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Abstract

A machine-learning based approach for evaluating potential energies for quantum me-
chanical studies of properties of the ground and excited vibrational states of small molecules
is developed. This approach uses the molecular-orbital-based machine learning (MOB-ML)
method to generate electronic energies with the accuracy of CCSD(T) calculations at the same
cost as a Hartree-Fock calculation. To further reduce the computational cost of the potential
energy evaluations without sacrificing the CCSD(T) level accuracy, GPU-accelerated Neural
Network Potential Energy Surfaces (NN-PES) are trained to geometries and energies that are
collected from small-scale Diffusion Monte Carlo (DMC) simulations, which were run using
energies evaluated using the MOB-ML model. The combined NN+(MOB-ML) approach is
used in variational calculations of the ground and low-lying vibrational excited states of water,
and DMC calculations of the ground states of water, CHs* and its deuterated analogues. For
both of these molecules, comparisons are made to the results obtained using potentials that
were fit to much larger sets of electronic energies than were required to train the MOB-ML
models. The NN+(MOB-ML) approach is also used to obtain a potential surface for C,Hs",
which is a carbocation with a non-classical equilibrium structure for which there is currently
no available potential surface. This potential is used to explore the CH stretching vibrations,
focusing on those of the bridging hydrogen atom. For both CHs* and C,Hs* the MOB-ML
model is trained using geometries that were sampled from an AIMD trajectory, which was
run at 350 K. By comparison, the structures sampled in the ground state calculations can have
energies that are as much as ten times larger than those used to train the MOB-ML model.
For water a higher temperature AIMD trajectory is needed to obtain accurate results due to
the smaller thermal energy. A second MOB-ML model for C,Hs™ was developed with addi-
tional higher energy structures in the training set. The two models are found to provide nearly

identical descriptions of the ground state of C,Hs".



Introduction

Quantum descriptions of molecular vibrations require an accurate representation of the potential
energy surface (PES) for the system of interest. For systems where the vibrational ground state
is localized near the potential minimum, and which undergo small amplitude vibrational motions,
harmonic treatments of the potential may be sufficient. Such a description can be readily achieved
at a broad range of levels of electronic structure theory and basis sets using electronic structure
packages, as all that is required is the optimized geometry and Hessian. Significant insights may
also be obtained from quartic expansions of the potential about the minimum, as this forms the
basis for second-order perturbation theory calculations.? Unfortunately, there are many problems
for which such low-order expansions of the potential are insufficient, and it becomes desirable to
be able to evaluate the potential at arbitrary molecular configurations.

A common strategy for developing potentials for molecular spectroscopy, quantum dynamics
or other non-local quantum applications is to evaluate the electronic energies over a broad range
of geometries, and fit this data to a potential function. This has often involved fitting the electronic
energies to functional forms that reflect the expected physics.*’ Consider, for example, two of
the systems explored in the present study: H,O and CH;". Partridge and Schwenke fit a poten-
tial surface for H,O based on 1056 internal contraction multireference configuration-interaction
(ICMRCI) energies, and adjusted the parameters to include Born-Oppenheimer corrections and to
match experimental data.* This surface will be referred to as the PS potential in the remainder of
this paper. Jin, Braams and Bowman (JBB) fit a potential surface for CHs" to more than 35 000
energies, which were evaluated at the CCSD(T)/aug-cc-pVTZ level of theory/basis. To allow the
ion to properly dissociate to CH;* + H,, they extrapolated their fit surface to long range by splicing
a long-range CH;r + H» potential onto the fit surface using a switching function in the CH;"-H,
distance.®

In recent years, the fitting of potential surfaces has been facilitated by the introduction of ma-
chine learning (ML). Two general strategies that are relevant to the present work are those that

use these approaches to fit the calculated electronic energies and those that focus on providing



ways to correct to energies that are calculated at a lower-level of electronic structure theory to pro-
vide energies with the accuracy of a high-level electronic structure calculation.®'> Examples of
the first approach include studies that obtain high-dimensional potential energy surfaces by map-
ping atomic and geometric information including coordinates, bond length and bond angles to
molecular energies that have been obtained from DFT calculations. 320 Other studies have used
machine-learning approaches to correct energies from lower-level electronic structure theories to
higher levels of theories, for example predicting the energy differences between results from DFT
or Hartree—Fock (HF) or MP2 calculations and to those obtained from CCSD(T)'>?!-2> or vari-
ational quantum Monte Carlo?% calculations. To include more information and to improve the
learning efficiency, this second class of machine-learning approaches usually use descriptors to
represent quantum level properties such as Slater determinants,® electron densities,?’ atomic or-

bitals,?® or molecular orbitals, 242931

which are computed using a lower-level and less-expensive
approach. Although the prediction accuracies and learning efficiencies of this class of approaches
are much better than the ones from direct learning approaches, their evaluation costs are also much
higher due to their dependence on the results of low-level electronic structure computations.

Molecular-orbital-based machine learning (MOB-ML) is an example of this second type of ap-
proach.?#2%-31 By exploiting localized molecular orbitals obtained from HF calculations, MOB-
ML is able to reproduce highly accurate potential energy surfaces at a fraction of the cost incurred
by the target high-level methods, even when small data sets are employed during training of the
MOB-ML models.?*23! This approach is highly efficient. For example, a MOB-ML model for
water that is trained using a single water structure is able to achieve chemical accuracy of 1 kcal
mol~!,?° while ML methods that directly fit energies can require hundreds of thousands of struc-
tures to achieve chemical accuracy.3?

In the present study, we combined the MOB-ML approach with the first strategy and explore
the accuracy and utility of the MOB-ML approach for generating potential energy surfaces that

can be used to study ground and excited state vibrational states and energies of small molecules.

