estimates the pixel motions
between two input images. Optical flow-based tracking effec-
tively combines the object location information in the previous
frame and the pixel motion information extracted from the
new frame. Since the input images in a batch should have the
same spatial size, the predicted object locations are expanded
to the nearest size in a quantized set to increase the batching
opportunities. The quantized size is fixed for each object
within a scheduling horizon, and downsizing is performed if
the object size grows beyond it.

Besides, the estimated pixel motions can be used to roughly
identify newly appeared objects at regular frames. Since we
assume the cameras are statically mounted, the pixel motions

in optical flow are purely caused by the object movements.
In this paper, we define the clusters of moving pixels that do
not belong to any predicted bounding box for existing objects
as a new region, where a new object may appear. We also
feed these regions into the object detection model to detect
newly appeared objects. By doing so, we are able to detect
new objects at their first appearance, instead of waiting until
the next full-frame inspection.

C. Cross-Camera Object Association

We next explain how we perform cross-camera object
associations. The objective of this module is to identify
common objects that appear in the view of multiple cameras.
Specifically, the algorithm associates a detected object by one
camera to the detected objects by the remaining cameras.
We only consider pixel location-based association approaches,
because semantic feature-based association approaches are
typically complicated which can not run in real-time on
resource constrained cameras. As the angles of camera views
might present huge difference (as shown in Figure 1, the
differences of angles among camera 1, 2, 3, 4 are 90° or
180°), it is hard to use conventional vision techniques such as
homography transformation to directly map the pixel locations
of an object from one camera to another camera. However,
since the cameras are statically mounted, the mapping relations
of objects among cameras are fixed, except that the size (width,
length, and height) and facing direction of objects can change'.
Motivated by [16], we design a data-driven approach to fit the
location mapping relations between the cameras.

As the detected object location is represented by a pixel-
level rectangular bounding box, we use P;; to denote the
bounding box of the j-th object on camera c;. To calculate the
corresponding bounding box of P;; on camera ¢’, our method
works in three steps. First, we run a classification model to
determine whether P;; appears in the view of camera c;/. If the
prediction is negative, we terminate this process. Otherwise,
we move to the second step. Second, we use a regression
model to predict the mapped location of P;; on camera ¢/,
denoted as]5;; For both classification and regression models,
we use a non-parametric K-Nearest Neighbors (KNN) model.
It works as a special lookup table which uses the nearest
case(s) in the memory to generate the prediction. Third,
having [:’j; as the predicted location of P;; on camera c;,
we then calculate the proximity between PZJ/ and all the
detected objects on camera c¢;; based on their area overlaps
(i.e., intersection over union). We run a Hungarian algorithm
to find the most proximate detected object on camera c;; to
151’; The bounding box F;/;; with the maximum proximity and
within a preset threshold will be taken as the matching of P;;.
At this point, the detected object P ; at camera c; and P;;
at camera c; are taken as the same object. The association
procedure is illustrated in Figure 6.

Assume we have a list of M cameras in total, we iterate over
the list, and run the cross-camera object association for camera

IThese 3D factors can lead the mapping of 2D bounding boxes between
cameras to be non-linear, which makes homography fail.

KNN
Regression

Step 1

Step 2

N3
AN

View from Camera c;

Bounding Box
Matching

Output

Step 3

Fig. 6: Cross-camera object association. To match P;; from camera c¢; to camera cy, the algorithm runs three steps: (1) We
use a k-nearest neighbors classification (KNN-classification) model to determine whether P;; appears on camera cs. (2) We
use another KNN-regression model to predict the estimated pixel locations of the object on camera ¢z, which is 15121. (3) We
calculate the proximity of all the detected bounding boxes on camera cy to IBZ; Finally, P;; is matched with Pay.

c¢; with every camera c;; behind it in the list, ie., i’ > i. A
round of cross-camera object association terminates when all
the detected objects by each camera have been matched with
the detected objects on all remaining cameras. The associated
object list will be passed to the multi-view scheduling module.

Howeyver, to train the aforementioned classification and re-
gression models in offline, we need to first collect a supervised
training dataset with human labels associating same objects
across cameras for each deployment scenario, such that the
knowledge can be passed to the machine learning models to
recognize whether the object in one camera also appears in
another camera, and where it appears. The estimated camera
poses and their spatial correlations are automatically encoded
in the two models. It only works with static camera deploy-
ment, and will require the model retraining when the camera
pose changes. We acknowledge the human effort involved in
the labeling process, and list it as one of our future works to
achieve the automatic classification/regression model training.
For example, during the training stage, we can utilize the
prediction from a reliable semantic-based ReID model [17] as
the groundtruth labels to train the lightweight location-based
models for real-time deployment.

D. Multi-View Scheduling

After we obtain the associated object list, the remaining
problem becomes how to assign objects to cameras for track-
ing, such that the maximum execution time among cameras
is minimized. We formulate it as a multi-view scheduling
(MVS) problem, and correspondingly propose a two-stage
batch-aware latency-balanced (BALB) scheduling algorithm to
solve it. It considers both the latency balancing among cameras
and the task batching opportunities on GPU. The cameras track
and batch the assigned objects according to the scheduling
decisions. The details will be explained next.

