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Abstract

The use of recreational ecosystem services is highly dependent on the surrounding environmental
and climate conditions. Due to this dependency, future recreational opportunities provided by
nature are at risk from climate change. To understand how climate change will impact recreation
we need to understand current recreational patterns, but traditional data is limited and low
resolution. Fortunately, social media data presents an opportunity to overcome those data
limitations and machine learning offers a tool to effectively use that big data. We use data from the
social media site Flickr as a proxy for recreational visitation and random forest to model the
relationships between social, environmental, and climate factors and recreation for the peak season
(summer) in California. We then use the model to project how non-urban recreation will change as
the climate changes. Our model shows that current patterns are exacerbated in the future under
climate change, with currently popular summer recreation areas becoming more suitable and
unpopular summer recreation areas becoming less suitable for recreation. Our model results have
land management implications as recreation regions that see high visitation consequently
experience impacts to surrounding ecosystems, ecosystem services, and infrastructure. This
information can be used to include climate change impacts into land management plans to more
effectively provide sustainable nature recreation opportunities for current and future generations.
Furthermore, our study demonstrates that crowdsourced data and machine learning offer
opportunities to better integrate socio-ecological systems into climate impacts research and more
holistically understand climate change impacts to human well-being.

1. Introduction

Ecosystem services are the benefits provided to
us by nature, for example, carbon sequestration,
flood regulation, and recreation. Recently, many
global policies and assessments have been incorpor-
ating ecosystem services in order to demonstrate
the importance of properly functioning ecosys-
tems and to justify their restoration and conserva-
tion (Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES) 2019,
European Commission et al 2020, Convention on
Biological Diversity 2021). In January 2021 U.S.
President Biden included ecosystem services in an

© 2022 The Author(s). Published by IOP Publishing Ltd

executive order for climate change action (The White
House 2021). Such high-profile interest in ecosystem
services and associated assessments rely upon map-
ping and modeling to effectively understand, mon-
itor, and preserve ecosystem services and to assess
impacts of climate change on ecosystem services. Eco-
system service research is a relatively young discipline,
but the scientific literature is growing and methods
are improving, yet major gaps and limitations still
remain (Burkhard and Maes 2017, McDonough et al
2017, Ochoa and Urbina-Cardona 2017, Kosanic and
Petzold 2020). Specifically, data availability issues
force researchers to rely on expert knowledge or
simple proxies (i.e. land use and land cover) that
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do not fully capture the multidimensional traits and
dynamics of ecosystems and their services, includ-
ing the essential socio-ecological aspects (Ochoa and
Urbina-Cardona 2017, Lautenbach et al 2019). This
contributes to another major gap within the field, the
lack of connecting social and biophysical (i.e. socio-
ecological) aspects of ecosystem services (Lavorel et al
2017, Mandle et al 2021).

As computational technology and techniques
have improved, a greater set of resources have
become available, including big data and machine
learning techniques. Vast amounts of big data now
exist from our modern technologies including social
media, mobile phones, sensors, and a plethora of
other sources that can provide myriad insights into
environmental attributes, including ecosystem ser-
vices, and aid researchers in overcoming limitations
(Havinga et al 2020, Xia et al 2020). Machine learning
techniques have also quickly become an indispensable
tool for many researchers, partially due to the data
driven attributes (i.e. empirically modeled data with
few or no a-priori assumptions) as well as the effic-
acy and efficiency when handling big data (Willcock
et al 2018, Scowen et al 2021). Both resources offer
opportunities to overcome the major limitations
and fill gaps within ecosystem service research. For
example, geolocated big data from social media gives
us previously unavailable insights into cultural eco-
system services from a beneficiary perspective along
with high resolution corresponding spatiotemporal
information (Havinga et al 2020, Wood et al 2020).
This has an even more significant use due to the
high relevance for studying cultural ecosystem ser-
vices, like recreation, which are currently understud-
ied compared to other ecosystem services largely due
to low data availability (Cheng et al 2019, Kosanic
and Petzold 2020). Furthermore, machine learning
techniques, like random forest, handle the nonlinear
dynamics of ecosystem services and socio-ecological
systems in general by allowing us to approxim-
ate relationships between model inputs and outputs
directly from data rather than applying the linear
constraints and a priori assumptions of traditional
regression algorithms (Ochoa and Urbina-Cardona
2017, Lautenbach et al 2019, Scowen et al 2021).

