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Abstract

To leverage the power of big data from source
tasks and overcome the scarcity of the target task
samples, representation learning based on multi-
task pretraining has become a standard approach
in many applications. However, up until now,
choosing which source tasks to include in the
multi-task learning has been more art than science.
In this paper, we give the first formal study on re-
source task sampling by leveraging the techniques
from active learning. We propose an algorithm
that iteratively estimates the relevance of each
source task to the target task and samples from
each source task based on the estimated relevance.
Theoretically, we show that for the linear repre-
sentation class, to achieve the same error rate, our
algorithm can save up to a number of source tasks
factor in the source task sample complexity, com-
pared with the naive uniform sampling from all
source tasks. We also provide experiments on
real-world computer vision datasets to illustrate
the effectiveness of our proposed method on both
linear and convolutional neural network represen-
tation classes. We believe our paper serves as
an important initial step to bring techniques from
active learning to representation learning.

1. Introduction

Much of the success of deep learning is due to its ability
to efficiently learn a map from high-dimensional, highly-
structured input like natural images into a dense, relatively
low-dimensional representation that captures the semantic
information of the input. Multi-task learning leverages the
observation that similar tasks may share a common represen-
tation to train a single representation to overcome a scarcity
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of data for any one task. In particular, given only a small
amount of data for a target task, but copious amounts of data
from source tasks, the source tasks can be used to learn a
high-quality low-dimensional representation, and the target
task just needs to learn the map from this low-dimensional
representation to its target-specific output. This paradigm
has been used with great success in natural language pro-
cessing domains GPT-2 (Radford et al.), GPT-3 (Brown
et al., 2020), Bert (Devlin et al., 2018), as well as vision
domains CLIP (Radford et al., 2021).

This paper makes the observation that not all tasks are
equally helpful for learning a representation, and a priori,
it can be unclear which tasks will be best suited to maxi-
mize performance on the target task. For example, modern
datasets like CIFAR-10, ImageNet, and the CLIP dataset
were created using a list of search terms and a variety of
different sources like search engines, news websites, and
Wikipedia. (Krizhevsky, 2009; Deng et al., 2009; Radford
et al., 2021) Even if more data always leads to better perfor-
mance, practicalities demand some finite limit on the size
of the dataset that will be used for training. Up until now,
choosing which source tasks to include in multi-task learn-
ing has been an ad hoc process and more art than science.
In this paper, we aim to formalize the process of prioritizing
source tasks for representation learning by formulating it
as an active learning problem.

Specifically, we aim to achieve a target accuracy on a tar-
get task by requesting as little total data from source tasks
as possible. For example, if a target task was to generate
captions for images in a particular domain where few ex-
amples existed, each source task could be represented as
a search term into Wikipedia from which (image, caption)
pairs are returned. By sampling moderate numbers of (im-
age, caption) pairs resulting from each search term (task),
we can determine which tasks result in the best performance
on the source task and increase the rate at which examples
from those terms are sampled. By quickly identifying which
source tasks are useful for the target task and sampling only
from those, we can reduce the overall number of examples
to train over, potentially saving time and money. More-
over, prioritizing relevant tasks in training, in contrast to
uniformly weighting them, even has the potential to improve
performance, as demonstrated in (Chen et al., 2021).
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From the theoretical perspective, Tripuraneni et al. (2020;
2021); Du et al. (2020) study few-shots learning via multi-
task representation learning and gives the generalization
guarantees, that, such representation learning can largely re-
duce the target sample complexity. But all those works only
consider uniform sampling from each source task and thus
establish the proof based on benign diversity assumptions
on the sources tasks as well as some common assumptions
between target and source tasks.

In this paper, we initiate the systematic study on using active
learning to sample from source tasks. We aim to achieve the
following two goals:

1. If there is a fixed budget on the source task data to use
during training, we would like to select sources that
maximize the accuracy of target task relative to naive
uniform sampling from all source tasks. Equivalently,
to achieve a given error rate, we want to reduce the
amount of required source data. In this way, we can re-
duce the computation because the training complexity
generally scales with the amount of data used, espe-
cially when the user has limited computing resources
(e.g., a finite number of GPUs).

2. Given a target task, we want to output a relevance score
for each source task, which can be useful in at least two
aspects. First, the scores suggest which certain source
tasks are helpful for the target task and inform future
task or feature selection (sometimes the task itself can
be regard as some latent feature). Second, the scores
help the user to decide which tasks to sample more, in
order to further improve the target task accuracy.

1.1. Our contributions

In our paper, given a single target task and M source tasks
we propose a novel quantity v* € RM that characterizes the
relevance of each source task to the target task (cf. Defn 3.1).
We design an active learning algorithm which can take any
representation function class as input. The algorithm itera-
tively estimates v* and samples data from each source task
based on the estimated v*. The specific contributions are
summarized below:

* In Section 3, we give the definition of v*. As a warm
up, we prove that when the representation function
class is linear and v* is known, if we sample data from
source tasks according to the given v*, the sample
complexity of the source tasks scales with the sparsity
of v* € RM (the m-th task is relevant if v, # 0). This
can save up to a factor of M, the number of source
tasks, compared with the naive uniform sampling from
all source tasks.

* In Section 4, we drop the assumption of knowing v*

and describe our active learning algorithm that itera-
tively samples examples from tasks to estimate v* from
data. We prove that when the representation function
class is linear, our algorithm never performs worse than
uniform sampling, and achieves a sample complexity
nearly as good as when v* is known. The key technical
innovation here is to have a trade-off on less related
source tasks between saving sample complexity and
collecting sufficient informative data for estimating v*.

 In Section 5, we empirically demonstrate the effective-
ness of our active learning algorithm by testing it on the
corrupted MNIST dataset with both linear and convo-
lutional neural network (CNN) representation function
classes. The experiments show our algorithm gains sub-
stantial improvements compared to the non-adaptive al-
gorithm on both models. Furthermore, we also observe
that our algorithm generally outputs higher relevance
scores for source tasks that are semantically similar to
the target task.

1.2. Related work

There are many existing works on provable non-adaptive
representation learning with various assumptions. Tripura-
neni et al. (2020; 2021); Du et al. (2020); Thekumparampil
et al. (2021); Collins et al. (2021); Xu & Tewari (2021)
assume there exists an underlying representation shared
across all tasks. (Notice that some works focus on learn-
ing a representation function for any possible target task,
instead of learning a model for a specific target task as is the
case in our work.) In particular, Tripuraneni et al. (2020);
Thekumparampil et al. (2021) assume a low dimension lin-
ear representation. Furthermore, it assumes the covariance
matrix of all input features is the identity and the linear rep-
resentation model is orthonormal. Du et al. (2020); Collins
et al. (2021) also study a similar setting but lift the identity
covariance and orthonormal assumptions. Both works ob-
tain similar conclusions. We will discuss our results in the
context of these two settings in Section 2.

Going beyond the linear representation, Du et al. (2020)
generalize their bound to a 2-layer ReLu network and Tripu-
raneni et al. (2021) further considers any general repre-
sentation and linear predictor classes. More recent work
has studied fine-tuning in both theoretical and empirical
contexts Shachaf et al. (2021); Chua et al. (2021); Chen
et al. (2021). We leave extending our theoretical analy-
sis to more general representation function classes as future
work. Other than the generalization perspective, Tripuraneni
et al. (2021); Thekumparampil et al. (2021); Collins et al.
(2021) propose computational efficient algorithms in solv-
ing this non-convex empirical minimization problems dur-
ing representation learning, including Method-of-moments
(MOM) algorithm and Alternating Minimization. Incorpo-
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rating these efficient algorithms into our framework would
also be a possible direction in the future.

Chen et al. (2021) also consider learning a weighting over
tasks. However, their motivations are much different since
they are working under the hypothesis that some tasks are
not only irrelevant, but even harmful to include in the train-
ing of a representation. Thus, during training they aim
to down-weight potentially harmful source tasks and up-
weight those source tasks most relevant to the target task.
But the critical difference between their work and ours is
that they assume a pass over the complete datasets from all
tasks is feasible whereas we assume it is not (e.g., where
each task is represented by a search term to Wikipedia or
Google). In our paper, their setting would amount to being
able to solve for v* for free, the equivalent of the “known
v*” setting of our warm-up section. However, our main
contribution is an active learning algorithm that ideally only
looks at a vanishing fraction of the data from all the sources
to train a representation.