III. MULTI-VIEW SCHEDULING

In this section, we first describe the task execution model,
and then formulate the multi-view scheduling (MVS) prob-
lem. Finally, we introduce the batch-aware latency-balanced
(BALB) algorithm, to solve the formulated MVS problem.

A. Object Detection Task Model

Assume we have a camera set C = {c1,¢2,...,¢i,...CMm}
consisting of M cameras equipped with heterogeneous com-
puting capacities. They monitor a local area with overlapped
views, and run object detection models (e.g., YOLO [11])
(along with a lightweight tracking algorithm) to track the
appeared objects. A fixed number of 7' frames are captured
within a scheduling horizon, including a key frame and 7" — 1
regular frames. At start of the scheduling horizon, a set of
N physical objects O = {01, 09,,on} are detected
from the latest full-frame inspection, and their locations on
each camera are identified (if appear) after running the cross-
camera object association on a central scheduler. However, the
object set O may evolve during a scheduling horizon since new
objects may arrive and existing objects may leave. We want to
track the locations of all appeared objects, through scheduling
partial-frame inspection tasks on the cameras. We define the
coverage set C; C C of an object o; as the subset of cameras
that can see it. The object can be tracked from any camera
ce Cj.

Each object o; is associated with a target size s;; at each
camera ¢; € C;, which defines the size of the partial regions
where we will search the object. The target size for the same
object can be different among cameras, but it is fixed in a
scheduling horizon (with possible downsizing) on the same
camera. Since we can only batch input images with the same
size on GPUs, we quantize the target sizes (by expanding the
regions) to a limited set S = {s1, ..., Sk } to increase batching

.,Oj,.

opportunities. Given a target size s, at most I3} partial regions
can be batched and processed in parallel on camera c;, which
is called the batch limit of target size s on ¢;, and the incurred
latency is t, correspondingly?. The batch limit for the same
target size can be different across cameras.

B. Scheduling Problem Formulation

We assume partial regions corresponding to different frames
are processed sequentially without cross-frame batching. Here
we focus on formulating the scheduling problem for a single
frame. Before that, we first define the camera latency below.

Definition 1 (Camera Latency). Given a camera c;, its latency
L; is defined as the sum of execution latencies of all its batches
belonging to one frame. No preemption is allowed during
batch executions.

We further define the system latency L as the maximum
latency among all cameras in set C, i.e., L = max; L;. The
scheduling problem we study is to derive a feasible assignment
X between cameras and objects such that the system latency is
minimized. The feasible assignment is formally defined below.

Definition 2 (Feasible Assignment). An assignment between
a set of cameras C and a set of objects O is a matrix
X € M x N, where z;; € {0,1} indicates whether camera
c; tracks object oj. An assignment is feasible if it satisfies
two conditions: (1) Each object is tracked by at least one
camera that can see it, i.e., Zciecj x5 > 1, Vj. (2) No
object can be tracked by a camera that can not see it, i.e.,
2cieene; Tij =0,V

Given a feasible assignment, it would be trivial to convert
it to the optimal batch sequences at each camera to achieve
the minimum latency. The camera latency only depends on
the number of batches for each target size. We derive the
optimal batch sequence on each camera by batching objects
with the same target size in a greedy manner, which apparently
minimizes the number of used batches. Each target size is
independently batched. Thus, a feasible assignment uniquely
decides the corresponding optimal system latency. We then
formally define the multi-view scheduling (MVS) problem
below.

Definition 3 (Multi-View Scheduling Problem). The Multi-
View Scheduling (MVS) problem asks for a feasible assignment
between camera set C and object set O such that the system
latency L is minimized.

We establish the computational complexity of the MVS
problem in Claim 1.

Claim 1. The MVS problem is strongly NP-hard.

Proof. We prove by reducing the bin packing problem to the
MVS problem. We first constraint the MVS problem to an

2 Although batching too many images would lead to a non-ignorable
increase in execution latency, we operate in a region where the execution
time changes only slightly with batching (before an inflection point is reached
where the slope increases). We correspondingly set the execution time at the
batch limit as the batch execution latency ¢7.

identical machine scheduling (IMS) problem by adding the
following constraints: 1) The batch limit is always one (i.e.,
no batching is allowed); 2) Every object can be seen from all
cameras, thus can be assigned to any camera; 3) All cameras
have the identical processing speed; 4) Each object has the
same target size across all cameras, so its execution latency is
the same on different cameras. Minimizing the system latency
in the IMS problem can be converted to an equivalent decision
problem: Given a time budget 7', can we finish processing
assigned objects on all M cameras? If we consider M identical
cameras as M bins with capacity 7" and regard the IV objects
as IV items with their execution latency defined as the item
size, then the decision version of assigning objects to cameras
becomes a standard bin packing problem, which has been
proved to be strongly NP-hard [18]. The claim follows. [J

We next propose an efficient algorithm that approximately
solves the multi-view scheduling problem.

C. Batch-Aware Latency-Balanced Scheduling Algorithm

The scheduling decisions can not be made statically at
offline, because the number of appeared objects dynamically
change the latency of cameras at runtime, which further affects
the optimal object-camera assignment. In addition, the object
set O may evolve within a scheduling horizon, making the
scheduling more challenging. A camera is unaware of new
object arrivals at other cameras unless the new object appears
in a region that both cameras can see it simultaneously. From
the optimization perspective, the updated object list at cameras
should be uploaded to the central scheduler at every frame,
to produce the updated assignment. However, too frequent
camera-scheduler communication may slow down the process-
ing significantly. From the scheduling efficiency perspective,
we should design a fully distributed mechanism which runs
independently at each camera, so that no waiting happens at
cameras. However, it ignores the unbalanced latency among
cameras, and will produce inferior assignment.

