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Abstract

Diffusion quantum Monte Carlo (DMC) provides a powerful approach for obtaining the ground state energy and
wave function of molecules, ions and molecular clusters. The approach is uniquely well-suited for studies of
fluxional molecules, which undergo large amplitude vibrational motions even in their ground state. In contrast to
the electronic structure problem, where the wave function must be antisymmetric with respect to exchange of
any pair of electrons, the wave function for the ground vibrational state is nodeless. This greatly simplifies the
application of DMC for vibrational problems. Because there is not a single potential function that can be used to
describe the intra- and intermolecular interactions in all molecular systems, most methods that are used to describe
nuclear quantum effects rely on a carefully chosen zero-order description of the molecular vibrations. In contrast,
DMC calculations can be performed in Cartesian coordinates, making the DMC algorithm easily transferable
between different chemical systems. In this contribution, the theory that underlies DMC will be discussed along
with important considerations for performing DMC calculations. Extensions for evaluating vibrationally excited
states and molecular properties are also discussed. Insights that can be obtained from DMC calculations are
illustrated in the context of the protonated water clusters.

*Corresponding author; email:abmccoy@uw.edu



GRAPHICAL ABSTRACT: Diffusion Monte Carlo provides a powerful tool for studying the
vibrational landscape of systems that display large amplitude motions. With the introduction of
guiding functions, this approach can be used to obtain high quality vibrational wave functions
that enhance our understanding of these molecules, ions and clusters.



1 Introduction

In 1929, Dirac stated that [1]

The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to equations much too complicated
to be soluble. It therefore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which can lead to an explanation
of the main features of complex atomic systems without too much computation.

While Dirac made this statement long before modern computers were invented and in the context
of the development of the Dirac equation, the general sentiment applies to many areas of
molecular quantum mechanics.

Of the currently available methods for solving quantum mechanical problems in chemistry, some
of the most promising avenues for meeting Dirac's challenge are those that are based on diffusion
quantum Monte Carlo (DMC). One particularly attractive feature of DMC is that it is amenable
to high levels of parallelization, and for many years the electronic structure theory community
has looked to DMC as a promising approach for developing and implementing algorithms on
the the state of the art large-scale supercomputing resources.[2, 3] While there has been much
activity in developing and extending approaches for obtaining accurate solutions to the electronic
Schrodinger equation using quantum Monte Carlo approaches, and the reader is referred to
reviews of that work,[4, 5, 6, 7, 8, 9, 10, 11] these approaches can also provide powerful tools for
exploring the solution to the nuclear Schrodinger equation. The present contribution provides a
discussion of DMC in the context of vibrational problems.

There are several important differences between the vibrational and electronic structure problems.
The first and perhaps most significant comes from the potential surface. All of the interactions in
the electronic Hamiltonian are Coulombic and the general form of the potential is the same if one
considers the hydrogen molecule or a protein. In contrast, the vibrational Schrodinger equation is
based on a potential surface, which is a function of the 3/NV —6 vibrational coordinates. While the
values of these potential energies can be obtained by solving the electronic Schodinger equation
through the Born-Oppenheimer approximation, there is no generic form for the potential energy
that can describe any system of interest. Further, the choice of vibrational coordinates depends
on the bonding of the system and the energy range one is interested in considering. This makes
it difficult to develop a general approach that can be equally valid for any molecular system that
one has a potential surface for. One could argue that vibrational perturbation theory,[12, 13] or
methods based on harmonic treatments of molecular vibrations [14] display this generality, but
both will break down in the case of large amplitude vibrations. Other basis-set [15] or multi-
configurational Hartree [16] approaches can capture these large amplitude motions, but they are
limited to small or moderate sized molecular systems and the approach and coordinates require
adjustment based on the bonding in the system of interest. In this way, DMC, which is typically
implemented in Cartesian coordinates, holds a large advantage. We have recently developed a
general implementation of DMC for vibrational systems called PyVibDMC, which exploits the
generality of the approach.[17]

A second key difference between the vibrational and electronic structure problems is found in
the nature of the ground state wave function. Since electrons are Fermions, the electronic wave
function must be anitsymmetric with respect to exchange of any pair of electrons. In contrast,



the ground state solution to the vibrational Schrodinger equation is nodeless. This greatly
simplifies the DMC algorithm for the nuclear problem compared to the electronic structure one.
On the other hand, the spacing among the vibrational levels is generally much smaller than
the spacings among the electronic states, and often we wish to explore both the ground and
excited states. This introduces challenges for DMC for vibrational problems that are often not
considered from the electronic structure standpoint.

In the discussion that follows, we will review the DMC algorithm with an eye toward its appli-
cation to vibrational problems and more specifically vibrations in molecules that undergo large
amplitude vibrational motions even in their ground states, e.g. fluxional molecules. We will dis-
cuss choices for guiding functions and how the choice of such functions affects the convergence
of the simulation. We will also discuss methods that can be used to evaluate properties (e.g.
expectation values and excited state information) from the DMC wave function. The discus-
sion will be placed in the context of studies of hydrogen bonding and proton delocalization in
protonated water cluster systems. These systems have been studied extensively over the past
twenty years,[18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] and spectroscopic studies of the
three smallest clusters in which the hydronium ion is solvated by one to three water molecules
show a large variability in the OH stretch frequency of the OH vibrations involved in hydrogen
bonds between the hydronium core and a flanking water molecule. All calculations presented in
this review were performed using PyVibDMC.! [30]

2 Overview of Diffusion Monte Carlo

2.1 General theory

The diffusion Monte Carlo (DMC) approach is based on solving the time-dependent Schrédinger
equation, which has been rotated to imaginary time by replacing the time variable, ¢, with
T =it/h. Expressed in this way,[31, 32]

av N
ar = —(H — Eref))¥(x,7) (1)
where for a molecule that contains N atoms,
L p?
H = I V4 2
> Gy V00 (2)

The general solution to Eq. 1 can be expressed as

U(x,7) =Y e =0)e”EnEet)my (x) (3)
where .
Hpp(x) = Enpn(x) (4)
In the limit of large T,
U(x,7) = co(1 = 0)e FoFret) T (x) (5)

1The PyVibDMC package is available for download and installation on GitHub and the Python Package Index
(PyP1).[30]



In the above expressions, the energy has been shifted by a value, E.o. This parameter will be
used in the simulation to obtain an estimate to Fy by requiring that the amplitude of ¥ remains
constant throughout the simulation.

The above expressions are general and do not require Monte Carlo approaches to solve nor do
they appear to be related to diffusion. The diffusion aspect of DMC arises from the isomorphism
between Eq. 1 and a diffusion equation with a coordinate-dependent rate process.[31, 32] This
provides one approach for obtaining the working equations for DMC. Here we will utilize the
solution to the time-dependent Schrodinger equation based on using a Trotter-Suzuki expansio
of the propagators [33, 34, 35, 36, 37]

U(x, 7+ A1) = e_(ﬁ_Emf)AT\Il(x,T)
~ e—(V—Eref)ATe—TAT\II(X’ 7_) (6)
and express
fx,7)

U(x,7)= 7
er) = g ™)

where f(x,7) is represented by a weighted sum of localized functions, g(x),
F,7) = wi(m)g;(x — x,(7)) (8)

J

and @ provides a trial wave function, referred to as a guiding function in the following discussion,
which provides a good approximation to the ground state wave function for the system of interest.
Considerations in choosing ®1 will be discussed in the following section. In the discussion that
follows these localized functions will be referred to as walkers.