These improved techniques and tools are essen-
tial for effectively mapping and modeling ecosystem
services and are especially important as the climate
continues to rapidly change. Since ecosystem ser-
vices are a direct product of functional ecosystems,
which are highly vulnerable to climate and environ-
mental changes, climate change poses a huge threat
and in some cases is already impacting ecosystem
services (Pachauri et al 2014, Palomo 2017, Runting
et al 2017, Portner et al 2021). To this point, cli-
mate impacts research has mainly focused on impacts
to ecological systems (e.g. species, ecosystem struc-
ture and functioning) or impacts to human systems,
but have rarely connected the two through impacts
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to ecosystem services (Zommers et al 2014, Palomo
2017, van der Geest et al 2019, Brauman et al 2019).
This is of concern as it has been shown that climate
change is increasingly becoming a more prevalent dir-
ect driver in changes to ecosystem services and is con-
sequently increasingly impacting human well-being
(IPBES 2019, Portner et al 2021). Thus, it is essential
to recognize that human systems and ecosystems are
coupled (Berkes and Folke 1998). An understanding
of climate change impacts to ecosystem services will
help inform more effective policy and management
plans for mitigation and adaptation in the future
(UNEP 2016, van der Geest et al 2019, Portner et al
2021).

Recreation’s close link with natural resources
makes it more vulnerable to climate and envir-
onmental change than other sectors of the eco-
nomy (National Academy of Sciences 1992) and
evidence has shown that climate change is a sig-
nificant threat to recreation and requires immedi-
ate addressing by decisionmakers and land man-
agers (Walls et al 2009, Askew and Bowker 2018).
Recreation contributes direct benefits to national,
statewide, and surrounding local economies as well
as indirect economic benefits through contributions
to individual physical health, and psychological and
emotional well-being (Haines-Young and Potschin
2012, Hermes et al 2018). Beyond material bene-
fits, cultural ecosystem services, including recreation,
also provide non-material benefits to individual well-
being through good social relationships, cultural
identity, and freedoms of choice and action (Shin et al
2019). Despite this importance cultural services have
been understudied compared to other ecosystem ser-
vices (Runting et al 2017). This understudy is even
more important to note when considering cultural
ecosystem services vulnerability to climate and envir-
onmental change. Thus, in this study we assess this
vulnerability in the state of California. According to
the latest statewide climate change assessment, Cali-
fornia is projected to experience an increase in aver-
age maximum daily temperature of ~5.6 °F-8.8 °F
by late in the century, decreases in precipitation in
the south and increases in the north, decreases in
snowpack, and much more (Bedsworth et al 2018).
Along with such drastic regional shifts in climate, it
would also be expected that ecosystems and the ser-
vices they provide will be impacted. To add further
stress, California recreation, and thus the demand
for recreational ecosystem services, is projected to
increase due to the continued increase in population
(Halofsky et al in press).