We observe that objects appear and disappear at a low fre-
quency compared to the camera sampling frequency [12]. We
thus propose the Batch-Aware Latency-Balanced (BALB)
scheduling algorithm that works in two stages, as illustrated
in Figure 5. We run a central stage on the central scheduler
at each key frame to produce an initial assignment based on
the associated object list, and then run a distributed stage
independently on each camera at each regular frame to update
the assignment based on the change of appeared object set. The
potential imbalance produced by the distributed stage will be
corrected by next central stage in a few frames.

1) Central Stage: After a full-frame inspection, the cameras
upload the list of their detected objects to the central scheduler.
The central stage algorithm takes the associated object list as
input to produce the initial assignment. It works in a batch-
aware latency-balanced manner to fully exploit the camera
view overlaps and task batching mechanisms on GPUs.

We initialize the camera latency as their corresponding full-
frame inspection time /"', and then minimize the maximum

Size s Size s,

Current: “ 04

i 0;
Object o05. 05 Batch 2
Coverage set: Limit
fcr,c2}
Target size:
{c1:51, €208} Camera ¢ Camera ¢, Camera c3

Step 3: We assign 03 to ¢q, because there is an incomplete batch of size s4.

Size 51 Size s3 Size s,
Current: 0y
Object o,. 03 Bat 02
Coverage set: 04 Tmit 04
{c1, 2,03},
Target size:
{c1:53,¢2:53,¢3: 53} Camera ¢ Camera ¢, Camera c3

Step 4: We assign 04 to ¢, , because it has the min load after including oy .

Fig. 7: In BALB central stage, we use examples to explain when we assign an object to an incomplete batch and when we
need to start a new batch. For simplicity, we assume each object has the same target size at each camera.

Algorithm 1: Central Stage BALB Algorithm
Input: Object coverage sets Cq,...,Cy, camera
execution latencies ¢;, and batch limits B,
Vs € §,V¢; € C.
Output: Feasible assignment X, camera latency L
1 Initialize: x;; := 0, Vi,j, L; := t{"”7 Vi 3
2 Reindex the objects 0; € O by non-decreasing order of
IC;| (ties broken in favor of larger target size);
3 for o; € O (after object reindexing) do

4 C; == {ci|c; € C; and 3 incomplete s;; batch};

5 if [C}| > 0 then

6 ¢;» := The camera in C§- with the largest
relative capacity in the incomplete s;; batch;

7 Tixj =].;

8 end

9 else

10 i 1= argming ec; Li + 9

11 Tixj o=]., Li* = Li* + tfi*j;

12 end

13 end

14 Return the assignment X and the camera latency L;

camera latency through maintaining a good latency balancing
property among cameras during the process. We try to assign
each object to a camera in a single pass. The idea is motivated
by the following observation: For an object o;, the more
cameras can see it, the more flexibility we have in scheduling
its tracking. Therefore, we start with assigning objects that are
observable from only one camera, which have a deterministic
assignment. After that, we gradually assign objects with more
flexibility (i.e., larger coverage sets). When assigning an object
0j, we try to maximally batch tasks. We will not start a new
batch for o; as long as there exists a camera ¢; € C; that
has an incomplete batch (i.e., the batched image count is
below the batch limit) for target size s;;. If there are multiple
cameras with incomplete batches, we choose the one with the
maximum batch capacity, which is defined below.

Definition 4 (Batch Capacity). Given an incomplete batch
with b batched images, the batch capacity is defined as BC' =
B — b > 0, where B is the corresponding batch limit.

Otherwise, we have to start a new batch for o;. In this case,
we select the camera that has the minimum updated latency
after including the new batch. It is different from assigning

o

1 c1 c1 1 1 1 c1 Cy Cy Cy 4 1 c3
= ——
€y 4lsc3 C3 €1 €1 €1 [=Cq €1 €1 €1 € € | €3

Camera c¢; Mask Camera ¢, Mask

Fig. 8: The camera masks. We assume the (increasing) latency-
based camera order is: c3 > ¢; > co. Each camera only tracks
new objects at cells that are unobservable from higher priority
cameras. If we regard the blue vehicle as a new object, camera
cq1 will track it.

o0; to the camera with the minimum current latency because
the inspection latency for the same object may be different
among cameras due to different target sizes and heterogeneous
GPU speed at cameras. The details of the proposed central
stage BALB algorithm are summarized in Algorithm 1, and
an illustrative example is given in Figure 7. It has a low
computation complexity as max(O(N log N), O(MN)). One
limitation in the current BALB algorithm is that we do not
consider whether one camera may be able to track the same
object for a longer period that other cameras, according to the
object moving patterns.

2) Distributed Stage: The distributed stage independently
runs at each camera to update the assignment for newly
appeared objects and objects that disappear on their originally
assigned cameras. The assignment of the remaining objects
are unchanged. The objective of this stage is to first guarantee
that each appeared object is tracked by at least one camera,
and then optimize the efficiency as much as we can.

