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Hyperspectral Denoising Using Unsupervised

Disentangled Spatio-Spectral Deep Priors
Yu-Chun Miao, Xi-Le Zhao∗, Xiao Fu∗, Jian-Li Wang, and Yu-Bang Zheng

Abstract—Image denoising is often empowered by accurate
prior information. In recent years, data-driven neural network
priors have shown promising performance for RGB natural
image denoising. Compared to classic handcrafted priors (e.g.,
sparsity and total variation), the “deep priors” are learned using
a large number of training samples—which can accurately model
the complex image generating process. However, data-driven
priors are hard to acquire for hyperspectral images (HSIs) due
to the lack of training data. A remedy is to use the so-called
unsupervised deep image prior (DIP). Under the unsupervised DIP
framework, it is hypothesized and empirically demonstrated that
proper neural network structures are reasonable priors of certain
types of images, and the network weights can be learned without
training data. Nonetheless, the most effective unsupervised DIP
structures were proposed for natural images instead of HSIs.
The performance of unsupervised DIP-based HSI denoising is
limited by a couple of serious challenges, namely, network
structure design and network complexity. This work puts forth an
unsupervised DIP framework that is based on the classic spatio-
spectral decomposition of HSIs. Utilizing the so-called linear
mixture model of HSIs, two types of unsupervised DIPs, i.e., U-
Net-like network and fully-connected networks, are employed to
model the abundance maps and endmembers contained in the
HSIs, respectively. This way, empirically validated unsupervised
DIP structures for natural images can be easily incorporated
for HSI denoising. Besides, the decomposition also substantially
reduces network complexity. An efficient alternating optimiza-
tion algorithm is proposed to handle the formulated denoising
problem. Simulated and real data experiments are employed to
showcase the effectiveness of the proposed approach.

Index Terms—Hyperspectral image denoising, unsupervised
deep image prior, spatio-spectral decomposition

I. INTRODUCTION

H
YPERSPECTRAL images (HSIs) contain rich spectral

and spatial information of areas/objects of interest. HSIs

have been widely used across many disciplines, e.g., biology,
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ecology, geoscience, and food/medicine science [1]. However,

the acquired HSIs are often corrupted by various types of

noise. Heavy noise may affect the performance of downstream

analytical tasks (e.g., hyperspectral pixel classification). In the

past two decades, a plethora of HSI denoising techniques were

proposed to address this challenge; see [2]–[5].

At a high level, the idea of many HSI denoising methods

is to fit the acquired image using an estimated image with

prior information-induced priors. The rationale is that noise

does not obey the HSI priors, and thus such a fitting process

can effectively extract the “clean” HSI from the noisy version.

Under this principle, early HSI denoising methods used spatial

priors such as sparsity [6]–[8] and total variation (TV) [9].

Methods that exploit spectral priors were also proposed; see

[10]–[12]. A number of denoising methods incorporated with

implicit priors such as low matrix/tensor rank that is a result of

multi-dimensional correlations; some examples can be found

in [2]–[4], [13]–[18].

More recently, data-driven priors have drawn much attention

in the vision and imaging communities [19]. In a nutshell, deep

neural networks are used to learn a generative model of images

from a large number of training samples. Deep generative

models have been successful in computer vision, see, e.g.,

[20]–[22]. In particular, these models are able to map low-

dimensional random vectors to visually authentic images—

which means that they capture the essence of the image

generating process. Hence, the learned generative network is

naturally a good prior of clean images. This idea has also been

used in HSI denoising; see, e.g., [23]–[27].

Although the methods mentioned above have attained sat-

isfactory results for HSI denoising, these models’ expressive

ability is limited by the training data’s adversity and quantity.

That is, there is a lack of training data for HSIs [28].

This is because HSIs are, in general, much more costly to

acquire relative to natural RGB images. In addition, different

hyperspectral sensors often admit largely diverse specifications

(e.g., the frequency band used, the spectral resolution, and the

spatial resolution)—data acquired from one sensor may not be

useful for training deep priors for images from other sensors.

Recently, Ulyanov et al. proposed an unsupervised image

restoration framework, namely, deep image prior (DIP) [29].

DIP directly learns a generator network from a single noisy

image—instead of learning the generator from a large number

of training samples. The work in [29] showed that proper

deep neural network architectures, without training on any

samples, can already “encode” much critical information in

the natural image generating process. This discovery has

helped design unsupervised DIPs for tasks such as image
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Fig. 1. The LMM for HSI and the proposed unsupervised disentangled spatio-spectral deep priors (DS2DP).

denoising, inpainting, and super-resolution. This work has thus

attracted much attention. Since the DIP approach does not use

any training data, it is particularly suitable for data-starved

applications like hyperspectral imaging. Indeed, Sidorov et al.

[30] extended the DIP idea to HSI denoising and observed

positive results.

Nonetheless, capitalizing on the power of DIP for HSI

denoising still faces a series of challenges. Unlike RGB images

that only have three spectral channels, HSIs are often measured

over hundreds of spectral channels. Therefore, directly using

the DIP method that is originally proposed for RGB images

to handle HSIs may not be as promising. First, it is unclear

if the network structures used in [29] are still effective for

HSIs. Second, due to the large size of HSIs, the scalability

challenge is much more severe compared to the natural image

cases. Indeed, as one will see in Sec. V, the two neural network

structures used in [30] for modeling the generator of a standard

HSI induce 2.150 and 2.342 million parameters, respectively—

which makes the learning process challenging. Third, due to

the special data acquisition process of HSIs, outlying pixels

and structured noise (other than Gaussian noise) often arise.

The DIP denoising loss function used in [29], [30] did not

take these aspects into consideration.

Contributions. In this work, our interest lies in an unsuper-

vised DIP-based denoising framework tailored for HSIs. Our

detailed contributions are summarized as follows:

• Disentangled Spatio-Spectral Deep Prior for HSI. We

propose an unsupervised DIP structure that is inspired by

the well-established linear mixture model (LMM) for HSIs

[31]; see Fig. 1. The LMM views every hyperspectral pixel

as a linear combination of spectral signatures of a number of

materials (endmembers). The linear combination coefficients

of different endmembers across the image give rise to the

abundance maps of the endmembers [32]. Using LMM, the

spatial and spectral information embedded in the HSI can

be “disentangled”. This way, the spectral and spatial priors

can be designed and modeled individually. As a result, the

modeling and computational complexities can be substantially

reduced—which often leads to improved accuracy. By our

design, empirically validated unsupervised DIP structures for

natural images can be much more easily capitalized for HSI

denoising.

• Structured Noise-robust Optimization. We propose a

training loss that models the structured noise (e.g., stripe-

shaped or deadlines) as sparse outliers. We use an alternating

optimization process to handle the formulated structured-noise

robust deep prior-based denoising method, and admits simple

lightweight updates.

• Extensive Experiments. We test the proposed approach on

a large variety of simulated and real datasets. The experi-

ments support our design—we observe substantially improved

denoising performance relative to classic methods and more

recent neural prior-based methods over all the datasets under

test. In particular, due to our disentangled network design, the

proposed method outperforms the existing unsupervised DIP-

based HSI denoising methods in [30] in terms of both accuracy

and memory/computational efficiency.

