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ABSTRACT in front of an audience [13]. This fear of public speaking is termed

Public speaking skills are essential to professional success. Yet, pub-
lic speaking anxiety (PSA) is considered one of the most common
social phobias. Understanding PSA can help communication ex-
perts identify effective ways to treat this communication-based
disorder. Existing works on PSA rely on self-reports and aggregate
multimodal measures which do not capture the temporal variation
in PSA. This paper examines temporal trajectories of acoustic and
physiological measures throughout the public speaking encounter
with real and virtual audiences, and aims to model those in both
knowledge- and data-driven ways. Knowledge-driven models lever-
age theoretically-grounded patterns through fitting interpretable
parametric functions to the corresponding signals. Data-driven
models consider the functional nature of multimodal signals via
functional principal component analysis. Results indicate that the
parameters of the proposed models can successfully estimate indi-
viduals’ trait anxiety in both real-life and virtual reality settings,
and suggest that models trained on data obtained in virtual public
speaking stimuli are able to estimate levels of PSA in real-life.
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1 INTRODUCTION

Skillful public speaking is key to personal and professional suc-
cess, and a necessary component of social interaction, since it al-
lows individuals to demonstrate their ideas and share their knowl-
edge [25]. However, many people do not feel comfortable speaking
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as “public speaking anxiety” (PSA). PSA is a communication-based
phobia [29], often eliciting negative thoughts and feelings of ap-
prehension, while causing increased heart rate and sweat [6, 7].
Quantifying temporal trajectories of PSA throughout the public
speaking encounter can provide valuable insights into the nature
of the disorder.

Various studies in psychological and cognitive sciences have
explored PSA [1, 2, 5, 28]. These studies tend to elicit PSA among
participants using real-life settings (e.g. no audience, small sized
audience) [8, 25] or virtual reality (VR) settings (e.g. virtual audi-
ence projection, 2D avatar) [4, 14, 23]. The majority of prior studies
rely on conventional self-reported indices [17, 27], which do not
capture momentary variations in PSA. Recent works have also ex-
plored multimodal indices (e.g. heart rate, acoustic properties of
speech, body gestures) for modeling PSA [9, 19, 30]. Despite the
valuable findings on PSA, existing work often uses aggregated mul-
timodal measures over the entire public speaking session, which
might cause the loss of valuable temporal information [4, 8]. PSA
has been theoretically postulated to depict temporal variations
throughout the public speaking task. Temporal variations include
decreasing (i.e., habituation) or increasing (i.e., escalation) patterns
over time, as well as an increase followed by a decrease (i.e., sen-
sitization) [6]. These trajectories have been found to differ across
individuals. For example, individuals with high trait anxiety and
high sensitivity to public speaking depict stronger escalation or sen-
sitization patterns compared to their counterpeers [7]. Few studies
have addressed this issue by developing computational models of
PSA from the knowledge base acquired in psychology and commu-
nication [19, 26]. Detailed exploration of multimodal trajectories
over time can potentially help understand causes and antecedents
of PSA. Moreover, prior works primarily model PSA either in real-
life [8, 19] or VR settings [4, 14]. There has not been much work
exploring the extent to which multimodal indices of PSA from
one setting (e.g., VR) can be used to model PSA in another setting
(e.g., real-life). Since obtaining data in VR is convenient and cost-
effective, it is important to understand whether time trajectories of
PSA in VR can be used to model PSA in real-life.

We model multimodal temporal trajectories of speech and phys-
iology from data obtained in real-life and VR public speaking set-
tings through knowledge- and data-driven approaches. Knowledge-
driven trajectories build upon previously identified patterns of es-
calation, sensitization, and habituation during public speaking [6],
and are modeled through parametric temporal functions [19]. Data-
driven trajectories exploit the functional nature of multimodal sig-
nals by identifying common dominant temporal dimensions of vari-
ation, and are obtained through functional principal component
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analysis (fPCA) [18, 31]. In this work, we examine the knowledge-
and data-driven models in association with individuals’ trait anxi-
ety to identify ways in which individuals of different psychological
characteristics experience PSA. Results evaluated through 71 real-
life and 232 VR public speaking sessions indicate that measures
obtained by the data- and knowledge-driven models, and their
combination, can reliably estimate trait anxiety with moderate
Spearman’s correlation values (i.e., p = 0.48, p < 0.01) between the
actual and estimated trait anxiety scores. Results further suggest
that PSA models learnt in VR settings can be applied to real-life
settings. Implications from this work can help toward better under-
standing sources of PSA and improving personalized training for
promoting a healthy perception of public speaking.