Substituting ¥ in Eq. 7 into Eq. 1, we obtain the working equations,[38]
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where .
Hor
EyL = By (10)
is the local energy and
B = 1= L S (1)
X)=— —— X
k e Br(x) kT

is the drift term. Analyzing the action of the propagator based on Eq. 9 on a single localized
function, we find that the first term leads to the displacement of the center of the function by
DAT and an increase of the width of the localized function in the Cartesian coordinates of the

kth atom to
ok = hn/ AT /my, (12)

To retain the form of f as a sum of localized functions, rather than allowing the widths of each
of the g(x — x;) functions to increase at each time step, the position of the center of each of
these functions is further displaced by an amount, which is represented by ¢;. The values of the



elements of §; are selected from a Gauss-random distribution, with a width in the coordinates
of the kth atom that is given by oj. In this way, the position of the jth walker is moved from
x;(7) to x}(7), where

X;(T) =x;(7) + D(x;)AT + 4, (13)

Before considering the final term in Eq. 9, we consider whether this displacement satisfies

microscopic reversibility, by comparing the probability of moving from x(7) to x;(7), where

x;(7) = X (7) + Dj(x}) AT + 0] (14)

to the probability of the displacement from x;(7) to x(7). Since, in general, D;(x}) #
—Dj(x;), 6; will not be the same as —;.

The probability of making a move from x/; to x;, P (x; — x;) has two contributions. The first
is the probability amplitude at x/, which is approximated by ®3.(x/). The second is the value
of the Gaussian function that was sampled to obtain the 6;.. As such, whether or not a move is
accepted is determined by whether the move from 2’ to x is as or more probable than the move
from x to x’. This relative probability is approximated by

P (x; — xj)

— _ (bgf(x_/]) N / 2 2 2
Pi= P (Xj — X;) N @%(x]-) kl;[leXp [_ (‘6’”‘ — 101 ) /204 (15)

If P; is larger than a random number taken from a uniform random distribution on the range
of [0,1], the move is accepted, and x;(7 + A7) = x;. Otherwise, the move is rejected, and
x;(T + A7) = x;(r). In this way, displacements for which P (x}; = x;) > P (x; = X))
will always be accepted otherwise the value of P; provides the probability that the move will
be accepted. Operationally, we aim for the fraction of the moves that are rejected to be no
larger than 0.2% of the ensemble size. This acceptance/rejection algorithm is referred to as the
Metropolis step.

The final term in Eq. 9 takes the role of the potential energy in Eq. 1. Since f is represented
as an ensemble of localized functions we find that the effect of this term is to update the value
of w; in Eq. 8 based on the value of

Pj(1) = exp [~ (EL(x; (T + AT)) — Eret(7))AT] (16)

Updating the w; can be accomplished through one of two approaches.

The first, termed continuous weighting, allows the weights of the walkers to be updated at each
time step based on [39]
w; (T + AT) = Pj(T)w;(T) (17)

This approach can be effective for short time propagations, but at longer times some of the w;
become very large while others approach zero. This results in the ensemble containing a large
number of walkers that have very small weights and a small number of walkers that carry most
of the weight. To avoid this problem, we limit the range of allowed values for the w; by defining
Wmax aNd Wmin, Which provide the maximum and minimum allowed values for the w;. For each
of the walkers that has a weight that is smaller than wy,, the following steps are followed:

1. The walker in the ensemble that has the largest weight is identified.



2. The coordinates of the low-weight walker are replaced by those of the walker with the
largest weight.

3. The weights of the low- and largest-weight walkers are replaced by half the value of the
weight of the largest weight walker.

Likewise, if after this procedure the weights of one or more of the walkers exceed wpax an
analogous procedure is followed. This removal of walkers is referred to as branching. We have
found that using 0.01 < wpyin < 0.1 and wWmax = 20 results in a stable simulation.[40]

An alternative to continuous weighting is discrete weighting.[41] In this approach, the weights
of all of the walkers are set to 1. While in continuous weighting, the number of walkers remains
constant throughout the simulation, in discrete weighting the ensemble size fluctuates. In discrete
weighting, we once again start by evaluating P;(7) using Eq. 16. The integer part of P;(7)
provides the number of walkers centered at x; that will be in the ensemble at the start of the
next step in the propagation. The fractional part of P;(7) provides the probability that one
additional walker will be introduced at these coordinates. The determination of whether (or
not) to introduce this additional walkers is made by comparing the fractional part of P;(7) to a
random number taken from a uniform random distribution on the range of [0,1]. If the random
number is smaller than the fractional part of P;(7), an additional walker that is centered at x;
is added to the ensemble. As noted above, in the discrete weighting scheme, all of the weights
are constrained to be equal to one.

Once the weights have been determined, the final step of the simulation is to evaluate Fe. As
noted above, the purpose of .t is to ensure that the amplitude of the wave function remains
constant. This is achieved by keeping the sum of the weights constant. To this end,[32]

2 wi(T)EL(x(7))  adl;wi(r)
Zj w;(7) Zj w;(T =0)

where « is a simulation parameter, which is introduced to keep the ensemble size constant. We
have found that using @ = 0.5/A7 works well.[42, 43] This is illustrated in Figures 6 and S2
of Ref. [43]. One can see that we achieve the desired effect as in cases where the sum of the
weights becomes smaller than the sum of the weights at 7 = 0, E\¢¢ is increased, placing more
walkers in the classically allowed region of configuration space where exp[—(Ey, — Ever)] > 1,
thereby leading to an increase in the sum of the weights at the next time step.

Eref(T) = (18)

The above procedure, which can be summarized as
1. Evaluate the drift term, D at the current coordinates of the walker.
2. Generate displacements of the walkers, 0.
3. Evaluate x’ using Eq. 13.
4

. Evaluate P using Eq. 15 and determine if the move is accepted or rejected. Based on
this, evaluate x(7 4+ AT).

Evaluate Ep,(x(7 + A7)) using Eq. 10.
Evaluate P(7) using Eq. 16.
Update the weights, w, and branch walkers as needed.

Update Flef.

© N oo



is repeated for sufficient time steps to obtain converged results. For time steps of 1.0 a.u.,
generally runs of 10 000 or more time steps are required.

The above description is based on performing the DMC simulation in Cartesian coordinates as
this is the most common choice. One can use other coordinates with minor adjustments to the
above algorithm to account for the coupling terms in the kinetic energy operator.[44] Likewise,
Buch [45] and Benoit and Clary [46] have developed approaches for performing DMC simulations
of molecular clusters composed of rigid molecules.

2.2 Initializing the ensemble of walkers

The above procedure is predicated on an initial distribution of walkers. Over the years, we
have employed several approaches to obtain an initial distribution of walkers. One option is
to localize all of the walkers in a local minimum in the potential.[47] This approach can be
advantageous if the potential contains multiple minima and the state of interest is not localized in
the global minimum. In most cases, though, such a bias is not desired. Another simple algorithm
involves placing the center of mass of the system of interest at the origin, and multiplying the
Cartesian coordinates of all of the atoms by a scaling factor. This places the walkers in a
high energy region of the potential, from which the ensemble of walkers can relax toward the
potential minimum. A third approach samples the coordinates based on the harmonic ground
state probability amplitude obtained through a normal mode analysis of the potential.[48] For
vibrations that are highly anharmonic, the width of the distribution in these coordinates may
be expanded by multiplying the sampled normal mode coordinate by a constant scaling factor.
Finally, when the ground state wave function is expected to sample multiple minima, the initial
ensemble may be generated by sampling geometries from each of the relevant minima. This
final approach should be employed when one is studying partially deuterated systems where the
energy differences among the isotopologues are small.