There exists some empirical multi-task representation learn-
ing/transfer learning works that have similar motivations as
us. For example, Yao et al. (2021) use a heuristic retriever
method to select a subset of target-related NLP source tasks
and show training on a small subset of source tasks can
achieve similar performance as large-scale training. Zamir
et al. (2018); Devlin et al. (2018) propose a transfer learn-
ing algorithm based on learning the underlying structure
among visual tasks, which they called Taskonomy, and gain
substantial experimental improvements.

Many classification, regression, and even optimization tasks
may fall under the umbrella term active learning (Settles,
2009). We use it in this paper to emphasize that a priori, it is
unknown which source tasks are relevant to the target task.
We overcome this challenge by iterating the closed-loop
learning paradigm of 1) collect a small amount of data, 2)
make inferences about task relevancy, and 3) leverage these
inferences to return to 1) with a more informed strategy for
data collection.

2. Preliminaries

In this section, we formally describe our problem setup
which will be helpful for our theoretical development.

Problem setup. Suppose we have M source tasks and
one target task, which we will denote as task M + 1. Each
task m € [M + 1] is associated with a joint distribution
L over X x ), where X € R? is the input space and
Y € R is the output space. We assume there exists an
underlying representation function ¢* : X — Z that maps
the input to some feature space Z € R where K < d. We
restrict the representation function to be in some function

class @, e.g., linear functions, convolutional nets, etc. We
also assume the linear predictor to be a linear mapping
from feature space to output space, which is represented by
w}, € RE. Specifically, we assume that for each task m €
[M + 1], an i.i.d sample (z,y) ~ pm, can be represented
as y = ¢(x) "w}, + 2, where z ~ N(0,0?). Lastly, we

also impose a regularity condition such that for all m, the
distribution of = when (z,y) ~ i, is 1-sub-Gaussian.

During the learning process, we assume that we have only a
small, fixed amount of data {x, 1, ¥4, 1 ticny.,] drawn
1.i.d. from the target task distribution jz741. On the other
hand, at any point during learning we assume we can obtain
an i.i.d. sample from any source task m € [M] without
limit. This setting aligns with our main motivation for active
representation learning where we usually have a limited
sample budget for the target task but nearly unlimited access
to large-scale source tasks (such as (image,caption) example
pairs returned by a search engine from a task keyword).

Our goal is to use as few total samples from the source tasks
as possible to learn a representation and linear predictor
¢, wpr+1 that minimizes the excess risk on the target task
defined as

ERpr41(6, w)

where Ly 1(6,0) = (o gy, [((6(2), ) = 9)?].

Our theoretical study focuses on the linear representation
function class, which is studied in (Du et al., 2020; Tripura-
neni et al., 2020; 2021; Thekumparampil et al., 2021).

Definition 2.1 (low-dimension linear representation). ¢ =
{x — BTz | B € R}, We denote the true underlying
representation function as B*. Without loss of generality,
we assume for all m € [M + 1], E,, [zx "] are equal.

= Lar41(¢,w) — Ly41(0", wiyyq)

We also make the following assumption which has been
used in (Tripuraneni et al., 2020). We note that Theorem 3.2
does not require this assumption, but Theorem E.4 does.

Assumption 2.2 (Benign low-dimension linear representa-
tion). Weassume E,,, [zz "] = Tand Q(1) < |lwi,[la < R
for all m € [M + 1]. We also assume B* is not only linear,
but also orthonormal.

Notations We denote the n,, i.i.d samples collected from
source task m as the input matrix X,, € R®"*? output
vector Y,,, € R™m and noise vector Z,,, € R™™. We then
denote the expected and empirical input variances as >, =
E(xjy)NumxxT and 3, = %(Xm)TXm. In addition, we
denote the collection of {wy, }meinr) as W € REXM Note
that, the learning process will be divided into several epochs
in our algorithm stated later, so we sometimes add subscript
or superscript 7 on those empirical notations to refer to the
data used in certain ]\e4poch 1. Finally, we use O to hide
log(K, M,d,1/e,> " 1 Nm).
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Other data assumptions Based on our large-scale source
tasks motivation, we assume M > K and o, (W*) > 0,
which means the source tasks are diversified enough to
learn all relevant representation features with respect to
the low-dimension space. This is the standard diversity
assumption used in many recent works (Du et al., 2020;
Tripuraneni et al., 2020; 2021; Thekumparampil et al., 2021).
In addition, we assume o > (1) to make our main result
easier to read. This assumption can be lift by adding some
corner case analysis.

3. Task Relevance * and More Efficient
Sampling with Known vx

In this section, we give our key definition of task relevance,
based on which, we design a more efficient source task
sampling strategy.

Note because oin(W*) > 0, we can regard wj, | as a
linear combination of {w;;, }meqar-

Definition 3.1. v* € RM is defined as

v* = argmin ||v||2 st. Wv=wy,, (1)
14

where larger |v*(m)| means higher relevance between
source task m and the target task. If v* is known to the
learner, intuitively, it makes sense to draw more samples
from source tasks that are most relevant.

For each source task m € [M], Line 3 in Alg. 1 draws
Ny o< (v*(m))? samples. The algorithm then estimates
the shared representation ¢ : R? — R¥, and task-specific
linear predictors W = {w?,}*_, by empirical risk min-
imization across all source tasks following the standard
multi-task representation learning approach.

Below, we give our theoretical guarantee on the sample
complexity from the source tasks when v* is known.

Theorem 3.2. Under the low-dimension linear represen-
tation setting as defined in Definition 2.1, with prob-
ability at least 1 — O, our algorithm’s output satisfies
ER(E, Wary1) < €2 whenever the total sampling budget
from all sources Nyotq1 is at least

O (Kd+ KM +log(1/8))o?s*|v* ]3¢ 72)
and the number of target samples nyyy1 is at least
O(* (K +log(1/8))e?)
where s* = mincpo,1](1=7)||[v*|lo,y +YM and ||V o, :=

* |2
ot > HRER |

Note that the number of target samples ns41 scales only
with the dimension of the feature space K, and not the input

Algorithm 1 Multi-task sampling strategy with Known *

1: Input: confidence §, representation function class P,
combinatorial coefficient v*, source-task sampling bud-
get Nigal > M (Kd + log(M/6))

2: Initialize the lower bound N = Kd +
log(M/§) and number of samples n,, =
max {(Nwml — MN) &) ﬁ} for all m € [M].

2

3: For each task m, draw n,, i.i.d samples from the corre-
sponding offline dataset denoted as { X, Y, }M_;
4: Estimate the models as

M
oW = arg min Z (X)W — Yin|?.
PED, W=[w1,...,wpn] m—1
(2)
Ware1 = argmin || (X ar+1)w — Yarsr |2 3)

5: Return g?), Whr+1

dimension d > K which would be necessary without multi-
task learning. This dependence is known to be optimal (Du
et al., 2020). The quantity s* characterizes our algorithm’s
ability to adapt to the approximate sparsity of v*. Noting

* |2
that 4/ % is roughly on the order of ¢, taking v ~ 1/M
suggests that to satisfy ER(B,@MH) < g2, only those
source tasks with relevance |v*(m)| £ ¢ are important for
learning.

For comparison, we rewrite the bound in (Du et al., 2020)
in the form of v*.

Theorem 3.3. Under Assumption 2.1, to obtain the same
accuracy result, the non-adaptive (uniform) sampling of (Du
et al., 2020) requires that the total sampling budget from all
sources Ny is at least

O (Kd+ KM +1log(1/8))o® M||v*[|3e72)

and requires the same amount of target samples as above.

Note the key difference is that the s* in Theorem 3.2 is
replaced by M in Theorem 3.3. Below we give a concrete
example to show this difference is significant.

Example: Sparse v*. Consider an extreme case where
W = €mmod (K—1)+1 for all m € [M — 1], and wy =
wpr+1 = ex. This suggests that the target task is exactly
the same as the source task M and all the other source tasks
are uninformative. It follows that v* is a 1-sparse vector
ey and s* = 1 when 7 = 0. We conclude that uniform
sampling requires a sample complexity that is M times
larger than that of our non-uniform procedure.
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3.1. Proof sketch of Theorem 3.2

We first claim two inequalities that are derived via straight-
forward modifications of the proofs in Du et al. (2020):

L 2
|‘PXM+1]§XM+1B*WTVI+1H

L <
ER(B,Wpr41) =~ N1 @
| PL 5 X1 B W™ |13

XM+anM:1 - é 02 (K(M + d) + IOg %) (5)

where PA =1 — A (ATA)Jr AT, 7% (m) = "*(T\/ﬂm), and W

is [ﬁwi‘, oWy, ..., ,/nMw}w. By using these two
results and noting that wy,,, = W*D*, we have

1 T~
M+1 ||P;M+1BXM+1B*W*V*”§

1

Y ES
= (5) x [|7*]3.