2 RELATED WORKS

The majority of prior work views PSA as a state anxiety, momen-
tarily caused by specific stimuli [5]. Chen et al. [8] employed a
data-driven model using a multimodal feature set to predict audi-
ence evaluation scores from acoustic measures. Batrinca et al. [4]
employed aggregate multimodal indices to estimate state PSA. Ya-
dav et al. [29, 30] incorporated contextual factors with multimodal
indices to predict state anxiety. Using these contextual factors, their
work further proposed group-based prediction models to estimate
PSA. Beyond aggregate measures, Bodie [6] introduced the notion
of salient temporal patterns of PSA (e.g. habituation, sensitization).
He further discussed the importance of trait-based anxiety, refer-
ring to one’s general tendency to experience anxiety, and explained
how trait anxiety moderates temporal trajectories of state-based
momentary PSA responses. Inspired by this, Nirjhar et al. pro-
posed computational models to represent various trajectories of
physiological and acoustic features and demonstrated that these
trajectories can be related to trait-based anxiety [19]. While these
approaches build computational knowledge-driven models, data-
driven approaches can facilitate the process by extracting salient
modes of variation from a large dataset. Metallinou et al. [18] used
fPCA to quantify atypicality in facial expressions for children with
autism, while Arias et al. [3] detected deviation of emotional from
neutral speech with fPCA. In this work, we augment a fPCA-based
data-driven models with knowledge-driven models proposed in [19]
and examine how they can be used to effectively estimate PSA in
real-life and VR settings.

This paper advances the current state of knowledge in the follow-
ing ways: (1) Rather than aggregate measures, we study knowledge-
and data-driven models of multimodal signal trajectories (i.e., phys-
iology, acoustic measures) and their association with PSA; (2) We
examine how temporal patterns of PSA manifested through multi-
modal trajectories can estimate the trait anxiety in different settings
(i.e. real-life, VR); and (3) We investigate the extent to which multi-
modal time trajectories learned by VR data can be transferred to
real-life.

3 DATA

3.1 Dataset Description

For our experiment, we used the publicly available VerBIO dataset [30],
which contains audio recordings, physiological signals, and self-
reported measures from 344 public speaking sessions completed by
55 participants. These participants performed public speaking tasks
in front of real-life and VR audiences. They completed 10 public
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speaking sessions (i.e., 2 in real-life, 8 in VR) over four different
days. In Days 1 and 4, participants performed a single session in
front of a real-life audience. Days 2 and 3 each involved 4 sessions
of public speaking in front of a VR audience, where participants
wore an Oculus Rift headset [24] to be immersed in the VR envi-
ronment generated by Virtual Orator software [20]. During each
session, participants delivered an oral presentation (mean dura-
tion 4.5 minutes) about a news article from a randomly assigned
topic (e.g. technology, entertainment). Participants wore the Em-
patica E4 wristband [10] and Creative lavalier microphone, which
captured physiological and speech signals, respectively. The E4
wristband recorded electrodermal activity (EDA) and average heart
rate (HR), sampled at 4 and 1 Hz, respectively. The microphone
acquired the audio signal at 16 kHz sampling rate and 16-bit en-
coding. Participants completed a number of standardized surveys
at each day of the user study, including the Brief Fear of Negative
Evaluation (BFNE) [27] and Personal Report of Public Speaking
Anxiety (PRPSA) [17]. BENE records the discernment caused by
worrying about audience evaluation, while PRPSA measures the
communication-specific trait-anxiety. These measures serve as an
estimate of participants’ trait-based anxiety. The ranges of BENE
and PRPSA scores are 12-60 and 34-170, respectively, where higher
score refers to higher anxiety. The mean BFNE and PRPSA in our
data are 38.6 (SD=9.8) and 95.8 (SD=24.3), respectively. We excluded
the sessions which do not contain all the bio-behavioral indices and
self-reported scores due to technical errors. Finally, data from a total
of 71 real-life and 232 VR sessions are used for further experimen-
tation in this paper. We assume that each session can be considered
as an independent data sample, as participants spoke about differ-
ent topics in front of different audience (or VR environment) in
different sessions.