Algorithm 1 can not be directly used because the cameras
do not know the exact latency and task batching conditions
on other cameras. Although the batch limit on each camera is
known in advance, the object arrival and leaving information
is not shared among cameras, so we can not consider batching
in the distributed stage scheduling. To make sure the cameras
make consistent decisions under no communications, we have
to rely on fixed policies that work in a self-organized way.
Specifically, we sort the cameras in increasing order of their
assigned latency by Algorithm 1, and use that order as the fixed
camera priority to assign objects. This order is determined
at the central stage and will be fixed during the scheduling
horizon. Each camera only tracks new objects at regions that
are unobservable from all higher priority cameras.

We apply the policy to two situations. First, we define new

objects as objects that arrived after the last key frame. New
objects enter the view of different cameras asynchronously.
Therefore, we dynamically update their assignment at each
frame. Specifically, we choose the camera from its coverage
set that has the highest priority to track it at each frame.
Second, existing objects exit the view of different cameras
asynchronously. When an object leaves its assigned camera,
other cameras that can see it should take over its track-
ing. Specifically, at each camera, for each existing object
that was not assigned to it, we test whether the object has
disappeared on its assigned camera but is still observable
from this camera. If yes, we select the camera with the
highest priority from its new coverage set to take over its
tracking. This decision is made automatically at each camera
without cross-camera communication, because they base on
the synchronized information (i.e., cell masks) to make the
decision. The computation complexity of the distributed-stage
scheduling algorithm is only O(N).

In both cases, the camera will automatically start tracking
the object if itself is selected, without communication cost. In
the implementation, we compute a mask for each camera after
the central stage, as shown in Figure 8, which indicates regions
where the camera should track the new objects. We first divide
the camera frame into a grid of pixel-level cells, and compute
the coverage set for each cell. The computation of the coverage
set for each cell relies on the cross-camera classification and
regression models, thus only works with static camera poses.
The approach combines the information of camera coverage
overlaps with the current estimation of camera load. We then
choose the camera with the highest priority to cover the cell.
In the distributed stage, the new objects, or objects that exit
their assigned cameras, are automatically assigned according
to the camera masks.

IV. EXPERIMENT

In this section, we evaluate the proposed scheduling frame-
work on a testbed consisting of various Jetson models with
the Al City Challenge 2021 (AIC21) dataset.

A. Implementation and Experimental Setup

1) Testbed: We implement the system on a heterogeneous
edge testbed consisted of 5 NVIDIA Jetson devices: 2x Jetson
Xavier, 2x Jetson TX2, and 1x Jetson Nano. Figure 9 shows
the hardware platform we used. Each device corresponds
to a smart camera. They are deployed in an off-campus
building, and connected to the central scheduler through wired
network (100Mbps Downlink, 20Mbps Uplink). We deploy
the central scheduler to a desktop with Intel 19960x CPU
located in a campus building. We did not explicitly experiment
with wireless network in this paper and leave it as a future
investigation. We utilize TCP socket programming for reliable
data communication between the edge devices and the central
scheduler.

2) Dataset: We evaluate the system with Al City Challenge
2021 dataset published by NVIDIA [1], [10]. It consists of
traffic camera data collected around traffic intersections and

Jetson
Xavier

Jetson
Xavier

Fig. 9: Heterogeneous edge testbed.

TABLE I: Hardware Configuration for Each Scenario

Scenario Edge Device Configuration
S1 Jetson Xaiverx2, Jetson TX2x 2, Jetson Nanox 1
S2 Jetson Xaiverx 1, Jetson Nanox 1
S3 Jetson Xaiverx 1, Jetson TX2x 1, Jetson Nanox 1

streets. We choose three deployment scenarios to run the
experiment. Among the three scenarios, S1 has 5 cameras
mounted around a traffic intersection facing different direc-
tions of traffic where regular traffic patterns are observed
caused by the traffic lights; S2 has 2 cameras mounted at a
roadside of residential area, where the vehicles only distribute
sparsely; S3 has 3 cameras in total where 2 cameras monitor a
fork road and 1 camera faces the roadside, and busy traffic is
observed. The dataset provides synchronized videos from each
camera with a frame rate of 10 fps. The full image resolution
we use is 1280 x 704 for regular cameras, and 1280 x 960 for
fisheye cameras. For each camera, we use half length of the
video to train the cross-camera object association model with
the provided bounding box labels, and use the remaining half
for testing. The specific edge device configuration for each
evaluation scenario is listed in Table I.

3) Object Detection Model: We use the YOLOvS5? model
implemented in PyTorch as the object detection network, with
pretrained weight on COCO [19] dataset. We choose five sizes
for partial frame detection: 64, 128, 256 and 512. Regions
larger than 512 are downsampled to 512 as very large objects
are easy to be detected. In the offline stage, we profile the
YOLO inference time with 200 runs on each Jetson board and
store the profiles as input to the BALB scheduling algorithm.

B. Cross-camera Correlation

We first compare our cross-camera object association al-
gorithm with several baselines. We separately evaluate the
two components contained in the association algorithm: the
classification module and the regression module.

Classification Module: Given two cameras and an object
bounding box in one camera, we want to know whether the
same object appears in the other camera. If yes, the output
is positive; otherwise, the output is negative. We compare
the KNN model with three widely used binary classification
baselines: support vector machine (SVM), logistic classifica-
tion, and decision tree. We utilize precision and recall as
the evaluation metrics. Results are presented in Figure 10.