This study looks to fill knowledge gaps relat-
ing to fully integrating socio-ecological aspects of
ecosystem services in order to better assess climate
change impacts. Furthermore, we look to address
the disparity in ecosystem service studies that have
largely understudied cultural ecosystem services. We
do this through a case study on the impacts of climate
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change to non-urban recreational ecosystem services
in California and overcome historical limitations
using geolocated social media data and a machine
learning algorithm. Specifically, we address these gaps
by (a) mapping the current patterns in recreational
ecosystem service use in California, (b) modeling the
relationship between the demand for these ecosystem
services and biophysical influences, and (c¢) model-
ing and mapping how future climatic changes will
impact those relationships and thus, recreational eco-
system services in California in the future. Some stud-
ies have also used big data and/or machine learning
to assess ecosystem services, but based on our know-
ledge, there have not been any studies taking advant-
age of these tools to assess climate change impacts on
ecosystem services. Due to the regional focus, high-
resolution social media recreation data, and machine
learning algorithm that allows us to better connect the
natural and human dimensions of ecosystem services,
this study provides detailed insights that can be used
by decision makers to focus land management on out-
comes beneficial to human well-being under a future
of environmental and climate change.

2. Data and methods

2.1. Study region

Recreation is a major service provided by California’s
uniquely diverse ecosystems. According to the Cali-
fornia Protected Areas Database, approximately 47%
(~49.5 million acres) of Californian land is protected
(CPAD 2021). This land is managed by a multitude of
agencies, with the US Forest Service (~20.7 million
acres), Bureau of Land Management (~14 million
acres), and National Park Service (~7.6 million acres)
managing the majority. Most of the state is within
the California Floristic Province which contains
exceptionally high diversity and endemism (Burge
et al 2016). This highly diverse landscape con-
sists of approximately 49% grassland/shrubland, 27%
forest, 12% agriculture, 4% developed, and 8%
other (water, barren, mining, wetlands, ice/snow)
(Wilson et al 2015) (figure S1 available online
at stacks.iop.org/ERL/17/054025/mmedia). Further-
more, the state is defined by five ecoregions, the
most prominent being the Mediterranean ecoregion
comprising most of the area (coastal and central),
West Cordillera in the northern and Sierra Nevada
regions, and warm deserts in the southeast (figure
S1). According to the Bureau of Economic Analysis,
some of the popular recreational activaties include
boating/fishing, RVing, biking, climbing, hiking, and
hunting. In 2019 recreation added $57 billion to
the state economy, approximately 2% of state gross
domestic product and the highest amount of any
state and is the second fastest growing state recreation
economy in the country (U.S. Bureau of Economic
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Analysis 2019). Recreation also provided over 575000
jobs, the most of any state recreation economy in the
country.

2.2. Recreation visitation and climate data

Social media data presents a great opportunity for
novel insights by greatly increasing the magnitude
and spatiotemporal coverage of data that is relev-
ant to both the social and ecological aspects of cul-
tural ecosystem services. Integrated Valuation of Eco-
system Services and Tradeoffs (InVEST) is a suite
of models, developed by the Natural Capital Pro-
ject, that map, value, and assess ecosystem services.
The InVEST recreation model utilizes social media
data to quantify the recreational ecosystem service
usage rates across landscapes. Because empirical data
on recreation rates is often hard to come by, the
model utilizes recreational related photos from the
social media site Flickr to quantify the photo-user-
days (PUDs) of a defined area of interest. PUD calcu-
lates the number of unique users who took at least one
photo within each grid cell in order to avoid overes-
timates from a single user taking and uploading many
photos (Wood et al 2013). This PUD calculation is
not an actual estimation of total recreational visita-
tion but is a proxy for recreational patterns within a
specific region (Kim et al 2019).

