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Abstract—Block-term tensor decomposition (BTD)-based hy-
perspectral unmixing (HU) is well-motivated because of its identi-
fiability of the endmembers and abundance maps under relatively
mild conditions. However, algorithm design of BTD-based HU
faces challenges in enforcing hyperspectral image-related struc-
tural constraints, e.g., the probability simplex constraints on the
abundance vectors—while incorporating structural information
is critical for combating noise and enhancing interpretability.
Existing work uses a three-block alternating least square (ALS)
framework, and employs the multiplicative update (MU) method
to handle constraints, but this ALS-MU approach has high per-
iteration complexity and often converges slowly. This work puts
forth an alternating gradient projection (GP) algorithm for the
problem of interest. Our method leverages a two-block parame-
terization of the BTD model to avoid encountering heavy updates,
thereby exhibiting high efficiency. Another core contribution lies
in a fast solver for computing a key step in the GP algorithm,
namely, the orthogonal projection onto the set of matrices with
low-rank and probability simplex structures. Simulations show
that the GP framework attains order-of-magnitude speedup and
accuracy improvement relative to the state-of-the-art.

Index Terms—Hyperspectral unmixing, constrained block-
term tensor decomposition, alternating gradient projection.

I. INTRODUCTION

Hyperspectral images (HSIs) are often acquired with a

limited spatial resolution, and thus a pixel may be a mixture of

several materials. Hyperspectral unmixing (HU) techniques es-

timate the spectral signatures of the constituent materials (end-

members) and their corresponding proportions (abundances)

from the mixtures [1]. The arguably most prominent model

for HU is the so-called linear mixture model (LMM). Under

the LMM, a hyperspectral pixel are expressed as a convex

combination of the endmembers. Estimating the endmembers

and the abundances of the materials is then recast as a blind

linear unmixing problem, which is also often associated with

(nonnegative) matrix factorization (NMF); see [1], [2].
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Under the NMF model, the identifiability of the endmem-

bers and abundances holds under relatively restrictive or hard

to check conditions [2]. A recent work [3] connected the

LMM-based HU problem to the tensor decomposition model

with multi-linear rank-(Lr, Lr, 1) block terms (i.e., the LL1

model) [4]. Leveraging the uniqueness of the LL1 model,

identifiability of the endmembers and abundance maps can be

established under conditions that are fairly different from those

used in the NMF model. Hence, the LL1 model is considered

a valuable alternative to existing HU frameworks.

However, computing the LL1 decomposition under HU-

related structural constraints gives rise to challenging opti-

mization problems. The work in [3] adopts the classic al-

ternating least squares (ALS) framework for unconstrained

LL1 decomposition [4]. Nonnegativity and probability simplex

constraints are added to reflect the physical meaning of the

endmembers and abundance maps. Every subproblem in the

ALS framework becomes a (large-scale) nonnegative least

squares problem. The work in [3] uses the multiplicative

updates (MU) for handling the subproblems, which requires

a large amount of operations per iteration and often leads to

slow convergence of the overall algorithm.

In this work, our interest lies in efficient constrained LL1

decomposition for HU. Our approach starts with an equivalent

two-block re-parametrization of the matricized LL1 model.

Per the block factors’ physical meaning in the context of

HU, we also impose nonnegativity and simplex constraints

on the pertinent factors. The re-parametrization allows us

to develop an alternating gradient projection (GP) algorithm

that circumvents the large-scale subproblems that arise in

the ALS framework [3]. The key challenge for realizing the

GP framework is that one block’s constraint is a nonconvex

low-rank and simplex-structured matrix set, and no tractable

projector exists. We propose a heuristic solver for this pro-

jection problem. The solver consists of simple operations,

i.e., truncated SVD and water-filling, and thus is efficient. To

support our design, we also show that the projection solver

exhibits local linear convergence. Simulations show that our

GP algorithm attains substantial efficiency improvement and

produces more accurate HU results relative to state-of-the-art.