2.3 Potential energy functions

A central ingredient in the Hamiltonian in Eq. 2 is the potential function, V' (x). While for elec-
tronic structure calculations, the potential can be expressed as the sum of Coulombic terms, for
vibrational problems we typically average the full Hamiltonian over the electronic wave function
for the state of interest. This is accomplished through the Born-Oppenheimer approximation,
and the resulting potential energy as a function of the nuclear coordinates becomes the potential
energy function found in Eq. 2. As the ultimate goal of this work is to make comparisons with
spectra, potential energies with accuracies that are comparable to those obtained from CCSD(T)
calculations are desired. The expense of CCSD(T) calculations even for the smallest molecules
coupled to the large ensemble sizes needed for DMC simulations, make direct calculation of
the electronic energies intractable. Rather, we rely on potential surfaces that have been fit by
others, and much of our work has relied on potential functions that were fit to permutationally
invariant polynomials by Bowman and co-workers.[49] For example, they have fit potentials for
protonated water clusters,[50, 51] CHZ,[52] HZ [53] as well as water clusters,[54, 55, 56] and all
of these potentials have been used for DMC studies. Other recent studies have employed the
MB-pol potentials developed by the Paesani group.[57, 58, 59, 60] While these potential func-
tions provide highly accurate descriptions of the molecular system of interest, they are not exact
fits to the underlying electronic structure data. Additionally, the underlying electronic structure
calculations, while highly accurate, are not exact solutions to the electronic Schrddinger equa-



tion. For this reason, we choose to focus on using 1 a.u. time steps for our DMC calculations
as these have been found to be sufficiently small time step to obtain an accuracy of on the
order of 5-10 cm~!. This level of accuracy typically exceeds that of the potential surface that is
used for the calculations. The reliance on potential surfaces is a current limitation of the DMC
approach, and we are actively exploring opportunities to develop potentials for DMC calculations
on-the-fly.[47]
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Figure 1: (A) The ¢ plotted as a function of the displacements of one of the OH bond lengths
from their equilibrium values, Aron = rou—roH,e, where rop e = 0.9598 A, and the OH stretch
wave function that is obtained by solving the one-dimensional Schrodinger equation is plotted in
green. The red, orange, blue and purple curves provide the wave function after broadening this
function by 0.6, 0.8, 1.2 and 1.4, respectively. The black dashed line represents the constant
guiding function used in an unguided DMC calculation. (B) The local energy (Eq. 10) plotted
as a function of Arog. When 8 = 1, the local energy is constant. For the narrower ¢, the
local energy diverges at larger Arop values. As [ is increased, the local energy converges to the
potential energy. (C) 1?2 obtained from DMC simulations using the ¢ shown in panel A. (D)
The drift term (Eq. 11) plotted as a function of Aroy. For the narrower ¢ the drift term picks
up a larger slope at large Aroy values, whereas when ¢ is broadened the drift term shows a
weaker dependence on Arog. In the limit of a constant trial wave function, the drift term is 0.
Additional details about how these calculations were preformed are provided in Appendix SA.



2.4 Choice of guiding functions - one-dimensional examples

The above description outlines guided DMC simulations, in which &1 provided the guiding
function. This function has the effect of favoring configurations in which the amplitude of @
is large, and, through the drift term, shifting walkers that are in regions of configuration space
where ® is small toward geometries where @ is larger. As will be discussed below, the benefit
of this approach is that it greatly improves the efficiency of the algorithm when @ is well-
defined, but, in cases where @ is poorly chosen, the guiding functions can over-constrain the
wave function, leading to inaccurate results. An alternative approach is to use unguided DMC,
in which ® is constant. Substituting this form for 1 into the above expressions, we find that
the changes in the approach reflect,

ErL(x) = V(x)
Dx) = 0
P =1

With these changes, we recover the unguided DMC approach, which was described by Anderson,[32,
41] and reviewed elsewhere.[34]

More generally, the guiding function is chosen either as an approximation to the wave function
of the state of interest, or as a way to constrain the walkers to ensure that the system does not
dissociate. The goal in selecting a guiding function is to obtain an improved sampling of the
relevant configurations without imposing constraints on the sampled geometries, which limits
the sampling of configurations where ¥ has amplitude.

To illustrate the advantages as well as the dangers in selecting a guiding function, we will focus
on a one-dimensional model of an OH stretching vibration in water. This potential is plotted as
a function of the displacement of the OH bond length, rop, from its equilibrium value, 7o,
with the black dashed line in Figure 1B. We evaluated the ground state wave function based
on this potential in a Discrete Variable Representation (DVR),[61] and plotted it with the thick
green line in Figure 1A. The details of these calculations are provided in Appendix SA. Because
these one-dimensional guiding functions will later be used in constructing guiding functions for
larger systems, we will refer to them as ¢, while the corresponding ground-state solution to
this one-dimensional Hamiltonian will be represented by ). We also consider the behavior of the
local energy and the drift term when the width of this wave function is multiplied by 3, where
(5 ranges from 0.60 to 1.40. These are shown with solid lines with various colors. The results
when the guiding function is constant are shown with the black dashed line.

In Figure 1B, we explore how the local energy (defined in Eq. 10) changes as we alter the width
of the guiding function, ¢r. For all of these calculations, we use the one-dimensional potential
shown as a black dashed line in Figure 1B. When we use the wave function that is the ground
state solution to this Hamiltonian (green thick line in panel A), the local energy is constant as
ﬁ¢T(ATOH)/¢T(ATOH) is the ground state energy. At the other limit, when ¢ is constant,
the local energy is the same as the potential energy, as is shown with the black dashed lines in
Figure 1B. As ¢ is made wider (blue and purple curves), the shape of the Ey,(Aron) curve
is intermediate between the constant value that is obtained when the green guiding function is
used, and the potential energy. On the other hand, making ¢ narrower causes the local energy
to become negative as Aroy increases (see the red and gold curves). This has the desired
effect of moving amplitude into regions where 1 has amplitude, but ¢ has become small. It
also leads to poor behavior of the DMC simulation and results in errors in the calculation of the
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ground state energy. For example, when the ¢ guiding functions with 5 = 0.6 and 0.8 are used,
the calculated zero point energies are too large by 7 and 114 cm™!, respectively, while energies
obtained using the other three ¢ or an unguided DMC simulation are within 2 cm™! of the
expected energy (see Appendix SB). We will refer to this problem as one of an over-constrained
wave function in the following discussion.

The second quantity we consider is the drift term, shown in Figure 1D. Again focusing on the
two limiting behaviors, when ¢ is constant, the drift term is zero. When ¢+ is not constant,
the drift term becomes negative at positive values of Aroy, and positive for negative values of
Arog. In this way, the drift term causes walkers to be shifted toward 0, where the ¢ all have
maxima. The slope of the drift term increases as the ¢ becomes narrower, causing the walkers
to accumulate in the values of Aroyg where the local energy is large.

Despite the differences between the widths of the ¢ and the resulting potential and drift terms,
the probability amplitude obtained from DMC calculations shown in Figure 1C show much less
variability. In fact, with the exception of the narrowest ¢, the plots of 12 based on DMC
simulations using these inputs are virtually indistinguishable.

2.5 Choice of guiding functions - molecular systems

The above discussion focused on a one-dimensional model system. While the insights gained
from this system aid in considering appropriate forms for ®1 for higher dimensional systems,
the higher dimensionality provides opportunities for multiple strategies. One approach, which
parallels strategies taken in electronic structure, employs Vibrational Self-consistent Field (VSCF)
approaches, in some cases augmented by a small vibrational configuration interaction (VCI)
calculation. Such an approach was employed by Bulik, Frisch, and Vaccaro for studies of the
ground and excited states of H,O, H, and their deuterated isotoplogues.[62] While such an
approach is effective, the calculation of the guiding function itself can be demanding and will not
necessarily scale well to larger systems. We recently explored an alternative approach, in which
we used the harmonic ground state wave function as a guiding function to describe the same
systems.[63] We found that this approach both worked well and is amenable to generalization
to larger molecules.