AN
ER(B,Wa41) S -

1PE Xar BW 353

The key step to our analysis is the decomposition of ||7*||3.

If we denote e 2 = Noa e have, for any v € [0, 1],

A

SO ()] > e + 1 (m)] < Ve

Nm

£ Y (@1 (m)] > VAe} @1 (m)] < vFe))

where the inequality comes from the definition of n,,, and
the fact Ny > M N. Now by replacing the value of € and
[lv]l0,~. we get the desired result.

4. Main Algorithm and Theory

In the previous section, we showed the advantage of target-
aware source task sampling when the optimal mixing vector
v* between source tasks and the target task is known. In
practice, however, v* is unknown and needs to be estimated
based on the estimation of W* and w},, ,, which are them-
selves consequences of the unknown representation ¢*. In
this section, we design an algorithm that adaptively samples
from source tasks to efficiently learn v* and the prediction
function for the target task B*w},, ;. The pseudocode for
the procedure is found in Alg. 2.

We divide the algorithm into several epochs. At the end of
each epoch 7, we obtain estimates qgi, W7 and uﬁﬁw 11 which
are then used to calculate the task relevance denoted as ;1.
Then in the next epoch 7 4+ 1, we sample data based on ;1.
The key challenge in this iterative estimation approach is
that the error of the estimation propagates from round to
round due to unknown v* if we directly apply the sampling
strategy proposed in Section 3. To avoid inconsistent es-
timation, we enforce the condition that each source task
is sampled at least B¢; ! times to guarantee that |;(m)] is

Algorithm 2 Active Task Relevance Sampling

1: Input: confidence ¢, a lower bound of o, (W*) as o,
representation function class ¢

2: Initialize o7 = [1/M,1/M,..], ¢ =
{B:}i=12,..., which will be specified later

3. for;=1,2,...do

4 Setn?, = max {Bi0Z(m)e; 2, Bie; ' }.

5. For each task m, draw n,,, i.i.d samples from the cor-

responding offline dataset denoted as { X? , Vi }M_,
6:  Estimate ¢, W;, ', 1 with Eqn. (2) and (3)
7:  Estimate the coefficient as

Diy1 = argmin ||v]|3  s.t.
v

2~% and

Wiv =i, (6)
8: end for

always ,/€;-close to |cv* (m)|, where ¢ € [1/16, 4]. We will
show why such estimation is enough in our analysis.

4.1. Theoretical results under linear representation

Here we give a theoretical guarantee for the realizable linear
representation function class. Under this setting, we choose
3 as follows !

N,
B:=pi= <3000K2R2(KM+Kdlog( 5}(\);11)
M log(1/Niotar) 1 .
)| %V

+ log( 5/10

Theorem 4.1. Suppose we know in advance a lower
bound of omin(W*) denoted as o. Under the benign low-
dimension linear representation setting as defined in As-
sumption 2.2, we have ER(B, Ware1) < €2 with probabil-
ity at least 1 — § whenever the number of source samples
Niotar 1S at least

. 1
O( (K(M +d) + log 5) o?s*||v |37 + D05_1>

where [ = (MKQdR/g3) \/s* and the target task sample
complexity nyr41 is at least

10) (02K5_2 + O@as_l)

where O = min{ﬁ, \/K(M+d) +log%} and s* has

been defined in Theorem 3.2.

Discussion. Comparing to the known v* case studied in
the previous section, in this unknown v* setting our algo-
rithm only requires an additional low order term (o~ to

!The choice of 3 here is purely for theoretical proof under the
restricted realizable linear representation functions. In practice,
we find that the choice of S can be more flexible as long as the
lower bound of number of samples is in proportional to ei_l.
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achieve the same objective (under the additional assump-
tion of Assumption 2.2). Also, as long as ¢ < O(cKe™1),
our target task sample complexity (5(02 Ke~2) remains the
optimal rate (Du et al., 2020).

Finally, we remark that a limitation of our algorithm is that
it requires some prior knowledge of o. However, because it
only hits the low-order e ! terms, this is unlikely to domi-
nate either of the sample complexities for reasonable values
of d, K, and M.

4.2. Proof sketch

Step 1: We first show that the estimated distribution over

tasks 7; is close to the underlying v*.

Lemma 4.2 (Closeness between ©; and v*). With probabil-
-1

ity at least 1 — 0, for any i, as long as ny;41 > 0 g:’i , we

have B

[Dit1(m)] € {

[l (m)1/16, 4|v* (m)]]
[0,4y/€]

ifve(m) > o./€
if | (m)] < ov/e

Notice that the sample lower bound in the algorithm im-
mediately implies sufficiently good estimation in the next
epoch even if ;11 goes to 0.

Proof sketch:

Under Assumption 2.2, by solving Eqn (3), we can rewrite
the optimization problem on v* and #; defined in Eqn.(1)
and (6) roughly as the follows (see the formal definition in
the proof of Lemma E.1 in Appendix E)

Dip1 = argmin [|v||3
v

s.t. Z B/ (B*w;‘n + n% (an)T Zm> v(m)
- ,

m

1

> * ok i T
=B/ (B Warpy + (Xirs1) ZM+1) )

i
N1

and v* = argmin ||v||3
v
s.t. Zw;ﬁly(m) = Whrye-
m

Solving these two optimization problem gives,
* * ok * * * * + * ok
v (m) = (B*wy,)" (B*W*(B*W*)T) " (B*w};4,)
Pia(m)] < 2| (B wy) (BaWs(BaW) ") B wiy |
+ low order noise.

It is easy to see that the main different between these two
expressions is (B*W*(B*W*)T) ™ and its corresponding
empirical estimation. Therefore, by denoting the difference
between these two terms as

A = (BWi(BW)T)t — (B*W*(B W),

we can establish the connection between the true and empir-
ical task relevance as

[Dip1(m)] = 2" (m)] 5 2 |(B*wr*n)TA(B*w1*\4+1)’ (7

Now the minimization on source tasks shown in Eqn. (2)
ensures that

||B*W* — BlVAVlHF S apoly(d, M)\/a

This helps us to further bound the (B;W;(B;W;)T) —
(B*W*(B*W*)T) term, which can be regarded as a per-
turbation on the underlying matrix B*W*(B*W*)T. Then
by using the generalized inverse matrix theorem (Kovanic,
1979), we can show that the inverse of the perturbed matrix
is close to its original matrix on some low dimension space.

Therefore, we can upper bound Eqn. (7) by o,/¢;. We
repeat the same procedure to lower bound the 3 |v*(m)| —
|7;+1(m)|. Combining these two, we have

~ 1 * 7 *
e (m)] € [l (m)] — o /e, 2" (m)] + 20 V&
This directly lead to the result based on whether v*(m) >
o+/€; or not. O

Step 2: Now we prove the following two main lemmas on
the final accuracy and the total sample complexity.

Define event £ as the case that, for all epochs, the closeness
between 7; and v* defined Lemma 4.2 has been satisfied.

Lemma 4.3 (Accuracy on each epoch (informal)). Under
E, after the epoch i, we have ER (B, Wyy1) roughly upper
bounded by

2

1
% (KM—I—Kd—HOg6> siel +

0% (K +log(1/6))

USVES]

where 5§ = min cjo,1)(1 — ) [v* [}, + M
and ||v|[g ., == [{m : vm > e}
Proof sketch: As we showed in Section 3, the key for calcu-

v* (m)?

7
n m

lating the accuracy is to upper bound > . Similarly

to Section 3, we employ the decomposition

S (14" ()] > e 1 (m)] < e )

m

The last sparsity-related term can again be easily upper
bounded by O((1 — [|v*[[§ ., )o*ve7).