Notation. A scalar, a vector, a matrix, and a tensor are denoted

as x, x, X , and X , respectively. [x]i, [X]i,j , and [X]i,j,k
denote the i-th, (i, j)-th, and (i, j, k)-th element of x ∈ R

I ,

X ∈ R
I×J , and X ∈ R

I×J×K , respectively. The Frobenius

norms of X and X are denoted as ‖X‖F =
√∑

i,j [X]2i,j and

‖X‖F =
√∑

i,j,k[X]2i,j,k, respectively. Given y ∈ R
N and a

matrix X ∈ R
I×J , the outer product is defined as X ◦ y. In

particular, X◦y ∈ R
I×J×N and [X◦y]i,j,n = [X]i,j [y]n. The

matrix unfolding operator for a tensor is defined as mat(X),
which denotes the mode-3 unfolding of X (see details of the

unfolding of HSI in [33]). The vec(X) operator represents

vec(X) = [[X]T:,1, . . . , [X]T:,J ]
T .

II. PRELIMINARIES

In this section, we briefly review pertinent background

information.
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A. HSI Denoising

The acquired HSIs are three-dimensional arrays (i.e., tensors

[34]). Denote X ∈ R
I×J×K as the HSI captured by a

remotely deployed hyperspectral sensor, where I × J is the

number of pixels presenting in the 2D spatial domain, and K

is the number of spectral bands. Unlike natural images that

are measured with the R, G, and B channels (i.e., K = 3),

HSIs are measured over tens or hundreds of frequency bands,

depending on the specifications of the employed sensors.

In general, X is a noise-contaminated version of the under-

lying “clean” HSI (denoted by X\). There are many factors

contributing to noise in the hyperspectral acquisition process,

i.e., thermal electronics, dark current, and stochastic error of

photon-counting. If the noise is additive, we have

X = X\ + V , (1)

where V ∈ R
I×J×K denotes the noise. The objective of HSI

denoising is to “extract” X\ from X .

B. Prior-Regularization Based HSI Denoising

Note that even under the additive noise model in (1),

this problem is ill-posed—this is essentially a disaggregation

problem which admits an infinite number of solutions. To

overcome such ambiguity, prior information of the HSI is used

to confine the solution space. A generic formulation can be

summarized as follows:

X̂ = argmin
M
‖X −M‖

2

F + λR (M) , (2a)

subject to M ∈M, (2b)

where X̂ denotes the estimate for X\ using the above

estimator, M represents the optimization variable, M and

R(·) : RI×J×K → R+ are the constraint set and regularization

function imposed according to prior knowledge about the

clean image X\, respectively, and λ ≥ 0 is the regularization

parameter that balances the data fidelity term (i.e., the first

term in (2a)) and the regularization.

1) From Analytical Priors to Data-Driven Priors: A vari-

ety of regularization/constraints have been considered in the

literature. For example, in [2], [35],

R(·) = ‖ · ‖TV

is the TV across the two spatial dimensions, since image data

exhibits certain slow changing properties over the space. In

[36], [37], M represents the nonnegative orthant, since HSIs

are always nonnegative. In [13], [38]–[42], low tensor and

matrix rank constraints are added to M through low-rank

parameterization, respectively. Such prarameterization-based

regularization can be written as

ẑ = argmin
z
‖X − G (z)‖

2

F , (3)

where G : RN → R
I×J×K is a pre-specified parameterization

function that represents the I×J×K HSI using N parameters,

i.e., z, and G (z) represents the estimation for the underlying

clean HSI generated by G with parameters z. For example, if

mat (X) is believed to be a low-rank matrix, mat (G (z)) =

ABT and z = [vec(A)T , vec(B)T ]T . After estimating the

parameters z, the clean image can be simply estimated via

X̂ = G(ẑ).

Classic priors are useful but often insufficient to capture the

complex nature of the underlying structure of HSIs.

A number of works used deep neural networks to parame-

terize the regularization—i.e., these works use a deep neural

network Gθ(·) : R
N → R

I×J×K whose network weights

are collected in θ ∈ R
D to act as the regularization in (2a)

[23]–[27]. Instead of having an analytical expression, such

regularizers are “trained” using a large number of training

samples. As deep neural networks are universal function

approximators, such learned “deep priors” are believed to be

able to approximate complex generative processes of HSIs and

thus are more effective priors for denoising.

ẑ = argmin
z
‖X − Gθ (z)‖

2

F , (4)

However, unlike natural RGB images that have tens of

thousands of training samples for learning Gθ , HSI (especially

remotely sensed HSI) datasets are relatively rare due to their

costly acquisition process. Without a large amount of (diverse)

HSIs, training such a regularizer may be out of reach.

2) Unsupervised Deep Image Prior: Very recently, Ulyanov

et al. proposed the so-called DIP [29] to circumvent the

lack of training samples. The major discovery in [29] is that

a proper neural network architecture (without knowing the

neural network weights θ) can already encode much prior

information of images. As a result, tasks such as image

denoising can be done by learning a neural network Gθ(z)
to fit X with a random but known z.

With this idea, the denoising problem can be formulated as

follows:

θ̂ = argmin
θ
‖X − Gθ (z)‖

2

F , (5)

and the denoised image can be estimated via

X̂ = G
θ̂
(z) . (6)

The idea of DIP is quite different compared to the supervised

deep prior-based approaches such as those in [23]–[26] [cf.

Eq. (4)]. In DIP, the network weights θ is learned from a

single degraded image in an unsupervised manner, and z is

given instead of learned.

At first glance, it may be surprising that an untrained

neural network can be used for image denoising (and also

inpainting and super-resolution as revealed in [29]). The key

rationale behind this approach may be understood as follows:

First, some carefully designed neural network structures (e.g.,

convolutional neural network with proper modifications) are

able to capture much information in the generating process

of some types of images of interest. That is, not all neural

network structures could work well for all types of images.

Different structures may need to be carefully handcrafted for

different types of images. The handcrafted neural network

structure is analogous to the handpicked priors such as the

L1 norm, Tikhonov regularization, and TV regularization—

which are also not learned from training samples. In the
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Fig. 2. Illustration of the proposed DS2DP. The generative networks Cζr and Sθr
are applied to capture the deep spectral prior of the spectral signatures

and the deep spatial prior of the abundance matrices, respectively.

original paper [29], the U-Net-like "hourglass" architecture

was shown to be powerful in natural RGB image restoration

tasks under the DIP framework. In [30], various network

structures (namely, DIP2D and DIP3D) were experimented

for HSI denoising—and the results can be quite different, as

one will also see in Sec. IV. Second, in image restoration tasks,

the degraded (noisy) X still contains much information in the

underlying image. Hence, the fitting loss in (5) also “forces”

the Gθ to faithfully capture the essential information in X .

In particular, since Gθ has a structured underlying generative

process (by construction), the learned Gθ is more likely to

capture the “structured signal part” (i.e., the clean image X\)

in X other than the random noise part.