II. BACKGROUND: LMM-BASED HU

Under the LMM, in the noise-free case, a spectral pixel yl ∈
R
K contained in the HSI can be expressed as y` = Cs`, where

C = [c1, . . . , cR] ∈ R
K×R denotes the spectral signatures of

R endmembers contained in the pixel, and s` ∈ R
R is the

abundance vector such that 1>s` = 1, s` ≥ 0. Collecting all

pixels together, we have

Y = CS, (1)

where S = [s1, . . . , sN ], and Y = [y1, . . . ,yN ] [1]. The

LMM can also be expressed as

Y =

R∑

r=1

Sr ◦C(:, r),

R∑

r=1

Sr = 11
>, Sr ≥ 0, (2)

where ◦ is the outer product, C(:, r) = cr and Y ∈ R
I×J×K .

Note that Y is often obtained by re-arranging pixels in Y

via y` = Y (i, j, :) with ` = i + (j − 1)I . The matrix

Sr = mat(S(r, :)) is interpreted as the abundance map of

endmember r, where the “matricization” operator mat(·) :
R
IJ → R

I×J is the inverse operation of “vectorization”; see

Fig. 1. LMM-based HU aims at finding S and C.

A. NMF-based HU and Identifiability

Since C and S are both nonnegative per their physical

meaning, a plethora of NMF based methods were proposed for

LMM based HU; see [1], [2]. As a blind estimation problem,

the soundness of HU methods is built upon the identifiability

of C and S from Y . The NMF model is in general not

identifiable [2], since one can often find invertible Q such

that C̃ = CQ ≥ 0 and S̃ = Q−1S ≥ 0—and Y = C̃S̃

still holds. The identifiability consideration often leads to

more complex NMF criteria, e.g., the volume minimization

based NMF; see, e.g., [5]. In addition, even with complex

regularization terms, NMF methods admit identifiability only

when some conditions are satisfied by C and/or S—e.g., the

separability and sufficiently scattered conditions [2]. These

conditions are related to how “spread” is the conic hull of

C (and/or S) in the nonnegative orthant, which are nontrivial

to satisfy or even to check.

B. LL1-Based HU and Challenges

The work in [3] connected the LL1 tensor model with the

HU problem. To be specific, if the abundance maps are low-

rank matrices, i.e., rank(Sr) = Lr < min{I, J}, one can

re-write the first term in (2) as follows:

Y =

R∑

r=1

(
ArB

>
r

)
◦C(:, r), (3)

where Ar ∈ R
I×Lr , Br ∈ R

J×Lr , and Sr = ArB
>
r —which

is exactly the block-term decomposition with multilinear rank-

(L,L, 1) terms [4]. The LL1 model has the following property:

Theorem 1 Assume that Ar, Br, and C in (3) are drawn

from any absolutely continuous distributions. Then, the LL1

Fig. 1. Illustration of the LMM (top) and the LL1 tensor model (bottom).

TABLE I
THE ENERGY PROPORTION CONTAINED IN THE FIRST 50 PRINCIPAL

COMPONENTS OF THE ABUNDANCE MAPS Sr (SIZE: 500× 307) OF THE 5
PROMINENT MATERIALS IN THE TERRAIN DATA (SEE FIG. 1).

Ab. map (Sr) Soil1 Soil2 Tree Shadow Grass

Ratio of energy 93.56% 93.41% 89.48% 91.92% 94.60%

decomposition of Y is essentially unique almost surely, if

Lr = L, IJ ≥ L2R and

min

(⌊
I

L

⌋
, R

)
+min

(⌊
J

L

⌋
, R

)
+min(K,R) ≥ 2R+ 2.

In the above, “essential uniqueness” means that if Y =∑R
r=1(A

?
r(B

?
r )

>) ◦ C?(:, r), then, it must hold that S? =
SΠΛ, C? = CΠΛ

−1, where Π and Λ denote a permu-

tation matrix and a nonsingular scaling matrix, respectively,

S? = [vec(S?
1), . . . , vec(S?