Even though MOB-ML replaces the N7 scaling of CCSD(T) with the N3 scaling of HF, the cost



of the Hartree-Fock calculations can still be prohibitive when a large number of potential energy
evaluations are needed. This problem is particularly severe for diffusion Monte Carlo studies 33—’
where a typical simuation requires on the order of 10% single-point energy evaluations. Similar
problems will occur for other approaches for studying molecular vibrations as energies will need
to be evaluated at all of the grid or quadrature points used in the calculations, and these can change
as the basis set is modified. While direct use of MOB-ML models for such calculations may still
be prohibitive, the reduced expense compared to the underlying electronic structure calculations
makes this approach more favorable for generating the large number of points needed to use ML
to map energies to molecular structures. Additionally, such a study introduces a more rigorous test
on the accuracy of the MOB-ML models as they will require errors no larger than several cm™!
which are two orders of magnitude smaller than 1 kcal mol~! chemical accuracies.

In a recent study,! some of us developed a strategy for developing fitting potentials using
a GPU-based neural network regression scheme, and the resulting potentials will be referred to
as NN-PES in the following discussion. The approach relies on small-scale DMC simulations,
which provide a set of molecular geometries that are sampled by the ground state wave function.
By running simulations, with both natural masses and where all of the masses are reduced by a
constant factor, we are able to greatly increase the sampling of higher energy configurations. Such
simulations, while expensive when the MOB-ML model is used to evaluate the energies, can be
implemented in high-performance computing (HPC) environments. This generates a large set of
training data for the NN-PES, and the resulting NN-PES can be used in subsequent large scale
calculations. In a recent study, we focused on applying this approach for DMC calculations, but
the approach is much more general.

In the present study, we will focus on developing potentials for water, CH* and C,Hs*. To
explore the efficacy of the combined NN+(MOB-ML) approach results will be compared to those
obtained using the well-established PS and JBB potential surfaces for H,O and CH;", respectively.

These are two systems that we previously studied using NN-PES based on the JBB and PS poten-

tial surfaces. ! Water provides an example of a molecule that is straightforward to study by a variety



of approaches, but where the relatively large amplitude OH stretching vibrations sample the dis-
sociative part of the potential even in the ground vibrational state. CH<*, on the other hand, is an
ion that undergoes large amplitude vibrational motions in its ground vibrational state. In fact the
ground state wave function has been shown to have comparable amplitude at the 120 equivalent
minima on the potential and the 180 low-energy saddle points that connect these minima.>® Here
we compare the results obtained from the MOB-ML model to those obtained from earlier fits to
the electronic energies. Finally, we use this approach to explore the consequences of the large
amplitude motion of the excess proton in C,Hs". The minimum energy structure of this ion has
the excess proton in a bridging position, with the classical H2C—CH§r structure corresponding to a
saddle point.3° Previous spectroscopic studies support this structure, but have only been performed
above 2000 cm~!,3%40 and do not appear to be sensitive to the motions of the excess proton par-
allel to the C-C bond. There is also no available full-dimensional potential for this ion. In the
final part of this study, we will use the NN+(MOB-ML) approach to explore this large amplitude
motion along with possible spectral consequences. For all three of these systems we will explore
the range of energies that need to be accessed by the training data for the MOB-ML model in order

to obtain accurate NN-PES for subsequent calculations of the vibrational ground state.

Theory/Methods

Molecular-Orbital-Based Machine Learning (MOB-ML)

MOB-ML is a method for accurately predicting high-level molecular energies, such as those pro-
vided by CC, Mgller-Plesset (MP) perturbation theory, and other wave-function-based electronic
structure theories, by using only molecular orbital information obtained from HF computations

with much reduced costs. The main idea behind MOB-ML is rooted in Nesbet’s theorem, *!+42
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which ensures that the correlation energy of an N-electron system, E°™, can always be expressed
as the sum over energy contributions evaluated from pairs of occupied orbital. The pair energies,
&;j, take various functional forms, which can be readily defined for the specific electronic struc-
ture theory of choice, such as CCSD(T) or MP2.3! Indeed, computing pair energies is oftentimes
computationally intractable since the high-order polynomial costs associated with CC, MP, and
other theories far exceed those of HF calculations. MOB-ML is designed to alleviate this issue by

approximating the pair energy contributions via the general ML mapping

&j =€ [{%}ij] ; 2

which associates pair energies to molecular orbitals (MOs) directly, bypassing high-level calcula-
tions altogether.

This general MOB-ML approach can be imbued with any particular ML methodology to define
the mapping and trained to approximate energies of virtually any wave-function-based electronic
structure method. We employ Gaussian process regression (GPR) to fit pair energies computed at
the CCSD(T) level of theory. We do this by first subdividing Eq. 2 into diagonal and off-diagonal

contributions
eMLf]  ifi=
g~ 3)
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which separates the different character of both types of pair energies and improves on the accuracy
of the machine-learned models. The feature vectors f; and f;; are constructed from consistently
ordered Fock, Coulomb, and exchange interaction matrix elements using localized HF molecular
orbitals. We employ the IBO or Boys localization procedures to guarantee the transferability of
MOB-ML models across different chemical systems and conformations.?*>%3! Generated in this
way, the MOB-ML model ensures that the calculated potential energies are invariant under permu-
tation of identical particles. The details of MOB feature designs have been fully described in our

previous studies.?+2%-31



Developing Neural Network (NN) Potentials Based on MOB-ML Models

Although the use of the MOB-ML energies reflects a significant savings over CCSD(T) calcula-
tions, the large number of potential energy evaluations required for many calculations can make
it impractical to use the MOB-ML energies directly in studies of nuclear quantum effects. In a
recent study, we showed that we could train a NN-PES using geometries collected from a small-
scale DMC simulation, which could then be used for large-scale, production run DMC simulations
as well as other types of calculations.! In the first part of this study, we apply the same strategy
to studies of CHg" and water to explore whether a MOB-ML model that is based on relatively
low-energy structures can effectively describe the ground and low-energy excited state wave func-
tions, which sample configurations with energies that are as much as ten times larger than those
used to develop the MOB-ML model. This allows us to explore how well the MOB-ML models
extrapolate to the higher energy regions of the potential, which are explored by the ground state
wave function. For the calculations of C,H;", we introduced some modifications to the previously
described approach for obtaining the NN-PES in order to improve the efficiency.