Since the DIP procedure does not use any training examples,

it is particularly attractive to data-starved applications such

as hyperspectral imaging. In addition, although it involves

careful structure handcrafting, DIP still inherits many good

properties of neural networks, e.g., being capable of modeling

complex generative processes. Consequently, it often exhibits

more appealing image restoration performance compared to

classic regularizer/parameterization based methods (e.g., TV

and low matrix/tensor rank); see [29], [30].

C. Challenges

The unsupervised DIP-based approaches are attractive since

they are effective without using any training data. However,

finding a proper network structure to serve as prior of HSIs

and learning the corresponding θ is by no means a trivial task.

A couple of notable new challenges that arise in the domain

of hyperspectral imaging are as follows:

1) Challenge - 1 Integrating Unsupervised DIP and HSI:

Since HSIs are quite different compared to natural RGB

images (in terms of sensors, sensing processes, resolutions,

and frequency bands used), directly using the neural network

structure in [29] in hyperspectral imaging may not be best

practice. The work in [30] proposed two structures crafted for

this, but it is not clear if these two structures are “optimal”

due to the lack of extensive experiments. In fact, as we will

show in Sec. IV, these two unsupervised DIP structures are

sometimes not as promising as some classic models (e.g.,

low-rank tensor decomposition-based denoising) in terms of

denoising performance. Hence, the first challenge lies in if we

could circumvent designing a new unsupervised DIP network

architecture from scratch—which could involve much trial-

and-error and time/resource consuming. In particular, can we

leverage some underlying structures of the HSIs to avoid

exhaustively searching through ad-hoc DIP architectures, but

utilize some existing DIP network structures (e.g., those in

[29]) to effectively assist our HSI denoising task? We will

answer this question.

2) Challenge - 2 Network Size: Another challenge that

arises in unsupervised DIP-based HSI denoising is that the

HSIs are large-scale images due to the large number of

spectral bands contained in the pixels. Directly modeling the

generative process of a large-scale 3D image (or a third-order

tensor) inevitably leads to an overly sized neural network Gθ .

Although the work in [30] employed a number of tricks for

network size reduction, the final constructions still yield a large

number of network parameters. This leads to a computationally

heavy optimization problem [cf. Eq. (5)]. Since the problem is

already nonconvex and challenging, the excessive scale of the

optimization problem only makes the denoising procedure less

efficient. The challenging nature of numerical optimization

may also affect the denoising performance since "bad" local

minima may be easier to happen.

III. PROPOSED APPROACH

To circumvent the challenges, we will leverage the well-

established LMM of HSI to come up with our customized

unsupervised DIPs in the next section. As will be seen, using

the LMM to disentangle the spatial and spectral modalities

of the HSIs allows us to use well-established/simple DIP

structures to model each modality, which spares the agnostic

pain of searching for a new DIP to model the high-dimensional
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Fig. 3. The detailed network structures. The two figures conrespond to: (a) the unsupervised DIP for abundance maps; and (b) the unsupervised DIP for
endmembers

hyperspectral data. The disentanglement also effectively re-

duces the model complexity. To this end, we briefly review

the main idea of LMM.

A. Linear Mixture Model of HSI

The LMM of X is as follows (when the noise is absent):

X =

R∑

r=1

Sr ◦ cr, (7)

where Sr ∈ R
I×J and cr ∈ R

K represent the r-th endmem-

ber’s abundance map and the spectral signature, respectively,

and R is the number of endmembers contained in the HSI.

The LMM can also be expressed as

[X]i,j,k =

R∑

r=1

[Sr]i,j [cr]k;

see [1], [31]. Physically, it means that every pixel is a

non-negative combination of the spectral signatures of the

constituting endmembers in the HSI. Note that

Sr ≥ 0, cr ≥ 0

according to their physical meanings—and thus the model

in (7) is often related to non-negative matrix factorization

(NMF) [43]. An illustration of the LMM can be found in

Fig. 1. The LMM model with a relatively small R can often

capture around 98% of the energy of the HSI [44]. Hence,

it is a reliable model for HSIs. Indeed, the LMM has been

utilized for a large variety of hyperspectral imaging tasks,

e.g., hyperspectral unmixing [1], [32], [45]–[48], hyperspectral

super-resolution [49], pansharpening [50], compression and

recovery [51], and denoising [52], just to name a few. In this

work, we propose to use the LMM to help design unsupervised

DIP neural network structures and denoising algorithms.

B. LMM-Aided Unsupervised DIP for HSI

Notably, the LMM disentangles the spectral and spatial

information into two sets of latent factors, i.e., {Sr}
R
r=1 and

{cr}
R
r=1. Our motivations for using the LMM representation

to design unsupervised DIP for HSIs are as follows:

• First, LMM disentanglement allows using known effective

DIP structures for natural images for HSI. The physical

meaning of the latent factors entails the opportunity to employ

known effective neural network structures of unsupervised

DIP. The abundance matrix Sr can be understood as how

the material r spreads over space. The hypothesis is that the

abundance maps exhibit similar properties to natural images

that focus on capturing and conveying spatial information.

Under this hypothesis, it is reasonable to use unsupervised

DIP neural network structures that are known to work well for

natural images to model Sr. Moreover, the cr vector can be

understood as the spectral signature of the r-th material, which

is the variation of reflectance or emittance of material over

different wavelengths. It is known that fully connected neural

networks (FCNs) can approximate such relatively simple 1-D

continuous smooth functions well.

• Second, LMM disentanglement effectively reduces network

complexity. By disentanglement and LMM, the model size of

the HSI is substantially reduced. Instead of directly imposing

unsupervised DIP on the whole HSI, we employ two types of

unsupervised DIPs (i.e., the deep spatial and spectral priors) to

model abundance maps and spectral signatures, respectively.

Since the number of endmembers is often not large, the

computational complexity is substantially reduced.

Following the above argument, we model the HSI using the

following:

X =

R∑

r=1

Sθr
(zr) ◦ Cζr

(wr), (8)

where Sθr
(·) : R

Na → R
I×J is the unsupervised DIP

neural network of the r-th endmember’s abundance map, and

θr collects all the corresponding network weights; similarly,

Cζr
(·) : RNs → R

K and ζr denote the unsupervised DIP of

the r-th endmember and its corresponding network weights,

respectively; the vectors zr ∈ R
Na and wr ∈ R

Ns are low-

dimensional random vectors that are responsible for generating

the r-th abundance map and endmember, respectively. Our

detailed design for Sθr
and Cζr

are as follows:

1) Unsupervised DIP for Abundance Maps: As mentioned,

the abundance maps capture the spatial information of the

corresponding materials. We propose to employ the U-Net-like

“hourglass” architecture in [29] for modeling Sθr
. Note that

this network architecture was shown to be able to capture the

spatial prior of nature images. The U-Net is an asymmetric
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autoencoder [53] with skip connections, whose structure is

shown in Fig. 3 (left).

2) Unsupervised DIP for Endmembers: The endmembers

are relatively simple to model—since they can be understood

as one-dimensional smooth functions. Hence, we employ

FCNs as the unsupervised DIP for Cζr
. We use FCNs with

three layers; also see Fig. 3 (right).

Besides the above unsupervised DIP design, in this work,

we also take into consideration of impulsive noise and grossly

corrupted pixels (outliers) that often arise in HSIs. Unlike nat-

ural images whose sensing environment can be well controlled,

remotely sensed HSIs often suffer from heavily corrupted

pixels or spectral bands due to various reasons; see [39], [40].