R)]
>, S?

r = A?
r (B

?
r )

>
and S =

[vec(S1), . . . , vec(SR)]
>, Sr = ArB

>
r .

Simply speaking, Theorem 1 means that if the abundance

maps (Sr’s) have low rank and the endmembers are linearly

independent, then their identifiability is guaranteed under the

LL1 framework. In the context of HU, the abundance maps

are often (approximately) low-rank matrices. Table I shows

that about 90% energy is captured in the first 50 principal

components of the Terrain data’s abundance maps (with a size

of 500 × 307) [6]. Some more numerical evidence can be

found in [7]. The identifiability conditions in Theorem 1 are

different from those geometric conditions used in NMF [2],

and thus LL1-based HU is a valuable complement to existing

NMF approaches. Notably, the conditions in Theorem 1 is

checkable, which is also a sharp contrast to the NMF cases.

To utilize Theorem 1 together with the HU model in (2),

the work in [3] proposed the following criterion:

min
{Ar,Br},C

∥∥∥∥∥Y −
R∑

r=1

(
ArB

>
r

)
◦C(:, r)

∥∥∥∥∥

2

F

+ λg({Ar,Br})

s.t. Ar ≥ 0, Br ≥ 0, C ≥ 0, (4)

where g({Ar,Br}) = ‖
∑R

r=1 ArB
>
r − 11

>‖2F . Note that the

nonnegativity constraints are added according to the physi-

cal meaning of the endmembers and the abundance maps.

The second term in the criterion is an approximation to



∑R
r=1 Sr = 11

> in (2). In real-data analysis, adding these

physical meaning-motivated constraints is critical to fend

against noise and modeling error, and often helps enhance

interpretability of the HU results.

In [3], the ALS framework is used for handling (4). The

three blocks A = [A1, . . . ,AR], B = [B1, . . . ,BR] and

C are updated using matrix unfoldings of Y using MU for

accommodating the nonegativity constraints. Several notable

challenges are in order: First, the ALS-MU algorithm in [3]

takes O(IJKLR+IKL2R2+JKL2R2) flops per iteration—

which is fairly costly in the context of HU. The large number

of flops is induced by the parametrization using A ∈ R
I×LR,

B ∈ R
J×LR and C ∈ R

K×R and the ALS framework. This

parametrization essentially treats the LL1 decomposition prob-

lem as a canonical polyadic decomposition (CPD) problem

with a tensor rank of LR, which is known to be hard when

LR is large. Second, the employment of MU perhaps worsens

the efficiency, since MU is known to be less effective for

nonnegative factor analysis and often requires a large number

of iterations to reach sensible results [8]. Third, the penalty

based treatment for the sum-to-one condition in (4) does not

necessarily produce a solution satisfying the LMM model in

(2), and tuning λ is often nontrivial.

III. CONSTRAINED LL1 FOR HU

In this work, we employ the parametrization in (2) with

rank(Sr) ≤ Lr for LL1-based HU. Note that this model was

shown to be equivalent to the three-block representation in

(3) [9]. By the link between (1) and (2), we propose the

following two-block parametrization-based constrained LL1

decomposition criterion:

min
S,C

1

2
‖Y −CS‖2F (5a)

s.t. rank(mat(S(r, :))) ≤ Lr, r = 1, . . . , R, (5b)

S ≥ 0, 1
>S = 1

>, C ≥ 0. (5c)

Our motivation for using this reformulation is as follows:

As shown in [9], the low-rank Sr parameterization of the LL1

model can effectively avoid large-size subproblems in the ALS

framework (in particular, the A and B blocks with sizes of

I × LR and J × LR, respectively, are circumvented), and

thus could potentially substantially reduces the per-iteration

complexity. The work in [9] did not consider nonnegativity

and simplex constraints on the latent factors—with which the

LL1 decomposition problem in (5) is a much more challenging

optimization problem.