3https://github.com/ultralytics/yolovs

100 100
90 90

80 80

Recall (%)
Precision (%)

70 KNN SVM
Logistic DecisionTree

70 KNN SVM
Logistic DecisionTree

6077751 s2 s3 6077751 s2 s3

Evaluation Scenarios Evaluation Scenarios

(a) Classification recall. (b) Classification precision.
Fig. 10: Classification model comparisons.

100

KNN

= 80 Linear Regression
;_; 60 RANSAC
~ Homograph
w 40 grapny
=

20

0 S1 S2 S3

Evaluation Scenarios

Fig. 11: Regression model comparisons.

Precision is more critical than recall in this case because a false
positive means we falsely identify two distinct objects as one
object and skips one of them. The results show the KNN model
achieves better precision than the baselines, except in scenario
S2, where logistical classification is slightly better. Precision
and recall for scenario S3 are generally lower because of the
limitation in labeling. S3 shows a busy traffic intersection
scenario, but the released labels do not count partially occluded
objects which may cause confusion to the classification model.

Regression Module: Given two cameras and the bounding
box of an object in one camera, we want to infer its corre-
sponding bounding box location in the other camera. We use
mean absolute error (MAE) between bounding box coordinates
as the metric for evaluating the regression models, and we
choose the following three baselines.

o Homography: We use homography transformation [20] to
map object bounding box locations between cameras.

o Linear regression: It can be regarded as a “learnable ho-
mography transformation” that learns a linear relationship
between input and output bounding boxes.

e Random sample consensus (RANSAC) [21]: A robust
regression model in the presence of many data outliers.

Figure 11 shows the comparison result for regression models.
In scenario S1 and S3, KNN reaches the lowest MAE, while in
scenario S2, it shows similar performance as linear regression
and RANSAC. Homography performs much worse than KNN
in all scenarios, because it can only map points in a 2D
plane like ground in two cameras but not the bounding box
coordinates, which can be affected by the object sizes (in all
three dimensions including height) and facing directions.

C. Impact on Detection Quality

In this section, we evaluate the impact of the proposed
framework on the resulted detection quality. Ideally, we want
to optimize the neural network processing speed without
missing any object appeared in the view.

i
©o o
o o

9

= g0

o

(7}

2 70

=

S 60 Full BALB SP

BALB-Ind BALB-Cen
50 s1 s2 s3

Evaluation Scenarios
Fig. 12: Comparisons on object recalls for different algorithms.
Metric: We use object recall as the quality metric here.
It is calculated as: At every timestamp, for each groundtruth
object, as long as there is at least one camera detects it, then
it is counted as a true positive. Otherwise, it is counted as a
false negative. The object recall is defined as the ratio between
true positives and all groundtruth objects. It is not affected by
the missing labels for partially occluded objects.
Baselines: The following baselines are compared:

o Full: We perform full frame detection on every frame
collected by every camera.

e BALB-Ind: Each camera independently runs the BALB
framework without considering the spatial correlations
among cameras.

e BALB-Cen: A variant of BALB that only runs the central
stage algorithm to assign objects to cameras. No dis-
tributed stage is executed.

o Static Partitioning (SP): A fixed policy that partitions the
overlap regions among cameras in offline according to
their processing power. Each camera only tracks objects
within its allocated region at regular frames.

Analysis: The results are summarized in Figure 12. Note
the full-frame inspection results are used as the upper bound of
recall for the remaining scheduling algorithms, which results
in high inference time as we will show in Figure 13. We
have the following observations: First, tracking-based slicing
shows almost no degradation on detection recalls, as BALB-
Ind achieves similar object recall as full frame detections in
all scenarios. Second, through comparing BALB and BALB-
Cen, we find that the central stage alone achieves high recall
when only a few objects appear at a time (i.e., S1 and
S2). However, there is a degradation on BALB-Cen under
complicated scenarios with busy traffic observed (i.e., S3).
This is where the distributed stage of BALB helps. Third,
the imperfect object correlation model has a larger impact on
SP than BALB-Cen in scenario S3, because we performed
a matching step to associate detected objects and predicted
object locations in BALB-Central stage, which reduces the
false positives in the identified associations. In conclusion, the
complete BALB algorithm provides better quality assurance
than using each stage individually.

D. Impact on Processing Speed

We next evaluate the achieved speedup on the inference
efficiency. We compare the average per-frame YOLO inference
time on the slowest camera for each scheduling horizon.
For BALB algorithms, we average the full frame inference
time with regular frame times in a scheduling horizon. We

]
o
o

Full BALB-Ind SP BALB

[=)]
o
o

IS
o
s)

N
o
o

Inference Time (ms)

o

S1 S2

Evaluation Scenarios

S3

Fig. 13: Comparisons on per-frame YOLO inference latency.