In order to map the use of recreational ecosystem
services within California, we queried the collection
of millions of geolocated global photographs through
the InVEST recreation model for the complete avail-
able time period of 2005-2017 and for our area of
interest, California. Although some recreational eco-
system services are supplied by developed regions,
we focus solely on services outside of these urban
areas. We use the 2010 adjusted urban area bound-
aries shapefile provided by the California Depart-
ment of Transportation derived from the 2010 Census
to mask out the urban regions, in order to best
assess recreational ecosystem services provided by
nature. This method allows us to filter out the unre-
lated noise from heavily populated areas like Los
Angeles and the Bay Area that supply recreational ser-
vices beyond those that are provided by ecosystems.
Once developed areas are masked out, we input the
shapefile to the model, specify the model to grid the
output data to 3 km, and run the model. Output data
is a shapefile of the PUD calculation for each grid cell
within the area of interest for each year as well as for
the entire time frame of 2005-2017 (figure 1). Our
final dataset included an annual average of ~34 750
Flickr photos across California, with most photos
coming from central and southern California. Thus,
we can incorporate recreation from a multitude of
environments and their varying biophysical aspects
across California, which would otherwise be diffi-
cult using traditional data collection methods such
as interviews, surveys, or focus-groups. This strategy
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Figure 1. Recreation visitation patterns (3 km) estimated through Flickr data within the state of California (20052017 annual

average) with several highly visited national parks labeled.

also allows us to use empirical data on human beha-
vior that is directly related to recreational ecosystem
services to estimate the spatiotemporal preferences
for the demand of recreational services in California,
thus addressing some of the issues that come with
quantifying cultural ecosystems services.

This study also required both past regional cli-
mate data and future downscaled climate projec-
tions. Historical 1 km monthly gridded climate data,
including maximum temperature and precipitation,
were acquired from the Daymet version 4 monthly
climate summaries dataset (Thornton et al 2020)
and wind speed data was acquired from the Terrac-
limate global monthly climate dataset (Abatzoglou
et al 2018). Future max temperature, precipitation,
and wind speed projection data was acquired from
the ‘Downscaled CMIP3 and CMIP5 Climate and
Hydrology Projections Archive’ (Reclamation 2013),
in which we specifically used data from the CMIP5
CESM1-BGC projections for representative concen-
tration pathway (RCP) scenarios 4.5 and 8.5 (1/8
degree resolution). Major highway data was acquired
from the US Census Bureau’s TIGER geodatabase

and water body data was acquired from the Califor-
nia Department of Fish and Wildlife. Koppen-Geiger
climate classifications were derived from Beck et al
(2018), but future projections were not used due
to data availability issues. Current and future land
cover data was obtained from Sleeter et al (2017),
who used population and climate projections under
a business-as-usual scenario to backcast and project
land use land cover under a business-as-usual scen-
ario for California. All data was clipped to the area of
interest and historical data was averaged for the time-
frame of the visitation data (2005-2017) and for the
peak season (July—September).

2.3. Random forest model

Even though random forest is not explicitly a spatial
method, it performs comparatively as well as tradi-
tional spatial methods and is effective at solving spa-
tial problems (Breiman 2001, Fox et al 2020). Using
the PUD within different areas in California and the
social and biophysical data within these regions, we
created a random forest regression model to con-
nect the summer demand for recreational ecosystem
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services to social, environmental, and climate vari-
ables. We then project how a change in these factors
under different future climate scenarios (RCP 4.5 and
8.5) could impact the suitability of future recreational
services. Itis important to note that the purpose of the
model predictions is not to project future recreation,
but the suitability for the use of recreational ecosys-
tem services as different variables that are important
for use change. This model is created by inputting
the explanatory variables (social and biophysical) and
the dependent variable (recreational visitation estim-
ates) for the peak season (July—September) within a
random forest model in ArcGIS. The random forest
algorithm then creates an ensemble of hundreds of
‘decision trees’ for each pixel that each test a large and
randomly selected subset of various combinations of
all the input variables and a subset of the data between
those variables. The model takes an average of each
tree’s prediction in order to create the best possible
overall model for the recreational ecosystem services
within the region. One big advantage of the random
forest algorithm is that it adds a large amount of ran-
domness into the regression analysis causing it to be
a relatively effective method for avoiding overfitting.
This is important because recreation is based upon a
large set of complexly interacting variables and is thus
vulnerable to overfitting. Furthermore, because ran-
dom forest is a data driven model, it can undertake
modeling tasks without making a-priori assumptions
about the input data, allowing it to oftentimes more
accurately deduce relationships and making it a more
effective method for modeling the complex nonlinear
socio-ecological relationships of ecosystems and the
services they produce (Willcock et al 2018, Rammer
and Seidl 2019, Scowen et al 2021).