Then in order to make a connection between n‘, and v*(m)
by using Lemma 4.2, we further decompose the first term
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as follows and get the upper bound

> U )l > o)

n
m

3 o e < ()] < vaT)

i
N

m
2
V5
22 o U )] > ovas)
m

+ 3 TE 1 Fe < v m)| < oya)

<Y &/B{ (m)| > o/a1}
+y ot /B e < |vi(m)] < o1}
< O(lv*|lo,4€:/5)

where the second inequality is from the definition of nf .
O

Lemma 4.4 (Sample complexity on each epoch(informal)).
Under &, after the epoch i, We have the total number of
training samples from source tasks upper bounded by

O (B(Me™"' +||v*||3e7?)) + low-order term x T'.

Proof sketch: For any fixed epoch i, by definition of n?,, we
again decompose the summed source tasks based on v*(m)
and get the total sample complexity as follows

M
> B (m)e; *1{|v*(m)| > o\/E 1}

m+1

M
+ 37 B2 m)e LI (m)] < oy} + MBe; !

m—41

Again by replacing the value of 7 from Lemma 4.2, we can
upper bounded second term in terms of v* and we can also
show that the third term is low order ¢~ 1. O

Theorem E.4 follows by combining the two lemmas.

5. Experiments

In this section, we empirically evaluate our active learn-
ing algorithm for multi-task by deriving tasks from the
corrupted MNIST dataset (MNIST-C) proposed in Mu &
Gilmer (2019). While our theoretical results only hold for
the linear representations, our experiments demonstrate the
effectiveness our algorithm on neural network representa-
tions as well. We show that our proposed algorithm: (1)
achieves better performance when using the same amount
of source samples as the non-adaptive sampling algorithm,
and (2) gradually draws more samples on important source
tasks.

5.1. Experiment setup

Dataset and problem setting. The MNIST-C dataset is
a comprehensive suite of 16 different types of corruptions
applied to the MNIST test set. To create source and target
tasks, we divide each sub-dataset with a specific corruption
into 10 tasks by applying one-hot encoding to 0 — 9 labels.
Therefore, we have 160 tasks in total, which we denote as
“corruption type + label”. For example, brightness_0 denotes
the data corrupted by brightness noise and are relabeled to
1/0 based on whether the data is number O or not. We
choose a small number of fixed samples from the target task
to mimic the scarcity of target task data. On the other hand,
we set no budget limitation on source tasks. We compare the
performance of our algorithm to the non-adaptive uniform
sampling algorithm, where each is given the same number
of source samples and same target task dataset.

Models. We start with the linear representation as defined
in our theorem and set B € R2?8*28x50 and ! € RSO,
Note that although the MNIST problem is usually a classifi-
cation problem with cross-entropy loss, here we model it as
a regression problem with {5 loss to align with the setting
studied in this paper. Moreover, we also test our algorithm
with 2-layer ReLU convolutional neural nets (CNN) fol-
lowed by fully-connected linear layers, where all the source
tasks share the same model except the last linear layer, also
denoted as w!, € R,

AL algorithm implementation. We run our algorithm
iteratively for 4 epochs. The non-adaptive uniform sam-
pling algorithm is provided with the same amount of source
samples. There are some difference between our proposed
algorithm and what is implemented here. First we re-scale
some parameters from the theorem to account for potential
looseness in our analysis. Moreover, instead of drawing
fresh i.i.d samples for each epoch and discarding the past,
in practice, we reuse the samples from previous epochs and
only draw what is necessary to meet the required number of
samples of the current epoch. This introduces some random-
ness in the total source sample usage. For example, we may
only require 100 samples from the source task A for the
current epoch, but we may have sampled 200 from source
task A in the previous epoch. So we always sample equal or
less than non-adaptive algorithm in a single epoch. There-
fore, in our result shown below, the total source sample
numbers varies across target tasks. But we argue that this
variation are roughly at the same level and will not effect
our conclusion. Please refer to Appendix F.1 for details.

5.2. Results

Linear representation. We choose 500 target samples
from each target task. After 4 epochs, we use in total around
30000 to 40000 source samples. As a result, our adaptive
algorithm frequently outperforms the non-adaptive one as
shown in Figure 1.
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Figure 1. Performance between the adaptive (ada) and the non-adaptive (non-ada) algorithm on linear representation. Left: The
prediction difference (in %) between ada and non-ada for all target tasks. The larger is the better. Respectively y-axis denotes noise type
and x-axis denotes binarized label, with each grid representing a target task, e.g., the grid at the top left corner stands for target task
brightmess_0. In summary, the adaptive algorithm achieves 1.1% higher average accuracy than the non-adaptive one and results same or
better accuracy in 136 out of 160 tasks. Middle: Histogram summary of incorrect prediction (left is better). There is a clear shift for
adaptive algorithm towards left. Right: Sampling distribution for the target task glass_blur_2. Respectively, the plot shows numbers of
samples from each source tasks at the beginning of epoch 3 by running adaptive algorithm. The samples clearly concentrated on several
X_2 source tasks, which meets our intuition that all ”2 vs. others” tasks should has closer connection with the glass_blur_2 target task.
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Figure 2. Performance between the adaptive (ada) and the non-adaptive (non-ada) algorithm on Convnet. Left: The prediction
difference (%) between ada and non-ada for all target tasks. (See more explanations for notations in Figure 1.) In summary, the adaptive
algorithm achieves 0.68% higher average accuracy than the non-adaptive one and results same or better accuracy in 133 out of 160 tasks.
Middle: Histogram summary of incorrect prediction (left is better). There is a clear for adaptive algorithm towards left. Although the
average performance improvement is smaller than in the linear representation, the relative improvement is also significant given the
already good baseline performance (most prediction error are below 6% while in linear most are above 6%). Right: Sample distribution
for target task as glass_blur_2. A large portion of samples again concentrate on several X_2 source tasks, which meets our intuition that
all 72 vs. others” tasks should has closer connection with glass_blur_2 target task. But the overall sample distribution is more spread
compared to the one on linear representation.
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For those cases where gains are not observed, we conjecture
that those tasks violate our realizable assumptions more
than the others. We provide a more detailed discussion and
supporting results for those failure cases in Appendix F.2.2.
Next, we investigate the sample distribution at the beginning
epoch 3. We show the result for glass_blur_2 as a represen-
tative case with more examples in the Appendix F.3. From
the figure, we can clearly see the samples concentrate on
more target-related source tasks.

Convnet. We choose 200 target samples from each target
task. After 4 epochs, we use in total around 30000 to 40000
source samples. As a result, our adaptive algorithm again
frequently outperforms the non-adaptive one as shown in
Figure 1. Next, we again investigate the sample distribution
at the beginning epoch 3 and show a representative result
(more examples in Appendix F.3.2). First of all, there are
still a number of source samples again concentrating on
72 vs. others”. The reader may notice some other source
tasks also contribute a relatively large amount of sample
complexity. This is actually a typical phenomenon in our
experiment on convnets, which is seldom observed in the

linear representation. This might be due to the more ex-
pressive power of CNN that captures some non-intuitive
relationships between some source tasks and the target task.
Or it might be simply due to the estimation error since our
algorithm is theoretically justified only for the realizable
linear representation. We provide more discussion in Ap-
pendix F.3.1.

6. Conclusion and future work

Our paper takes an important initial step to bring techniques
from active learning to representation learning. There are
many future directions. From the theoretical perspective, it
is natural to analyze some fine-tuned models or even more
general models like neural nets as we mentioned in the
related work section. From the empirical perspective, our
next step is to modify and apply the algorithm on more
complicated CV or NLP datasets and further analyze its
performance. Finally, it is also interesting to combine our
task-wise active learning with instance-wise active learning
results.
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A. Appendix structure

In Appendix B, we define the commonly used notations in the following analysis. In Appendix C.2, we define three high
probability events and prove three claims as variants of original results in Du et al. (2020). All these events and claims
are widely used in the following theoretical analysis. Then we give formal proofs of Theorem 3.2 and Theorem 3.3 in
Appendix D and formal proofs of Theorem E.4 in Appendix E. Finally, we show more comprehensive results of experiment
in Appendix F.