Following approaches taken in the electronic structure community, where Jastrow factors are
commonly employed,[64] Schmidt and co-workers[65, 66, 67] employed this form of guiding
functions in studies of diatomic molecules with several rare gas atoms. More recently Huang, et
al [68] and Acioli and co-workers [69, 53] followed a similar approach in which they developed
parameterized guiding functions, the parameters of which were determined using variational
Monte Carlo (VMC) calculations. In their work, Acioli and co-workers employed guiding func-
tions that are expressed as [ [, ; exp [AS; 4;;AS;], where AS; represents the displacement of an
atom-atom distance from its equilibrium value, and the A;; represent the parameters that are
optimized in the VMC calculation. In this way, the guiding function has many of the character-
istics of the ground state wave function in a harmonic approximation. This approach has been
used by Acioli, Xie, Braams, and Bowman in a study of H5+.[53] Similarly, Cho, Singer, and
coworkers implemented a coupled, full-dimensional internal coordinate guiding function for DMC
simulations of H;O,".[68] Another strategy was taken by Guaediola and Navarro,[70] Sola and
Boronat,[71] and later by Kohno and Mandelshtam [72] in which they used various combinations
of one, two, and three-body guiding functions to confine the relative orientation and interaction
of H, in para-hydrogen clusters. The later work of Kohno and Mandelstham demonstrated that
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the use of such functions may lead to biases in the hydrogen cluster wave function, particularly in
the radial distribution of H, groups, relative to unguided simulations. In another study, Mallory
and Mandelstham comment that the use of such a form of the guiding function in a system with
multiple accessible minima on the potential energy surface may overly constrain the simulation
[73].
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Figure 2: Average percentage of walkers where the attempted displacement was rejected based
on the Metropolis step, plotted as a function of 5. Here, 5 provides the width of the p(ron)
functions (see Figure 1) used to construct @1 in Eq. 19. These results are based on a simulation
of HyO, ™ (shown in the inset) with 40 000 walkers. The red dashed line shows the target value
of 0.2 %. Additional details about this simulation and the numerical values of the plotted points
are provided in Appendix SA and SB, respectively.

In a recent series of studies, we proposed an alternative approach for developing guiding func-
tions for studies of molecular clusters. In recognition of the pitfalls of trying to describe the
intermolecular interactions with guiding functions, while realizing that often the intramolecular
vibrations are only weakly perturbed by the interactions with other molecules, we chose to focus
on the intramolecular degrees of freedom in developing the guiding functions. In addition, we
chose to express the guiding function as a product of functions that depend on only one of
the vibrational degrees of freedom. For example, for water clusters, one can imagine using the
ground state solution to the one-dimensional OH stretch potential, shown in green in Figure 1A
and B, to describe each of the OH stretching vibrations, ¢(rou) and a harmonic approximation
to the one-dimensional bend function, x(6romn). In this way, for a cluster comprised of M water
molecules,[48, 74]

M
O (ron, fuon) = [ | S (rot )07 (rogs 2)xT (i) (19)
=1

This approach is unlikely to lead to problems associated with guiding functions introducing
unphysical constraints on the width of the wave function because the range of equilibrium OH
bond lengths and HOH angles in the cluster environment is an order of magnitude smaller than
the widths of the corresponding wave functions. A similar strategy was proposed by Suhm and
Watts,[39] and we have found this approach to be very effective for studies of these cluster
systems.[40, 48, 74]
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This weak dependence of the equilibrium bond length or the width of the ground state wave
function on the cluster environment is not expected to apply to all systems. For example in the
protonated water clusters, when the hydronium ion is solvated by water moleclues the OH bond
lengths in the hydronium core depend strongly on the distance between the oxygen atoms in the
hydronium and solvating water molecule.[26] We have found that we could generalize the above
approach to these situations by allowing the center and width of the guiding function, described
by Eq. 19, to depend on other internal coordinates, in this case the OO distance. Details of this
strategy are described elsewhere.[40]

A challenge in using these multi-dimensional guiding functions comes in determining when they
are performing well. While the behavior of the local energy and drift term provide insights
into the appropriateness of a choice of ¢ for the one-dimensional system in Figure 1, it can
be challenging to extend this analysis to a multi-dimensional system. Another measure of the
behavior of the simulation is provided by the fraction of the attempted moves that are rejected
in the Metropolis step. As noted above, we aim for this value to be no larger than 0.2%, as
indicated by the red dashed line in Figure 2. In Figure 2, we show the average percentage of
the attempted moves that are rejected in a simulation of HyO," (see inset in Figure 2), and
explore how the number of rejected moves is affected by the width of the contribution to ®p
that describes the OH stretching vibrations of the outer water molecules. For all of the &1 a
harmonic function is used to describe the bending vibrations of the outer water molecules (See
Ref. [40] for additional details). As can be seen, for § > 1, the rejection fraction remains smaller
than 0.2%, and this value approaches zero with increasing values of 3. This is consistent with
the fact that when @ is constant, none of the moves will be rejected. For the narrower ¢
(B < 1), the fraction of rejected moves increases. In this way, the fraction of rejected moves
provides a straightforward way to assess when the guiding function is over-constrained.

3 Evaluating properties using DMC

While the ability to evaluate the ground state wave function and zero-point energies are both
very powerful, these two quantities alone are quite limiting. One of the powerful aspects of
DMC is that it provides a general approach for the evaluation of the ground state wave function,
from which we can obtain the probability amplitude, and from that evaluate various properties
or explore couplings among vibrations. This capability is valuable, as often the systems that are
explored using DMC are ones that are not accessible by basis set calculations due to the large
number of vibrational degrees of freedom and the lack of a good zero-order description for large
amplitude vibrations.

There are several approaches that can be used to obtain the probability amplitude, and we
will focus on three, which have been used in studies of molecular vibrations. Examples include
molecular ions like HF,[75] CHZ,[76, 77] and H*(H20),.[27, 78, 79]

3.1 Using f to obtain properties

In guided DMC, we obtain a Monte Carlo sampling of

f(x) = ¥(x)Pr(x) (20)
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which allows us to evaluate matrix elements of multiplicative operators over &1 and ¥ using
(@0|O]T) = > wi(7)O (x4(7)) (21)

where the evaluation is based on the positions and weights of the walkers at time 7. If & is a
good approximation to ¥, Eq. 21 should provide a good approximation to (¥|O|¥). Barnett,
Reynolds and Lester [80] as well as Cho and Singer [68] showed that this approximation to W2
can be improved by recognizing that since @ is expected to be a good approximation to ¥, ¥
can be expressed as as

VU =>07+¢ (22)

where € represents the small difference between ¥ and &, and
U? =2f — 92 — 2 ~ 2f — O3 (23)

Based on Eq. 19 we approximate ®1 by a product of one-dimensional functions. If O in Eq. 21
is a function of coordinates on which &1 depends (e.g. the the OH bond lengths or the HOH
angles), Eq. 23 allows for straightforward evaluation of (¥|O|¥). On the other hand, such an
approach is not expected to be as effective for analyzing properties of the intermolecular degrees
of freedom. It also introduces bias as it still relies on @1 being a good approximation to V.