A. Proposed Approach: Alternating Gradient Projection

We propose to employ an alternating GP algorithm. To begin

with, in iteration t, we update C using gradient projection:

C(t+1) ← max
{
C(t) − α(t)G

(t)
C
, 0

}
, (6)

where max {·, 0} is the orthogonal projector onto the non-

negativity orthant and α(t) is a pre-defined step size used

at iteration t, and the gradient can be computed using

G
(t)
C

= C(t)S(t)(S(t))> − Y (S(t))>. In this work, we set

α(t) ≤ 1
σ2
max(S

(t))
that ensures the cost to be decreased in

each iteration.

For the S-subproblem, we hope to use the same GP-based

rule, i.e.,

S(t+1) ← ProjS

(
S(t) − β(t)G

(t)
S

)
, (7)

where β(t) ≤ 1
σ2
max(C

(t+1))
, G

(t)
S

= (C(t+1))>C(t+1)S(t) −
(C(t+1))>Y , and the set S ⊆ R

R×IJ is defined as

S = {S|S ≥ 0,1>S = 1
>, rank(mat(S(r, :))) ≤ Lr}. (8)

The above is conceptually simple. However, the critical chal-

lenge is that there is no known tractable algorithm that can

solve the projection problem in (7). To address this issue, in

the next subsection, we propose a simple heuristic for handling

this projection problem.

B. Heuristic Simplex-Constrained Low-Rank Projector

To see our approach, let us define S1 = {S ∈
R
R×IJ | 1

>S = 1
>, S ≥ 0} and S2 = {S ∈

R
R×IJ | rank(mat(S(r, :))) ≤ Lr, ∀r}. The goal then boils

down to computing the projection on to S = S1 ∩ S2. We

propose the following alternating projection (AP) algorithm

for computing the projection:

F (k+1) ← ProjS2

(
W (k)

)
, (9a)

W (k+1) ← ProjS1
(F (k+1)), (9b)

where W (0) = S(t) − β(t)G
(t)
S

and we have used k as the

iteration index for the AP algorithm. Note that the above

projections can be readily computed: Eq. (9a) can be solved

optimally by truncated SVD, following the Eckart–Young–

Mirsky theorem. Eq. (9b) can be solved efficiently by water-

filling type algorithms [5].

The AP algorithm has a long history in convex feasi-

bility problems. However, since the low-rank constraint is

nonconvex, it is unclear if the AP algorithm can always

converges to a “good” solution. Nonetheless, in our extensive

experiments, we observe that AP algorithm converges quickly

and works under various scenarios. In this work, we provide

local convergence analysis to support our observation:

Proposition 1 (Local Linear Convergence) Denote W (k) =
S̃+E(k) where S̃ ∈ S1∩S2 is the sought projection of W (0).

Also assume that for any iterate W (k) ∈ S1/S2, there is a

uniform upper bound ρ < 1 such that:
(∑R

r=1 ‖E
(k)
r −U r

2 (U
r
2 )

>E
(k)
r V r

2 (V
r
2 )

>‖2
∑R

r=1 ‖E
(k)
r ‖2

)
≤ ρ, (10)

where E
(k)
r = mat(E(k)(r, :)), R(U r

2 ) = R(S̃r)
⊥ and

R(V r
2 ) = R(S̃>

r)
⊥ and U r

2 and V r
2 are semi-orthogonal

bases. Then, if ‖E(0)‖ is small enough, the algorithm con-

verges linearly to S̃; i.e.,

‖E(k+1)‖ ≤ √ρ‖E(k)‖. (11)



The proposition asserts that the algorithm converges quickly to

a feasible solution, if initialized properly. The condition (10)

is reasonable. When W /∈ S2, it means that some mat(W (r, :
))’s are not low-rank, and thus there is non-negligible energy

in the “noise subspaces” spanned by U r
2 and V r

2 .