Specifically, to obtain the NN-PES, we use a Feedforward NN to evaluate the potential ener-
gies. Implementing this approach on GPUs, we are able to achieve a high level of parallelization,
which results in a roughly 10° fold acceleration compared to evaluations of the MOB-ML energies.
To obtain the energies used to train the NN, we developed a parallel implementation of DMC. 4344
Because a constant simulation size simplifies the MPI communication, these DMC calculations are
run using the continuous weighting scheme described in the Supporting Information. The MOB-
ML surfaces used in the study were accessed through the ENTOS QCORE software package,* a
more detailed discussion of the DMC approach can be found elsewhere, >’ and a brief description
of the DMC procedure is provided in the Supporting Information.

While we were able to use this approach for DMC simulations of H,O and CHs* that use small
ensembles of walkers, it does not provide a practical approach for full-scale DMC simulations or
for simulations of larger molecules. For example a simulation of C,Hs* with an ensemble size of

7168 walkers, which was run for 2500 time steps required 931 CPU hours on 28 cores on our local



cluster. On the other hand, this approach allows us to generate data for training the NN.

The fundamental algorithm of Feedforward NN can be expressed as

y= LoV, (famt W (e fi(W x4 b1).) + bat)) + ) 4)

where x and y represent the input and output vectors, respectively. The number of layers is rep-
resented by n, and f;, W; and b; represent the activation function, weight matrix and bias vector
for jth layer, respectively. The weight matrices and bias vectors are updated during training to
minimize the prediction error of the training set, and the error is evaluated using mean squared
error. The output of the NN, which is the potential energy of the input geometry in cm™!, is shifted

and scaled using

y:m(y +Q 5)

In order to train the NN, the molecular geometries, which are represented by the Cartesian co-
ordinates of the atoms, need to be converted into descriptors, which are vectors that encode the
molecular geometries and provide the input for the NN.*® The descriptors must be translationally
and rotationally invariant. Ideally they should also be permutationally invariant.

In this study, we employ two descriptors, the Coulomb Matrix,*” which we have used in our

earlier study
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and Simons-Parr-Finlan(SPF) Matrix *8
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In the Coulomb Matrix descriptor, Z; represents the nuclear charge of the ith atom. For both de-
scriptors R;; is the distance between the ith and jth atoms and for the SPF descriptor, Rfj provides
the corresponding distance at minimum energy geometry. Notice that in both cases, the descriptor
matrices are symmetric, and the diagonal elements do not contain any geometrical information.
Therefore, the upper triangle excluding the diagonal elements of the matrices can be extracted and
flattened into a vector, which provides the input to the NN. As both descriptors rely on the atom-
atom distances, they are translationally and rotationally invariant. Explicit permutation invariance
can be achieved by sorting the rows and columns of each matrix based on their norm before they
are turned into vectors, although this comes at the cost of increased computation time and the pos-
sible introduction of discontinuities in the fitted PES. ! For molecules like CH,* that have very high
symmetry, the introduction of this permutational invariance is essential. For most other molecules,
we have found that training the NN without explicitly including the permutation symmetry works
quite well as the NN is able to learn this property. Thus, the choice of method to achieve permuta-
tion invariance should be carefully evaluated based on the system of interest. In the present study,
we use an unsorted Coulomb Matrix for H,O, a sorted Coulomb Matrix for CH5+, and an unsorted
SPF Matrix for C,Hs™.

In Figure 1, we compare the evolution of the mean absolute error (MAE) of the NN-PES for
100 epochs when the Coulomb (solid blue line) and SPF (dashed orange line) matrix descriptors
are used. As can be seen, the use of the SPF matrix leads to much more efficient training. This
is because at the equilibrium geometry the elements of the descriptor vector and the energy are
all zero, removing the need to introduce a bias vector in the model. This reduces the number of
trainable parameters.

As in the previous study,' the acitvation functions used in this work are the Swish function,
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developed by Google:*

X
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where f is a tunable parameter and typically set to 1. It was shown to outperform conventional ac-
tivation functions like sigmoid or tanh by avoiding the vanishing gradient problem while providing

a completely smooth and differentiable fitting function. This contrasts the

0ifx <0
ReLU(x) = 9)
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activation function, which is used for the last layer. Using the RuLLU activation function for the last
layer ensures that the output of the NN will be non-negative. This helps to prevent nonphysical
energy predictions even in regions not well-learned by the NN.

