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Abstract 

Plant function arises from a complex network of structural and physiological 

traits. Explicit representation of these traits, as well as their connections with 

other biophysical processes, is required to advance our understanding of 

plant-soil-climate interactions. We used the Terrestrial Regional Ecosystem 

Exchange Simulator (TREES) to evaluate physiological trait networks in 

maize. Net primary productivity (NPP) and grain yield were simulated across 

five contrasting climate scenarios. Simulations achieving high NPP and grain 

yield in high precipitation environments featured trait networks conferring high 
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water use strategies: deep roots, high stomatal conductance at low water 

potential (“risky” stomatal regulation), high xylem hydraulic conductivity, and 

high maximal leaf area index. In contrast, high NPP and grain yield was 

achieved in dry environments with low late-season precipitation via water 

conserving trait networks: deep roots, high embolism resistance, and low 

stomatal conductance at low leaf water potential (“conservative” stomatal 

regulation). We suggest that our approach, which allows for the simultaneous 

evaluation of physiological traits, soil characteristics, and their interactions 

(i.e., networks), has potential to improve our understanding of crop 

performance in different environments. In contrast, evaluating single traits in 

isolation of other coordinated traits does not appear to be an effective strategy 

for predicting plant performance.  

Key words: maize; plant growth; hydraulic traits; xylem; stomata; water 

potential; photosynthesis; crop improvement; breeding; process simulation 

Summary statement: Our process-based model uncovered two beneficial but 

contrasting trait networks for maize which can be understood by their 

integrated effect on water use/conservation. Modification of multiple, 

physiologically aligned, traits were required to bring about meaningful 

improvements in NPP and yield.  

Introduction 

Given the challenge to feed an increasing human population in the face of 

climate change, the need for improved crop genotypes has never been more 

important (Ainsworth and Ort 2010; Flörke et al. 2018; Hasegawa et al. 2018; 

Bailey-Serres et al. 2019; IPCC 2021) ⁠ . However, current efforts to improve 

crops are beset by immense systems complexity – near-infinite combinations 

of soil, climate, plant, and management interactions (Spiertz et al. 2007)⁠ . 

Although experimental methods in isolation have little chance to evaluate the 

scale of this complexity in a meaningful way, the integration of experimental 

methods and physiological modeling represents a possible way forward for 

assessing trait combinations and their consequences on crop performance 

(Hammer et al. 2002) ⁠ . 



 

This article is protected by copyright. All rights reserved. 

A
cc

ep
te

d 
A

rt
ic

le
 

 Explicit representation of key biotic and abiotic processes is essential 

to develop a predictive understanding of plant function and the interactions 

between plant, climate, and soil (Holzworth et al. 2014; Mackay et al. 2015). 

This is because plant structural and physiological traits do not operate 

independently of one another, but rather as connected and interdependent 

processes, i.e., “trait networks” (Marshall-Colón and Kliebenstein 2019) ⁠ . 

Mechanistic plant models (i.e., process-based models) can simulate trait 

networks and be used to explore crop management strategies (Zhao et al. 

2015)⁠ , physiology by climate interactions (Bauerle et al. 2014)⁠ , 

physiological trait coordination (de Wit 1965; Gifford et al. 1984) ⁠ , climate 

change impacts (Peng et al. 2020) ⁠  and, more recently, trait selection, i.e., in 

combination with gene-to-phenotype trait models (Messina et al. 2009, 2018; 

Technow et al. 2015; Hammer et al. 2019; Wang et al. 2019; Cooper et al. 

2021; Diepenbrock et al. 2022)⁠ . Mechanistic models appear particularly well-

suited to evaluate combinations of structural, morphological, and physiological 

traits, provided that key traits (and their interactions) are represented 

accurately (Alam et al. 2014; Sperry et al. 2016) ⁠ . However, there remains 

much uncertainty about which trait combinations are desirable in specific 

contexts and how much biological complexity is needed in models, given the 

breadth of applications (Hammer et al. 2019; Peng et al. 2020; Cooper et al. 

2021)⁠ .  

 Mechanistic models must simulate hypothetical trait networks of 

interest, i.e., the appropriate mechanisms and interactions relevant for the 

question being asked (Di Paola et al. 2016) ⁠ . Here, we focus on identifying 

the key interactions among physiological processes that control carbon-water 

exchange, and how these interactions manifest as differences in growth and 

yield in contrasting climates (Fig. 1). Given the complexity of the traits 

involved (e.g., photosynthesis, stomatal conductance, xylem water transport) 

and the heterogeneity of possible production environments (known as the 

Target Population of Environments; TPE), we expected that key insights would 

be learned from the emergent behavior of the model itself, in addition to the 

outcomes of hypotheses testing. Key to this approach is our assumption that 

the explicit representation of water-carbon linkages would allow for a more 
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predictive understanding of trait interactions and how traits could be 

manipulated in theory and in practice (e.g., via breeding programs) to improve 

crop growth and grain yield across the TPE.  

 The exchange of water for atmospheric CO2 depends critically on the 

plant vasculature to deliver water to the sites of evaporation in the leaves 

(Brodribb et al. 2007)⁠ . However, large quantities of water (200 – 1100 g) are 

required to obtain a single gram of CO2 (Shantz and Piemeisel 1927)⁠ . As 

such, the conductive capacity of the vasculature needs to be closely 

coordinated with stomatal conductance and photosynthesis (Brodribb et al. 

2017; Martin-StPaul et al. 2017; Deans et al. 2020; Xiong and Nadal 2020) ⁠ . 

However, transporting water long distances within plants cannot be done 

without risk because water is drawn through narrow xylem conduits (vessels 

and tracheids) in a metastable state under negative pressure. As the water 

content of the soil and atmosphere decrease, the negative pressure inside 

these conduits also decreases. If the pressure becomes too low, tiny bubbles 

of gas are pulled into the xylem, where they rapidly expand and block the 

conduits. These “cavitated” or “embolized” conduits are thereafter 

nonfunctional unless they can be refilled or replaced. As more conduits 

become embolized, the potential photosynthetic yield of the plant drops 

(Gleason et al. 2017b; Cardoso et al. 2018)⁠ , or in severe cases, leaf tissue 

becomes damaged (Brodribb et al. 2021)⁠  and the risk of whole plant 

hydraulic failure increases (Meinzer and McCulloh 2013) ⁠ .  