If not accounted for, the HSI denoising performance could be

severely hindered by such noise. To this end, we consider a

noisy data acquisition model as follows:

X =

R∑

r=1

Sθr
(zr) ◦ Cζr

(wr)

︸ ︷︷ ︸
X\

+Y + V , (9)

where V represents ubiquitous noise, e.g., the Gaussian noise,

and Y denotes the impulsive noise or outliers. Accordingly,

We propose the following denoising criterion:

argmin
{θr,ζr}R

r=1

∥∥∥∥∥X −
R∑

r=1

Sθr
(zr) ◦Cζr

(wr)− Y

∥∥∥∥∥

2

F

+ λ‖Y ‖
1
,

(10)

where λ ≥ 0 and ‖Y ‖1 =
∑I

i=1

∑J
j=1

∑K
k=1
|[Y ]i,j,k| is

used for imposing the sparsity prior on Y , since outliers

happen sparsely.

C. Optimization Algorithm

Let us denote the objective function in (10) using the

following shorthand notation:

argmin
{θr,ζr}R

r=1
,Y

Loss

(
{θr, ζr}

R
r=1

,Y
)
. (11)

We propose the following algorithmic structure:

{θt+1
r , ζt+1

r }Rr=1

← arg m̃in
{θr,ζr}R

r=1

Loss
(
{θr, ζr}

R
r=1,Y

t
)

(12)

Y t+1 ← argmin
Y

Loss
(
{θt+1

r , ζt+1
r }Rr=1,Y

)
, (13)

where the superscript “t” is the iteration index. In (12), we

use m̃in to denote inexact minimization since exactly solving

the subproblem w.r.t. the network parameters may not be

possible—due to its large size and nonconvexity.

1) Solution for (12): Note that the subproblem w.r.t.

{θr, ζr}
R
r=1 is nothing but a regression problem using neural

models. Hence, any off-the-shelf neural network optimizer can

be employed for updating {θr, ζr}
R
r=1. In this work, we use

the (sub-)gradient descent1 algorithm with momentum that has

1Since the ReLU activation functions used in the U-Net and the FCN
are not differentiable at one point, the algorithm is subgradient based.
Nonetheless, we use ∇ (usually for denoting gradient) to denote subgradient
for notation simplicity.

been proven effective in complex network learning problems

[54]:

θt+1
r ← θt

r − αt∇θr
Loss

(
{θr, ζ

t
r}

R
r=1,Y

t
)

(14a)

ζt+1
r ← ζt

r − αt∇ζr
Loss

(
{θt

r, ζr}
R
r=1,Y

t
)
, (14b)

for all r = 1, . . . , R. Note that the gradient w.r.t. θr and ζr
can be computed by the standard back-propagation algorithm

[55]. Here, αt is the step size (i.e., learning rate) of iteration t.

There are multiple ways of determining αt. In this work, we

use the step size rule advocated in the Adam algorithm [54].

2) Solution for (13) : The subproblem (13) is convex—

whose solution is the well-known soft-thresholding proximal

operator [56]. Hence, the update of Y can be expressed as

Y t+1 = soft_thλ/2

(
X −

R∑

r=1

Ŝt+1
r ◦ ĉt+1

r

)
. (15)

where

Ŝt+1
r = Sθt+1

r
(zr), ĉt+1

r = Cζt+1
r

(wr)

and soft_thλ/2(·) applies soft-thresholding to every entry of

its input, in which the entry-wise thresholding is defined as

soft_thδ(x) = sgn(x)max(|x| − δ, 0). (16)

Algorithm 1 DS2DP for HSI Denoising.

Input: the HSI X ∈ R
I×J×K , the regularization parameter

λ, and the number of endmembers R.

1: sample random zr and wr from uniform distribution;

2: for t = 1 to T do (repeat until convergence)

3: Ŝr = Sθt−1
r

(zr), ĉr = Cζt−1
r

(wr);
4: update θr, ζr for all r; using the Adam [54];

5: update Y according to (13);

6: end for

7: X̂ =
∑R

r=1
Ŝr ◦ ĉr;

Output: the denoising HSI X̂ .

The algorithm is summarized in Algorithm 1, which we

name as the unsupervised disentangled spatio-spectral deep

prior (DS2DP) algorithm. The algorithm falls into the cate-

gory of inexact block coordinate descent [57]. Under some

relatively mild conditions, the algorithm produces a solution

sequence that converges to a stationary point of the optimiza-

tion problem in (10); see detailed discussions in [57].

IV. EXPERIMENTS

In this section, we use simulated and real data to demon-

strate the effectiveness of the proposed approach.

A. Baselines

To thoroughly evaluate the performance of DS2DP, we

implemented five state-of-the-art methods as the baselines.

These methods include two unsupervised methods, i.e., deep

image prior based on 2D convolution (DIP2D) [30] and

deep image prior based on 3D convolution (DIP3D) [30], a

matrix optimization-based method, i.e., hyperspectral image

restoration using low-rank matrix recovery (LRMR) [38], and
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TABLE I
QUANTITATIVE COMPARISON OF THE DENOISING RESULTS BY DIFFERENT METHODS. THE BEST AND SECOND BEST VALUES ARE HIGHLIGHTED IN BOLD

AND UNDERLINED, RESPECTIVELY.

Case Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Dataset Method PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