The NN-PES is trained over large number of epochs to achieve the desired accuracy. This can
result in over-fitting. Over-fitting is problematic as it can lead to the generation of holes in the PES,
where unphysically small energy predictions are made in regions of configuration space that are
not well-sampled by the training data, or not well-learned by the NN. We have found that as the
training progresses the entries in the weight matrices, W' in Eq. 4, in the NN tend to increase, and
the numerical instabilities that result from these large weights are correlated to potentials being
overfit.>® Thus, a simple and practical way to circumvent the problem of over-fitting is to constrain
the maximum value of the norm of each column in the W’ -matrices in Eq. 4 to a pre-chosen value.
In situations where the norm exceeds this value, the elements in the associated column are scaled
so the norm of the column is equal to the maximum allowed value. In the present work, we have

found that a maximum value of 3.5 works well.
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Results and Discussion

Since we will be using several approaches for evaluating energies, before discussing the results
we define the notation used to indicate how energies are evaluated. As noted in the Introduction,
we will refer to the H,O potential energy surface generated by Partridge and Schwenke as the PS
surface and the global CHs" potential energy surface generated by Jin, Braams, and Bowman as
the JBB surface. We will refer to surfaces generated using the MOB-ML technique, as the MOB-
ML surfaces, and we will refer to the neural network generated potential energy surface that was
trained using the MOB-ML energies as the NN+(MOB-ML) surface. The energies obtained by
using these surfaces will be denoted as EP°™ ! where potential is replaced by JBB, PS, MOB-

system °

ML or NN+(MOB-ML), while system is replaced with either H,O, CH5" or C,Hs™.

Validation and Comparison of the MOB-ML Potential Energy Surfaces to

Previous Work

We use the mean absolute error (MAE) of the predicted CCSD(T)/aug-cc-pVTZ energies of a test
set consisting of a set of geometries that were collected from a thermalized AIMD trajectory to
assess the quality of the MOB-ML model. In our previous study,?* MOB-ML models that were
based on small numbers of training configurations were shown to accurately predict the energies
of geometries sampled at room temperature. The MAE for these models are provided in the right
most column of Table 1. Before applying this approach to studies of H,O, CHs*, and C,H,*,
we explore the accuracy obtainable by MOB-ML protocols described in Ref. 31 when they are
applied to the eight small molecules considered in Ref. 24. These molecules will be referred to as
the validation molecules. In this application, the training and test configurations are sampled from
thermalized geometries at 3000 K. The results of this analysis are provided in the second through
fifth columns of Table 1.

As the results reported in Table 1 show, by using the revised protocols, the MAE of the MOB-

ML model remain below 2.5 cm™! for all eight molecules when the MOB-ML model has been
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trained to only on 500 configurations. This reflects as much as an order of magnitude improvement
over the previously described approaches.?* Of equal importance for the DMC calculations is the
fact that the errors are uniformly distributed, as indicated by the mean signed errors (MSE) reported
in Table 1 being less than 1 cm ! for all but HNC, where the MSE is 1.034 cm~!. It is notable that
when there are the same number of electrons in the molecular system, the accuracy decreases as
the number of vibrational degrees of freedom increases. This can be seen by comparing the MAE
for HF, NH; and CH,. All three of these molecules have the same number of electrons as H,O and
CH,*.

Based on this analysis, for the development of the MOB-ML models used in this study, we
employ slightly larger training sets. For H,O 3000 geometries were sampled from a thermalized
trajectory at 6003 K, while for the other two ions, the 3000 geometries were obtained from tra-
jectories that were run at 350 K. The higher temperature trajectory for water was used because
we found that when we used configurations that were evaluated based on the lower temperature
trajectory the zero-point energy was more than 25 cm ™! higher than the zero-point energy obtained
when the potential was developed from CCSD(T) energies directly. Such problems do not appear
to affect the MOB-ML models for CHg* and C,H;™, which is likely due to the larger total energy
that is sampled by the 350 K thermalized AIMD trajectory due to the larger number of vibrational
degrees of freedom in these ions compared to water.

Training sets are selected from the 3000 geometries from the AIMD trajectory, while the re-
maining geometries form the test set. The maximum sizes of the training sets are 1000 for H,O and
CH,*, leaving 2000 structures to form the test set. For the original C,Hs* model, we use a training
set composed of 2500 structures. A second MOB-ML model is trained for C,Hg*, which uses up
to 2000 of the 2500 configurations that were used to train the original model. These structures are
supplemented with up to 500 geometries in which the CH distances are replaced by randomly se-
lected values between 0.8 and 1.3 A so the training set contains structures from the AIMD trajctory
and stretched structures in a 4:1 ratio (see the Supporting Information for additional details).

Table 2 provides the mean absolute errors and the mean signed errors for the MOB-ML models
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for H,0, CH5* and C,Hs". We are able to obtain MAE’s of 1.04 and 1.38 cm~! for H,O and
CH,*, respectively. Comparable MAE’s are obtained for C,Hs™ when only the structures from the
AIMD trajectory are included in the test set. Importantly, adding the stretched structures to the
training set does not lead to a deterioration of the description of these lower-energy structures. On
the other hand, when only the stretched geometries are considered, the MAE for the original model
is nearly an order of magnitude larger than the MAE for the stretched model.

To further explore the learning behavior of these potentials, in Figure 2 we report the MAEs
of predicted energies for the test data as functions of total number of training configurations on a
log-log scale for the four MOB-ML models developed in this study. Such curves are commonly
referred to as learning curves.>' By comparing the slopes of learning curves, we find that the MOB-
ML approach has a slightly better learning efficiency for H,O than for CHs". This observation is
consistent with the expectation that the larger number of vibrational degrees of freedom in CHs*
should make its potential surface a more difficult learning problem compared to H,O. In both

cases, high accuracies comprising MAEs below 5cm™!

are attainable when only 200 configura-
tions are included in the training set. For both molecules, the error is uniformly distributed about
zero, as indicated in the histograms of the errors from the test set for the four MOB-ML models,
plotted in Figure S1.