Explanatory variables that were tested for the
recreation model include maximum temperature,
precipitation, wind speed, Koppen-Geiger climate
classifications, land cover, distance from highways,
and trail density. Another benefit of using random
forest is its ability to calculate the importance of each
input variable to predicting the target output vari-
able (i.e. the Gini coefficient). This allowed us to test
the model on various combinations of these variables.
Ultimately, median importance varied from ~50 to
over 500, we excluded variables with median import-
ance values under 100 (land cover), in an attempt
to improve the model by minimizing the amount
of noise and lowering the chance of overfitting by
only including relatively important variables. After
testing these variables, the most effective model (as
determined through out-of-bag estimates) included
trail density, average maximum temperature, aver-
age wind speed, average precipitation, distance from
major highways, the Koppen-Geiger climate classific-
ation, and distance from water bodies. The climate
data that are used as explanatory variables are sea-
sonal averages for the timeframe of 2005-2017. We
train the recreation model on the mean difference
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of seasonal recreation from annual recreation. We do
this by first computing the average monthly visita-
tion for the summer recreation season in California
(July—September) and taking the difference from the
average monthly visitation for the year (2005-2017)
within each pixel of the study area. Using the differ-
ence from the mean for the season allows us to add
a temporal component rather than just a spatial ana-
lysis, allowing for a better examination on how cli-
mate interacts spatiotemporally with the demand for
recreational ecosystem services (figure S2).

We separated the input data with 80% being used
for training the model and the other 20% for valida-
tion. We specified the model so that it generates 1000
separate trees to get a robust training set and 500 trees
for validation purposes. We fine-tuned hyperpara-
meters by running the model and checking out of bag
errors in order to avoid overfitting and increase gener-
alizability of the model. We also quantified the relative
importance of each climatic variable for recreation.
This variable importance is a measure of the impact of
each individual variable on a correct estimate of recre-
ational visitation. This assessment gives some insight
into what factors are playing a role in influencing the
highest annual average recreation visits in Summer
and allows us to exclude less influential factors and
minimize noise. Once hyperparameters are optim-
ized and only relatively important explanatory vari-
ables are included, the model is trained and valid-
ated. We also calculate the partial dependence of each
covariate to illustrate the non-linear relationships of
recreational ecosystem services (figure 3). Using the
trained model, we project how recreation patterns
could be impacted in the future by the years 2030,
2050, and 2099 under RCP scenarios 4.5 and 8.5.
Future climate data is used for each respective year
and RCP scenario, while all other variables are held
constant due to limitations on projection availabil-
ity. We choose these two climate scenarios to provide
a range of impacts in which RCP 4.5 would show
impacts to recreational ecosystem services under a
future in which greenhouse gas emissions are relat-
ively rapidly mitigated versus RCP 8.5 in which little
to no action is taken on mitigating greenhouse gas
emissions.

3. Results

Assessing the seasonal difference of recreational pat-
terns from the annual mean shows there is a spa-
tiotemporal difference in recreation throughout the
state (figure 2). Milder mountainous, northern, and
coastal regions like those in and around Yosemite,
Sequoia, Lassen Volcanic, and Point Reyes see above
average recreation whereas southern and historically
hotter regions like those in and around Death Val-
ley, Mojave, and Joshua Tree see lower than average
recreation during the peak season (July—September)
(figure S2).
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Figure 2. The pixel-wise seasonal (July—September) difference from the mean annual PUD within each pixel, at 3 km resolution.

The initial training of the model using random
forest allowed us to assess the relative importance of
each explanatory variable to recreation in the region
(figure 3(a)). The final model included seven envir-
onmental and climatic variables, with trail density
and average seasonal max temperature being the most
important for recreation. Furthermore, we calculated
the partial dependence of each variable to assess
the marginal effect of each separate variable on the
model prediction of recreational ecosystem services
(figure 3(b)).