B. Notation
* Define A = BW — B*W* and correspondingly define Al = B;W; — B*W* if the algorithm is divided into epochs.
« Define A,,, = Bib,, — B*w}, and correspondingly define Ai = Bl — B*w?, .
« Restate P =1 — A (ATA) AT
* Restate that 32, = (X,,,)T X,,, and correspondingly 3¢ = (X7 )T X! if the algorithm is divided into epochs.
* Restate that ©,, = E [ﬁ?m} and correspondingly ¢ = E [fljn}

Define k = %@, recall we assume all ¥,,, = 3. Note that in the analysis for adaptive algorithm, we assume

identity covariance so k = 1.

. . M
* For convenience, we write ', asy_ .

If the algorithm is divided into epochs, we denote the total number of epoch as I'.

C. Commonly used claims and definitions

C.1. Co-variance concentration guarantees

We define the following guarantees on the feature covariance concentration that has been used in all proofs below.
Evource = {0.98,, < 3, < 11, Vm € [M]}
Euargett = {0.9B] By < B 311 By < 1.1B] By, for any orthonormal By, By € R>X | 533, = T}
Euargerr = {0.9% 041 < B'Sp41B < 11844, for any B € R}

By Claim A.1 in Du et al. (2020), we know that, as long as n,,, > d + log(M/d),Vm € [M + 1]

, 1)
Prob (Ebuee) > 1 — 0

Moreover, as long as n,, > K + log(1/9),

6 é
PrOb(gtargetl) Z 1- TO PrOb(gtargetZ) 2 1- TO

Correspondingly, if the algorithm is divided into epochs where each epoch we draw new set of data, then we define

%
gsource

={0.9%,, <% <1.1%,,,Vm e [M]}

Again, as long as n!,, > d + log(MT'/6),¥m € [M],Vi € [I'], we have

Prob U e | > 1—

9
€T 5

Notice Eurget1 Will only be used in analyze the main active learning Algorithm 2 while the other two is used in both
Algorithm 1 and 2.
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C.2. Claims guarantees for unequal sample numbers from source tasks

Here we restate two claims and one result (not written in claim) from (Du et al., 2020), and prove that they still hold when
the number of samples drawn from each of the source tasks are not equal, as long as the general low-dimension linear
representation is satisfied as defined in Definition 2.1. No benign setting like Definition 2.2 is required.

Algorithm 3 General sample procedure

M

1: For each task m, draw n.,, i.i.d samples from the corresponding offline dataset denoted as { Xy, Yon }—1

2: Estimate the models as

M
é)a W= arg min Z (X )0 — Ym”2
PED,W=[101,2,...] m—1

War41 = argmin | G(Xhy ) w — Vi ||
w

Specidically, consider the above procedure, we show that the following holds for any {n,, }2_;.
Claim C.1 (Modified version of Claim A.3 in (Du et al., 2020)). Given Esoyrce, With probability at least 1 — §/10,

S XAl < 02 <KM+Kdlog<x<Z M) /M) +log<1/5>>

Proof. We follow nearly the same steps as the proof in (Du et al., 2020), so some details are skipped and we only focus on
the main steps that require modification. Also we directly borrow some notations including V', N, r from the original proof
and will restate some of them here for clarity.

Notation restatement Since rank(A) < 2K, we can writt A = VR = [Vrq,--- ,Vry] where V. € Og2k and
R =[ry,---,ry] € R2EXM Here O, .4, (d1 > do) is the set of orthonormal dy x da matrices (i.e., the columns are
orthonormal). For each m € [M] we further write X,,,V = U,,Q., where U,,, € O, 2x and Q,,, € R2E>*2K_To cover all
possible V', we use an e-net argument, that is, there exists any fixed Ve Ou,2x and there exists an e-net N, of Q42K in

2Kd
Frobenius norm such that N' C Og 25 and |N| < (G—VEQK) . (Please refer to original proof for why such e-net exists)

Now we briefly state the proofs.

Step 1:
R M M
D X (B, = B'wi)3 <Y Zos X Venrm) + D A Zn, X (V = Vi)
m m=1 m=1

This comes from the first three lines of step 4 in original proof. For the first term, with probability 1 — §/10 , by using
standard tail bound for y? random variables and the e-net argument (details in eqn.(28) in original proof), we have it upper
bounded by

o/ KM +log(INc|/5)

M M
S X Vreml3 + o/ KM +10g(INCI/6) 4| D I1Xm(V = V)rml[3

m

And for the second term, since 072" || Z,[|? ~ x? (Z%Zl nm), again by using standard tail bound (details in eqn.(29)
in original proof), we have that with high probability 1 — §/20, it is upper bounded by

M

M
> Az, X (V = Vi )rm) S 04| > 1im + 1og(1/5)\/z 1 X (V = V)13

m=1 m=1
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Step 2: Now we can further bound the term \/Zm | Xm(V = V)72 by showing
DXV = Vi )rnll3 < D NXalF IV = VIElral
m m

< LN 0|V = VI3 |73

m

<LIXE D w3

m

< 1.1Xe2znmuAm|\§
< 1.1ke Z | X (A 12

Note this proof is the combination of step 2 and step 3 in the original proof. The only difference here is n,, is different for
each m so you need to be more careful on those upper and lower bounds.

Step 3: Finally, we again use the self-bounding techniques. Recall that we have

M M
Do IXm (A3 < | Do 1Zml34| D I1Xm (D)3

By rearranging the inequality and the distribution of Z,,,, we have

Z 1 Xm ( ”2 <o <Z N+ log( 1/5)>

m

Step 4: Now replace these into the inequality in step 1, we have

Y XnAnl3 < o/KM +1og(INCI/8), [ 1XmAmll3 + 260 (Z T+ 10g(1/5)>

Then rearrange the inequality and choose proper €, we get the result.

O
Claim C.2 (Modified version of Claim A.4 in (Du et al., 2020)). Given Esurce and Egarger, With probability at least 1 — §/10,

P 1
||P;M+13XM+1B*W* 12 < 1.3np410° <KT + Kdlog((k Y nm)/M) + log 5)

where W* = W*/diag([n1, na, - - -, nar))
Proof. The proof is almost the same as the first part of the proof except we don’t need to extract n,, out.
31X Bt = B ) 2 2P, X Bl
> 0.9 Z | Py 5 Sm B W), 2
_09an||P IBEMJrlB*w:nHQ

=0. 9HPL EM+1B*W*||2
09 1

> -

T 1lnyn

1Py, s X1 B W%
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where the first and second inequality is the same as original proof. The third equation comes from our assumption that all
Y., are the same and the forth equation is just another form of the above term. The last inequality comes from the same
reason as second equality, which can again be found in original proof.

Now by using Claim C.1 as an upper bound, we get our desired result.

Basically, this claim is just another way to write Claim A.4 in (Du et al., 2020). Here we combined the n,,, with W* and
in original proof they extract n,, can lower bound W* with its minimum singular value since in their case all n,, are the
same. O

Claim C.3. Given Egource and Eiargerz, With probability at least 1 — /5,

. 1 2 K +log(1/6)
ER (B, ) < HPL Xy Brw H 2 B8 T 0BL/0)
Wp+1 ) S —— X1 B M+1D Wy » + o Lot

Proof. This bound comes exactly from some part of Proof of Theorem 4.1. Nothing need to change. O

D. Analysis for Warm-up
D.1. Proof for Theorem 3.2

30

Suppose event Egpurce and Eargerz holds, then we have with probability at least 1 — 5

1P, s X B wiall® ke 4 l0g(1/5)
nM+1 o nNyp+1
XN1+1B*W*5*||§ + o2 K +log(1/9)
NMm+1
02K +log(1/9)
Na+1

1
=1.302 (KT + Kdlog((k > nm)/M) + log 5) 1513 +

ER (B, Wn41)

1

Nar+1
1

Nar+1

1
||PX]\/I+1B

IN

1PE,,  pXara B |3]5° 3 +
Cr2K + log(1/9)

naM+1
where 0*(m) = %\/ﬂ) Here the first inequality comes from Claim C.3 and the last inequality comes from Claim C.2. By

use both claim, we have probability at least 1 — 1% — g The third inequality comes from holder’s inequality.

Nlolal2
llv=13°

The key step to our analysis is to decompose and upper bound ||7*||2. Denote €2 = we have, for any v € [0, 1],

2 éi? (v (m)| > vye} + 1" (m)| < vAeh) £ 3 (EH (m)] > vie} +9e"1{l" (m)] < v/7e})

m m
< wlloqe® + (M = [[vfloq)ve®
= (1= Nlvlloye® + Mrye?

lv* |13
< 1— v
< (=)l

0,y + M)

where the inequality comes from n,, > 3 (v*(m))%e 2.