Compared with the number of configurations used in the traditional parametric PESs, for in-
stance, 1056 configurations in PS, and 36 173 configurations in JBB, MOB-ML requires signif-
icantly smaller number of configurations to provide high quality energies, closely resembling the
ones provided by CCSD(T) calculations. Even when considering the most accurate MOB-ML
models for the prediction of H,O and CH;" energies, which were trained on 1000 configurations
each, MOB-ML achieves high accuracies with MAEs of only 1.04 and 1.38cm™!, respectively.
Throughout this work, we utilize these high-accuracy models to predict H,O and CH4" energies.
development of these models can be found in the Supporting Information.

The high accuracy of our MOB-ML model in describing the H,O PES is further supported by
comparing our MOB-ML predictions to a set of 2000 data points calculated at the CCSD(T)/aug-
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cc-pVTZ level of theory. As can be seen in Figure 3A, 96% of the MOB-ML-predicted energies
lie within 0.5cm™! of the corresponding CCSD(T) energies, while including all points only in-
creases this value to 4 cm~!. Nevertheless, MOB-ML accuracy is only as good as the underlying
CCSD(T) level of theory. By comparing single-point energies obtained from MOB-ML predic-
tions, E%;)OB‘ML, and the PS PES, EESZO, as shown 3B, C and D, we immediately notice a large
discrepancy over an order of magnitute larger than errors between MOB-ML and CCSD(T). These
differences are also non-uniform, with a mean signed error (MSE) of —130 cm™!. The large errors
can be attributed to the failures of CCSD(T), and other CC methodologies based on perturbative
energy corrections, in describing non-dynamical correlation effects, such as those dominating the
symmetrically stretched geometries of the water molecule.>>3

In Figure 4, we make an analogous comparison for CHs". By comparing the MOB-ML and

CCSD(T) energies computed for a combined selection of 3000 molecular geometries, containing

both training and test set configurations, 99.5 % of the MOB-ML predictions show energy errors

CCSD(T)
CHJ

MOB-ML energies to those coming from the JBB PES, we find that 88 % of the energy differences

smaller than 25cm™~!, and 97 % are within 10 cm~! of E . Similarly, when we compare
are smaller than 25 cm ™!, with the remaining higher energy configurations showing slightly larger
errors. The MSE for configurations with calculated energies below 1500 cm™! is 0.1 cm™!, while
for geometries with energies above 1500 cm~! the MSE increases to 12.6 cm™!. These differences
mirror the root-mean squared fitting error (RMSE) for the JBB surface, which the authors report

as approximately 10 cm™! for energies below 1500 cm~! and approximately 17 cm™' for energies

between 1500 and 4500 cm~—!.8

Calculating Vibrational Wave Functions and Energies for Water and CH;"

Using MOB-ML Surfaces

While comparing single-point energies between MOB-ML, CCSD(T), and other previously re-
ported sources provides a strong sense of the accuracy attainable by MOB-ML energy predictions,

a more demanding task is to compute accurate molecular properties, such as vibrational energies
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and wave functions. To this end, we employ two different approaches combining MOB-ML-
generated PESs and DMC simulations. In the first, the energies are evaluated using the MOB-ML
surface directly. Even with a parallel implementation of DMC, these calculations are expensive.
Therefore, to make this approach tractable, we performed the smallest calculations that are ex-
pected to provide reliable results. The parameters for these calculations were based on a previous
DMC study performed using the PS PES for water,’* and the JBB surface for CH5+,55 and are
provided in the Supporting Information. While the parameters for these calculations were chosen
to be as small as possible, they are still expensive. In order to perform larger DMC calculations, we
used the NN-DMC approach.! Finally, variational calculations were performed to obtain excited
state energies for H,O.

We start by considering the ground state of H,O. As shown in Table 3, the calculation based
on the MOB-ML energies gives a zero-point energy of 4616(2) cm~!, which is roughly 20 cm™!
lower than the corresponding zero-point energy obtained by performing a variational calculation
using the PS potential. The smaller zero-point energy is consistent with the results plotted in Figure
3B, which show that the energies obtained from the MOB-ML surface are generally smaller than
those obtained from the PS surface. It is also consistent with the 24 cm™! lower harmonic zero-
point energy obtained at the CCSD(T) level compared to the MRCI calculations used to generate
the PS surface (see Table S1). On the other hand, this result is based on a small DMC calculation.
To verify this zero-point energy, we have performed a larger NN-DMC calculation, which gives
a zero-point energy of 4615(1) cm™'. This energy agrees with the results of the smaller calcula-
tion. While these results are promising, to further ensure that the NN+(MOB-ML) technique is
adequately learning the MOB-ML surface for the purposes of DMC, we provide comparisons of
the single point NN+(MOB-ML) energies to MOB-ML energies in Figure S2 in the Supporting
Information. Based on these comparisons, the NN+(MOB-ML) surface provides a similar level
of accuracy when compared to our previous work, where the same neural network structure was
used to learn the PS surface.! This gives us confidence in applying the neural network method to

the MOB-ML surface beyond the ground state of H,O.
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To this end, we performed a variational calculation of the vibrational energies of water. The
details of this calculation are reported in a previous study ' and reproduced in the Supporting Infor-
mation. As can be seen in the results reported in Table 4, the energies obtained from the variational
calculation using the MOB-ML surface and the NN+(MOB-ML) surface are in very good agree-
ment, further validating the NN+(MOB-ML) PES. When we compare the energies based on the
MOB-ML and PS potentials, larger differences are observed. The anharmonic zero-point energy
evaluated using the MOB-ML surface is approximately 20 cm~! lower than the PS surface, and
the energies of the levels with one quantum of excitation in the OH stretches each deviate by an
additional 20 cm~!. As mentioned above, the harmonic zero-point energies obtained using these
two surfaces differ by around 24 cm™!, and the deviation can be traced to a 20 cm~! discrepancy
in each of the OH stretch frequencies. Finally, the difference between the energies of the bend
states, calculated using these two potentials, differ by 1 to 4 cm™!.