Proof: A sketch of the proof is as follows. By [10,

Theorem 1], we have F (k+1) − S̃ = M (k) + Q(E(k)),

where M (k)(r, :) = vec(E
(k)
r −U r

2 (U
r
2 )

>E
(k)
r V r

2 (V
r
2 )

>)>, if

‖E(k)‖ is smaller than a certain threshold, where ‖Q(Z)‖ =
O(‖Z‖2). Then, by the non-expansive property of convex sets:

‖E(k+1)‖ ≤ ‖M (k)‖+O(‖E(k)‖2)
≤ ρ1/2‖E(k)‖+O(‖E(k)‖2),

where we have used (10). Hence, by [11, Lemma 10], we

reach the conclusion in (11).

Our overall algorithm consists of (6) and (7), where the

S projection step in (7) leverages the subproblem solver

in (9a)-(9b). This algorithm is referred to as the gradient

projection alternating projection algorithm (GradPAPA). Note

that as an alternating gradient projection algorithm, the stan-

dard Nesterov’s extrapolation technique is also adopted in our

implementation; see details in [12].

C. Complexity

Computing the gradients for C and S both costs O(IJKR)
flops. The step sizes of α(t) and β(t) take O(R3) flops, but

R is normally small. In the AP solver, the SVD in (9a) takes

O(L2 min{K, IJ}), and (9b) takes O(IJR log(R)) flops by

using water-filling type algorithms. In summary, the per-

iteration complexity of the proposed algorithm is dominated by

O(IJKR+m(IJR log(R) +L2 min{K, IJ}) +R3), where

m is the number of AP iterations—which is normally only 3

to 6 (see Table III). Recall the ALS-MU algorithm [3] takes

O(IJKLR+IKL2R2+JKL2R2) flops per iteration, which

is much higher when LR ≈ I ≈ J (which does often happen

in HU). To summarize, our two-block parametrization helps

effectively avoid operations that need O(IJKLR) flops—

which may easily dominate the computation time.

IV. EXPERIMENTS

We compare our algorithm with the ALS-MU algorithms

MVNTF [3] and MVNTFTV [13], where the latter has an

additional spatial total variation regularization for performance

enhancement. We terminate the algorithms when the relative

error of the cost value is smaller than 10−5. Besides, the AP

is stopped when the relative change of the iterates is smaller

than 10−3. The mean squared error (MSE) of C and S is

used as the performance metric; see definition in [5].

A. Synthetic Data

In this synthetic experiment, we generate C and S using

the following procedure: 1) we draw the entries of C and

S from the unit-variance zero-mean Gaussian distribution; 2)

we employ the AP (9) on the Gaussian S to produce S that

satisfies our problem structure; similarly, we use thresholding

to obtain the nonnegative C. We add i.i.d. zero-mean Gaussian
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Fig. 2. The average MSEs with Gaussian and SPA initializations.

TABLE II
FEASIBILITY RATE OF RECOVERED S .

Initialization Gaussian Init. SPA Init.

Constraints Methods R = 5 R = 10 R = 5 R = 10

S1 (Simplex)
MVNTF (q = 10−2) 10.48% 12.36% 10.20% 11.77%

MVNTF (q = 10−6) 0.0005% 0.001% 0.001% 0.003%

GradPAPA (q = 10−6) 100% 100% 100% 100%

S2 (Low-Rank)
MVNTF 100% 100% 100% 100%

GradPAPA 99.88% 99.90% 99.88% 99.90%

TABLE III
THE AVERAGE NUMBER OF AP ITERATIONS OF DIFFERENT R AND

INITIALIZATION METHODS.

Initialization
Gaussian Init. SPA Init.

R = 5 R = 10 R = 5 R = 10

Ave. AP iterations 5 6 3 4

noise to the synthetic tensors and make the signal-to-noise

ratio (SNR) 25 dB. We set I = J = K = 100, L = 30,

R = 5 or 10. We also test two initialization strategies, i.e., i.i.d.

Gaussian initialization and successive projection algorithm

(SPA)-based initialization; see [2] and references therein.