Finally, combine this with the probability of Eurce and Eiargero, We finish the bound.
D.2. Proof for Theorem 3.3
By the same procedure as before, we again get

o K +1log(1/6)

UIVES]

. 1
ER(B,Wn41) < 0° <KT+ Kdlog(n(z nm)/M) + log 5) [7*]3 + o
m
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Now due to uniform sampling, so we have all n,;, = Ny /M, which means

17713 = [l

Then we get the result by direction calculation.

E. Analysis for Theorem E.4
E.1. Main analysis

Step 1: We first show that the estimated distribution over tasks 7; is close to the actual distribution »* for any fixed .
Notice that Assumption 2.2 is necessary for the proofs in this part.

Lemma E.1 (Closeness between 2; and v*). Under the Assumption 2.2, given E. ... and Eiargerr, for any i, m, as long as
2000¢;
[oa

+—, we have with probability at least 1 — 0 /10MT

Np4+1 2>

D51 (m)| € {“V*(m)l/l674lv*(m)ll ifv* > o& N

0,4/4] iflv| < oy
We define this conditional event as

gi,m = {Eqn(g) holds | gsi{mrce7 gmrget]}

relevance

Proof. By the definition of * and Lemma E.9, we have the following optimization problems,

Dit1 = argmin [[v|3
14
1

as 1 T ~
st ) am (Z%B*w:n + o (Xo) Zm) v(m) = ar (Zz\/IB*wX/H-l to—

(inle)T ZM-H>
m M+1

v* = argmin ||v||3
v

s.t. Z wy,v(m) = wiy
m

) P U
where o, = (BiTEinBi) B
Now we are ready to show that ©; 11 is close to v* by comparing their closed form solution.

First by using the lemma E.8 based on the standard KKT condition, it is easy to get a closed form solution of v* , that is, for
any m.

v (m) = (wi) T (W W) whyy,

= (B*w) T (BWH (B W) (B wiy,,)
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where the last inequality comes from the fact that B* is orthonormal. And,

~ St Kk 1 1 i 717 i * % 1 1 1
osa ()] = | (BT + o (207X ) R T enenn (S B + o2 — (Xhes) Zir )

m Mar+1

< 17|(Brwy) T BB B W) (B By B B wis |

m m

1 1 i D DT D \— YRV ST H =115 * ok
L8| (2T XA B BT B V)BT B) BT B

~ PN N ~ ~ ~ 1 . .
+1.3 ‘(B*w;)TBi(B;Bi)‘l(WiWiT)T(BZ-TBi)_lBiTi(X}MH)TZ}’V[H
i1
1 . A ~ ~ n ~ ~ ~ 1 . X
+ | = (2.) " X5, Bi(B] B)) " (WiW,) (B B;) ' B ——— (X} 1) Zissa
N nM+1
< 17|(B w;) T B (W) BT Brwiy |
1 . N aA ~
L8| () X B OV BT 5wl
~ aA A ~ 1 . X
+1.3\<B*w:n)TBi<Wz-WJ>*BJ LX) Zig
LSV EN)
1. o 1 . .
+ i(an)TX:nBi(WiWiT)TBiT 7 (X;\/I+1)TZ}\4+1
Ny, Nar41

<2 ‘(B*w:‘n)T(BiWi(BiWi)T)TB*wX/[H + noise term(m)

The first inequality comes from the definition of «p,, and the event Esource; Erargett - The second equality comes from that Bi
are always orthonormal matrix. Notice that in practice this is not required. Finally we set the last three terms in the second
inequality as noise term(m), which is a low order term that we will shown later.

—-Sub-step 1 (Analyze the non noise-term): We have the difference between |; 1 (m)| and 2|v*(m)] is

|Zir1(m)] — 2|v*(m)| — noise term(m)

* ok P IT D 1T * ok * ok * * * * + * ok
< 2|(Bw) T (BW(BW) ) Brwip | = 2| (B wi) T (B W (B W) (Bwis)|

IN

2|(B wp) T (B BW) ) = (BW (B W) ") (Brwisp)|

IN

2 ‘(B*wjfn)T (Bw* (3w (AZAJ FAB W) + (B*W*)(Ai)T) (B*WH(B*WH) Y (B*wis,)

* ok * ok * * * * T (Ai 7 At * * * * Al * * * *
2By o[ B why o | (B W (BW)T) (A(AYT + ABW)T 4+ (BWAYT) (BW(BW T

IN

IN

< 0+/€; + noise term(m)

where the second inequality comes from the triangle inequality, the third inequality holds with probability at least 1 — § by
using the application of generalized inverse of matrices theorem (see Lemma E.10 for details) and the fifth inequality comes
form the fact that || B*w?,||2 < ||w},||2 < R. Finally, by using the assumptions of B*, W* as well as the multi-task model
estimation error A?, we can apply Lemma E.12 to get the last inequality.

With the same reason, we get that, for the other direction,

0.5|v*(m)| — |Pix1(m)| — noise term(m) < o+/€;/4

Combine these two, we have

|41 (m)| € [0.5|v*(m)| — o+/€;/4 — 1.5noise term(m) , 2|v*(m)| + o+/€; + 1.5noise term(m))
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—-Sub-step 2 (Analyze the noise-term): Now let’s deal with the noise term(m), we restate it below for convenience,

1 , . . . R 1 , ,
1.3 |—(Z},) " X, B;(W;W," ) B B*wjy; +1'3‘(B*w:1>TBi<WiWiT)TBz‘T — (Xir1) Zhra
M L VES]
1 i B Thr TR A 1 i i
+ T(Zm)TXmBi(WiWiT)TBiT 7 (XM—H)TZM+1 .
m nMJrl

By the assumption on B*, W*, it is easy to see that with high probability at least 1 — ¢’, where ¢’ = §/10I'M

—(Z}) T X (BiWi(BW:) 1) B*wiy

nm
1 1. :
< (7 TXz B*w*
= R G BT i, Fm) X B Wil

0- . .
< — * T(BT(Xi )T Xi B*w* 1 1/8"
= ni Amin (B*W*(B*W*)T)\/<w1w+1> (B*)T (X)) TXT, Whari1 og(1/6")

2.20||why44]l2/10g(1/0")
= V/ni e (B*W(B*W)T)

2.204/Rlog(1/d")
< ei/ﬂ)\min (B*W*(B*W*)T)

where the first inequality comes from Lemma E.6, the second the inequality comes from Chernoff inequality and the
last inequality comes from the definition n?, = max{B02¢; *, Be; ', N}. Note that we choose 3 = 3000K2R?(KM +
Kdlog(1/eM) + log(MT'/§)/a. Therefore, above can be upper bounded by +/€; /24.

By the similar argument and the assumption that nps41 > %
1—¢ B

, we can also show that with high probability at least

2.20||wy, ||2+/log(1/4")

*, ok D (137 1T > 1 7 )
‘(B wh,) " Bi(W;W,) B — (Xhri1) " Zigya| <

Mg 41 T VM1 Amin (B*WH(B*W*)T)
< o624
Finally, we have that
1 . e a 1 ) . 2.202%\/¢; * * log(1/4’
- (Z:n)TsznBi(WiWiT)TBiTii(X;W-i-l)TZ;\/[-i,-l < o el/ﬁnwm”?le\f—i-l!Q *gg_/ )
M Nar41 VM1 Amin (B*W*(B*W*)T)

< o\/@/24

So overall we have we have noise term(m) < o./€;/8.
—-Sub-step 3 (Combine the non noise-term and noise-term):
Now when |v*(m)| > o/€;, combine the above results show that |71 (m)| € [v*(m)/16,4|v*(m)|].
On the other hand, if |[v*| < 0,/€;, then we directly have ;11 € [0,40./€;].

O
Step 2: Now we are ready to prove the following two main lemmas on the final accuracy and the total sample
complexity.

Lemma E.2 (Accuracy on each epoch). Given Espurce, Erarger 1 Erarger 2 and Sfcj,e"iam for all m, after the epoch i, we have
ER(B, Wpr41) upper bounded by with probability at least 1 — 6 /10MT.