We also calculated the ground state energy and wave function for CHs* based on the MOB-
ML potential. Due to its larger number of vibrational degrees of freedom, two of which are
large-amplitude vibrations, we have only performed ground state DMC calculations for this ion.
Additionally, the increased dimensionality makes the evaluation of the MOB-ML potential ap-
proximately twice as expensive, and the minimum number of walkers needed to obtain a reliable
ground state wave function and energy are roughly twice as large as for H,O. This makes DMC
calculations based on the MOB-ML potential barely feasible. Using this approach, we obtain a
zero-point energy of 10 912(15) cm~!. When we use the NN-DMC approach, the zero-point en-
ergy becomes 10 909(2) cm~!'. While both values are slightly lower than the energies reported
based on the global JBB surface, they are in excellent agreement with the DMC zero-point energy
of 10 908(5) reported by Johnson and McCoy using the CCSD(T)-based surface (JBB:CC) from
which the global surface was developed.® These results are summarized in Table 3. This level of
agreement of the zero-point energies suggests that obtaining training geometries for the MOB-ML
model from a 350 K AIMD trajectory for CHy" is sufficient to generate energies of configurations

with significantly more energy. This is in contrast to water, where a model based on a compara-
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ble AIMD simulation resulted in errors in the ZPE of roughly 25 cm™~!. The improved results for
CH,* reflect the increase in the total thermal energy with increased vibrational degrees of freedom,
and the ergodicity of the classical sampling of the potential. As a result, the 350 K trajectory will
sample a much broader range of CH displacements in CHs" compared to the sampling of OH bond
lengths in water.

CH;" is an unusual ion in that it exhibits two large amplitude motions, which result in low
barriers for permutation of the hydrogen atoms. While isomerization is facile, the five CH bonds
are not equivalent at any of the low-energy stationary points. This is illustrated by the harmonic
frequencies for the CH stretches, which range from 2400 to 3250 cm~!.8¢ As a result, when one
or more of the hydrogen atoms is replaced by a deuterium atom, the ground state probability am-
plitude is no longer equally distributed among the 120 minima on the potential surface. This can
be seen in the plots of the projection of the probability amplitude onto the HH distances, shown
in Figure 5. In this figure, we compare the distributions obtained using NN-DMC calculations
based on the NN+(MOB-ML) potential to results obtained running the analogous unguided DMC
calculations on the JBB potential. The distributions change as hydrogen atoms are replaced with
deuterium atoms, and the evolution of the distributions with deuteration reflects the localization

described above. This effect has been discussed previously,>’8

and the important observation for
the current study is that calculations of the ground state probability amplitude based on both the
NN+(MOB-ML) potential and the JBB potential yield nearly identical distributions. Analogous
distributions for the HD and DD distances show similar agreement, and are provided in Figure
S6 in the Supporting Information. For all isotopomers, the difference in the zero-point energies
calculated using the JBB and the NN+(MOB-ML) potentials remain smaller than 15 cm~!. The
deviations in the energies among isotopomers reflect a sensitivity of this quantity to small differ-
ences among the potentials. As mentioned above, the primary source of these differences in the
calculated zero-point energies is most likely from the introduction of a switching function that al-

lows the JBB surface to dissociate properly. When that correction is not included, the differences

between the zero-point energies reported in Ref. 56, and reproduced in Table 3, and those obtained

18



using the NN+(MOB-ML) surface are less than 6 cm L.

The above agreement between the results of these two sets of calculations should not be sur-
prising, as both the MOB-ML and the JBB surface are based on the same levels of electronic
structure theory. On the other hand, whereas the earlier surface is based on fitting more than 35
000 electronic energies with energies up to 150 000 cm~! to a potential function with 2300 coef-
ficients,>’ the MOB-ML potential is based on 1000 electronic energies with energies below 4500
cm™!. The similarity between the calculated properties based on these two surfaces provides an

illustration of the power of the MOB-ML approach.

Extensions to C,H;"

While the results for H,O and CHg* are promising, in most cases, though we will not have other
surfaces to compare to, and the power of this approach is not in reproducing previous work, but
in the capability of developing potentials for new molecules on ions. For this purpose, we explore
the evaluation of the potential surface for C2H§“. Initially, the training of the MOB-ML model
followed the procedure used for CHZ, while the NN+(MOB-ML) surface was generated using
the modified procedure, described above. Based on these calculations, we obtained a zero-point
energy of 13 172 cm~! based on a set of DMC simulations with 1 000 000 walkers, which were run
for 50 000 time steps. This energy is substantially larger than the energies of the structures used
to train the model, which were all below 6000 cm™~!. In this way, this study of C,H4" allows us
to further explore the sensitivity of the accuracy of a MOB-ML model to the range of the potential
that is sampled by the training data.

To explore the validity of the MOB-ML model for C,Hs™ we randomly selected 1000 config-
urations of C2H5+ from the DMC simulation and evaluated the energies at the CCSD(T) level of
electronic theory. These structures had energies as high as 60 000 cm~!. The results are shown in
Figure S5, and the MAE between the MOB-ML energies and the CCSD(T) ones for these geome-
tries is 84 cm™!, and errors exceeding 1000 cm™! for structures with energies of 20 000 cm™! are

observed. Based on the size of these errrors, we re-trained the MOB-ML model using up to 2000
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structures from the 350 K AIMD simulation along with 500 stretched structures. The procedure
used to generate the stretched structures is described in the Supporting Information. With the same
total number of training structures, the inclusion of the stretched structures leads to a reduction of
the MAE to 58 cm~!, while the calculated zero-point energy changes by only 2 cm~!. This gives
us confidence that despite the relative low energy of the structures that are used to train the original
MOB-ML model, the zero-point energy and ground state wave function are well described by this
model. Since we have a model that is trained on higher energy structures, we use that model in the
analysis described below.