TABLE II: Breakdown Per-frame Latency Overhead

Scenario ‘ Central Stage Tracking Distributed BALB Batching ‘ Total

S01 | 2.59ms 18.90ms 0.08ms 7.53ms | 29.10ms
S02 ‘ 1.11ms 21.43ms 0.09ms 13.21ms ‘ 35.84ms
S03 | 2.27ms 11.55ms 0.22ms 19.86ms | 33.90ms

compare BALB with full frame inspections (Full), BALB-
Ind, and Static Partitioning (SP) to progressively illustrate the
advantages of BALB. The corresponding results are presented
in Figure 13. We can see that BALB-Ind saves near 50%
time compared to full frame inspections in all three scenarios
by slicing and batching. Among the scenarios, the most time
saving is observed in S2 while the least saving is observed
in S3, because S2 has sparse vehicle distribution while S3
deals with busy traffic. Beyond that, BALB further saves
75%, 68%, 33% inference time compared to BALB-Ind in the
three scenarios. The saving on scenario S3 is relatively small
because the cross-camera view overlaps are smaller compared
to the other two scenarios. Putting them together, we attain
multiplicative speedups of 6.85x, 6.18x and 2.45x on BALB
compared to full frame inspections in the three evaluation
scenarios. The efficiency saving differs by scenarios depending
on the number of appeared objects and camera view overlaps.
Besides, BALB consistently outperforms SP because it not
only considers the processing power disparity among cameras,
but also the dynamics in camera latency skewness.

E. Impact of Scheduling Horizon Length

In this section, we investigate the impact of the scheduling
horizon length on the attained object recall and frame neural
network inference time. In Figure 14, we plot the change of
object recall and inference time w.r.t the number of frames in a
scheduling horizon. The observation is that longer scheduling
horizons leads to higher inference speed, because the penalty
of full frame detections are distributed among more frames,
but they also suffer from lower recalls, which is caused by
the inaccuracy of camera correlation models and the tracking
algorithm. On the contrary, short scheduling horizons attain
higher object recalls at the cost of higher inference time.
Choosing the scheduling horizon 7' = 10 achieves a good
tradeoff between the detection quality and inference efficiency.

FE. System Overhead

Last, we report the system overhead produced by the
components in our framework. The results are summarized in
Table II. For each component, we first compute the maximum
overhead among cameras at each frame, and then compute the

10

100

Ul
o
o

100

Ul
o
o

100

ul
o
o

3 98 400¢ 3 98 “—‘\‘\.4005 3 98 400 ¢
= v = v = v
T 96 300E 8 96 300E 8 96 300 €
Q [[7] [(7]} [
[v « v o
5 94 2002 4 94 I\\-—.‘-2003 5 94 200 £
(OX 9] 2N [J9] 9 (7]
a o Q9 o Q9 bl
o 92 “m—s—®100€ O 92 100 O 92 100'¢
90 0 90 0 90 0

0 10

#Frames

20 0 10

#Frames

0 10

#Frames

20

(a) SO1 (b) S02 () SO3

Fig. 14: The impact of scheduling horizon length on object
recall and YOLO inference time.

mean overhead across frames. Since the central stage is only
called once per scheduling horizon, we distribute its overhead
to every frame. The central stage overhead includes both cross-
camera object association and central BALB scheduler. The
optical flow estimation is not blocked by any other steps, so
we put it in a separate thread to run in parallel, such that
its computation does affect the main thread efficiency. The
resulted overhead per frame is between 29.10ms and 35.84ms.
We can see the overhead mainly comes from the tracking and
task batching, which may be further optimized by putting more
engineering effort. We leave it as a future investigation.

V. LIMITATIONS AND DISCUSSION

In this section, we discuss a few limitations in our current
system and their potential future solutions.

Imperfect object association: The cross-camera asso-
ciation is generally a challenging problem. Although our
proposed data-driven approach outperforms the baselines in
the evaluation, its precision is still not perfect, especially
under busy traffic conditions, where occlusions and congestion
happen frequently. The system should be further optimized for
these situations. We may allocate multiple cameras to track
the same object since we are not confident whether the two
detections correspond to the same physical object.

Dynamic occlusion: Even if associations among objects
viewed by different cameras were perfect, there are still
reasons to associate multiple cameras with each object. One is
the possibility of dynamic occlusions. For example, an object
assigned exclusively to a camera might later get occluded by
another object making it invisible to that camera, whereas it
might remain visible to another camera. Taking future object
trajectories into account (to predict future occlusions) can
mitigate this effect. Assigning objects to multiple cameras with
sufficiently different vantage points can also reduce occlusion-
related failures. This effect needs further investigation.

Heterogeneity among cameras: We only consider the
different processing capacity, but did not fully address other
forms of heterogeneity among cameras (e.g., frame rate and
resolution), which may affect the tracking quality of the same
target by different cameras. Besides, the observing distance
and angle can also affect the tracking quality. One potential
solution is to introduce a tracking quality metric in the

scheduling framework, such that the scheduling objective is
extended to optimizing the quality-efficiency tradeoff, instead
of purely minimizing the frame processing latency.

Object size: It is well known that objects closer to the
camera are generally easier to classify [22]. Thus, all else
being equal, assigning an object to a camera that is closer
(e.g., one where the objects accounts for more screen pixels)
might help improve classification accuracy. The same policy
will also tend to increase total load compared to a policy
that is oblivious to objects’ distance from the camera. The
resulting trade-off between quality and resource savings must
be explored.

Imperfect synchronization: Another limitation is that the
approach requires the cameras to be approximately synchro-
nized, so that they process the same scene at the same time.
It might be, however, that the computational pipeline on one
camera is slower. Thus, while some cameras are processing
the “current” scene, others might still be working on older
versions of the scene. In this case, anomalies may occur. For
example, a camera might decide that an object has left its field
of view and has entered the view of another camera. At the
same time, the other camera might be “lagging” and so has not
seen the object enter its field of view yet. Thus, both cameras
might lose the current position of the object for some interval
of time. This effect needs further investigation.