3.2 Adiabatic DMC

A second approach is based on the finite field approach in electronic structure,[81] which provides
an avenue for obtaining expectation values of operators when one can evaluate the energy of
a quantum state, but does not have access to the wave function. This approach is based on
perturbation theory, in which

H = H 4+ \W (24)
and
Eo =Y \E (25)
where, .
B = (Wo|W | W) (26)

In contrast to typical perturbation theory, in Eq. 24 the Hamiltonian for the system of interest
is given by H, while the operator we want to evaluate the expectation value of is given by W.
Additionally, while we can evaluate the ground state energy for H’ for any value of A\, we do not
have direct access to U2,

In the adiabatic DMC (ADMC) approach, a DMC simulation is equilibrated based on H’ with
a chosen value of A. Once equilibrated, the simulation is run for additional time steps, where at
each time step the value of A is increased by a small amount, d\. The value of d\ is chosen
to be sufficiently small such that the ensemble remains equilibrated throughout the simulation.
More quantitatively, the shift in the ground state energy with a change of §\ should be small
compared to the size of the statistical fluctuations of F\ef.

At the end of the simulation, Ey()) is fit to a low order polynomial in A. The intercept provides
the energy of the unperturbed Hamiltonian while the first derivative at A = 0 is equated to (W).
Comparison of the A = 0 energy obtained from the ADMC simulation to that from a standard
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DMC simulation provides a way to calibrate the accuracy of the ADMC results. As with standard
DMC simulations, this procedure is repeated several times to obtain an average and standard
deviation among the calculated results. Additional details and examples of this approach can
be found elsewhere.[82, 83, 84, 85] The above approach, while very accurate is not particularly
efficient as each expectation value requires a separate DMC simulation to evaluate. On the other
hand, it provides an excellent way to benchmark other, more efficient approaches.

3.3 Descendent weighting

A third approach, termed descendent weighting, was described by Suhm and Watts [39] and the
following discussion is based on the description presented by Barnett, Reynolds and Lester.[80]
The idea comes from the observation that the DMC simulation provides a sampling of f = W&,
evaluating the expectation value of a multiplicative operator, O(x), using the Monte Carlo
sampling of f requires us to multiply O(x) by ¥(x)/®r(x) as

(V|O]¥) _ (p|O x (¥/Pp)|¥) _ (P[0 x (V/Pr) x (Dp|V)|¥)

Q[0) (@ (TR W) (@r](T/Pr) x (r]T)[T) (@7)

To start, we assume that at 7 = 0, our distribution is localized at the coordinates described by

X/

fx(x,0) = @p(x)¥(x,0) = d(x — x) (28)
where we can expand ¥(x,0) in the eigenstates of the Hamiltonian in Eq. 4 as
5(x —x') = &p(x) Z Cnpn(X) (29)
Multiplying by ¢,/ (x)/®7(x) and integrating over x we find that
_ Pn’ (X/)
Cp/ = ¢T<X/) (30)
Propagating fx/ to long times
Frr(%,7) = co®r(x)po(x)e Fom Frer)T (31)

Since at large 7, ¥ = ¢, we substitute ¥ for ¢y in Eq. 31. Finally, by integrating over x and
using Eq. 30 to evaluate ¢y, the asymptotic population,

P = /fx/(x)dx
() o
(o) (@1/0) (32)
Rearranging Eq. 32,
(x') — P(x)et(Bo—Erer)T -1
(gos ) = Pl (/) (33)

The above discussion focuses on a single d-function. The procedure can be applied to an
ensemble of d-functions, represented by g in Eq. 8, resulting in

P(x;) oc wi(T + mow) /w;(T) (34)
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Figure 3: (A) Analysis of the distribution of descendent weights at the end of the descendent
weight process, plotted as a function of the time over which weights are collected, Tpw. The
number of walkers that have descendant weights that are non-zero is plotted in green, while
the maximum value of the descendant weights is shown in gold. (B) The expectation value
of a = (rom, — romn,)/v2 (red), illustrated with red arrows in the inset, and the standard
deviation of a, o, (Eq. 36, blue), plotted as functions of Tpw. The black dashed line provides
the expected value of (a), which is 0 by symmetry. In both panels, the shaded regions provide
one standard deviation based on five independent simulations. The results shown in this figure
are based on guided DMC simulations of HyO, " with 40 000 walkers using discrete weights and
®r in Eq. 19 based on the wave function for the OH stretches that is obtained when g = 1,
which is plotted in green in Figure 1A. See Appendix SA for additional details.

With this in mind, substituting the expression for (¥ (x’)/®r(x’)) given by Eq. 33 into Eq. 27
gives

(V|o]w) (@[O0 x P|¥)

(wlw) (v P|w)
> (wi(T + mow) /w; (7)) x w;(1)0(x;)
>, (Wi (T + Tow /w; (7)) x w;(7)
22 wi(T + ow)O(x;5)

T wi(m+ mw) (35)

The accuracy of the descendent weighting approach is sensitive to the choice of Tpw, the amount
of time over which the weights are collected. If Tpw is too small w;(7 4+ Tpw)/w,(7) will not
provide a good approximation to W?(x;), while the sampling deteriorates as Tpw increases.[39,
43] The above expression assumes continuous weighting. If discrete weighting is used, then
w;(7) =1, and w;(7 + Tpw) provides the number of walkers that can be traced back to the
jth walker at time 7.

This sensitivity of the results of the descendant weighting procedure to the value of Tpyw is
illustrated by the results plotted in Figure 3, which are based on calculations of ground state
properties of H904+ in which the discrete weighting scheme, described above, was used. In
Figure 3A, we plot the number of walkers for which the value of w;(7 + m™w) is non-zero in
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green. As can be seen the number of walkers for which w;(7 + mpw) is non-zero decreases
roughly exponentially as a function of propagation time, starting from a situation where all of
the weights are equal to one. Since the sum of the weights remains roughly constant, as the
number of walkers with non-zero weights decreases, the value of the largest weight increases.
This is shown with the gold line, and the yellow shading provides the standard deviation among
five independent DMC simulations. This behavior is reflected in the calculation of the average
value of the asymmetric stretch coordinate, a plotted in red in Figure 3B with the vibration
shown with red arrows in the inset. In this plot we also show the width of the projection of the
probability amplitude onto this coordinate,

0a = V(V[a?|¥) — (T]a|T)? (30)

in blue. For comparison, the expected value based on symmetry for (a) is provided with a black
dashed line. As is seen, in the plots, the longer the descendant weights are collected, the larger
the range of results that are obtained. On the other hand for Tpw < 200 a.u. the value of o is
not converged. There is a limited range of Tpw for which the values appear to be converged and
the simulation to simulation variation remains small. For most of the systems we have studied,
we have found that a value of Tpw of approximately 250 a.u. provides good results.