 Given that gas exchange and growth depend critically on water 

transported via the xylem and this process is vulnerable to failure, many 

physiological-based plant growth models include hydraulic representation 

(Mackay et al. 2015; Venturas et al. 2018; Kennedy et al. 2019; Mencuccini et 

al. 2019; Danabasoglu et al. 2020; Cochard et al. 2021) ⁠ . Here, we used a 

modified version of one such model, the Terrestrial Regional Ecosystem 

Exchange Simulator (TREES) (Mackay et al. 2015, 2020)⁠  to evaluate 

structural and physiological processes, and how they interact in trait networks 

to govern the uptake, transport (soil-to-leaf), and exchange of water for CO2 in 

maize (Zea mays) grown under contrasting soil and climate conditions (Fig. 
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1). We addressed two questions: 1) can manipulation of the soil-to-

atmosphere continuum via root, xylem, and stomatal traits confer improved 

growth and yield under water limitation? 2) what are the key plant traits and 

their bio-physical interactions that result in improved growth and yield under 

diverse climate scenarios?  

Methods 

Coupled hydraulic–carbon model (TREES) 

TREES has been used to successfully simulate hydraulic-carbon dynamics in 

gymnosperms (Mackay et al. 2015, 2020)⁠  and angiosperms (Wang et al. 

2020a)⁠ , including maize (Mackay et al., in review) ⁠ . The published 

references cited above provide a more detailed description of the model, as 

well as examples of TREES model validation. Here we describe the basic 

features of the model, its parameterization (for maize), and further validation 

for field grown maize using a sap flow dataset. Hydraulic-carbon coupling is 

represented in TREES by integrating soil-xylem conductivity (Sperry et al. 

1998; Mackay et al. 2015), Penman-Monteith energy balance (Monteith and 

Unsworth 1990)⁠ , C4 photosynthesis (von Caemmerer 2013)⁠ , and carbon 

allocation (Mackay et al. 2015, 2020) ⁠  sub models. Key parameter settings 

(“static” parameters) and manipulated traits and soil characteristics (“dynamic” 

parameters) are given in Table 1.  

 Soil water uptake into roots is calculated as a function of root area, soil 

and root conductivity, and the driving force (water potential difference between 

root and soil) for each of five horizontal soil layers. The number of soil-root 

layers can be specified by the user. Soil conductivity (between root and bulk 

soil) and the conductivity of each root, stem, and leaf xylem segment is 

obtained via integral transformation of the Richards’ equation. Richards’ 

equation is a nonlinear partial differential equation that represents the 

unsaturated movement of water in soils and which, except in simple cases 

(e.g., uniform soil), has no analytical solution. TREES divides the root-soil 

interface into discrete “shells” of increasing distance from the root, and 

estimates flow within each shell using the Kirchoff transform, which allows for 
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accurate water flow estimates (< 2% error in most cases) in heterogeneous 

soil using a mass-conservative “mixed-form” of the Richards’ equation (Ross 

and Bristow 1990; Sperry et al. 1998) ⁠ . Bulk water movement between soil 

layers is calculated via iteration of Darcy’s law.  

 Initial maximum whole-plant hydraulic conductance per unit leaf area 

was based on midday sap flow measurements taken on mature maize plants 

and predawn and midday leaf water potentials (Han et al. 2018) ⁠ . Embolism 

vulnerability was parameterized for each xylem segment (roots, stems, 

leaves) using vulnerability curves (2-parameter Weibull functions) obtained on 

field-grown maize stems (Gleason et al. 2019)⁠ . Further information on how 

the embolism vulnerability curves were fit and interpreted is given in the 

supplemental materials (Fig. S1). At each 30-min modeled time-step, water 

movement, water potential, and xylem conductivity were determined via 

iterative solution, until a stability threshold was met or exceeded. Loss of 

xylem conductivity resulting from cavitation and embolism spread was 

remembered, allowing for progressive conductivity loss as xylem water 

potential declined. Although TREES allows for different Weibull coefficients for 

each root, stem, and leaf xylem segment, we used the same coefficients for 

all xylem segments, i.e., native embolism vulnerability was not allowed to 

differ among organs. It is likely that maize can generate positive pressure (ca. 

0.14 MPa) in its root and stem xylem at night when soil water potentials 

exceed ca. -0.4 MPa (Gleason et al. 2017a). Considering it is unlikely that 

embolism in roots and stems could exist under positive pressure, we allowed 

xylem conductivity to fully recover when soil water potential was greater than 

or equal to -0.4 MPa.  

 Stomatal conductance was first estimated following the Whitehead-

Jarvis application of Darcy’s law (including soil and xylem conductivity) to 

plant canopies (Whitehead 1998). TREES was modified in this study to allow 

for “conservative” and “risky” water use strategies by reducing stomatal 

conductance as a function of leaf water potential via an inverse logit model. 

This allowed for manipulation of the hydraulic “safety factor” (relationship 

between stomatal conductance and xylem water potential) via the midpoint 
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and rate coefficients. Coefficient values were based on measurements made 

on field-grown maize plants (Gleason et al. 2021). Stomatal conductance was 

not allowed to decline below a minimum “cuticle” conductance (gmin) value, set 

to 3.05 mmol m-2 s-1 based on greenhouse grown maize plants (Gleason et al. 

2017b)⁠ . Transpiration was then calculated from stomatal conductance via 

Penman Monteith energy balance and used to update the soil-xylem 

hydraulics (Mackay et al. 2015)⁠ . Taken together, the transport of water from 

soil to stomata is controlled by a series of resistances that change 

dynamically with soil water content, xylem water potential in roots, stems, and 

leaves, and the evaporative demand of the atmosphere.  

 Net CO2 assimilation (Anet) was calculated using the von Caemmerer 

C4 photosynthesis model (von Caemmerer 2013) ⁠ , which considers both 

enzyme limitation (e.g., when internal CO2 [Ci] is saturating), as well as 

electron transport limitation (e.g., when irradiance is low). Temperature-

dependent enzyme activities were modeled with Arrhenius functions (von 

Caemmerer 2013)⁠ . The photosynthesis model was parameterized using 

Anet~Ci measurements made on mature field-grown maize (Leegood and von 

Caemmerer 1989; Markelz et al. 2011; Gleason et al. 2017b)⁠ .  

 Carbon allocation to roots, stems, and leaves was controlled by both 

carbon supply (photosynthesis) and hydraulic limitation (embolism). Leaf area 

index (LAI) was increased as the carbon available for growth (via 

photosynthesis) and specific leaf area (SLA; fresh leaf area divided by leaf 

carbon mass) increased. Similarly, LAI was decreased as SLA decreased and 

also during periods of stress when leaf senescence outpaced carbon income.  