With the potential developed and validated, we turn to the question of the amplitude of the
motions in the ground state of C,Hs*, which has an equilibrium structure in which the extra pro-
ton equidistant from the two carbon atoms, as is illustrated in the inset to Figure 6. Projecting the
probability amplitude onto the six CH distances, we find that the projections for all of the ethylenic
CH bond lengths are essentially identical as are the two projections onto the distance between the
excess proton and the two carbon atoms. Based on the analysis of these projections of the proba-
bility amplitude, the average CH bond length for the ethylenic CH bonds is 1.12263(8) A, which
is slightly longer than the value for ethylene. It is also notable that the breadth of the projection of
the ground state probability amplitude onto the distance between the bridging hydrogen atom and
the two carbon atoms is roughly 50% wider than the projection onto the outer CH distances. This
is consistent with the larger amplitude motion experienced by this hydrogen atom.

To further explore the amplitude of this motion, we also plot projections of the ground state
probability amplitude onto the Cartesian coordinates of the bridging hydrogen atom in Figure
7. To obtain these projections, we define a coordinate system by embedding the molecule in a
body-fixed axis system using the Eckart conditions, %" based on the equilibrium geometry of
the ion. The procedures follow those used in a recent study of protonated water clusters.®! In
Figure 7A, we project the probability amplitude onto the plane that contains the two carbon atoms
and which bisects the two HCH angles. In this projection, we can see the very large amplitude

motion of the bridging hydrogen atom along the CC bond axis, although there is no amplitude
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in structures that could be considered as a HZC:CH3+ structure. In contrast, the amplitude of the
motion perpendicular to the CC bond axis is much smaller, which is consistent with the 2158 cm™!
assigned vibrational frequency.>? It is also clear from the projections that these motions are highly
coupled. In Figure 7B we also plot the projections of the probability amplitude onto the plane that
contains the four other hydrogen atoms, in the equilibrium structure. This projection shows much
less coupling than the one plotted in Figure 7A, although again the amplitude of the motion along
the CC bond is much larger than the motion that is perpendicular to the CC bond axis. The above

observations signal that C,Hs" will be an interesting ion for further investigation.

Conclusion

In this work, we introduced a general approach for generating efficient and highly accurate poten-
tial energy surfaces for use in large-scale molecular simulations. Specifically, we take advantage
of the MOB-ML approach to generate CCSD(T)-quality potential energy surfaces for H,O, CHs*
and C,H,", at a small fraction of the computational cost relative to CCSD(T). Furthermore, we
demonstrate that by employing a NN approach to refit the MOB-ML energies, we can increase the
computational efficiency of the MOB-ML approach by exploiting GPU technology, and achieve
large scale DMC simulations while maintaining high accuracy.

The approach was applied to three molecules. We began with water as a small molecule where
the evaluation of excited states is readily available. This enabled us to explore whether a potential
that was fit based on simulations that sampled ground state properties could be used in studies
of excited states. CHg* provided an ion where the large amplitude vibrations makes fitting the
potential challenging, but which is well-suited for DMC approaches and for the combined MOB-
ML/NN-DMC approach. Through our exploration of CHs* we showed that a MOB-ML model
that was trained on structures with energies below 4200 cm™! could reproduce the ground state
wave function of CH;L and its deuterated analogues, which have energies approaching twice that

value. Finally, we used this approach to develop a potential for C,Hs* and explored the amplitude
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of the motion of the bridging hydrogen atom in the ground state of this ion. We also explored the
sensitivity of the results to the range of the energies of the configurations that were used to train
the MOB-ML model. We found that when the MOB-ML model was trained using configurations
below 7000 cm~! and geometries that exceeded 43 000 cm™! the final ground state probability

amplitude and zero-point energy showed negligible differences.
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Table 1:

Predicted Error of the MOB-ML Model Relative to CCSD(T)/aug-cc-pVTZ

Energies.?
System MAE? MSE¢ RMSE?Y Max?® MAE (Ref. 24)
CH, 1.80 -0.035 4.16 87.21 6.58
NH, 1.05 0.11 3.17 45.97 35.12
HF 0.014 -0.008 0.19 3.44 6.58
CcO 0.006 -0.004 0.041 0.23 6.58
N, 0.028 0.026 0.85 13.12 13.17
F, 0.54 -0.52 10.06  224.13 6.58
HCN 1.92 -0.81 16.47  303.12 8.78
HNC 2.39 1.03 23.56 191.07 19.75

% The models are trained on 500 configurations and tested
on the remaining 500 configurations.

b Mean Absolute Error in cm™!.

¢ Mean Signed Error in cm™.

4 Root Mean Square Error in cm™.

¢ Maximum Error in cm™!.
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Table 2: Predicted Error of the MOB-ML Model Relative to CCSD(T)/aug-cc-pVTZ Ener-

gies.

Model Training® Test? MAE¢ MSEY Max*
H,0/ 1000 2000 1.04  0.09 3.72
CH,*8 1000 2000 1.38  -0.25 67.31
1500"  60.95 49.60 539.77
C,Hs™ 2500 500 191 0.21 45.95
1000" 90.47 79.01 539.77
1500 5.07 -0.46 96.97
C,H™ 2500 1000 2.13 -0.21 57.19
500 1093 -0.96 96.97

4 Number of structures used to train the MOB-ML model.
b Number of test structures used in this analysis.

¢ Mean Absolute Error in cm™—!.