Once the model was trained, we used validation
runs to assess the prediction efficacy of the model
(figure 4). The training runs resulted in an R? of 0.924,
a p-value of <0.001, and a standard error of 0.002.
Although the validation resulted in a lower R? (0.305)
likely due to the inability of the model to predict sim-
ilar visitation values as estimated by Flickr data, the
model still is able to effectively predict overall spatial
and magnitudinal patterns in recreational ecosystem
services (figure 4). A calculated Pearson correlation
coefficient of 0.94 confirms this spatial correlation
between the empirical and modeled PUD.

Model results for each scenario show patterns
of change in the suitability for future recreational
ecosystem service use based on the socio-ecological
relationships that the model was able to deduce

6

(figure 5). Both scenarios show increases in the suit-
ability for recreation over time in mountain, north-
ern, and some coastal regions. Under RCP 4.5 there is
a slight increase in non-suitable area within the Cent-
ral Valley by 2099. This Central Valley phenomenon
is seen much earlier in the RCP 8.5 scenario (by 2030)
and extends throughout the entire valley by 2099.
Generally, patterns seen within the Flickr data (e.g.
high recreation in the Sierra Nevada) are exacerbated
under a warming climate and more so under greater
warming scenarios.

In order to add further context to the model res-
ults we assessed how the original recreational estim-
ates and the model results for 2099 differed based
on the corresponding current and future land cover
(figure 6). We assessed the corresponding land cover
class for areas of above average recreation (>0.5 stand-
ard deviations) and below average recreation (<0.5
standard deviations). Unsurprisingly, most recre-
ation in the summer was within the forest while below
average recreational activities occurred in shrublands.
This pattern persists into the future based on our
model projections. Overall, areas that are suitable
for recreational activities drop significantly under cli-
mate change. Future predictions show that, under
both scenarios, land area that is suitable for recre-
ation is less than land area not suitable for recreational
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Figure 3. (a) Box plot showing the distribution of importance of each environmental/climatic variable to summer recreation
across all model validation runs. (b) Partial dependence plots for each covariate within the model demonstrating the marginal
effect of each separate variable.
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Figure 4. Comparison of the recreation visitation estimates from empirical Flickr data (left) and the model validation test data
(right), at 3 km resolution.
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Figure 5. Results (3 km resolution) from the recreation ecosystem service model with scenarios (RCP 4.5 and 8.5) separated by
column and years separated by row, darker green represents greater suitability darker purple represents less suitability.
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200 Km

activities in the summer. Shrublands and agricul-
tural lands see the greatest increases in unsuitable
conditions for recreation, while forest areas seem to
be relatively robust against these impacts. Under a
higher end warming scenario, there are increases in
both suitable and unsuitable recreation area. We note

that future projections should not be directly com-
pared to observations of recreation as they are not
predictions of recreation, rather projections of suit-
ability. Patterns of the proportion of above aver-
age compared to below average area and propor-
tion of land cover types, or direct comparisons
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between the two RCP scenarios are more relevant to
assess.

4, Discussion and conclusions

This study set out to address gaps in our under-
standing of climate change impacts on human well-
being by connecting the two through ecosystem
services. Specifically, there is a major lack of connect-
ing the biophysical and social aspects of ecosystem
services that results in an incomplete understanding
of impacts to human well-being. Due to the recent
availability and access to crowdsourced data, we can
start bridging the socio-ecological modeling gap. We
set out to test the use of this data for assessing cli-
mate change impacts on ecosystem services, specific-
ally recreation. Along with crowdsourced data, we
now also have machine learning methods that give us
a tool to more effectively and efficiently use big data.
For example, due to the data driven aspect of random
forest, we were able to better integrate the nonlinear
dynamics of socio-ecological interactions within our
model rather than rely on the linear assumptions of
traditional regression techniques (figure 3). Further-
more, the use of random forest allowed us to test the
importance of relationships between multiple differ-
ent environmental and climatic factors to recreational
ecosystem services. Our study adds to the past literat-
ure demonstrating how effective a tool random forest
is for better incorporating socio-ecological factors in