SLA was re-calculated for newly added leaf area at each time step and was 

calculated as a function of net CO2 assimilation rate (Wright et al. 2004)⁠  and 

the amount of stored carbon (starch). Root carbon was allocated to each of 

the five soil-root layers partially depending upon the hydraulic status of each 

layer, with larger carbon fractions allocated to more hydrated layers. At low 

water potential, allocation of carbon to growth was decreased (less available 

non-structural carbohydrates), but belowground allocation was less impacted 

relative to shoot allocation, resulting in wider root:shoot allocation ratios. After 
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the vegetative growth stages were complete, the model shifted the allocation 

of non-structural carbohydrates to reproductive structures, e.g., grain 

development. As such, carbon allocation to competing sinks (tradeoffs among 

roots, stems, leaves, and reproductive structures) were explicitly considered 

by TREES and shifted with light, soil water, and developmental time.  

Validation of TREES for maize 

TREES has been previously validated for maize using field datasets collected 

in 2012 and 2013 at the USDA-ARS Limited Irrigation Research Farm in 

Greeley, Colorado (40.4486 latitude, -104.6367 longitude, 1426 m elevation) 

(Mackay et al., in review) ⁠ . This includes validation against field 

measurements of leaf area index (LAI), sap-flow (whole-plant transpiration), 

soil water content by soil layer, and leaf water potential. Additionally, we 

provide further validation here using an additional sap flow dataset collected 

in 2017 from the same site (Greeley, Colorado). Sap-flow was measured 

using energy balance sensors (i.e., “heat pulse”) and sapIP dataloggers 

(Dynamax, Inc, Houston, TX, USA). Two sap flow sensors were placed on two 

representative plants selected randomly from within fully watered and water 

limited treatments. Fully watered treatments replaced 100% of unstressed 

crop evapotranspiration (ET) via irrigation and rainfall, whereas water limited 

treatments supplied 40% of unstressed crop ET. Plants were located within 20 

m of one another and sap flow sensors were installed as described in Han et 

al. (2018) ⁠ . Data were collected from July 26 to September 7, 2017. Sap flow 

simulations used 30-min mean values for precipitation, air temperature, wind 

speed, relative humidity, total shortwave radiation, and photosynthetically 

active radiation. Data were downloaded from a weather station (Station 

GLY04; Colorado Agricultural Meteorological Network) positioned within 50 m 

of the planted maize crop surrounded by trimmed and well-watered grass 

(reference conditions). Daily and seasonal variation in measured whole-plant 

transpiration (30-minute intervals) was well predicted by TREES. The fully 

watered treatment R2, residual standard error (RSE), and bias were 0.70, 

0.524 kg m-2 d-1, and -0.450 kg m-2 d-1, whereas under limited water, the 

values of these fit statistics were 0.68, 0.440 kg m-2 d-1, and 0.006 kg m-2 d-1. 
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Thus, TREES resulted in slightly more error and bias (negative bias; 

underestimated transpiration) under fully irrigated conditions than under 

limited water (Fig. S2).  

Simulation experiments 

We evaluated the efficacy of six physiological and structural trait 

combinations, as well as two soil characteristics (soil texture, starting water 

fraction), for two contrasting regions where maize is an important agronomic 

crop – the temperate (hot summer) climate of northeastern Missouri and the 

arid cold steppe climate of northeastern Colorado (Köppen-Geiger climate 

classification) (Beck et al. 2018)⁠ . All simulations were run from June 1st to 

November 9th. Parameter settings (plant traits and soil characteristics) that 

were manipulated for the simulations are discussed individually below and key 

parameter settings are given in Table 1.  

 Twenty-years of meteorological data (ca. 2000 – 2020) were obtained 

from the University of Missouri, Missouri Historical Agricultural Weather 

Database (Knox County, MO) and the Colorado Agricultural Meteorological 

Network (Yuma County, CO). A typical “wet” year was chosen from the 

Missouri database as the year most closely aligned with the 75th mean annual 

precipitation percentile. The total precipitation over the growth season (June 1 

– November 9) for this scenario was 743 mm and included large early season 

precipitation events, followed by a relatively dry summer and large 

precipitation events occurring after September 25 (Hu and Buyanovsky 

2003)⁠  (Fig. 2, “Central Plains Wet”). Considering that the amount and timing 

of precipitation is known to interact with other climate features (e.g., vapor 

pressure deficit; VPD) (Yuan et al. 2019)⁠ , we focused on the effects of 

precipitation on plant growth by artificially creating a “dry” year for this site 

whilst conserving all other meteorological variables. This was done by 

reducing every precipitation event by 40%, giving a total seasonal 

precipitation for this scenario of 446 mm. Similarly, a typical “dry” year was 

chosen from the Colorado database as the year most closely aligned with the 

25th mean annual precipitation percentile. Total seasonal precipitation for this 

scenario was 289 mm, with most of this precipitation being received within the 
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first 90 days of growth (Fig. 2, “High Plains Dry”). We then increased every 

precipitation event by 100% to create a wet season for this site (578 mm 

precipitation), keeping all other climate variables the same. In addition to 

simulating “wet” and “dry” years for both locations, we included a fully irrigated 

scenario for the Central Plains. For this scenario, we set the precipitation to 

zero and added 36-mm irrigation events every 3 days (hereafter, “irrigated”) 

(Fig. 2, “Irrigated”). We note that our manipulated climates (Central Plains Dry, 

High Plains Wet, Irrigated) are not meant to represent current or future 

climates at these locations but have been designed with the aim of achieving 

a better understanding of how traits might interact with precipitation at sites 

with contrasting VPD and temperature. Also, the labels “wet” and “dry” should 

not be viewed as a precipitation dichotomy because each climate scenario 

represents a different precipitation regime (amount and timing).  

 Soil water holding capacity was manipulated by altering the soil textural 

properties of the whole soil column (Rawls and Brakensiek 1985; 1992). The 

sand-silt-clay fractions for the “fine” soil were set to 0.66-0.09-0.25, 

respectively, whereas these fractions for the “coarse” soil were set to 0.76-

0.09-0.15. These modifications of soil texture resulted in water holding 

capacities of 25% for the fine soil and 18% for the coarse soil. In addition to 

manipulating the soil water holding capacity, we manipulated the starting 

value of the soil water content (fraction of total rhizosphere volume that is 

water) for the bottom-most soil layer (0.75 m – 1.15 m), such that this layer 

was either “full” to field capacity (0.20 water fraction) or “not full” (0.15 water 

fraction) at the start of the growth season. The intention of this manipulation 

was to evaluate the shift in beneficial trait networks when deep antecedent 

soil water was readily available versus when it was limited. 