3.4 Evaluating matrix elements

The above discussion focused on the evaluation of expectation values of primarily multiplicative
operators. One can also use DMC to obtain matrix elements involving wave functions that
describe two different states of the system of interest, assuming that one can use DMC to
evaluate both states. Approaches for evaluating excited states will be described in the following
section. For now, we assume that we can calculate f; = <I>(Tl)‘1/(i) for the 7th vibrational state of
the system of interest. Following the discussion above, and as described by Barnett et al. [86]
and by us [63, 87] just as one can use f to obtain W2 by following Eq. 23, we can approximate
NONICH) using

o 23 N2 0
R ((I)E))H(”(@g,) - ool (37)
T T

Likewise, by analogy to using Eq. 35 to obtain an expectation value based on descendant

weights, we can take the ensemble at 7 that is based on a simulation for the state ¥(?), and
propagate it forward by Tpw using <I>(Tz) for the guiding function. This allows us to generate
descendent weights for the ith state, wy “D(r + 7pw). Using these weights,

v () w4 mow) (38)
ol (x)) w'(7)
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and

(")
(wOl01w) = 13wl r + mw)Olx;) <‘DT, (Xj)> (39)

4 Excited States

4.1 Fixed-node approaches

The above discussion focused on the evaluation of the ground state solution to the vibrational
Schrodinger equation. In contrast to electronic structure problems, where the nodal surface is a
complicated function of the electronic coordinates, the nodal surface for states with low-levels
of vibrational excitation can be described by a 3N — 7 dimensional hyperplane, which is defined
by the values of one of the coordinates at which the wave function is zero. This approach
requires a careful choice of vibrational coordinates, and is based on the idea that for low levels
of vibrational excitation, the excitation is localized in a single oscillator. We have validated
this strategy through DMC calculations of all of the v = 1 levels of Ney-SH, Ney-OH [88]
and H305 ,[89] where the results were compared to those obtained by basis set approaches. The
approach has also been used to evaluate selected excited states of H502+ and H;r.[18, 75, 78, 90]
Although the excited states are evaluated by assuming that the position of the node depends
on the value of a single vibrational coordinate, the wave function is still fully coupled, as is
illustrated for the wave function for the vibrationally excited state of HZ shown in Figure 4.
In this calculation, nodes are placed when R; or Ry = 1.3666 A (see insert to Figure 4 for
definitions of R; and R3).[75] As seen in the projection, the amplitude does not align along a
line where Ry + Ro = constant as would be expected for a separable wave function. Rather, it
displays significant curvature.

Once the nodal surface has been determined, the excited states may be evaluated using one
of two approaches. If &1 is a function of the coordinate that is being excited, ensuring that
®1 has the desired nodal structure will provide the excited state of interest. This is an area
of current exploration in our lab. If &1 does not depend on the coordinate along which the
molecule is being excited or when preforming an unguided DMC simulation, one can introduce
a node by modifying the potential to make it infinite where the amplitude of the wave function
is negative to obtain the part of the wave function with positive amplitude. Repeating the
procedure, making the potential infinite in the region where the amplitude of the wave function
is positive provides the part of the wave function with negative amplitude.[41] By making the
potential infinite where the amplitude of the wave function is expected to be negative forces
the wave function to be zero in that region of configuration space as the weight of a walker
that moves into a region of infinite potential will become vanishingly small and the walker will
be removed from the simulation during the branching process described above. Mathematically,
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Figure 4: The DMC probability amplitude of H5Jr with two quanta of excitation in the shared
proton stretch. For this simulation, the wave function is required to go to zero when Ry or
Ry = 1.3666 A as described in Ref. [75]. Reprinted with permission from Ref. [75]. Copyright
2013 American Chemical Society

the behavior of a wave function near a node and near an infinite potential barrier are the same
in so far as it approaches zero with finite slope. While the introduction of a node in this way is
straightforward, because the simulation is performed with finite time steps we need to account
for the possibility that in a single time step, a walker that appears to have remained on the same
side of the nodal surface could have crossed the node and crossed back had a smaller value
of A7 been used for the simulation. Following Anderson,[41] and by analogy to Eq. 15, the
probability of this happening is given by

(40)

Plg—q) _ P (_ (@ -’ /203) 4qq’
Precross = P(q N 7q,) = , B = €xp (_w>

exp (— (¢ —q) /20§> q
where ¢ = r — ryode represents the coordinate along which the node is placed, where the node
is at ¢ = 0. Since the position of the node depends on only one coordinate, the distance of the
walker from the node is given by the value of ¢. Additionally, 0, = h\/ATG 44 where Gy is the
diagonal Wilson G-matrix element [91] in g. As with the Metropolis step, Precross IS compared
to a random number from a uniform distribution on the [0, 1] domain. If the random number
is smaller than Precross, the walker is assumed to have crossed the node, and its weight is set
to zero. While the treatment of the recrossing correction is essential to obtain accurate results
from an unguided excited state calculation, in a guided DMC simulation, the drift term diverges
at the node, so amplitude should not accumulate near the node.[87]

The above discussion assumes that the position of the nodal surface is known. For excitation
of a vibration that is not totally symmetric, the node in the first excited state will occur when
the associated coordinate is zero. When the vibration that is being excited is totally symmetric
or when a higher excited state is being considered, the location of the node requires additional
consideration. Drawing from the work of Buch and co-workers,[92, 93] we note that when the
node is properly placed, the energies calculated for the parts of the wave function with positive
and negative amplitude will be identical. This observation provides a way to identify the position
of the nodal surface. Following the discussion of the adiabatic DMC approach for evaluating
expectation values,[34, 82, 84, 85] a similar approach can be used to identify the position of
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the nodal surface. Specifically, a pair of DMC simulations are performed, one for the part of
the wave function that has positive amplitude and one for the region with negative amplitude.
During the simulation, the position of the nodal surface is slowly shifted, making the energies
that are evaluated functions of the position of the node. When the node is not properly placed,
one energy will be too high, while the other is too low. By fitting the two curves that describe
the energy as a function of the position of the node to low order polynomials and finding the
value of the coordinate at which the two curves cross, we have a way to evaluate both the
optimal position of the node and the associated excited state energy.

4.2 Ground state probability amplitude approximation

While the fixed node approach provides an effective method for calculating the energies and wave
functions for states with one or two quanta of excitaiton, it is expensive as sets of independent
DMC simulations need to be run for each nodal region for each excited state of interest. On
the other hand, we know that considerable information is encoded in the ground state wave
function. In a second approach, which we call the Ground State Probability Amplitude (GSPA)
approximation we analyze the ground state probability amplitude to obtain transition energies
and intensities for tranitions involving one or two quanta of excitation.[79, 94, 95] In this way
only the ground state DMC calculation is needed to obtain the spectrum.

The GSPA approximation is based on the observation that for many one-dimensional model
problems, excited state wave functions can be expressed as the product of the ground state wave
function and a polynomial. The coefficients in the polynomial are chosen to ensure orthogonality
with the ground state. For example the nth excited state of a harmonic oscillator is the product
of the nth Hermite polynomal and the ground state wave function. In this way,

\Ian:LnWZI = (QU - qg)(qw - qg))\IJO (41)
and )
(W=t =11V W, —1n=1) = (Yol [(q6 — a0) (qw — @5)]” V| ¥0) (42)
while
(Wi, =1, =11 Y0) = (Yol(qw — ¢0)(qw — d)ii| o) (43)

were [i is the dipole moment, and the intensity

Lny=tny=1¢0 € Vny=1ny=10{Yn,=1.n,=1|[¥0)>
R Vny=1mu=1<0{Yo(q — 49)(qw — q5)ii|¥0)* (44)

As can be seen, within the GSPA approximation the matrix elements in Egs. 41 and 42 can be
evaluated as expectations over the ground state probability amplitude. The evaluation of the
expectation value of the kinetic energy operator, (T'), is less obvious as it requires derivatives
with respect to the internal coordinates. On the other hand, we can utilize the relationships
between (p?) and (g?) for the harmonic oscillator to develop approximate expressions for (T') in
terms of expectation values of ¢™.[79, 94]

With the above relationships, the only remaining challenge is to define the coordinates. This
is achieved by identifying the eigenvectors of the matrix of mass-weighted second moments
of the ground state probability amplitude, evaluated based on a well-chosen set of internal
coordinates. In the limit of a harmonic potential, this procedure will recover the usual normal
modes. For anharmonic systems, the use of the probability amplitude rather than the potential
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to define the normal modes allows us to account for some of the higher order couplings in these
systems. Additional details of the approach can be found in our earlier studies, particularly
Ref. [79]. In that work, we showed that the results of the GSPA approach provides spectra
for H;0,7,[94] H0,",[95] H,05", and HyO," [79] that are in good agreement with other
approaches, specifically the VSCF /VCI approach coded in the MULTIMODE program developed
by Bowman and co-workers [96] and fixed-node DMC calculations.