WDC Mall

DIP2D 30.408 0.871 0.122 26.540 0.770 0.163 24.043 0.708 0.228 22.679 0.678 0.271 23.366 0.696 0.227 21.759 0.594 0.282

DIP3D * * * * * * * * * * * * * * * * * *

LRMR 34.954 0.951 0.130 34.954 0.951 0.130 32.422 0.933 0.156 32.058 0.925 0.148 32.358 0.920 0.159 29.815 0.907 0.210

LRTDTV 35.293 0.952 0.106 35.087 0.950 0.106 33.307 0.925 0.148 33.024 0.919 0.136 33.464 0.914 0.113 31.691 0.894 0.136

LRTFL0 36.043 0.964 0.112 35.796 0.961 0.111 34.151 0.948 0.133 35.278 0.941 0.115 34.296 0.949 0.123 33.224 0.943 0.163

DS2DP 36.439 0.965 0.102 35.926 0.969 0.093 34.562 0.951 0.116 35.887 0.954 0.100 35.087 0.962 0.100 34.352 0.967 0.116

Pavia Centre

DIP2D 31.965 0.897 0.068 29.603 0.876 0.072 25.319 0.758 0.186 23.587 0.728 0.232 24.885 0.768 0.164 22.175 0.551 0.180

DIP3D 26.969 0.694 0.075 26.338 0.691 0.078 25.421 0.651 0.094 23.445 0.637 0.104 24.173 0.672 0.091 23.039 0.627 0.131

LRMR 33.293 0.926 0.090 33.293 0.926 0.090 30.398 0.816 0.052 32.398 0.916 0.142 31.409 0.901 0.106 24.667 0.742 0.724

LRTDTV 33.511 0.921 0.095 33.608 0.923 0.065 31.465 0.901 0.104 33.096 0.903 0.147 31.415 0.881 0.104 31.882 0.894 0.101

LRTFL0 33.833 0.923 0.088 33.310 0.935 0.089 31.751 0.917 0.096 32.756 0.927 0.089 32.676 0.928 0.090 32.003 0.920 0.101

DS2DP 35.211 0.947 0.062 34.336 0.941 0.058 32.545 0.926 0.094 33.682 0.934 0.066 33.836 0.936 0.064 32.523 0.924 0.086

Pavia University

DIP2D 33.103 0.852 0.107 25.818 0.770 0.177 25.157 0.727 0.223 24.047 0.714 0.269 24.024 0.719 0.283 21.549 0.574 0.382

DIP3D 30.070 0.804 0.111 24.968 0.705 0.151 25.307 0.701 0.156 24.198 0.683 0.166 24.265 0.701 0.166 23.509 0.640 0.173

LRMR 33.063 0.862 0.113 31.582 0.787 0.149 31.155 0.860 0.119 31.858 0.861 0.115 31.385 0.829 0.139 27.615 0.747 0.240

LRTDTV 33.136 0.875 0.108 32.223 0.861 0.110 31.497 0.841 0.151 32.190 0.866 0.112 32.123 0.851 0.136 31.027 0.830 0.187

LRTFL0 34.312 0.890 0.092 33.724 0.879 0.099 32.972 0.867 0.123 33.642 0.877 0.103 33.146 0.863 0.124 32.735 0.858 0.126

DS2DP 35.202 0.928 0.068 34.600 0.917 0.073 33.916 0.915 0.085 34.600 0.917 0.073 34.467 0.918 0.074 33.795 0.915 0.081

CAVE

DIP2D 29.643 0.636 0.339 23.839 0.589 0.421 23.204 0.562 0.449 21.955 0.526 0.506 22.416 0.538 0.484 22.416 0.539 0.484

DIP3D 28.960 0.709 0.332 23.397 0.571 0.447 23.377 0.566 0.449 22.157 0.534 0.471 22.435 0.549 0.460 21.405 0.509 0.501

LRMR 30.633 0.661 0.418 30.633 0.661 0.418 27.724 0.607 0.466 31.809 0.807 0.334 29.015 0.680 0.445 26.404 0.659 0.536

LRTDTV 35.529 0.883 0.165 34.769 0.877 0.210 32.792 0.843 0.260 34.036 0.862 0.232 31.779 0.772 0.361 31.063 0.773 0.430

LRTFL0 33.241 0.877 0.233 33.191 0.891 0.262 32.978 0.846 0.209 33.743 0.852 0.264 32.139 0.781 0.352 30.956 0.855 0.301

DS2DP 36.043 0.923 0.142 35.603 0.907 0.146 33.892 0.956 0.165 35.682 0.914 0.155 32.775 0.862 0.187 32.588 0.848 0.213

 LRMR DIP 2D  LRTDTV LRTFL0 DS2DP
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Fig. 4. PSNR and SSIM values of all bands obtained by different methods on HSI WDC Mall for Cases 1-6.

two tensor optimization-based methods, i.e., TV-regularized

low-rank tensor decomposition (LRTDTV) [39] and hyperspec-

tral restoration via L0 gradient regularized low-rank tensor

factorization (LRTFL0) [40].

For DIP2D and DIP3D, we set the maximum number of

iterations to be 6,000 and report the best results during the iter-

ations. For the proposed DS2DP, we set the maximum number

of iterations to be 6,000 and report the results at the 6,000th

iteration. For LRMR, LRTDTV, and LRTFL0, their parameters

are set as suggested in [38]–[40]—with parameter fine-tuning

effort to uplift its performance in some cases. The experiments

of DIP2D, DIP3D, and DS2DP are executed using Python
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Observed DIP2D LRMR LRTDTV LRTFL0 DS2DP Ground truth

Fig. 5. Denoising results obtained by different methods. From left to right: the observed image, the denoising results by DIP2D, LRMR, LRTDTV, LRTFL0,
DS2DP (proposed), and the ground truth, respectively. The first two rows are the denoising results on WDC Mall for Cases 4 and 6, respectively. The second
two rows are the denoising results on Pavia Centre for Cases 4 and 6, respectively. The last two rows are the denoising results on Pacia University for Cases
4 and 6, respectively.

on a computer with a six-core Intel(R) Core(TM) i7-9750H

CPU @ 2.60GHz, 32.0 GB of RAM, and an NVIDIA GeForce

RTX 2070 GPU. The experiments of LRMR, LRTDTV, and

LRTFL0 are implemented in Matlab (2019a) on the same

computer.

B. Simulated Data Experiments

Evaluation Metrics. We adopt three frequently used evalua-

tion metrics, namely, peak signal-to-noise ratio (PSNR), struc-

ture similarity (SSIM), and spectral angle mapper (SAM) [40].

Generally, better-restored denoising performance is reflected

by higher PSNR and SSIM values and lower SAM values.

Simulated Data. For simulated data, we use a number of HSIs

to serve as our ground truth, which include Washington DC

Mall (WDC Mall) 2 of size 256 × 256 × 191, Pavia Centre
2 of size 200 × 200 × 80 that is clipped into 192 × 192

× 80, and Pavia University 2 of size 256 × 256 × 87. The

multispectral images (MSIs) in the CAVE dataset 3 of size 256

× 256 × 31 are also used to serve as our clean data X\.

Scenarios. We consider a series of scenarios with various

types of noise:

Case 1 (Gaussian Noise): In this basic scenario, the i.i.d. zero-

mean Gaussian noise is added to all bands with the variance set

to be 0.1. The signal-to-noise ratios (SNRs) (see definition in

[58]) associated with different datasets can be found in Table

II. One can see the noise levels in different datasets are similar.

Note that the HSIs with SNR being 6dB to 8dB are considered

2http://lesun.weebly.com/hyperspectral-data-set.html
3https://www.cs.columbia.edu/CAVE/databases/multispectral/
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Observed DIP2D LRMR LRTDTV LRTFL0 DS2DP Ground truth

Fig. 6. Denoising results obtained by different methods for Case 6. From top to bottom: the band 4 of Beads, the band 4 of Pompoms, and the band 31
of Flowers, respectively. From left to right: the observed image, the denoising results by DIP2D, LRMR, LRTDTV, LRTFL0, DS2DP, and the ground truth,
respectively.
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Fig. 7. Spectral curves of the denoising results by different compared methods for Case 6. From left to right: the results by DIP2D, DIP3D, LRMR, LRTDTV,
LRTFL0, and DS2DP, respectively. From top to bottom: the results at spatial location (55, 60) of MSI Beads, the results at spatial location (90, 45) of the
MSI Flowers, and the results at spatial location (200, 200) of the MSI Pompoms, respectively.

as severely corrupted data.

TABLE II
THE SNR OF THE DEGRADED IMAGES FOR CASE 1.

Data WDC Mall Pavia Centre Pavia University CAVE

SNR 7.196 7.691 6.297 6.318

Case 2 (Gaussian Noise + Impulse Noise): In this case,

the Gaussian noise for Case 1 is kept. We also additionally

consider impulse noise that often happens in real HSI analysis.