 Two levels of xylem embolism resistance were considered based on 

previous vulnerability curves constructed for maize (Gleason et al. 2017b, 

2019, 2021). Whole-plant embolism resistance (all xylem segments) was 

simulated by setting the rate (b) and midpoint (c) Weibull coefficients. For 

embolism susceptible xylem, the rate and midpoint coefficients were set to 1.9 

and 2.1, respectively (P50 = -1.6 MPa; P88 = -2.7 MPa), whereas the rate and 
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midpoint coefficients were set to 2.7 and 2.1 (P50 = -2.3 MPa; P88 = -3.8 MPa) 

for embolism resistant xylem (Fig. S1). Whole-plant leaf-specific hydraulic 

conductance (hereafter “hydraulic efficiency”) was manipulated by setting it to 

either 0.104 or 0.124 g m-2 s-1 MPa-1 (Tsuda and Tyree 2000; Gleason et al. 

2017b; Han et al. 2018)⁠ . The intention of this manipulation was to evaluate 

the effect of water transport capacity on trait network coordination in the 

different climate scenarios.  

 Two levels of stomatal response to leaf water potential were 

considered based on previously measured stomatal conductance and leaf 

water potential measurements (Gleason et al. 2021). Stomatal closure was 

initiated when leaf water potential fell below -1.5 MPa (“conservative”) or -2.5 

MPa (“risky”) and the leaf water potential resulting in a 50% loss of stomatal 

conductance was set to either -2.0 MPa (“conservative”) or -3.5 MPa (“risky”). 

The intention of this manipulation was to evaluate the effect of stomatal 

regulation on water use, carbon assimilation, and crop performance.  

 Deep and shallow root systems were simulated by either allowing or 

prohibiting root growth into the deepest soil layer (0.75-1.15 m). Wide and 

narrow leaf area to root area ratios were simulated by setting the maximum 

leaf area index (leaf area per unit ground area) to either 4.0 or 4.5 (Comas et 

al. 2019)⁠ . Photosynthetic functioning was manipulated by setting the 

maximal activity of phosphoenolpyruvate carboxylase (Vpmax) to either 60 or 

120 µmol m-2 s-1, based on the range reported in previous studies on maize 

(Leegood and von Caemmerer 1989; Pfeffer and Peisker 1998; Markelz et al. 

2011; Perdomo et al. 2016; Gleason et al. 2017b) ⁠ ⁠ .  

 All treatment combinations (2 levels of each trait and soil characteristic) 

– soil texture, initial deep soil water fraction, xylem efficiency, embolism 

resistance, root depth, stomatal sensitivity, Vpmax, and leaf area index – were 

simulated within each of the five climate scenarios (“Central Plains Wet”, 

“Central Plains Dry”, “High Plains Wet”, “High Plains Dry”, “Irrigated”), giving a 

total of 1,280 simulations. We note that although the two soil characteristics 

evaluated here are not strictly “traits”, they were evaluated using the same 

factorial design, i.e., all combinations of all traits and soil characteristics were 



 

This article is protected by copyright. All rights reserved. 

A
cc

ep
te

d 
A

rt
ic

le
 

evaluated within each of the five climate scenarios. Therefore, when reporting 

and discussing beneficial “trait” networks, we refer to both plant and soil 

characteristics. All simulations were compiled using the GNU Compiler 

Collection (GCC) on Ubuntu Linux operating systems.  

Data analyses  

Treatments and treatment combinations were evaluated for each climate 

scenario using three approaches. Firstly, the efficacy of single traits and soil 

characteristics was evaluated by determining the differences in mean 

seasonal net primary productivity (NPP; gross primary productivity minus 

respiration) and grain yield when the trait contrast was “high” versus “low” 

(e.g., high or low hydraulic efficiency), relative to the shifts in NPP associated 

with other trait contrasts (e.g., “deep” vs “shallow” roots). This was done by 

generating an ensemble of 350 decision trees using the randomForest 

package for R (Liaw and Wiener 2002)⁠ . Each tree was created by sampling 

with replacement from the training dataset (50% of the dataset). Branch points 

at each node were resolved using a random subset of predictors. Over-fitting 

the training data was avoided in this way because each tree was fit with a 

different subset of simulations. “Importance” values for the decision trees were 

calculated for every trait and soil characteristic as the reduction in model 

variance (unaccounted for variance in NPP or yield) when traits were included 

versus when they were omitted from the model. Thus, a high importance 

value means that including a particular trait in the decision tree model (e.g., 

manipulation of hydraulic safety to either a high or low value; Table 1) resulted 

in a meaningful increase/decrease in NPP or yield that was predicted by the 

model. Median, 25th percentile, 75th percentile, minimum, and maximum 

importance values were then calculated and used to evaluate single trait 

effects. To evaluate the interaction between time and individual traits, we 

plotted NPP and carbon invested in grain (allocated to the developing ear) 

against the annual day (days since January 1st). This was done to determine if 

particular traits or soil characteristics were more effective during specific 

periods of the growing season (e.g., early versus late season performance). 
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 Considering that plants operate as connected trait networks, we 

focused our analyses on multiple trait effects, rather than single trait effects 

(Table 1 “dynamic parameters”). Therefore, our second analysis evaluated 

two-trait effects by plotting all two-trait combinations as heatmaps using the 

pheatmap package in R (Kolde 2019). Pheatmap is a hierarchical clustering 

and mapping function that allowed us to visually represent the mean effect of 

every possible two trait combination (e.g., conservative stomata + deep roots) 

on NPP and grain yield within each climate scenario. This provided a quick 

and intuitive representation of the best and worst performing two-trait 

combinations. Following the analysis of all two trait combinations, we 

expanded our random forest modeling to include up to four trait combinations. 

Decision tree models were fit to training datasets, created as described 

above, and then used to predict either NPP or grain yield in the test dataset. 

Specifically, 350 decision trees were fit for each climate scenario with each 

tree trimmed to four nodes (e.g., Vpmax → root depth → max LAI → gs 

sensitivity). An aggregate decision tree was then constructed for each climate 

scenario using the ctree and ggCtree (modified) packages for R (Hothorn et 

al. 2015; Martinez-Feria 2018)⁠ . This method gives a robust analysis of the 

best trait combinations conferring improved NPP and grain yield in each 

climate scenario. When viewed in the context of individual trait effects and the 

timing of these traits throughout the growth season, these trait combinations 

provided information about why and when particular trait combinations were 

effective. These aggregate decision trees were also useful for evaluating 

multiple trait strategies in the contrasting climates. For example, they helped 

address the question: do we require specific trait combinations for each 

individual climate scenario, or are there some trait combinations that are likely 

to perform well across climates?  

 Lastly, we evaluated trait network shifts in response to subtle 

differences in climate at the High Plains site. This evaluation was done to 

quantify the sensitivity of model outcomes to individual climate inputs that vary 

from year to year at a given site. For this purpose, we manipulated 

precipitation and VPD independently to produce seven levels of seasonal 

precipitation (289, 337, 385, 434, 482, 530, 578 mm) and seven levels of daily 
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maximal VPD (2.00, 2.17, 2.33, 2.50, 2.67, 2.83, 3.00 kPa). We then 

evaluated all trait and soil combinations (1,280 simulations) within each of 

these climate manipulations.  