5 Convergence properties of guided and unguided DMC
simulations

As mentioned above, DMC is a powerful tool because it allows us to obtain a full-dimensional
wave function for the molecule of interest based on the potential surface for that molecule. The
wave function can be analyzed using the approaches described above to then obtain insights into
the structure and spectroscopy of this molecule. On the other hand, as the size of the system
of interest increases, the number of walkers required to converge the simulation increases. In
the discussion that follows, we consider how a well-chosen guiding function can lead to both a
reduction of the computational cost and an increase in the accuracy of the zero-point energy
and the ground state wave function.

For the purposes of the following discussion, we will focus on HyO, ", and in Figure 5, we explore
how the size of the ensemble, which is provided by the number of walkers, N,,, and the choice of
the guiding function affect the distribution of E.¢ as a function of 7. Specifically the choice of
the guiding function is characterized by the width of ¢(ron) in Eq. 19, and the functions used to
describe the ¢oyr are the one-dimensional ¢ plotted in Figure 1A. In Figure 5A, we explore how
the size of the ensemble used in the DMC simulation affects the size of the fluctuations of E,.,
which is characterized by og, . Here og,, provides the standard deviation of the calculated
values of F,ot when it is evaluated at every time step from 7 = 5000 a.u. to the end of a single
DMC simulation. As can be seen in the results plotted in Figure 5A, the values of oy, range
from approximately 560 cm ™! when the number of walkers in the simulation at 7 = 0 is 1000
to 90 cm~! when N,, = 40 000. An unguided simulation with the same ensemble size displays
a value of o, that is roughly twice as large as its guided counterpart.

In order to calculate the zero-point energy from a DMC simulation, one averages the value of
E.ef over a specified range of 7. The effect of the choice of the range of 7 over which FE,.¢
is averaged has been explored elsewhere.[43] In Figure 5B, we show the convergence of the
calculated DMC zero-point energy of HyO," as a function of N, for several choices of guiding
functions, which are characterized by the parameter, 3, where g is proportional to the width of
¢on in Eq. 19. For these calculations, we ran five DMC simulations, and the plotted values
provide the average of the zero-point energies, Fy, obtained from these simulations, while the
error bars reflect one standard deviation among the five results. To differentiate the simulation
to simulation changes in the time-averaged values of E,.t from the size of the fluctuations of
the value of Fyef in a single simulation, we will refer to the standard deviations in the evaluation
of Ey as 0g,. In this plot, the black circle and line reflect results from an unguided simulation,
while the results shown in green provide the results obtain from a guided DMC calculation based
on ¢on with 8 =1, plotted in green in Figure 1A. The results of additional DMC simulations
with N, = 40 000, which are based on the other forms of ¢oy shown in Figure 1A, are also
provided. These results are shown on an expanded scale in the inset. It is important to note
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Figure 5: (A) E.cs plotted as a function of 7 for different ensemble sizes (characterized by the
number of walkers, N,,) for a single guided DMC simulation of HyO," using the wave functions
with 8 = 1 and shown in green in Figure 1A to describe the OH stretches. At the right, the
average value of F.¢t and its standard deviation based on these five calculations are provided.
The values are obtained from the values of F,..¢ that are evaluated from 7 = 5000 a.u. to the
end of the simulation at 20 000 a.u. (B) The average values of E..t from five independent
simulations are summarized in the results plotted in green in this panel. This plot also provides
the standard deviation based on these five simulations (error bars) and the corresponding results
from unguided DMC simulations (Const., black). For these DMC simulations, E..t was averaged
from 7 = 5000 to 20 000 a.u. For N, = 40 000 walkers, guided DMC simulations were performed
using W that are based on the ¢ plotted in Figure 1A.The inset shows an expanded view of
these results. The dotted line and the grey shaded region provide the calculated DMC Ej
and o, from a previous study of HyO,".[40] The details of these DMC calculations and the
numerical values of og,_,, Ey and o, are provided in Appendices SA and SB, respectively.

that while o5, , for the 40 000 walker simulation is 90 cm™*!, o, based on five such simulations
is only 11 cm~!. In other words, the large statistical fluctuations in E, in a single DMC
simulation are not reflected in the fluctuations among the calculated zero-point energies when

we compare results of several simulations.

Analysis of the results plotted in Figure 5B shows that there is generally good agreement between
the calculated zero-point energy obtained when 8 > 1. Also, as the width of ¢oy is increased
from 3 =1, the calculated zero-point energy shifts from the value obtained when 3 =1 to the
value obtained from the unguided simulation (indicated by Const., black symbols in Figure 5B).
This should not be surprising as the unguided simulation represents the limit when the width of
the guiding function becomes infinite. On the other hand, as the guiding function is narrowed,
the calculated energy also increases, and when 8 = 0.6, the calculated zero-point energy of the
system is approximately 700 cm~! higher than when 3 = 1. Additionally, there is a 61 cm™!
difference between the zero point energies calculated from the guided (8 = 1) and unguided
DMC simulations. This difference has been attributed to the larger ensemble sizes needed to
obtain accurate results from unguided DMC simulations.[40] In fact, if we perform a single very
large (N,, = 1 000 000) DMC simulation of the ground state of HyO, ", we obtain a value for
Ey of 23 405 cm™!. This is 1 cm™! smaller than the value of FEj that is obtained from the
guided DMC simulation with N,, = 40 000.

Like the energy, the quality of the wave function will be sensitive to the size of the ensemble.[97]
In fact, it will be more sensitive to the ensemble size than the energy is, as an error in the wave
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function of O(e) leads to an error in the energy of O(e?). Previously, we found that using a
guiding function to describe the OH stretches and HOH bends in the external water monomers
of the protonated water trimer, H7O3+, we were able to improve the convergence properties
of the projection of the probability amplitude onto the degrees of freedom that were included
in the definition of & in Eq. 19 as well as for intermolecular degrees of freedom, which were
not included in the definition of ®r.[40] To illustrate this, in Figure 6 we plot projections of
the probability amplitude onto the umbrella vibration in HyO,". The thin lines each provide
the projection of the probability amplitude based on the descendent weights from an ensemble
of walkers at at a specific value of 7, while the thick black line provides the average of these
distribution. For this analysis, the umbrella coordinate is defined as the angle between the vector
along one of the OH bonds in the hydronium core and a vector pointing from the oxygen in
hydronium to the center of the triangle defined by three unit vectors along the three OH bonds
in hydronium (see inset in Figure 6). By using this definition, the value of O,y is independent
of the choice of the OH bond used in the analysis. The results shown in Figure 6A are obtained
from a guided DMC simulation, while panel B provides the results of an unguided simulation. As
can be seen, the reproducibility of the projections of the probability amplitude onto the umbrella
coordinate is much improved for the guided simulation compared to the results based on the
unguided DMC simulation even when the umbrella mode is not one of the vibrations that was
incorporated into the guiding function. The improved convergence behavior of the guided DMC
simulation is attributed to differences in the potential energy and local energy surfaces used
in the unguided and guided DMC simulations.[40, 48] In using a guiding function to describe
the high frequency vibrations, the local energy becomes less sensitive to the values of these
vibrational coordinates compared to the potential energy, where small changes in the OH bond
length have a large effect on the calculated energy.