The impulsive noise is also added to each band. Such noise is

generated following the i.i.d. zero-mean Laplacian distribution

with the density parameter being 0.1.

Case 3 (Gaussian Noise + Impulse Noise + Deadlines): To

make the case more challenging, we include deadlines on top

of Case 2; see Fig. 5 for illustration of deadlines. The deadlines

are generated by nullifying some selected pixels and bands. We

assume that the deadlines randomly affect 30% of the bands.

Moreover, for each selected band, the number of deadlines is

randomly generated from 10 to 15, and the spatial width of

the deadlines is randomly selected from 1 to 3 pixels.

Case 4 (Gaussian Noise + Impulse Noise + Diagonal Stripes):

In this case, we replace the deadlines for Case 3 by diagonal

stripes; see Fig. 5 for illustration. The elements of the diagonal

stripes are all ones, which are used to simulate the constant

brightness. As before, we assume that the stripes effect 30%

of the bands. Moreover, for each selected band, the number
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Observed DIP2D LRMR LRTDTV LRTFL0 DS2DP

Fig. 8. Denoising results by different methods on Urban dataset, EO-1, Australian dataset, WHU HongHu dataset, and Indian Pines dataset. From top to
bottom: the band 203 of Urban dataset, the band 132 of EO-1 dataset, the band 87 of Australian dataset, the band 37 of WHU HongHu dataset, and the band
24 of the Indian Pines dataset, respectively. From left to right: the observed image, the results by DIP2D, LRMR, LRTDTV, LRTFL0, and DS2DP, respectively.

of diagonal stripes is randomly generated from 15 to 30.

Case 5 (Gaussian Noise + Impulse Noise + Vertical Stripes):

In this case, we use the setting as for Case 4, except that

vertical (other than diagonal) stripes are added; see Fig. 5. For

each affected band, the number of vertical stripes is randomly

generated from 10 to 15. In this case, the elements of each ver-

tical stripe are set to a certain value randomly generated from

the range of [0.6, 0.8], to diversify our simulated scenarios.

Case 6 (Gaussian Noise + Impulse Noise + Deadlines +

Diagonal Stripes + Vertical Stripes): To create an extra chal-

lenging case, Gaussian noise, impulse noise, and deadlines are

added as for Case 3. Moreover, diagonal stripes and vertical

stripes are added as for Case 4 and Case 5, respectively.

Parameter Setting. In DS2DP, there are two parameters to

be manually tuned, namely, λ and R. For the parameter

λ, we generally set it as i × 10j (i = 2, 5, 8; j =
−6,−5,−4,−3,−2) for Cases 1-6. Regarding the parameter

R, which is the number of endmembers in the HSI and can

be determined by many existing algorithms, e.g., [32], [44],

[59].

Quantitative Comparison. Table I lists the quantitative com-

parisons of the competing methods for Cases 1-6. The symbol

“*” in Table I means that the corresponding methods have

exhausted the computational resources (memory or time) but

still could not produce sensible results. For the CAVE dataset,

we report the averaged evaluation results from 32 images.

From Table I, it is easy to see that DS2DP outperforms the

state-of-the-art approaches in most cases, in terms of PSNR,

SSIM, and SAM. For example, for Case 1, DS2DP achieves

around 1.4 dB gain in PSNR compared to the second-best

method (LRTFL0) on Pavia Centre. For Case 5, when the

clean image is corrupted by Gaussian noise, impulse noise,

and vertical stripes, the proposed method also achieves around

1.2 dB gain in PSNR against the same second-best method
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(LRTFL0).

To test our method’s performance on every band, each

band’s PSNR and SSIM values on WDC Mall for Cases 1-6

are shown in Fig. 4. As observed, DS2DP achieves the highest

SSIM and PSNR values on most bands in all cases.

Visual Comparison. Figs. 5 and 6 show denoising results

on HSIs and MSIs by different methods, respectively. The

low-rank matrix model-based approach LRMR cannot effec-

tively remove the stripes and deadlines. Additionally, LRTDTV

achieves noise removal in partial bands but fails to remove

the stripes and deadlines in all bands. Besides, LRTFL0

removes almost all of the noise but fails to capture the detailed

information. Although there is some residual structured noise

remaining in the result produced by DS2DP, the overall visual

perception largely outperforms the baselines. We conjecture

that such performance boost is mainly due to the deep spatial

prior’s ability to preserve the local spatial details—empowered

by the expressiveness of appropriately crafted neural network

structures.

Fig. 7 visualizes the denoising results by the algorithms

in the spectral domain. One can see that, among all algo-

rithms, the DS2DP-produced spectral signatures (on randomly

selected pixel) also exhibit the highest visual similarity with

those from the ground-truth image. This is consistent with its

good performance in the spatial domain.

Compared with hand-crafted prior and deep image prior, the

promising results of the proposed DS2DP can be attributed

to that unsupervised disentangled spatio-spectral deep priors

can characterize the complex scenes finely, which is beneficial

to stripe removal.

C. Real Data Experiments

For real-data experiments, we choose five real-world HSI

datasets to test the real noise removal, i.e., Urban dataset4,

Earth Observing-1 (EO-1) Hyperion dataset5, Australian

dataset6, WHU HongHu dataset7, and Indian Pines dataset8

More precisely, the size of Urban dataset is 256×256×210, the

size of EO-1 dataset is 192×192×166, the size of Australian

dataset is 256×256×128, the size of WHU HongHu dataset

is 256×256×64, and the size of Indian Pines dataset is

128×128×220. Regarding the proposed DS2SP, the parame-

ters R is set as as 3, 2, 6, 2, and 5 for Urban, EO-1, Australian,

WHU HongHu, and Indian Pines respectively. λ is set as 0.01,

0.01, 0.001, 0.1, and 0.000001 for Urban, EO-1, Australian,

WHU HongHu, and Indian Pines, respectively.

The denoising results on these real-world datasets are shown

in Fig. 8. One can see that all algorithms offer reasonable re-

sults on Urban dataset, perhaps because the data is not severely

corrupted. Nevertheless, the proposed method produces the

visually sharpest results. In particular, in the zoomed-in area,

one can see that the proposed method’s result does not have

4https://sites.google.com/site/feiyunzhuhomepage/datasets-ground-truths
5http://www.lmars.whu.edu.cn/profweb/zhanghongyan/resource/

noiseEOI.zip
6http://remote-sensing.nci.org.au/u39/public/html/index.shtml
7http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm
8http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_

Sensing_Scenes

horizontal stripes, while such stripes still appear in results

given by most of the baselines. For EO-1 dataset, since the

selected band was severely damaged by sparse noise, the

denoising task is particularly challenging. One can see that

traditional methods can hardly produce satisfactory results.

Nonetheless, DS2DP removes almost all of the noise—with the

price of blurring the image to a certain extent—and offers the

most visually pleasing result. For Australian, WHU HongHu,

and Indian Pines datasets, we can see that there exists visible

sparse noise in the observed images. The proposed DS2DP

preserves more details while removing such noise, compared

with other competing methods.