 All data analyses and graphics were done using R software (R Core 

Team 2021). All data and code (R, C++) used in this study are in the public 

domain and can be downloaded from GitHub (https://github.com/sean-

gl/trait_network_ms_TREES_data_and_code).  

Results 

Single trait effects 

Efficacy of single traits and soil characteristics differed markedly by climate 

scenario. High NPP and high yield simulations in both wet climate scenarios, 

with higher annual precipitation and sufficient late season precipitation, 

featured traits contributing to enhanced soil water extraction, efficient water 

transport, and high rates of gas exchange (deep roots, high hydraulic 

efficiency, high hydraulic safety, and risky stomata) (Figs. 3, S3, S5). Similar 

traits were effective in conferring improved NPP and yield in the Central Plains 

Dry site, with the notable exception that conservative stomata (closure at 

higher water potential) were beneficial during late season growth (ca. after 

day 240), particularly during grain development (Fig. 4a). This result reflects 

the importance of achieving coordinated liquid- and gas-phase conductance 

when water is abundant, as well as traits conferring water conservation when 

water is scarce. Water conservation traits, access to deep soil water, and high 

instantaneous water use efficiency (conservative stomata, deep roots, high 

Vpmax) improved plant performance in the High Plains Dry scenario by 

reducing the adverse impact of late season water deficit (Figs. 3, 4b, S6). In 

contrast to the three non-irrigated scenarios, irrigation kept soil water 

potentials near zero throughout the growing season, resulting in sufficient 

xylem water transport to support high rates of photosynthesis (even when 

hydraulic efficiency was low) with little risk of embolism, and thus featured 

traits maximizing canopy-level carbon income (high maximal LAI, high Vpmax) 

(Figs. 3, S7). These three contrasting trait networks reflect the importance of a 
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coordinated trait response that balances the canopy water demand with, not 

only soil water availability, but also the capacity to move this water through the 

xylem.  

 Traits that were beneficial in the High Plains were generally also 

beneficial in the Central Plains, but there were notable exceptions to this 

pattern. Firstly, early season aboveground and belowground growth (ca. first 

50 days of growth) was markedly faster in the Central Plains than in the High 

Plains, in both the wet and dry scenarios (Figs S3-S6 & S8-S11 “root depth”). 

This outcome arose mainly from differences in soil and air temperature 

between the two sites – with lower early season temperatures at the High 

Plains site (means ± SDs of 13.2 ± 6.2 °C and 3.5 ± 3.4 °C, respectively) than 

at the Central Plains site (means ± SDs of 21.6 ± 4.7 °C and 6.8 ± 4.2 °C, 

respectively) (Fig. 2). Secondly, risky stomatal regulation, in combination with 

higher VPD at the High Plains site (Fig. 2), resulted in faster and more 

complete extraction of soil water before it could be evaporated from shallow 

soil layers. This resulted in a larger fraction of the received precipitation 

passing through plant stomata (hereafter “transpiration fraction”; T-fraction) at 

the High Plains site than at the Central Plains site under both wet and dry 

scenarios (Figs S13-S16 “stomatal sensitivity”). For example, the transpiration 

fractions of plants with risky stomata were about 3% higher in the Central 

Plains Dry scenario and 6% higher in the High Plains Dry scenario (Figs S14 

& S16, “T-fraction” in the “stomatal sensitivity” panel). Predictably, the tradeoff 

associated with risky stomata was lower precipitation use efficiency (NPP per 

unit total received precipitation; PrUE), which was 4% lower in both dry 

scenarios (Figs S14 & S16, “PrUE” in the “stomatal sensitivity” panel). This 

indicates that although plants with risky stomata achieved higher water use, 

they used this water less efficiently (lower instantaneous and seasonally 

integrated water use efficiency) than plants with more conservative stomata.  

 Coarse soil texture had a similarly positive effect on plant performance 

in both dry climates (Figs S4 & S6 “soil texture”). This effect was largely an 

outcome of manipulating the soil texture of the entire profile, rather than only 

the deeper layers. Fine soil texture (high field capacity) at the surface, 
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combined with frequent but low volume precipitation events, resulted in much 

of the precipitation being held close to the surface and subject to evaporation. 

Additionally, low precipitation in the dry climate scenarios, coupled with low 

matric potential of fine textured soils, resulted in very little saturated (soil 

matric potential close to zero) and unsaturated flow out the bottom of the 

rhizosphere and a meaningful fraction of soil water being held at water 

potentials too low for uptake (Figs S9 & S11 “soil texture”). These conditions 

resulted in lower transpiration fractions in the fine textured soil (Figs S14 & 

S16 “T-fraction” in “soil texture” panel). Predictably, when rainfall was 

increased, the effect of soil texture was reversed such that plants growing in 

finer textured soil (higher field capacity) had access to more water and 

achieved improved growth and reproductive output (Figs S3 & S5 “soil 

texture”). We note that the soil texture effect in the dry scenarios would be 

less conspicuous, and even likely reversed, in a natural soil where layer 

silicate clays have been translocated to deeper horizons (Buol et al. 2011) ⁠ .  

 Although examining single traits gives us some indication of which 

traits might be beneficial in certain climate scenarios, this approach cannot 

inform us about why particular traits appear to be beneficial in some cases 

and not others. For example, high variation in the importance values 

(reduction in residual variance when individual traits are included in the 

decision tree) (Fig. 3) indicates that some traits were only beneficial in 

simulations that included biologically aligned traits, and when these traits were 

omitted from the decision tree the simulation performed poorly. To obtain a 

better understanding of trait synergies (beneficial parameter interactions), as 

well as the biological reasons for them, we examined multiple trait effects 

simultaneously.  

Multiple trait effects 

Trait combinations that increased access to deep water, efficient and safe 

water transport to the leaves, and high stomatal conductance were associated 

with improved growth and yield in both wet climate scenarios and the irrigated 

scenario (Figs S18, S20 & S22). Importantly, much of the variation in NPP and 

yield that was accounted for in the random forest models was dependent 
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upon specific trait combinations. Modifications of individual traits, either in 

isolation or in combination with other poorly aligned traits, resulted in little 

improvement in NPP or yield. For example, deep rooting was most beneficial 

at the Central Plains Wet site, but only in combination with traits that facilitated 

the efficient and safe movement of this water to the leaves (high hydraulic 

efficiency, high hydraulic safety) and exchange of water for CO2 (risky 

stomata, high Vpmax, high maximum LAI) (Figs S18 & S23). Beneficial trait 

networks in the two dry climate scenarios differed from one another 

depending on the total amount of precipitation and the timing of precipitation. 