2 (K +1og(1/4))
nM+1

02 1 * 2
] KM+Kd+logS si€; +o

where s7 = min,ejo 1) (1 — Y)v* |G, + M and [[v|[§ , == [{m : v > e}
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Proof. The first step is the same as proof of Theorem 3.2 in Appendix 3. Suppose event £¢

source
have with probability at least 1 — w?’ﬁ,

and Eargerz holds, then we

2K +10g(1/9)

N 1
ER(B,wpr41) < 1.302 (KT + Kdlog(()_ nm)/M) + log 5) 7% + -
m M+1

where 7*(m) = v*(m)/\/Tim.

Now for any ~ € [0,1], given E47

relevance’

m)2

we are going to bound ) as

7n,

PR <Z Y >|>am}+z S 1A <t m)l < ova)

+Z 1{| (m)] < Vet

0621

SZ2Z6¢V" Y| (m)| > oferT 1}Jrz
+7€2/521{|V )| < Vel

e < )] < Ve

<0 <Z e2/B1{|v*(m)| > aﬂ}) +0 (Z 0?2/ B1{\/vei_1 < |v*(m)| < a@})

+ (Mm— 1v16,,)ve? /8
<0 <Z e /BL{|v*(m)| > Uﬁﬂ—l) + (M — |[vllo,)ve/B
<( —mv)HVHé,7 +yM)e; /B
O

Lemma E.3 (Sample complexity on each epoch). Given Egpurce; Erarger 1 and 5mjlemvance for all m, we have the total number of
source samples used in epoch i as as

O (B(Me™" + ||v*[|3e72))

Proof. Given Sfelzame, we can get the sample complexity for block ¢ as the follows.

Zn Zmax{ﬁl(m)Qei_Q,e;l,ﬂ}

p%g

M
BiZe >+ Be !
m

3
S

T

IN

M
B (m)e; *1{|v*(m)| > o\/e-1} + Zﬂl/ Je; " (m)| < o/a@i) + ) Be;t

IN

Mz M=

BAv*(m))e *1{|v* (m)| > o/ei1} + Z6(40\/6¢71)2/6221{IV*(m)| <oya i}ty Be!
(B(Me " + [[v*36,%))

I
C 3
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Theorem E.4. Suppose we know in advance a lower bound of omin (W*) denoted as o. Under the benign low-dimension
linear representation setting as defined in Assumption 2.2, we have ER(B, wyr11) < €2 with probability at least 1 — §
whenever the number of source samples Nyotq1 s at least

~ 1
(’)< (K(M +d) +log 5> o?s*||lv*||Fe 2 + Da»sl)

where [ = (M K2%dR/ gg) \V/s* and the target task sample complexity ny; 1 is at least

10) (0’2K€_2 + O@ae_l)

where ¢ = min { ﬁ(, \/K(M +d) +log %} and s* has been defined in Theorem 3.2.

Proof. Given Egources Erarget 15 Etarger 2 and Eﬁggance then by Lemma E.2, we the final accuracy from last epoch as

(K +1og(1/4))

o 1)
ER 41 (B, oar41) < 02 <KM—|—Kdlog((an)/M) + log 5) sper /B + o —
— +

Denote the final accuracy of the first term as £2. So we can write er as

e/ (a\/KM+Kdlog((an)/M) +log§\/sl”://@>

By applying lemma 4.4, we requires the total source sample complexity

I
D BMe T + |7 )3e%) < 28(Mep +2l|v”|3er?)
i=1

= ﬁMU\/KM+Kd10g((an)/M) +10g%\/81’i/55_1

m

+ Bllv* 30 (KM+Kdlog<<Z Hm) /M) +1og§> sie*/B

= /BM s;:o\/KM + Kdlog(()_nm)/M) + log %8_1

1
+s70° (KM+Kdlog((Z 1) /M) + log 5) I~ ||3e 2

m

=0 ((Msz + M\/ﬂ/gﬂ stoe !+ dei"ﬂ02||1/*||§5*2>

Also in order to satisfy the assumption in Lemma E.1, we required n,1 to be at least
et 1 1
?:E,/SF/ o KM—i—Kdlog((;nm)/M)—i-logga

< min{UQlK, \/KM—i—Kdlog((an)/M) +10g(15} stoe !

Notice that I" is a algorithm-dependent parameter, therefore, the final step is to bound s}. by an algorithm independent term
by write I as

. Noal Noal
F:—logngmln{log ﬂ||tui|§’10g Btj\}}
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So we have .

. Blv I3 M
v = |{m:Vmy > max y A
|| ||0,'y |{ m ﬁ { Ntotal Ntotal}|

To further simply this, notice that, for any €’ < ¢;.

Wll6,, = Hm : v > Vet < [{m:vm > 7€'}
So we further have

vl
116, = {m : v >V 2}\ = [I¥lloy

Finally, by union bound Esgurce, Earget 15 Etarger 2 and ghm

levance O all epochs, we show that all the lemmas holds with probability
atleast 1 — 4.

O

E.2. Auxiliary Lemmas

Lemma E.5 (Convergence on estimated model B;W,). For any fixed i, given E' we have

source’

||Az||F<13a <KM+Kdlog Zn /M)—Hog 5 )ez/ﬁ

And therefore, when 3 = 3000K? R*(K M + Kd10g(Npwa1/M ) +log(MT /§)/a®. Therefore, above can be upper bounded
by \/ei/24,

we have ||Al|% < 4K2R2

Proof. Denote A, as the m-th column of Al

M
Z HXmAmHg = Z ALX;;XmAm

M
>0.9) nmALA,

m=1

M
> 0.9minng, S A3 = 0.9minnl, A7,
m m=1 "

Recall that our definition on n,, = max { B2 (m)e; 2, 56;1} and also use the upper bound derived in Claim C.1, we finish

the proof. O
Lemma E.6 (minimum singular value guarantee for Bi Wi). For all i, we can guarantee that
Tmin(BiW;) > Gpnin(W*) /2
Also because M > K, so there is always a feasible solution for ;.
Proof. Because B* is a orthonormal, S0 0y, (B*W™*) = 045 (W*). Also from Lemma E.5 and Weyl’s theorem stated

below, we have |Tumin(B;W;)) — Gpmin (B*W*)| < |BiW; — B*W*||p < & < %(W) Combine these two inequality
we can easily get the result.
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Theorem E.7 (Weyl’s inequality for singular values). Let M be a p x n matrix with 1 < p < n. Its singular values o, (M)
are the p positive eigenvalues of the (p + n) x (p + n) Hermitian augmented matrix

0 M
M* 0
Therefore, Weyl’s eigenvalue perturbation inequality for Hermitian matrices extends naturally to perturbation of singular
values. This result gives the bound for the perturbation in the singular values of a matrix M due to an additive perturbation
A
(M + A) = o4 (M)| < 01(A) < | All e

O
Lemma E.8. For any two matrix M; € REXM M, € RE where K < M. Suppose rank(M,) = K and define v as
argmin ||v||% st My = My, v € R™,
veERM
then we have
=M (MM, M,
Proof. We prove this by using KKT conditions,
L(v,A) = [[V[|3 + AT (Mivy — M)
Given 0 € L, we have 77 = —(M7) " \/2. Then by replace this into the constrains, we have
T T\~1
M1M1 A= 72M2 —A=-2 <M1M1 ) M2
and therefore 7 = (M) " (MlMlT)f1 M. O

Lemma E.9 (A closed form expression for 0;). For any epoch i, given the estimated representation B;, we have
~ o . 2
Pi41 = arg min |3
v

o 1 T , N 1
s.t. g al, (E;B*w:‘n + v (an) Zm) v(m) = ajy (EMB*U/X/IH + pr—
m m M+1

i T
(Xhr41) ZM+1>
) A AT A
wherea%:(B;rZ}nBO B

Proof. For any epoch ¢ and it’s estimated representation B;, by least square argument, we have

W' = argmin || X! Biw — Yol|2
i T i - i T
= <(XmB73> XmBi) (XmB1) Ym
CoNT N L NT CoNT N T
:(( D) X}nBZ) (x5.5) anB*wf,L—F( X5, 5:) anBZ) (X0Bi) Zom

P e S P e N )
_ (BTEz Bi) BT $i B uw*, + (B;ZinBZ) Bl (xt

m m

i kxd i
al €R al,
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Therefore, combine this with the previous optimization problem, we have which implies that

T i i E 1 i
Wiv = Zafn (EQLB w,, + v (Xm)T Zm) v(m)

m

, . . 1
~ 1 7 * ok
W41 = Qa4 <EJWB Wargr + ——

(X&H)TZMH)
LSV EN)

Recall the definition of 7; 1 as
min |[v|2 st Wiy = Wiy
Therefore we get the closed-form by replace Wi, WY, 1 with the value calculated above. O
Lemma E.10 (Difference of the inverse covariance matrix). For any fixed i, m and any proper matrices My, Mo, M3, My,
’Ml ((BiWi(BiWi)T)T - (B*W*(B*W*)T)+> B*Mg‘
— [l (B W (B W) (K(AYT + AB W+ (BWA)T) (BWH(BW))|B M|

My (BT (BB = (B'W*(B'W)) ") My

= M5BT (B W (B W) ) (KA + AB W) + (BW)AYT) (BW(BW) )M
Proof. First we want to related these two inverse term,
(B W, B — (B W (B*w)T)!
< ((B*W* + AN BWE + Ai)T)T — (BwrBwWHT)
< (B*W*(B*W*)T n (A’L(Al)—r +ABWHT + (B*W*)(Az)T))T _ (B*W*(B*W*)T)T

In order to connect the first pseudo inverse with the second, we want to use the generalized inverse of matrix theorem as
stated below.