3.2 Multimodal Feature Time series
Noise suppression and outlier removal were performed on the phys-

iological signals, and voice activity detection (VAD) was performed
on the audio [29]. Several multimodal features are extracted from
these signals. Physiological features include the mean skin con-
ductance level (SCL) and average heart rate (HR), while acoustic
features contain fundamental frequency (F0), jitter, and shimmer.
Acoustic features are extracted using OpenSMILE [11]. These fea-
tures have been extensively used in prior works related to stress and
anxiety [4, 15, 16]. These measures were computed over 15-second
non-overlapping time intervals, which constitute the multimodal
feature time series. We performed min-max normalization on phys-
iological and acoustic features for each public speaking session.

4 METHODOLOGY

We describe the modeling of the multimodal time series using
knowledge-driven (Section 4.1) and data-driven trajectories (Sec-
tion 4.2). Next, we present how these trajectory parameters were
used to estimate PSA in real-life and VR. Finally, we describe the
prediction of PSA in real-life using models trained on data from the
VR setting (Section 4.3).

4.1 Knowledge-driven trajectories

Previous research has identified distinct multimodal patterns as-
sociated with PSA [6, 19]. Following theoretically postulated ha-
bituation and sensitization trajectories by [6], we use a quadratic
polynomial model and a transient oscillation model to represent
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Figure 1: Knowledge-driven trajectories of fundamental fre-

quency (F0) and heart rate (HR) for two participants. Model
parameters are presented in the equation above each plot.

(a) FO of Participant 1

the physiological and acoustic time series obtained in each public
speaking session (Section 3.2). Visual inspection of the FO, jitter,
shimmer, and SCL measures indicated that the corresponding time
series exhibit quadratic polynomial patterns (Fig. 1(a)), therefore
these were fitted into (1):

y(t) = a(t = 1o)* + b ¢Y)
where y(t) is the feature value at time t, a refers is the rate of tem-
poral change, ¢, is the time when minima (or maxima) occurs, and
b is the bias term. Positive values of a are indicative of habituation,
while negative a indicates sensitization effects.

Meanwhile, HR time series depicted oscillatory patterns (Fig. 1(b)),
and therefore were fitted into the transient oscillation model, rep-
resented by (2):

y(t) = Ae " sin (2n ft + ¢) + ¢ 2)
where A, 7, f, ¢, and ¢ correspond to amplitude, decay rate, oscilla-
tion frequency, initial phase, and bias. Small values of 7 indicate a
slower dampening of the oscillation, which resembles slow rate of
habituation.

The quadratic polynomial model has three parameters, while the
transient oscillation model has five. Therefore, acoustic and physi-
ological trajectories have nine and eight parameters, respectively,
for each public speaking session.

4.2 Data-driven trajectories

In order to capture salient patterns of the multimodal feature time
series in a data-driven approach, we employ fPCA [31], a time series
version of PCA that determines the dominant components of varia-
tion from a set of time series by maximizing the projected variance.
According to fPCA, the i h time series y;i(t) of a dataset is decom-
posed into a set of Gaussian basis functions ¢;(¢), ¢2(t), . . ., px (¢):

K
yih) = ) Cirde(t) + ¢ (3)
k=1

where K is the total number of components, C;. is the fPCA score
of the k" component of i* h time series, and ¢ is the reconstruction
error. We learned the fPCA components using the time series of
each multimodal measure from real-life and VR settings using open-
source PACE library [21]. K is selected on the basis of fraction of
explained variance. For each feature time series, the first K fPCA
components that captured 99% variability in the data were retained.
The fPCA scores C; along with the root-mean-square error (i.e.,
serving as a measure of confidence of the estimated parameters)
were calculated for each multimodal feature. This results in a data-
driven trajectory feature vector of dimensionality 12 and 9 for the
acoustic and physiological features, respectively. Fig. 2 shows 15¢

714

R0
By )

0 50 100 150 200 250 %00 350 400 0 50 100 150 200 250 300 350 400
Time (seconds) Time (seconds)

(a) ¢fl R (45.4% variation) (b) ¢f R (2.6% variation)

Figure 2: 15 and 4/ h basis functions obtained from heart rate
(HR) time series via functional principal component analy-
sis (fPCA).

and 4!" basis functions of HR time series. It is noteworthy that
these functions mimic sensitization and oscillatory patterns.