The High Plains Dry scenario, with lower seasonal precipitation and markedly 

low late season precipitation, featured networks that included conservative 

stomata (firstly) in coordination with access to deep soil water (deep roots), 

and uninterrupted xylem functioning during periods of low water potential 

(hydraulic safety) (Figs. 6, S26). In contrast, the Central Plains Dry scenario, 

with higher total and late season precipitation, featured traits conferring 

access to deep soil water (deep roots) in coordination with safe and efficient 

water transport, and then conservative stomata (Figs S19, S24). Thus, 

differences in the timing and amount of precipitation resulted in notable 

differences in trait coordination, but also remarkable similarities, at least within 

the two “wet” and two “dry” scenarios.  

 The two-trait analysis of the High Plains Dry scenario revealed that 

nearly every simulation that did not include both deep roots and conservative 

stomata were largely failures, whereas the late season precipitation events 

and lower evaporation at the Central Plains site allowed for other alternative, 

albeit less successful, trait networks, e.g., high LAI coupled with high 

hydraulic safety and conservative stomata (Figs S24 & S26). Notably, the 

benefit of high LAI in this scenario was reversed when gmin (minimum stomatal 

and cuticle conductance to water vapor) was increased from 3 mmol m-2 s-1 to 

10 mmol m-2 s-1, suggesting that stomatal “leakiness” may be an important 

trait to consider for future trait networks (Barnard and Bauerle 2013; 

Blackman et al. 2019)⁠ , particularly if stomatal leakiness increases at higher 

temperatures (e.g., under climate change), which has been reported for some 

species (Slot et al. 2021) ⁠ . 
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Seasonal dynamics 

Differences in plant performance between the High Plains and Central Plains 

can be largely understood from the different seasonal trajectories of 

precipitation and temperature (air and soil). Firstly, the efficacy of the 

conservative water use strategies (e.g., conservative stomata, high hydraulic 

safety), depended critically on ample early season precipitation and low late 

season precipitation (Fig. 4c). In contrast, high water extraction and transport 

strategies (e.g., risky stomata, high hydraulic efficiency) were most beneficial 

in the face of cold early season temperatures and when soil water was 

available water during grain development (Fig. 4c). This switch in the 

importance of water conserving versus water using strategies can be seen in 

the seasonal NPP plots under both dry climate scenarios (Fig. 4). In both of 

these scenarios, risky stomatal response (initiating stomatal closure at low 

xylem water potential; dark green symbols in Fig. 4) resulted in higher NPP 

during the first few weeks of growth when soil water was available, but later in 

season, when shallow soil water was largely depleted and the reproductive 

structures were developing, conservative stomata (initiating stomatal closure 

at high xylem water potential) conferred a strong advantage, especially in 

reproductive output (Fig. 4 a & b). Although late season precipitation at the 

Central Plains site shifted the advantage towards plants capable of fast water 

use, this precipitation occurred too late in the season for plants exhibiting 

these traits to catch up with plants exhibiting conservative water use traits 

(Fig. 4 a & c). Similarly, high hydraulic conductivity conferred an early season 

advantage at the High Plains Dry site, but later in the season resulted in 

poorer performance (Fig. S6 “hydraulic efficiency”).  

 Trait combinations associated with success in all climate scenarios 

reflected the relative costs and benefits of: 1) accessing shallow and deep soil 

water, minimizing losses to saturated/unsaturated flow and evaporation (deep 

roots), 2) transporting water efficiently through the xylem at low water potential 

(high hydraulic efficiency and safety), 3) the effective use of soil water after it 

reached the leaves, avoiding high VPD conditions (conservative stomata), 

and 4) achieving high instantaneous water use efficiency (high Vpmax). Even 
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seemingly subtle differences in air and soil temperature, the timing of 

precipitation, the frequency and volume of precipitation events, and soil water 

storage capacity, resulted in meaningful differences in beneficial trait 

combinations (e.g., Central Plains Dry versus High Plains Dry; Figs. 5, S19, 

S24, S26, S28, S29). Sensitivity analysis for the High Plains site (seven levels 

of precipitation and VPD) revealed that shifts in beneficial trait networks were 

generally gradual over the ranges of precipitation and VPD examined, with 

water conserving traits gradually being replaced by water spending traits (Figs 

S28 & S29).  

Discussion 

The purpose of our simulations was to evaluate the potential efficacy of 

structural and physiological trait networks to improve the performance of 

maize grown under contrasting soil and climate conditions. It was not the 

purpose of our simulations to generate trait selection goals for any particular 

site or region of interest, and our results should be used with caution for this 

purpose. Thus, we place particular emphasis on biological interactions (trait 

combinations, rather than single traits) and the shift of these interactions 

across climates. However, simulating the outcomes of this complex biological 

system requires that we understand and can successfully model the important 

components of its complexity. In our case, we included six xylem and leaf 

traits and two soil characteristics affecting soil water retention, soil water 

uptake, water transport to the leaves, and the exchange of water for 

atmospheric CO2 (Fig. 1). As such, our simulations represent an important 

network of traits governing the fluxes of water and carbon, and which 

exhibited coordinated shifts in their alignment to confer either high 

instantaneous CO2 uptake or soil water conservation, depending on the 

climate context. Although these simulated trait assemblages are hypothetical, 

they are supported by both empirical measurements and our conceptual 

understanding of plant functioning, in particular the well-understood linkages 

among water uptake (roots), water transport (xylem), stomatal conductance, 

and photosynthesis (Brodribb and Holbrook 2003; Brodribb et al. 2007; Creek 

et al. 2018; Deans et al. 2020)⁠ , and the utilization of stored soil water during 
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anthesis and ovule development (Sinclair et al. 2005; Vadez et al. 2014; 

Messina et al. 2015, 2021; Reyes et al. 2015; Diepenbrock et al. 2022)⁠ .  

Effective seasonal transpiration trait networks 

Traits leading to improved water availability during reproductive development 

in grain crops have been identified via comparative physiology and modeling 

studies, and include increasing transpiration efficiency (biomass produced per 

unit transpiration) by limiting maximal transpiration (Vadez et al. 2014; 

Messina et al. 2015) ⁠ , increasing net CO2 assimilation (Gilbert et al. 2011; 

Niinemets et al. 2017; Wang et al. 2020b)⁠ , and reducing xylem conductivity 

(Richards and Passioura 1989; Sinclair et al. 2008; Choudhary and Sinclair 

2014). Given that transpiration efficiency represents the integrated product of 

several structural and physiological traits (e.g., xylem-specific conductivity, 

xylem embolism resistance, stomatal regulation, root depth, and leaf/root 

surface area), the detailed modeling presented here allowed us to investigate 

the possible effects of these finer scale traits.  