V. FURTHER DISCUSSIONS

A. Analysis of Algorithm Complexity

In this part, we analyze the algorithm complexity of the

proposed method on HSI WDC Mall and MSI Superballs for

Case 6. DIP2D and DIP3D are selected as the baseline models

since they stand for the unsupervised HSI denoising models.

For DIP2D and DIP3D, we select the network structure with

the best performance according to the original implementation.

For a fair comparison, the network structure utilized in

DS2DP, which is expected to capture the spatial prior informa-

tion, is simply designed as U-Net-like “hourglass" architecture.

Moreover, we do not focus on meticulous designs on reducing

the model scale in this work, i.e., depth-wise separable con-

volution, model pruning, and model compression [60]. These

techniques may be used to reduce the network complexity of

all methods (including ours), but this is beyond the scope of

this work. Table III lists the scale of parameters of different

methods on HSI WDC Mall and MSI Superballs. Moreover,

the corresponding values of PSNR, SSIM, and the execution

time (in minutes) are also reported in Table III.

TABLE III
THE RELEVANT INDICATORS OF DIP3D, DIP2D, AND DS2DP ON HSI

WDC MALL AND MSI SUPERBALLS FOR CASE 6. THE BEST AND

SECOND-BEST VALUES ARE HIGHLIGHTED IN BOLD AND UNDERLINED,
RESPECTIVELY.

Data Methods Params PSNR SSIM Time

HSI: WDC Mall

(256 × 256 × 191)

DIP3D 6.275M * * *

DIP2D 2.342M 21.759 0.594 15.625

DS2DP 2.150M 34.352 0.967 19.544

DS2DP* 0.574M 32.710 0.942 12.353

MSI: Superballs

(256 × 256 × 32)

DIP3D 6.275M 20.705 0.399 16.091

DIP2D 2.138M 20.901 0.408 3.314

DS2DP 2.150M 35.037 0.881 4.677

DS2DP* 0.574M 34.779 0.871 2.181

As shown in Table III, the proposed DS2DP achieves

significantly better performance with roughly equal param-

eters and slightly longer execution time compared with the

baseline models. More precisely, DS2DP outperforms DIP2D

by 12.593 dB and 14.136 dB in terms of PSNR on HSI

WDC Mall and MSI Superballs, respectively. DS2DP achieves

performance gains over DIP3D with about 14 dB on MSI

Superballs.

In our original implementation, to push DS2DP to attain the

(empirically) achievable “best” performance, we use several
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parallel networks with the same architecture to generate the

abundance maps. To reduce the number of the parameters, we

let the parameters be shared between several parallel networks.

This method is denoted by DS2DP* and its performance is also

shown in Table III. This way, the parameter amount reduces

by 3/4 and the execution time reduces by 2/5, while the PSNR

is essentially unaffected.

B. Effectiveness of the Deep Spectral and Spatial Priors

In this part, we take a deeper look at the deep spectral

and spatial priors in DS2DP. To verify these two priors’

effectiveness, we conduct ablation studies for Case 6 using

the WDC Mall data. The impacts of our designed priors in

spectral and spatial domains are shown in Fig. 9 and Fig. 10,

respectively.
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Fig. 9. Effectiveness of the deep priors in the spectral domain. The red
curve is the ground truth of a selected pixel at spatial location (120, 120)
for illustration. The blue curves correspond to: (a) the estimated spectrum by
DS2DP without deep spectral prior; (b) the estimated spectrum by DS2DP

without deep spatial prior; and (c) the estimated spectrum by the proposed
DS2DP.

(a) (b) (c) (d)

Fig. 10. Effectiveness of the deep priors in the spatial domain. The four figures
correspond to: (a) the denoising result by DS2DP without deep spectral prior;
(b) the denoising result by DS2DP without deep spatial prior; (c) the denoising
result by DS2DP; and (d) the observed image.

Fig. 9 (a) shows that when only employing deep spatial

prior in DS2DP without the deep spectral prior, the estimated

spectrum of the selected pixel is not accurate. In contrast, when

considering both types of priors in DS2DP, the results become

much more promising; see (c). Besides, DS2DP without the

deep spatial prior and the complete DS2DP both achieve

satisfactory performance on most bands. This supports our

idea for disentangling the spatial and spectral information and

modeling them individually.

Fig. 10 shows similar effects in the spatial domain. One

can see that there is obviously visible noise in the results

when only employing the deep spectral prior. However, when

considering the two priors, the performance is clearly much

more visually pleasing. In addition, Fig. 10 (c) also clearly

demonstrates the disentanglement between the spatial and

spectral effects.

Moreover, the quantitative comparisons of the denoising

results by DS2DP without deep spectral prior, DS2DP without

deep spatial prior, and DS2DP are shown in Table IV.

TABLE IV
QUANTITATIVE COMPARISON OF DS2DP WITHOUT DEEP SPECTRAL

PRIOR, DS2DP WITHOUT DEEP SPATIAL PRIOR, AND DS2DP. THE BEST

AND SECOND-BEST VALUES ARE HIGHLIGHTED IN BOLD AND

UNDERLINED, RESPECTIVELY.

Method PSNR SSIM SAM

DS2DP without deep spectral prior 27.316 0.837 0.167

DS2DP without deep spatial prior 31.927 0.903 0.181

DS2DP 34.352 0.967 0.116

C. Effectiveness of the Sparsity Regularization
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Fig. 11. The history of PSNR values and the corresponding denoising results
by DS2DP with and without sparsity regularization.

To verify the sparsity regularization’s effect, we design a

comparative experiment, also using Case 6 and the WDC Mall

data. The result is shown in Fig. 11. One can see that when the

sparsity regularization is not applied, the PSNR first increases

and then declines slowly as the number of iterations increases.

In contrast, when sparsity regularization is employed, the

PSNR maintains an upward trend during the iterations—and

eventually exhibits a big PSNR improvement relative to the

former case.

Fig. 11 also shows the visualization of the algorithm with

and without the sparsity regularization in the 1,000th iteration.

One can see that the proposed method produces a relatively

clean image, which clearly shows an advantage over the case

without the L1 term.

Moreover, to further support the effectiveness of the sparsity

regularization, we list the quantitative indexes (i.e., PSNR,

SSIM, and SAM) of the denoising results by DS2DP without

sparsity regularization and DS2DP in Table V.

D. Sensitivity Analysis and Selection of the Parameters R and

λ

1) Parameter R: In this part, we study the parameter

sensitivity of the number of materials R on real HSI Indian

Pines—which contains 16 materials. Then, we further discuss

the selection of the parameter R in real scenarios.



13

TABLE V
THE QUANTITATIVE INDEXES (I.E., PSNR, SSIM, AND SAM) OF THE

DENOISING RESULTS BY DS2DP WITHOUT SPARSITY REGULARIZATION

AND DS2DP. THE BEST IS HIGHLIGHTED IN BOLD.

Method PSNR SSIM SAM

DS2DP without sparsity regularization 23.762 0.668 0.253

DS2DP 34.352 0.967 0.116

Due to the absence of the ground truth, we display the de-

noising images with the corresponding number of endmembers

R and network parameters in Fig. 12. We can observe that

when R is smaller than 3, the visual effect is not satisfactory.