4.3 Estimating trait anxiety from trajectories
Using combinations of the parameters from the knowledge- and

data-driven trajectory representations of physiological and acoustic
features, we perform regression experiments to predict PSA in real-
life (Experiment 1) and VR (Experiment 2), separately. In addition,
we estimate PSA in real-life by training a regression model on data
from the VR setting (Experiment 3). In all experiments, random
forest (RF) regression (RandomForestRegressor function from scikit-
learn [22]) is used to estimate trait anxiety (i.e., BENE, PRPSA;
Section 3.1) using the aforementioned multimodal knowledge- and
data-driven temporal parameters. Hyper-parameter tuning for all
experiments was performed in terms of optimal number of trees
and maximum tree depth. This resulted in 50 trees and 25 maximum
tree depth of the random forest. For Experiment 3, we used these
best performing hyperparameters yielding from the VR setting to
predict PSA in real-life. For evaluating our approach, we employed
a 10-fold cross-validation framework, repeated 50 times to counter
potential randomness from the RF. Given the ordinal nature of
the outcome, the Spearman’s correlation between the actual and
estimated trait scores is used as the evaluation metric.

5 RESULTS
5.1 Experiments 1-2: Estimating PSA in
real-life and VR

Results obtained in Experiments 1 and 2 for estimating trait anxi-
ety using features from the knowledge- and data-driven trajectory
models are summarized in Tables la and 1b. Knowledge-driven
trajectory parameters depict moderate performance for estimat-
ing BFNE in real-life when physiological (p = 0.25, p < 0.05) and
both (p = 0.18, p = 0.14) modalities are used. These results show
improvement in the case where knowledge- and data-driven param-
eters are combined for both modalities (p = 0.35, p < 0.01; Table 1a).
In real-life settings, data-driven parameters alone do not appear
to be good predictors of trait anxiety. However, these parameters
perform significantly better in predicting BFNE and PRPSA in the
VR setting. The acoustic modality alone (p = 0.37, p < 0.01) and in
combination with the physiological modality (p = 0.48, p < 0.01)
depict better performance in predicting BFNE in VR. Similar results
are obtained for predicting PRPSA with both modalities (Table 1b).
This performance discrepancy between VR and real-life settings
might be potentially attributed to the large number of samples in
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Table 1: Spearman’s correlation coefficient between actual
and predicted trait anxiety scores using various modalities.

(a) Experiment 1: Estimating PSA in real-life setting

[ Modality | Trait | Knowledge-driven [ Data-driven | Both |
Physiological |_BENE 0.25 0.09 0.25
ysiolosica’ " pRpSA 020 005 013
Acoustic BFNE -0.06 0.25 0.19
us PRPSA 0.08 0.3 015
Both BFNE 0.18 0.18 0.35
PRPSA -0.24 -0.14 -0.25

T p <0.05,7F: p <0.01
(b) Experiment 2: Estimating PSA in virtual reality (VR) setting

[ Modality [ Trait [ Knowledge-driven [ Data-driven [ Both ]
Physiological BFNE 0.27 0.27 0.30
PRPSA 0.20 0.25 0.25
. BFNE 0.10 0.37 0.30

Acoustic

PRPSA 0.02 0.28 0.22
Both BFNE 0.27 0.48 0.46
PRPSA 0.20 0.39 0.34

1 p <0.05, 7 p <0.01
(c) Experiment 3: Estimating PSA in real-life using VR model

[ Modality [ Trait [ Knowledge-driven [ Data-driven [ Both ]
Physiological BENE -0.09 0.09 0.04
PRPSA 0.17 0.24 0.26
. BENE 0.07 -0.03 0.01
Acoustic
PRPSA 0.07 0.27 0.27
Both BENE -0.11 -0.01 -0.04
PRPSA 0.07 0.26 0.20