Fig. 2 shows the averaged MSEs of C from 20 independent

trials. It is observed that for different cases, the proposed

GradPAPA algorithm largely outperforms ALS-based MVNTF

in both accuracy and speed. The SPA initialization further

improves the speed of GradPAPA by about 75%, which

presents a promising combination of the simple greedy NMF

algorithm and an LL1 based algorithm. Although MVNTF

works to a certain extent, its MSE is more than three orders of

magnitude higher compared to that of GradPAPA in all cases.

Table II shows the percentages of trials where the solutions

obtained by the algorithms satisfy the constraints in the

context HU. These constraints are important for interpreting

the results. The low-rank constraint satisfaction is measured

by averaging (
∑L

i=1 σi/
∑min{I,J}

i=1 σi) × 100%, where σi

is the ith singular value of the estimated Sr over all r.

The S1 feasibility is measured by counting the percentage

of the nonnegative columns of the estimated S satisfying

|1>s` − 1| ≤ q, where q = 10−2 or 10−6. One can see that

MVNTF struggles to satisfy the probability simplex constraint,

perhaps because it uses a “soft” penalty for this requirement

[cf. Eq. (4)]. Nonetheless, GradPAPA almost achieves 100%

feasibility. More importantly, such feasibility is enforced with

relatively small cost: Table III shows that only about 5 AP

iterations are needed for the S projection problem.

B. Semi-Real Data

In this experiment, we employ the semi-real Terrain data

whose “space×space×spectrum” dimensions are 500× 307×



TABLE IV
THE AVERAGE MSES OF C AND S , AND RUNNING TIME (IN MINUTES) OF

TERRAIN DATA BY DIFFERENT METHODS.

Methods MSE of C MSE of S Time (min.)

SPA 0.0317 ± 0.0001 0.0715 ± 0.0023 —
MVNTF 0.0289 ± 0.0047 0.0452 ± 0.0114 81.1 ± 0.8

MVNTFTV 0.0288 ± 0.0033 0.0488 ± 0.0127 102.6 ± 1.0
GradPAPA 0.0104 ± 0.0002 0.0047 ± 0.0001 5.5 ± 0.1
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Fig. 3. The estimated abundance maps by different methods. From top to
bottom: Soil1, Soil2, Tree, Shadow, and Grass.

166. The data contains five endmembers, namely, Soil1,

Soil2, Tree, Shadow, and Grass; see details in [6].

We set L = 100 and employ the SPA initialization. We

also consider i.i.d zero-mean Gaussian noise with SNR=45dB.

Since MVNTF and MVNTFTV often run with extra lengthy

time in such large-scale problems, we also set the maximum

number of the iteration as 2,500 for all algorithms.

Table IV shows the MSE performance of the algorithms.

Note that since the dataset is semi-real, ground-truth C and

S are known and can be used for evaluation. One can see

GradPAPA improves upon SPA by one order of magnitude in

terms of MSE, while MVNTF and MVNTFTV could not offer

such improvements. In terms of runtime, GradPAPA uses less

than 6 minutes for this task, while the baselines both use more

than 1 hour. The abundance maps produced by GradPAPA are

also visually much closer to the ground-truth maps; see Fig. 3.

V. CONCLUSION

We proposed a constrained LL1 decomposition algorithm

tailored for HU. Unlike existing algorithms that use three

block parameterization of the LL1 tensor and ALS-MU type

updates, our method employs a two-block parameterization

and a GP algorithmic framework. As a consequence, the

proposed algorithm effectively avoids heavy computations in

its iterations. To realize the GP framework, we proposed

an AP-based solver for a nonconvex orthogonal projection

problem that is essential for enforcing HU-related low-rank

and simplex constraints. Equipped with the AP algorithm, our

GP framework exhibits largely improved HU performance (in

terms of both accuracy and speed) on synthetic and semi-real

datasets, compared to existing LL1 based HU algorithms.
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