Theorem E.11 (Theorem from (Kovanic, 1979)). If V is an n x n symmetrical matrix and if X is ann X q arbitrary real
matrix, then

V4+xxOHf =vi—vixa+xTvix)txTvi 4 (x)hHTx1
where X | = (I —VVT)X
It is easy to see that V := B*W*(B*W*)T and we can also decompose (AAT + ABWHT + (B*W*)AT) into some
XXT,
Therefore, we can write the above inequality as
—VIXT+xTVIX) XV ((x ) TxT
Next we show that (X )1)T X1 B* = 0 and (B*)T((X,)")T X! = 0. Let UDVT be the singular value decomposition
of B*W™*. So we have
vvi=uD*UT(UD*U") =UUT,

and therefore, because B* are contained in the column spaces as B*W*,

X'B* =W, U] x)'B*

= XU, U] B*=0.
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Therefore, we conclude that

‘M1 ((BiWi(BiWi)T)T - (B*W*(B*W*)T)+) B*M2’

< |aaf|| (B W B W) (AQ)T + AB W+ (BWHA)T) (B W (B W) | B°Ms

ViXXTVvi

and so does the other equation.

Lemma E.12. Given &!

source’

for any fixed i, we have

| (B*w* (B W) T)! (Ai(Ai)T +ABWH)T + (B*W*)(N)T) (BW*(B*W*) )|

< 3al|[(WHH (W (W*) )Y e’ Ve /6K R
< o+/€ /2R

Proof. The target term can be upper bounded by
+ || (B*W*(B*W*
+ || (BW*(B*W*

) B

A(A) (B*W*(B*W*)T)THF
Y B
)T

)T Ai(B* )T( B*W *(B*W*)T)TIIF

Before we do the final bounding, we first show the upper bound of the following term, which will be used a lot,

IBWHT (BW BW)) |p = | (BW (BW)T)

B*W*||r

=B W (W) (B)) B*W*||r

=B O W W) ")i(B
= 1B (W (W))W
= [lw* W))W p

= [IW) D W) WHlr
= (W)W T (W) H|r
= [|(W*) W (W) |
= I((W*)1|lr

Therefore, we can bound the whole term by

1B W*(B* W) NENAYE + 20 (W) A I[(B* W (B W) T)||r < 3)(W

~ . 6
Recall that we have ||A[|3 < %77 ;2 Hz given £, therefore, we get the final result.

B W|

O (w

IO EIAY e

O
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F. Experiment details
F.1. Other implementation details

We choose 3; = 1/||v||3, which is usually ©(1) in practice. Instead of choosing ¢; = 2¢, we set that as 1.5~% and directly
start from ¢ = 22. It is easy to see that it turns out the actual sample number used in the experiment is similar as choosing
B = poly(d, K, M) and start from epoch 1 as proposed in theorem. But our choice is more easy for us to adjust parameter
and do comparison.

We run each experiment on each task only once due to the limited computational resources and admitted that it is better to
repeat the experiment for more iterations. But since we have overall 160 target tasks, so considering the randomness among
tasks, we think it still gives meaningful result.

Moreover, remember that we have lower bound Se; ! in our proposed algorithm, In our experiment for linear model, we
actually find that only using a constant small number like 50 for each epoch is enough for getting meaningful result. While
in convnet, considering the complexity of model, we still obey this law.

F.2. More results and analysis for linear model

F.2.1. MORE COMPREHENSIVE SUMMARY
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Pt T 0.64 0.77 0.7 0.48 0.1 0.34 #0199 0.24 0.7 motion_blur JEB
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Figure 3. summary of performance difference for linear model (restated of figure 1); left: The prediction difference (in %) between
ada and non-ada for all target tasks right: The incorrect percentage of non-adaptive algorithm.Note that 10% is the baseline due
to the in-balance dataset and the large the worse. Please refer to the main paper for further explanation,

F.2.2. WHY OUR ALGORITHM FAILS ON SOME TARGET TASKS ?

Here we focus on why our algorithm get bad performance on some tasks. Overall, other than the randomness, this is mainly
due to the incompatibility between our theoretical assumption (realizable linear model) and the complicated data structure in
reality.

To be specific, there might a subset of source tasks that are informative about the target task under linear model assumptions,
but other source tasks are far away from this model assumption. Due to the model misspecification, those misleading tasks
may gain more sampling in the adaptive algorithm. We conjecture that this might be the case for target tasks like scale_0 and
scale_2. To further support our argument, we further analyze its sample number distribution and test error changing with
increasing epoch in the next paragraph.

For the scale_0 task, in Figure 8 we observe the non-stationary sample distribution changing across each epoch. But
fortunately, the distribution is not extreme, there are still some significant sample from X_0 source tasks. This aligns with
the test error observation in Figure 9, which is still gradually decreasing, although slower than the non-adaptive algorithm.
On the other hand, the sample distributions are even worse. We observed that nearly all the samples concentrate towards
X_5 source tasks. Thus no only we can not sample enough informative data, but we also force the model to fit to some
non-related data. Such mispecifcation has been reflected in the test error changing plot. (You may notice the unstable error
changing in non-adaptive algorithm performance, we think it is acceptable randomness because we only run each target task
once and the target task itself is not very easy to learn.)
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Figure 4. top: sample distribution for target task as scale_0, bottom: sample distribution for target task as scale 2 We show the
sample distribution at each epoch 1,2,3.
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Figure 5. Test error change after each epoch for target task as scale_0 and scale 2

F.2.3. MORE GOOD SAMPLE DISTRIBUTION EXAMPLES

Appendix F.3
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We show the sample distribution at each epoch 1,2,3.
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F.3. More results and analysis for convnet model

The convnet gives overall better accuracy than the linear model, except the translate class, as shown in Figure 7. So we want
to argue that it might be harder for us to get as large improvement as on linear model given the better expressive power on

convnet.
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Figure 7. left: summary of performance difference for conv model (restated of figure 2); right: the incorrect percentage of
non-adaptive algorithm On the right side we show the incorrect percentage of non-adaptive algorithm. Note that 10% is the baseline due
to the in-balance dataset and the large the worse. Please refer to the main paper for further explanation,

F.3.1. WHY OUR ALGORITHM FAILS ON SOME TARGET TASKS ?

Here we show scale_5 and shear_9 as the representative bad cases. With the similar idea of linear model, we again observe
the non-stationary sample distribution changing across each epoch in Figure 8. For scale_5, we observe that at the beginning
of epoch 1, the sample fortunately converges to X_5 source tasks, therefore our adaptive algorithm initially performs better
than the non-adaptive one as shown in Figure 9. Unfortunately, the sample soon diverges to other source tasks, which more
test error. For shear_9, although there are some samples concentrate on X_9 source tasks, overall, the number of samples on
X_9 source tasks has a decrease proportion of total number of source sample. So the algorithm has a worse performance on

this.
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Figure 8. top: sample distribution for target task as scale_5, bottom: sample distribution for target task as shear_9 We show the

sample distribution at each epoch 1,2,3.
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Figure 9. Test error change after each epoch for target task as scale_5 and shear_9

F.3.2. MORE GOOD SAMPLE DISTRIBUTION EXAMPLES
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