T p <0.05, 7 p <0.01

the first (N = 232) compared to the second (N = 71). The combi-
nation of knowledge- and data-driven trajectory parameters with
both modalities can effectively predict BFNE (p = 0.46, p < 0.01)
and PRPSA (p = 0.34, p < 0.01). These results indicate that the
physiological modality performs well with knowledge-driven pa-
rameters, while the acoustic modality favors the data-driven param-
eters. Combining both types of trajectory parameters can further
increase the predictive power of the model. Physiological features
(i.e. SCL, HR) inherently depict structured patterns, which can be
captured through the knowledge-driven parameters. On the other
side, acoustic features are more diverse, therefore it is likely that
data-driven parameters are useful for modeling those measures.
Finally, we anticipate that the negative correlations in estimating
PRPSA (Table 1a) are due to the fact that PRPSA captures a wider
range of public speaking anxiety symptoms than BFNE, therefore
it is difficult to quantify with the small number of real-life samples.

5.2 Experiment 3: Estimating PSA in real-life

using model trained on the VR data
Results from Experiment 3, shown in Table 1c indicate that although
BFNE in real-life is very effectively estimated using the RF models
trained on the real-life data, the corresponding outcome is not
accurately estimated using the RF model trained on the VR data. On
the other hand, PRPSA in real-life is reliably estimated using the
VR model, especially in the case of the physiological modality with
the data-driven (p = 0.27, p < 0.05) and both (p = 0.26, p < 0.05)
trajectory parameters. For all combinations, predicting PRPSA in
real-life using data from VR outperforms the models trained on
the real-life data (Table 1a). This suggests that the model trained
using data from VR sessions can be useful in predicting PSA in
naturalistic scenarios. A potential reason explaining the discrepancy
in performance between BFNE and PRPSA lies in the fact that the
first is highly dependent on the context (i.e., audience, room), which
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changes between the VR and real-life. However, PRPSA captures
general trait anxiety in communication settings, therefore it might
reflect psychological traits independently from contextual factors.

6 DISCUSSION

Results from this paper indicate that acoustic and physiological
trajectories obtained from public speaking tasks are indicative of
individuals’ trait anxiety. The knowledge-driven models are more
interpretable compared to data-driven ones, as they are obtained
by theoretically-grounded patterns. Meanwhile, data-driven param-
eters can extract salient patterns effectively with sufficient data. In
some cases, the combination of knowledge- and data-driven tra-
jectories improves the estimation of trait anxiety. These trajectory
parameters appear to be reliable predictors of PSA in both real-life
and VR settings. In addition, they can be used to predict trait anxi-
ety in real-life scenarios, provided that the model is trained with
sufficient data from the VR setting. In this way, the proposed tra-
jectory models learned in VR can mitigate issues related to scarcity
and cost when obtaining real-life data from public speaking. In
comparison with prior work, Feng et al. [12] reported p = 0.30
in estimating PRPSA using unsupervised transfer learning, while
Nirjhar et al. [19] obtained p = 0.33 using the knowledge-based
trajectory parameters only. In this paper, we achieved p = 0.39
and p = 0.34 (Table 1b) with data-driven and combined models,
respectively, suggesting substantial improvement.

The proposed trajectory models can help us better understand
causes of PSA during the public speaking encounter and poten-
tially contribute to the prediction of PSA patterns, which can be
beneficial to the design of personalized intervention modules [14].
Such estimation of trait anxiety is the first step of designing per-
sonalized intervention. For our future work, we plan to conduct
third-party temporal annotations of PSA, which will guide the mo-
mentary feedback to alleviate PSA. Despite the promising results,
our work depicts various limitations. As participants completed 10
public speaking sessions within a short span of time, this might
cause habituation to the stimuli. Furthermore, a more sophisticated
time-based approach can help design a richer multimodal parame-
ter set. Finally, this work does not include visual information (e.g.
facial expression) or third-party annotation, which can potentially
enhance the system performance.

7 CONCLUSION

We studied knowledge- and data-driven trajectories of PSA using
data from both real-life and VR settings. Parameters obtained from
the models exhibit significant association with trait anxiety scores.
In addition, models trained on VR settings can reliably predict the
trait anxiety in real-life settings. As part of our future work, we will
estimate moment-to-moment variation of PSA. We also plan to use
more sophisticated data-driven techniques (e.g. transfer learning,
few-shot learning) to predict real-life PSA. Finally, we plan to design
a real-time PSA detection system, which can facilitate personalized
public speaking interventions.
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