 In our simulations we increased transpiration efficiency by either 

increasing the A~Ci slope (higher Vpmax) or else manipulating traits that 

resulted in reduced stomatal conductance, i.e., increasing the sensitivity of 

stomata to xylem water potential, reducing xylem conductivity, reducing xylem 

embolism resistance, or restricting root growth. Although higher PEP-

carboxylase efficiency was associated with improved plant performance in all 

cases, the other trait manipulations resulted in reduced access to soil water 

(restricted root growth), or else slower relative growth rate (stomatal 

sensitivity, low xylem conductivity, low xylem safety) (Figs S3-S7 & S8-S12). 

Reducing xylem conductivity, either via lowering maximal conductivity or 

decreasing embolism resistance, did not result in meaningful improvements to 

growth in yield in the dry scenarios (Figs S19, S21, S24, S26). In contrast to 

this, increasing the stomatal sensitivity to leaf water potential resulted in 

markedly improved growth and yield (especially) in both dry climate scenarios 

(Figs S19, S21, S24, S26 “gs_sensitivity”). This difference in late season 

water conservation, resulting from lower xylem conductivity (not effective) 

versus higher stomatal sensitivity (effective), was unexpected because both 
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these traits are functions of water potential. The reason for this difference was 

the timing of water use. In particular, “sensitive” stomata closed mainly during 

periods of low water potential (high VPD, midday hours), thus reducing 

midday transpiration, but also effectively preventing xylem embolism. The 

combined effect of this was improved deep soil water availability during grain 

development, higher precipitation use efficiency (Figs S14 & S16 “stomatal 

sensitivity”), improved water transport (without embolism), and effective gas 

exchange after precipitation events (Figs S4 & S6 “stomatal sensitivity”, i.e., 

spikes in NPP after day 225). In contrast, reducing maximal hydraulic 

efficiency resulted in lower water use overall, but midday (high VPD) stomatal 

conductance and transpiration were higher than for the sensitive stomata trait. 

This resulted in lower daily and seasonally integrated water use efficiency 

(Fig. S14 & S16 “PrUE”).  

 The importance of fast early season growth, and especially early 

season root growth, is well aligned with previous empirical and simulated 

results (Tron et al. 2015; Palta and Turner 2019; Freschet et al. 2021; 

Diepenbrock et al. 2022)⁠ . A recent analysis of 2,367 maize hybrids grown 

across 23 environments (North America and Chile) and 3 years found root 

elongation rate to be an important determinant of grain yield in combination 

with other structural and morphological traits (trait networks) (Diepenbrock et 

al. 2022). Similarly, the result reported here that high hydraulic efficiency was 

associated with improved performance in both dry climate scenarios also has 

empirical support (Gleason et al. 2019, 2021). For example, two maize field 

experiments performed in Colorado under water deficit (Gleason et al. 2019, 

2021)⁠  reported that maize plants with high hydraulic efficiency transpired a 

greater fraction of soil water than low efficiency plants, but were also able to 

“self regulate” (decrease hydraulic conductance) as water potential declined 

(Pammenter and Vander Willigen 1998) ⁠  (Fig. S1). The loss of xylem 

conductivity at low water potential was made even more beneficial in our 

simulations because we allowed roots and stems to regain conductive 

capacity overnight if sufficient soil water was available (see methods) 

(Gleason et al. 2017a)⁠ . Thus, maize plants with intrinsically high hydraulic 

conductance were also able to achieve a relatively high precipitation use 
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efficiency (Figs S14 & S16 “hydraulic efficiency”). However, given that 

embolism reversal has never been directly observed (e.g., using microCT or 

optical methods) in maize leaves, and claims of embolism reversal in other 

species have been questioned (Cochard and Delzon 2013; Johnson et al. 

2018)⁠ , our assumption that xylem conductivity can be perfectly restored 

overnight could be wrong and is an active area of investigation. It is also 

known that soil-plant hydraulic conductance declines as rhizosphere 

conductivity declines during drought (Figs S13-S17 gray bars) (Bourbia et al. 

2021)⁠ .  

 Although the direct effects of reduced stomatal conductance during 

midday (i.e., when VPD is high) has been reported elsewhere (Zaman-Allah et 

al. 2011; Turner et al. 2014; Vadez et al. 2014; Condon 2020; Collins et al. 

2021)⁠ , the interactions evident in our results between stomatal regulation, 

rooting depth, temperature (beyond its effect on VPD), and embolism 

resistance have not been previously noted. However, the importance of trait 

networks is being increasingly recognized in both plant physiology and 

genetics (Gleason et al. 2018b, 2019; Hammer et al. 2019; Momen et al. 

2019; Peng et al. 2020; Cooper et al. 2021; Hammer et al. 2021; Diepenbrock 

et al. 2022) ⁠ . By utilizing biologically realistic statistical models (e.g., 

structural equation modeling, Gleason et al. 2019; Momen et al. 2019; He et 

al. 2020)⁠ , as well as process-oriented plant growth models (Mackay et al. 

2015; Holzworth et al. 2018; Venturas et al. 2018; Cochard et al. 2021) ⁠ , it is 

now possible to evaluate the physiological and structural determinants of 

transpiration efficiency, as well as the interactions and tradeoffs associated 

with these traits. 

Water uptake, xylem transport, and photosynthesis trait networks 

Trait networks conferring improved crop performance under the wet and 

irrigated climate scenarios included relatively well-understood theoretical 

(Deans et al. 2020) ⁠  and empirically observed linkages between soil water 

access, water transport to the sites of evaporation in the leaves, and the 

exchange of water for atmospheric CO2 (Brodribb and Holbrook 2003; 

Brodribb et al. 2007; Brodribb and Jordan 2008; Vadez 2014; Scoffoni et al. 
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2016; Martin-StPaul et al. 2017; Xiong and Nadal 2020). Similar trait 

assemblages have been found in maize, sorghum, sugarbeet, sunflower, 

wheat, olive, and chickpea (de Wit 1958; Steduto et al. 2007; Zhu and Cao 

2009; Hanks 2015; Zhao et al. 2018; Gleason et al. 2019, 2021; Klimešová et 

al. 2020; Pires et al. 2020). Although there were important differences 

between the High Plains Wet and Central Plains Wet scenarios, as noted 

above, deep rooting, risky stomata, safe and efficient water transport, high 

Vpmax, and high maximal LAI, were advantageous, but only when aligned as a 

network with one another (e.g., Fig. 5). This trait network reflects the biological 

linkage between water uptake → water transport → stomatal conductance, 

and → high carboxylation efficiency (A~Ci slope) (Fig. 1).  