The assumption of view overlap: One important efficiency
improvement in our system comes from the assumption of
overlap in camera views. However, this assumption may not
hold in more general multi-camera sensing applications, where
the cameras might not share intersecting views. To extend the
load balancing idea to those scenarios, we can consider al-
lowing heavy-loaded cameras to offload some of their partial-
frame inspections to the nearby idle cameras, but both the
transmission delay and the computation latency need to be
counted in the scheduling algorithm.

Extension to centralized processing: In some applications,
the cameras are not equipped with GPUs so the videos can not
be processed onboard. Instead, the images/videos should be
offloaded to an edge/cloud server for centralized processing,
where the network bandwidth becomes the resource bottle-
neck. The multi-view scheduling idea may be extended to this
scenario by scheduling only one camera to upload its images
or by uploading the minimum number of views that offers
complete coverage of all objects. This is to save bandwidth
consumption. The work also calls for innovations on data
compression algorithms (e.g., JPEG/MPEG).

Alternative problem formulations: Finally, the problem
addressed in this paper was one of object assignment that
minimizes the maximum object processing latency among a
set of cameras. This formulation is motivated by the need to
minimize response-time to any unusual conditions that need
attention. Multiple alternative versions of the problem are
possible and may be explored in future work. For example,
in applications where real-time response is not needed, an
alternative formulation might simply minimize the cumula-
tive processed workload, possibly subject to some fairness

11

constraints, or perhaps minimize consumption of a different
resource, such as energy, as opposed to latency. Those and
other formulations remain to be explored.

VI. RELATED WORK

In this section, we briefly review the recent literature on
video processing systems. Most early work [5], [23]-[25] on
this topic focused on optimizing query-based video analytics.
A query is provided and the system needs to automatically find
all related information in a large-scale video database. They
either optimize the indexing policy and storage structure for
video data [23], or reduce the searching and querying effort
by filtering out unrelated information [24].

Recent attention [3], [16], [26], [27] was paid to live
video analytics systems, where the system needs to coordinate
deployed cameras to perform query-based tasks, or general
detection tasks, on the live video streams. These systems work
in a traditional client-server architecture, where the cameras
send the sampled image frames to the cloud for centralized
processing. The key idea in this thread is to minimize the
amount [3], [26], [28], resolutions [27], or the regions [16] of
frames to be transmitted, because the network bandwidth is
the main bottleneck in this pipeline.

With increasing compute power on smart cameras, one
can provide a better real-time response if neural network
processing was done locally. Existing work that utilizes camera
compute power [29]-[32] focused on partitioning the workload
between camera and edge/cloud servers. Glimpse [33] intro-
duced the concept of intermittent cloud-based DNN execution,
combined with local optical flow based tracking, to support
continuous, real-time object recognition. This paper, to the best
of our knowledge, is the first to optimize the neural network
processing speed of a live video processing system purely at
the edge devices, by exploiting the spatiotemporal correlations
in the multi-view video streams and task batching mechanism
on modern GPUs.

VII. CONCLUSION

We proposed a new paradigm of collaborative, fine-grained
workload-sharing among a set of cameras under FoV overlaps,
involving the dynamic and autonomous partitioning of indi-
vidual object detection/tracking responsibilities among the set
of collaborating cameras. It is achieved by fully exploiting the
spatial-temporal data correlations in multi-view video streams,
and effective task batching on GPU platforms. Through ex-
tensive evaluation using the NVIDIA AIC21 dataset on a het-
erogeneous edge testbed, we demonstrated the superiority of
the proposed system in optimizing neural network processing
speed, which achieves multiplicative speedups by 2.45x to
6.85x compared to processing full image frames, while the
object tracking accuracy remains competitive.

ACKNOWLEDGEMENT

Research reported in this paper was sponsored in part
by DARPA award W911NF-17-C-0099, the Army Research
Laboratory under Cooperative Agreement W911NF-17-20196,

NSF CNS 20-38817 and the National Research Founda-
tion, Singapore under its NRF Investigatorship grant (NRF-
NRFI05-2019-0007). The views and conclusions contained in
this document are those of the author(s) and should not be
interpreted as representing the official policies of the CCDC
Army Research Laboratory, DARPA, the US government or
the National Research Foundation, Singapore. The US gov-
ernment is authorized to reproduce and distribute reprints for
government purposes notwithstanding any copyright notation
hereon.

[1]

[2

—

[3]

[4]

[6

=

[7

—

[9]

[10]

(11]

[12]

[13]

REFERENCES

Z. Tang, M. Naphade, M.-Y. Liu, X. Yang, S. Birchfield, S. Wang, R. Ku-
mar, D. Anastasiu, and J.-N. Hwang, “Cityflow: A city-scale benchmark
for multi-target multi-camera vehicle tracking and re-identification,” in
The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2019, p. 8797-8806.

H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live Video Analytics at Scale with Approximation and
Delay-Tolerance,” in /4th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), ser. NSDI "17, 2017.

Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Ne-
travali, “Reducto: On-camera filtering for resource-efficient real-time
video analytics,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 359-376.