When R is larger than 3, the denoising results are visually the

same. This observation demonstrates that the proposed DS2DP

is robust with respect to the parameter R. Such robustness

against underestimated R is a bit surprising at first glance,

yet understandable—under the linear mixture model, the range

space spanned by the first several principal components may

contain most of the energy. Hence, underestimating R may not

be very detrimental in many cases. Note that when selecting R,

the number of network parameters should also be considered

and balanced, since the number of the network parameters

increases substantially with the increasing value of R. Thus,

we select the value of R from a starting number 2 with the

increments 1 in practice, which balances between the visual

effect and the number of the parameters.

Other than using visual validation, the parameter R could

also be selected by the existing effective number of endmem-

ber estimation algorithms, e.g., [44], [59].

Observed R = 2 (1.150 M) R = 4 (2.298 M) R = 6 (3.449 M)

R = 8 (4.597 M) R = 10 (5.747 M) R = 12 (6.896 M) R = 14 (8.046 M)

R = 16 (9.197 M) R = 18 (10.3462 M) R = 20 (11.495 M) R = 22 (12.644 M)

Fig. 12. The band 24 of the denoising results by DS2DP on real-world HSI
Indian Pines with the corresponding number of endmembers R and network
parameters.

2) Parameter λ: In this subsection, we conduct an empiri-

cal sensitivity analysis of the parameter λ, using the real-world

HSI Australian, Urban, and WHU HongHu with different

corruption levels. Then, we further discuss the selection of

the parameter λ in real scenarios.

Fig. 13 shows the denoising results by DS2DP with different

λ on these three real HSIs. We can observe that the proposed

DS2DP attains the best visual effect when λ = 0.001, 0.01,

Observed λ = 0.001 λ = 0.01 λ = 0.1

Fig. 13. Denoising results by DS2DP with different λ on real-world HSI
Australian, Urban, and WHU HongHu datasets. From top to bottom: the band
87 of Australian dataset, the band 1 of Urban dataset, and the band 37 of
WHU HongHu dataset, respectively. From left to right: the observed image,
the results with λ = 0.001, 0.01, and 0.1, respectively.

and 0.1 for real HSIs Australian, Urban, and WHU HongHu,

respectively. This observation reflects that the regularization

parameter λ is sensitive to the weight of the sparse noise.

Thus, we apply (rough) grid search from a range of parameters

to select a relatively “good” one in terms of visual effect. For

example, we select λ from the candidate set {0.001, 0.01, 0.1}

and visually determine which parameter is more plausible.

Additionally, note that for images that are more severely

contaminated by sparse noise, λ should be larger. Hence, in

addition to visual validation, λ could also be selected from a

collection of candidates (e.g., {0.001, 0.01, 0.1}) by estimating

the corruption level. The level of corruption/noise can be

roughly estimated by some hyperspectral noise estimation al-

gorithms, e.g., those in [5], [61]. These noise/outlier estimation

methods often use less powerful models relative to our deep

prior-based one in terms of expressiveness, but may run fairly

fast to yield some initial estimations for the noise level, which

can serve our parameter selection purpose.

E. Impact of the Random Input to DS2DP

As illustrated previously, the input of the proposed DS2DP

is random but known noise sampled from a uniform distri-

bution. One may wonder if the input zr has a significant

impact on results? The answer is negative. We show this by

calculating the means and standard deviations of the algorithm

outputs’ PSNR for Cases 1-6 on WDC Mall. For each case, we

run ten trials with different zr’s that are randomly generated

from U(-0.05, 0.05), where U stands for uniform distribution.

The results are shown in Table VI. One can see that, perhaps a

bit surprisingly, the standard deviations of the results are fairly

small—which means the method is essentially not affected by

the random input to a good extent.

F. Impact of the Distribution Parameter of the Random Input

to DS2DP

We denote the uniform distribution as U(-a, a), where

-a and a are the lower boundary and upper boundary,
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TABLE VI
THE DENOISING RESULTS’ PSNR VALUES (MEAN±STD.DEV) FOR CASES

1-6 ON WDC MALL

Case Case 1 Case 2 Case 3

PSNR 36.213±0.254 35.636±0.358 34.297±0.276

Case Case 4 Case 5 Case 6

PSNR 35.511±0.344 34.802±0.297 34.173±0.221

respectively. In our experiment, the parameter a is set as 0.05

following [29]. In this part, we have conducted an empirical

sensitivity analysis of parameter a. Fig. 14 presents the

PSNR values by the proposed method with different a for

Case 6. We can see that, the PSNR value does not fluctuate

greatly with different a. Therefore, the denoising result is not

sensitive to the value of a.
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Fig. 14. The influence of a on HSI WDC Mall for Case 6

G. HSI Classification Validation

TABLE VII
QUANTITATIVE COMPARISONS OF CLASSIFICATION ACCURACY OF THE

DENOISED HSI BY THE COMPETING METHODS. THE BEST AND

SECOND-BEST VALUES ARE HIGHLIGHTED IN BOLD AND UNDERLINED,
RESPECTIVELY.

Metrics Original LRMR LRTDTV LRTFL0 DS2DP

Overall accuracy 76.5% 83.6% 83.8% 81.7% 84.9%

Kappa coefficient 0.733 0.814 0.816 0.796 0.828

To further evaluate the effectiveness of the proposed model,

we considered a hyperspectral classification task on the Indian

Pine data9. We use the observed data and the outputs of

different denoising algorithms as the inputs to the classification

task—which is performed by a support vector machine (SVM)

classifier. For each class, the number of training samples is

40, and the number of test samples ranges from 6 to 2415 for

various classes.

Table VII reports the classification performance. The

performance is measured by two commonly used metrics for

classification tasks, namely, the overall accuracy [62] and

the Kappa coefficient [62]. One can see that the denoising

methods can improve the classification performance by

simply using the observed data. In addition, one can observe

9http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_
Sensing_Scenes

that DS2DP achieves around 1.1% and 0.012 gain in terms of

the overall accuracy and the Kappa coefficient, respectively,

compared to the second-best method (LRTDTV).

VI. CONCLUSIONS

We proposed an unsupervised deep prior-based HSI denois-

ing framework. Unlike existing methods that directly learn

deep generative networks for the entire HSI, our method

leverages the classic LMM to disentangle the spatial and

spectral information, and learns two types of deep priors for

the abundance maps and the spectral signatures of the end-

members, respectively. Our design is driven by the challenges

that network structures used in deep priors for different types

of images (in particular, HSIs) may be hard to search. Using

our information-disentangled framework, empirically validated

unsupervised deep image prior structures for natural images

can be easily incorporated for HSI denoising. Besides, the

network complexity can be substantially reduced with proper

parameter sharing, making the learning process more afford-

able than existing approaches. We also proposed a structured

noise-robust optimization criterion that is tailored for HSI

denoising. We tested our method using extensive experiments

with various cases and ablation studies. The numerical results

demonstrated promising HSI denoising performance of the

proposed approach. A note is that, despite its promising

performance, unsupervised DIP research has still been largely

empirical—Rigorous analysis has been elusive. Interesting

future directions include enhanced theoretical understanding

to unsupervised DIP (e.g., in terms of sample complexity and

generalization error analysis), which may be of broader interest

beyond HSI denoising.
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