< A B
2 0.06/ ‘e ‘;q‘&
: e 4
3
= ]
20.04
<
o
= 0.021
(3]
Qo
o
(=W
0.00—¢5 80 100 120 60 80 100 120
Bumb (Degrees) Bumb (Degrees)

Figure 6: Projections of the ground state probability amplitude of for H904+ onto the umbrella
vibration (illustrated in the inset and described in the text) for (A) a guided DMC simulation
based on ¢ (ron) plotted in green in Figure 1A and (B) an unguided DMC simulation. The thin
lines represent the probability amplitudes obtained from 50 ensembles of walkers, which were
collected from five independent simulations with N,, = 40 000 every 1000 time steps starting
at 10 000 a.u. The thick black curves provide the average of the 50 probability amplitudes.
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6 Exploring the extent of proton transfer using DMC

The discussion so far focused on the DMC method, extensions and the effects of various pa-
rameters on the convergence behavior of a DMC simulation. The power of DMC comes in the
fact that it allows us to explore properties of molecules or molecular clusters that undergo large
amplitude motions. These are often questions that are difficult to explore by other methods.

To illustrate these capabilities, we focus on protonated water clusters with two to four water
molecules. These ions have been studied extensively through vibrational spectroscopy as they
are model systems for the study of the mechanism of proton transfer.[20, 25, 79, 98, 99, 100]
One interesting aspect of these systems is the broad range of OH stretching frequencies that
they display. In the case of H502+, the excess proton is equally shared between the two water
molecules, and the frequency of the vibration that is associated with the motion of this proton
along the OO axis is 1085 cm~!.[18] When one water molecule is added, the OH frequency of
the hydrogen-bonded OH oscillators in the hydronium core becomes 2100 cm~1,[29] while the
frequency of this vibration is further increased to 2650 cm~! when a fourth water molecule is
added.[27] This progression of frequencies has been attributed to the decrease in the proton
delocalizaiton as water molecules are added to the system.[20, 26, 100] Since DMC allows us to
interrogate the probability amplitude, it provides us the opportunity to quantify this effect.

In Figure 7, we plot projections of the ground state probability amplitude onto the distance
between one of the solvated hydrogen atoms in the hydronium core and the oxygen in the
hydronium core, O; shown with a black dot in the inset, and the distance between this hydrogen
atom and the oxygen atom in the solvating water molecule, Oy shown with the blue dot in the
inset. These plots are based on the DMC calculations presented previously,[40] and are based
on the potential surface of Yu and Bowman.[51] To determine the extent of proton transfer, we
divide these plots into two regions, those for which Ro,i < Ro,u where the proton is closer to
the oxygen atom in the hydronium core and those for which Ro,u > Ro,u where we consider
the proton to have transferred. This approach is similar to the one used to explore the extent
of proton transfer in F~ - (H30) complexes.[101]

In the case of H;O,", as the proton is equidistant from the two oxygen atoms in the minimum
energy geometry, the probability amplitude in the two regions is equal. On the other hand, for
H,0;" and HyO, ", there is significantly more amplitude in the region where Ro,in < Ro,n, and
this effect is larger for HyO," than for H,0;". The trends parallel the OH stretch frequencies
mentioned above, thereby providing a qualitative, physical picture for how the trends seen in the
spectroscopy relate to the structure of the system when nuclear quantum effects are included.

We can further explore how these trends are affected by deuteration by comparing the probability
amplitudes obtained for the fully deuterated versions of the ions, shown in Figure 7D-F, to those
shown in panels A-C. In the case of H502+, on average the excess proton is equidistant between
the two oxygen atoms, and deuteration does not affect this symmetry. On the other hand,
the amplitude of the motion decreases with deuteration. This decrease in the amplitude of
the vibrational motion with deuteration is also seen in the probability amplitudes for H,0;"
and H904+. The more compact wave function is reflected in decreases in the percentage of
the probability amplitude in the motion that is able to access the region of configuration space
where Ro,u > Ro,n by a factor of 2 for H,05", and a factor of nearly 2.5 for HyO,". These
changes are consistent with expectations based on the generally smaller amplitude of an OD
vibration compared to OH, although the magnitude of the effect is hard to anticipate. DMC
studies make the exploration of such questions accessible for investigation.
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Figure 7: Projections of the probability amplitude onto R, 1, the distance between the shared
proton and the oxygen in the hydronium core (identified with the black filled circle in the
structures) and Ro,p, the distance between the shared proton and the oxygen in the bonded
water molecule (identified with the blue unfilled circle) for (A) H;0,%, (B) H,0;", and (C)
HoO,", and their corresponding deuterated analogs (D-F) . The dotted line indicates when
Ro,u = Ro,u, which is the point at which the shared proton is equidistant from the two
oxygen atoms. The number reported in red provides the percentage of the probability amplitude
for which Ro, i > Ro,u. Details of the DMC simulations are provided in Appendix SA.
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7 Conclusions, ongoing challenges and future directions

Diffusion Monte Carlo provides a powerful tool for understanding the vibrational landscape and
spectroscopy of highly anharmonic molecular systems. One of the exciting aspects of DMC is
the fact that while it utilizes many of the familiar tools of quantum mechanics, the stochastic
nature of the approach provides opportunities to move beyond the usual strategy of developing
a zero-order Hamiltonian and basis. This aspect of the method is what makes it particularly
powerful for studying molecules and molecular ions that undergo large amplitude motions. In
the above discussion, we focused on protonated water clusters. Similar strategies can be used to
gain insights into other molecular and ionic clusters, molecules of astrochemical interest such as
H*.(H5),,, or protonated hydrocarbons, all of which undergo large amplitude vibrational motions
even in their ground states.

The discussion in this contribution serves to illustrate that while DMC can be used to obtain
physical insights into molecular structure and bonding, and how these properties manifest in the
vibrational spectroscopy, complications remain that make it difficult to fully address the challenge
laid out by Dirac in 1929.[1] The first issue is in the scaling and computational cost associated
with DMC simulations.[48, 102] In principle, the cost of a simulation should scale with the cost
of the potential calls. However, in practice the size of the ensemble required to obtain accurate
results also grows with system size. The use of the guided DMC approach described above
leads to a significant reduction in the ensemble size required to obtain a high-quality ground
state wave function and zero-point energy, with only a small increase in the computational cost.
While this strategy renders studies of systems with up to 20 atoms feasible, at some point these
calculations will also become computationally intractable.

A second and perhaps larger challenge to extending the systems for which DMC calculations are
performed is the availability of potential surfaces with sufficient accuracy to obtain meaningful
results, and which can be evaluated efficiently. The highly accurate protonated water cluster
surface used for this study was fit to tens of thousands of CCSD(T) calculations.[51, 50] While
the evaluation of this potential is substantially less expensive than the underlying electronic
structure calculations, it still uses approximately 95% of the time of the calculation.

One strategy for addressing these challenges is to utilize the recent advances in data science
and machine learning, and develop a workflow in which the potential surface for the system of
interest is fit using neural networks. The general strategy of this approach involves using small-
scale DMC simulations to collect training data,[47] which is then developed into a fit surface
using a multi-layered neural network. The benefit of this approach is that the neural network
can be evaluated in a massively parallel fashion through the use of Graphics Processing Units
(GPUs), making the evaluation of the neural network compared to the analogous CPU-based
potentials faster by an order of magnitude or more. This strategy also opens the possibility to
obtaining potential surfaces on-the-fly, further extending the reach of DMC calculations.

A third challenge remains in calculating states beyond the ground state. This has been and
continues to be an active area of research in our group.

One final challenge with DMC is the lack of an available standard software package for performing
DMC simulations. As mentioned previously, our group has introduced PyVibDMC, a general
purpose Python package for performing DMC simulations for vibrational problems.[30] With
PyVibDMC, we hope to standardize how DMC simulations are performed while also providing
an efficient implementation that is easy to use by members of the community.
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