K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-driven video streaming for deep learning inference,” in
Proceedings of the Annual conference of the ACM Special Interest Group
on Data Communication on the applications, technologies, architectures,
and protocols for computer communication, 2020, pp. 557-570.

D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “Noscope:
optimizing neural network queries over video at scale,” arXiv preprint
arXiv:1703.02529, 2017.

S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu,
P. Bahl, and J. Gonzalez, “Spatula: Efficient cross-camera video analytics
on large camera networks,” in 2020 IEEE/ACM Symposium on Edge
Computing (SEC). 1EEE, 2020, pp. 110-124.

S. Jain, G. Ananthanarayanan, J. Jiang, Y. Shu, and J. Gonzalez, “Scaling
video analytics systems to large camera deployments,” in Proceedings
of the 20th International Workshop on Mobile Computing Systems and
Applications, 2019, pp. 9-14.

S. Liu, S. Yao, X. Fu, R. Tabish, S. Yu, A. Bansal, H. Yun, L. Sha,
and T. Abdelzaher, “On removing algorithmic priority inversion from
mission-critical machine inference pipelines,” in 2020 IEEE Real-Time
Systems Symposium (RTSS). 1EEE, December 2020, pp. 319-332.

S. Liu, S. Yao, X. Fu, H. Shao, R. Tabish, S. Yu, A. Bansal, H. Yun,
L. Sha, and T. Abdelzaher, “Real-time task scheduling for machine
perception in intelligent cyber-physical systems,” IEEE Transactions on
Computers, 2021.

M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M.-C. Chang, X. Yang,
Y. Yao, L. Zheng, P. Chakraborty, C. E. Lopez, A. Sharma, Q. Feng,
V. Ablavsky, and S. Sclaroff, “The 5th ai city challenge,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2021.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779—
788.

S. Liu, X. Fu, M. Wigness, P. David, S. Yao, L. Sha, and T. Abdelzaher,
“Self-cueing real-time attention scheduling in criticality-driven visual
machine perception,” in 2022 IEEE Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS). 1EEE, 2022.

M. Andriluka, S. Roth, and B. Schiele, “People-tracking-by-detection
and people-detection-by-tracking,” in 2008 IEEE Conference on com-
puter vision and pattern recognition. 1EEE, 2008, pp. 1-8.

12

[14]

[15] T.

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” in 2016 IEEE international conference on image

processing (ICIP). 1EEE, 2016, (})p 3464-3468.
. Kroeger, R. Timofte, D. Dai, and L. Van Gool, “Fast optical flow using

dense inverse search,” in European Conference on Computer Vision.
Springer, 2016, pp. 471-488.

H. Guo, S. Yao, Z. Yang, Q. Zhou, and K. Nahrstedt, “Crossroi: Cross-
camera region of interest optimization for efficient real time video
analytics at scale,” arXiv preprint arXiv:2105.06524, 2021.

S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “Tran-
sreid: Transformer-based object re-identification,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021, pp
15013-15022.

M. R. Garey and D. S. Johnson, Computers and intractability. freeman
San Francisco, 1979, vol. 174.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollar, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European conference on computer vision. Springer, 2014,
pp. 740-755.

E. Dubrofsky, “Homography estimation,” Diplomovd prdce. Vancouver:
Univerzita Britské Kolumbie, vol. 5, 2009.

M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381-395,
1981.

Y. Hu, S. Liu, T. Abdelzaher, M. Wigness, and P. David, “On exploring
image resizing for optimizing criticality-based machine perception,” in
IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2021.

K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl,
M. Philipose, P. B. Gibbons, and O. Mutlu, “Focus: Querying large video
datasets with low latency and low cost,” in 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), 2018,
pp- 269-286.

Y. Zhang and A. Kumar, “Panorama: a data system for unbounded
vocabulary querying over video,” Proceedings of the VLDB Endowment,
vol. 13, no. 4, pp. 477-491, 2019.

M. R. Anderson, M. Cafarella, G. Ros, and T. F. Wenisch, “Physi-
cal representation-based predicate optimization for a visual analytics
database,” in 2019 IEEE 35th International Conference on Data Engi-
neering (ICDE). 1EEE, 2019, pp. 1466-1477.

C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kamin-
sky, and S. R. Dulloor, “Scaling video analytics on constrained edge
nodes,” arXiv preprint arXiv:1905.13536, 2019.

J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 253-266.

S. Paul, U. Drolia, Y. C. Hu, and S. T. Chakradhar, “Aqua: Analyti-
cal quality assessment for optimizing video analytics systems,” arXiv
preprint arXiv:2101.09752, 2021.

C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). 1EEE, 2018, pp. 115-131.

X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: scaling live
video analytics with workload-adaptive distributed edge intelligence,”
in Proceedings of the 18th Conference on Embedded Networked Sensor
Systems, 2020, pp. 409-421.

X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile
deep learning framework for edge video analytics,” in [EEE INFOCOM
2018-IEEE Conference on Computer Communications. 1EEE, 2018,
pp. 1421-1429.

S. Yao, J. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelzaher,
“Deep compressive offloading: Speeding up neural network inference
by trading edge computation for network latency,” in Proceedings of
the International Conference on Embedded Networked Sensor Systems
(SenSys), 2020.

T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems, 2015, pp. 155-168.