ecosystem service assessments (Richards and Tuncer
2018, Shiferaw et al 2019, Lorilla et al 2020).
Understanding how social, environmental, and
climate variables influence recreational ecosystem
services is essential for effectively predicting how they
will be impacted by a changing climate. Our analysis
showed that of the variables tested, trail density and
the average maximum temperature were the two most
influential factors for recreation (figure 3), clearly
demonstrating the distinct link between social and
biophysical systems. This is consistent with previous
findings that show temperature is a major factor in
outdoor physical activity (Tucker and Gilliland 2007,
Obradovich and Fowler 2017). This also demon-
strates the importance of recreational infrastruc-
ture (i.e. trails) that allow people to take advantage
of recreational ecosystem services. Although socio-
ecological factors are highly influential on the recre-
ational behaviors of people, studies linking them
have been surprisingly limited (de Freitas 2015, Chan
and Wichman 2018). Many of these past studies
have relied on only temperature and have focused
on a small scale (e.g. within the boundaries of one
park), a specific environment (e.g. Chaparral), or
a specific recreational service (e.g. fishing) (Lane
et al 2015, Tomczyk et al 2016, Probstl-Haider et al
2020, Jaung and Carrasco 2021). Also, within the
ecosystem services community, studies have focused
on the environmental aspect such as accessibility,
forest intactness or naturalness, heritage or touristic
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sites, and protected areas (Egoh et al 2012). This
likely misrepresents the reality of the nonlinear socio-
ecological relationships between recreation and cli-
mate (Dundas and von Haefen 2020) and highlights
the need for larger scale studies beyond arbitrary
political boundaries (e.g. a national park bound-
ary) (Brice et al 2017). Further, this demonstrates
the importance of taking into account coupled
social and ecological systems. This is clearly illus-
trated in our partial dependence calculations showing
how non-linear the relationships are between recre-
ation and climate, environmental, and social factors
(figure 3(b)). This demonstrates that a multitude of
such factors need to be considered when trying to
understand future impacts. Furthermore, the fluc-
tuations shown in the box plots demonstrates how
variable the influence of different factors can be on
human behavior as different recreational services are
provided across multiple diverse ecoregions and land-
scapes, highlighting the importance of regional stud-
ies that assess a multitude of plausibly influential
factors.