4 Mean Signed Error in cm™!.
¢ Maximum Absolute Error in cm ™!,
/ Structures are extracted from an AIMD trajectory at 6003 K.
& Structures are extracted from an AIMD trajectory at 350 K.
h 1000 of the structures contain stretched CH bond lengths,

as described in the text.
500 of the structures contain stretched CH bond lengths,

as described in the text.
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Table 3: Calculated Zero-point Energies Obtained Using DMC (cm™!)

System MOB-ML NN+(MOB-ML) PS%JBB? JBB:CC*
H,0 4616 (2) 4615 (1) 4637 (2) —
CHs* 10912 (15) 10 908 (2) 10917 (5) 10 908 (5)

CH,D* - 10 301 (2) 10 303 (4) 10 298 (5)

CH,D,* - 9689 (4) 9698 (7) 9690 (5)

CH,D;* - 9086 (3) 9010 (3) 9090 (5)

CHD,* - 8553 (2) 8565 (3) 8559 (5)
CDs* - 8040 (3) 8044 (2) 8039 (5)

C,H* - 13174 (1)4 - -
C,H* - 13172 (1)° - -

@ Results of DMC simulations using the Partridge-Schwenke surface.?
b Results of DMC simulations using the Jin, Braams, and Bowman surface. 8
¢ Results of DMC simulations on the CCSD(T) surface on which the
JBB potential is based.®
4 MOB-ML trained to 2500 structures extracted from a 350 K AIMD trajectory.
¢ MOB-ML trained to 2000 structures extracted from a 350 K AIMD trajectory
and 500 structures that contain stretched CH bond lengths.
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Table 4: Calculated Ground and Excited State Vibrational Energies” for H,O (em™ 1)

v v, v, MOB-ML MOB-ML — NN+(MOB-ML) PS¢

0 0 O 4614.6 —0.01 4636.8
0 1 O 1594.1 —0.01 1594.4
0 2 0 3151.8 0.8 3150.8
I 0 O 3638.8 -0.3 3656.2
0 0 1 3734.5 —-0.2 3755.1
0 3 0 4669.5 -0.3 4665.7
1 1 O 5216.3 0.2 5233.8
0 1 1 5308.9 -0.5 5330.0

¢ The first row corresponds to the calculated zero-point energy Eo,
and all subsequent rows correspond to E — Ej.

b vs, v, and v, correspond to the number of quanta in the symmetric
OH stretch, HOH bend, and antisymmetric OH stretch, respectively.

¢ Ref. 1.
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Figure 1: Mean absolute errors (MAE) of the validation set, plotted as a function of the number
of epochs, nepoch, When the descriptor is based on a Coulomb matrix (solid blue line) and an SPF

matrix (dashed orange line), as described in Eqs. 7 for the NN+(MOB-ML) surface for C2H5+
based on the MOB-ML model that was trained with stretched CH bond lengths.
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Figure 2: Prediction mean absolute errors (MAE) for total energies as a function of the number
of training configurations, nining (l€arning curves) of H,O (blue circles, solid line), CH;" (green
squares, dotted line), and C,H;™ plotted on a logarithm scale. The results for two models of C,H*
are presented. The red triangles, dashed line show the results when all of the structures are taken
from the AIMD trajectory, while the grey diamonds, dashed line provide results when structures
are taken from the AIMD trajectory and from stretched configurations in a 4:1 ratio, as described
in the text. The slopes of learning curves represent the learnability of the MOB-ML model for
H,0, CHy*, and C,Hs" energies, and steeper learning curve suggests a higher learning efficiency.
The data that is plotted are provided in Table S3.
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Figure 3: Comparison of the calculated energies of MOB-ML training and test set data for H,O.
(A) The number of geometries plotted as a function of the CCSD(T) energy and the difference
between the calculated MOB-ML and CCSD(T) energies. (B) The number of geometries plotted
as a function of the MOB-ML energies and the difference between the PS* and the MOB-ML
energies. (C) The number of geometries plotted as a function of the difference between the MOB-
ML and PS energies and the sum of roy distances and (D) the HOH angle.
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Figure 4: The comparison of the training and test geometries used to generate the CHy* MOB-ML
surface. The number of geometries plotted a function of the CCSD(T) energy and the difference
between the MOB-ML and CCSD(T) energies (top), and the number of geometries plotted as a
function of the MOB-ML energies and the difference between the MOB-ML and JBB? energies
(bottom).
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Figure 5: The calculated DMC probability amplitude projected onto the distances between all
of the pairs of hydrogen and deuterium atoms (left) and HH distances (right) for the appropriate
isotopologues of CHy*. The top two panels show the DMC probability amplitude using the JBB
potential energy surface,® where the bottom two are using the NN+(MOB-ML) surface.
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Figure 6: Projection of the ground state probability amplitude for C,Hs* onto the four CH distances
for the ethylenic CH bonds, the CC distance and the two distances between the bridging hydrogen
atom and the carbon atoms. The equilibrium structure of C,Hs* is shown in the inset. The peaks
centered at 1.12 A correspond to the four ethylenic CH distances. The peaks centered at 1.37 A

correspond to the two CH distancse between the bridging hydrogen atom and the carbon atoms.
The peak centered at 1.40 A corresponds to the CC distance.
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Figure 7: Projections of the ground state probability amplitude for C,Hs* onto A) the x and z
and B) the x and y Cartesian coordinates of the bridging hydrogen atom when the structures are
rotated into an Eckart frame.®® The black and white circles represent the positions of the carbon
and ethylenic hydrogen atoms in the equilibrium structure of C,Hs".
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