Our model results generally show that cur-
rent patterns of recreational ecosystem services are
likely to be exacerbated by climate change, with
greater exacerbation under higher warming scen-
arios (figure 5). For example, popular summer recre-
ation regions identified with our Flickr data (i.e.
Sierra Nevada, northern CA, and coastal regions)
see spatial and magnitudinal increases in suitabil-
ity. Unpopular summer regions (i.e. desert regions,
southern CA, and the Central Valley) see decreases
in suitability. This demonstrates that climate change
impacts to recreational ecosystem services are not
uniform across landscapes and cannot be extrapol-
ated from small scale studies. This also demonstrates
that similar regionally focused studies are necessary to
properly inform of the spatial variations in impacts.
Furthermore, we can see this heterogeneous impact
within the various land cover classes across the region
(figure 6). As the climate changes, more land area
is unsuitable than suitable for summer recreation,
but this effect is experienced differently between land
cover classes. Forests see the greatest amount of recre-
ation in the present and see the greatest positive influ-
ence on suitability in the future, whereas unsuitable
summer conditions expand mostly into shrublands
in the future. These results have major land man-
agement implications and give insight into which
biomes’ potential supply of recreational ecosystem
services are more resilient and which are more vulner-
able to future climate change within the region. There
are already issues with overcrowding of popular recre-
ational regions (mainly forested), like Yosemite and
Muir Woods, in the summer. These already popular
summer recreation sites are set to experience general
increases in visitation due to population growth, but
as our results show, should also expect increased suit-
ability and subsequently even greater visitation in the
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summer as the climate changes. Beyond impacting
the recreational ecosystem service itself, such heavy
visitation can have impacts to the surrounding eco-
systems, ecosystem services, and infrastructure. For
example, high visitation rates to natural areas can
impact soil loss (Barros et al 2013), habitat and spe-
cies (Micheli et al 2016), vegetation composition and
cover (Pickering and Hill 2007), and much more.
Furthermore, high visitation rates can detriment-
ally impact the already under-maintained recreation
infrastructure and overcrowd small towns in close
proximity to popular areas. Our results illustrate that
the already popular recreation regions that are most
commonly within California forests are at risk of
greater impacts from visitation due to the positive
effect of climate change on recreation. This inform-
ation can be used to include more comprehensive cli-
mate change impacts into land management plans
and inform investments in areas that are predicted
to see increased recreation. Furthermore, decision-
makers can use these insights along with others from
similar climate change impact studies to assess trade-
offs and identify where land management might be
most effective and efficient. For example, Coffield
et al (2021) find that management efforts in Califor-
nia should be focused on stabilizing existing forest
carbon stocks, rather than emphasizing just carbon
gain, by reducing fire risks, thinning, and restoration.
Together, such insights on ecosystem service vulner-
ability to climate change can help managers identify
at-risk regions that provide significant and socially
important ecosystem service bundles, like Califor-
nia forests, and most effectively and efficiently mit-
igate impacts to services and subsequently human
well-being.

Uncertainties exist when assessing future climate
change impacts to socio-ecological systems like recre-
ational ecosystem services. The social media data
inherently has uncertainties as it is just a proxy for
visitation. Furthermore, social media data popular-
ity can change from year to year (figure S3) and the
demographics of users can be biased towards certain
age groups, genders, and locations (Tenkanen et al
2017, Wood et al 2020). Yet, Flickr data has previ-
ously been validated as an effective proxy (Wood et al
2013, 2020) and we also conducted a simple valida-
tion on our data that demonstrated the efficacy of this
proxy within the study region (figure S4). Our ana-
lysis did not assess all influential factors like air quality
and wildfire. Both of these factors are bound to play
a role in future recreation. For example, it is known
that wildfire impacts recreation through closures and
post-fire impacts (e.g. lower aesthetic appreciation)
(Starbuck et al 2006), while higher air pollution levels
have been shown to decrease recreation (Zajchowski
et al 2021). This analysis focused specifically on dir-
ect climate changes (i.e. temperature, precipitation,
and wind), but future analyses should also consider
these compounding effects of a changing climate.
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Furthermore, as with any model there are uncertain-
ties within our model. To better quantify these uncer-
tainties, we calculate the 90% confidence interval to
show how much uncertainty surrounds our predic-
tions (figure S6). We also calculate and map the model
residuals, showing that the model tends to under-
predict in a few areas within the mountain regions of
CA (figure S7). Although our validation tests resulted
in a relatively low R?, machine learning is not neces-
sarily designed to test significance, but is more so for
isolating patterns within data and subsequently devel-
oping an algorithm that best describes and predicts
those patterns (Huettmann et al 2018). Ultimately,
our goal was to understand general recreational pat-
terns and their relationship with social and biophys-
ical factors, which our model was effective in doing
(figure 4). Future ecosystem service research should
take advantage of these big data and machine learning
resources to reduce data limitations and better integ-
rate ecosystem service beneficiaries into assessments.
Our study demonstrates that the concurrent use of
crowdsourced data and machine learning has great
potential to close socio-ecological gaps in ecosystem
service research and brings the possibility to more
holistically assess climate change impacts to human
well-being.
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