 The trait networks that conferred improved performance in the wet and 

irrigated scenarios were meaningfully different from the trait networks that 

conferred improved performance in the dry scenarios. As such, superior 

genotypes specifically tailored for the wet scenario would be ill-designed for 

dry scenarios (and vice versa), and especially for dry scenarios where late 

season growth requires stored soil water. However, two important caveats 

need to to be considered. Firstly, roots, stomata, and photochemistry are 

known to be significantly plastic in field grown maize (Gleason et al. 2017b; 

Schneider et al. 2020; Ding et al. 2022) ⁠ ⁠ . Although we do not address trait 

plasticity here, we should almost certainly expect attenuation of adverse 

intrinsic trait effects via a coordinated plastic response. Secondly, it is likely 

that by carefully selecting for a mixture of traits that conserve water when 

evaporative demand is high or when water supply is low, but also maintain 

high stomatal conductance when evaporative demand is low or when water 

supply is high, would be advantageous under both dry and wet scenarios. 

Successful trait combinations that demonstrate this principle can be seen in 

the two-trait combination heatmaps (S23-S27). The combination of 

conservative stomata and high hydraulic efficiency achieved high yield under 

the dry scenarios, but also performed moderately well under the wet 

scenarios. Combining conservative stomata with deep roots and high 

hydraulic safety also performed moderately well in both wet scenarios (S23 & 

S25). Hybrids developed by the AQUAmax® program (Pioneer Hi Bred 
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International, Inc., Johnston) provide good evidence that “mixed” trait 

selection can successfully maintain yield stability (high yield when soil water is 

limited as well as unlimited) (Diepenbrock et al. 2022; Messina et al. 2022) ⁠ .  

 Another important finding of this study was that, even under fully 

watered conditions, transporting water from the soil to the leaves is a risky 

biological process. This is evident from the efficacy of high embolism 

resistance in every scenario, as well as the negative impact of xylem 

embolism on maize growth and reproductive development (e.g., “tassel 

blasting”) (Gleason et al. 2017b, 2019; Dong et al. 2020) ⁠ . This result is 

supported by multiple measurements of maize embolism resistance, which by 

all accounts is low, i.e., half the xylem conductive capacity is lost at relatively 

high/hydrated water potential (ca. -2.6 to -1.4 MPa) (Cochard 2002; Li et al. 

2009; Gleason et al. 2017a, b, 2019)⁠ .  

Carbon costs associated with hydraulic efficiency and safety 

Although carbon allocation tradeoffs are a salient feature of TREES, e.g., 

allocation to one sink or another is always linked to an opportunity cost, there 

are aspects of water transport and growth that were not evaluated in our 

simulations. For example, to achieve higher hydraulic efficiency across the 

same pressure gradient, the plant must either add more conduits and/or 

increase the diameter of existing conduits – both options requiring an 

additional carbon investment in xylem construction and maintenance that was 

not considered in our simulations. Similarly, operation at lower water potential 

requires safer conduits that can withstand larger crushing pressures – 

requiring an additional carbohydrate investment in conduit wall that was also 

not considered in our simulations (Hacke et al. 2001; Blackman et al. 2010) ⁠ . 

These examples represent tradeoffs in the sense that carbon spent on water 

transport cannot be spent on other structures and functions (Pratt et al. 

2021)⁠ . The relevance of these tradeoffs across wild species is paramount. 

For example, natural selection has designed the vascular networks of whole-

leaves and whole-plants such that they deliver the maximal hydraulic 

conductance per unit carbon investment (McCulloh et al. 2003; Price et al. 

2013; Gleason et al. 2018a; Koçillari et al. 2021) ⁠ . Although it is possible that 
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such tradeoffs are important for crop species, the data necessary to quantify 

the carbon costs of hydraulic efficiency and safety does not exist for crops as 

it does for woody plants (Eller et al. 2018)⁠ , and as such this remains an 

important research question. Nevertheless, it does not appear that maize 

genotypes with high hydraulic safety and/or efficiency are at a growth 

disadvantage (Gleason et al. 2019, 2021) ⁠   

Implications for crop improvement 

Selection of a plant growth model should be guided by the needs of the user 

(McMaster and Ascough 2011; Di Paola et al. 2016)⁠ . In the case we present 

here, modeling physiological processes and their interactions resulted in 

growth and water use outcomes that were broadly aligned with field 

measurements; however, it remains an important question how much 

biological resolution can be added (e.g., organ-level, protein-level, gene 

expression) without losing upper-level functioning and rigor (Hammer et al. 

2019; Peng et al. 2020; Tardieu et al. 2020)⁠ ⁠ ⁠ . Although we do not address 

this topic at length here, we caution that modeling fine scale physiological 

processes should not be viewed as a necessary step towards crop 

improvement, or even towards achieving better biological understanding. 

Given the difficulty of developing “bottom-up” models that perform well at 

higher levels of biological organization, hybrid approaches that allow for the 

nesting of specific lower order processes within whole-plant ecophysiological 

models may represent an effective bridge between fine scale and coarse 

scale modeling approaches (Tardieu et al. 2020) ⁠ .  

 The application of detailed process-based physiological models to 

assist breeding efforts has recently been discussed at length elsewhere 

(Messina et al. 2018; Hammer et al. 2019; Wang et al. 2019; Cooper et al. 

2021)⁠ , but the key advantage provided by such models is to breakdown 

higher order processes (e.g., transpiration) into their constituent components 

(e.g., xylem conductivity, xylem embolism resistance, stomatal conductance, 

xylem pressure gradient), and connect these component traits to causal 

genetic variation. For example, the development of AQUAmax® maize 

hybrids, which were initially targeted for the western corn belt of North 
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America, represent a coupling of water conservation, photosynthesis, and 

carbon partitioning traits, and thus required the careful consideration of 

multiple physiological processes (Cooper et al. 2014a, b; Messina et al. 

2020)⁠ . Assuming that modeling processes at these finer scales can reliably 

simulate plant performance, and also assuming that component traits can be 

linked with their corresponding functional nucleotide polymorphisms, it is then 

possible to predict trait values from the genotype and select target genotypes 

with desired traits (Hammer et al. 2019; Messina et al. 2020; Cooper et al. 

2021).  

 Despite the potential usefulness of physiological trait networks, 

identified either through modeling or experiment, they should not be viewed 

as “end point” ideotypes, whether they are achievable or not. Breeding 

programs are themselves rich sources of highly relevant trait information, 

much of it having been earned over many breeding cycles within and across 

complex target environments. Given these considerations, physiological trait 

networks are best used as selection criteria to enrich breeding programs, and 

only after carefully evaluating what is already known about beneficial traits, 

the available agronomic practices, as well as the express aims of the breeder. 

Integration of crop growth models with whole-genome prediction (CGM-WGP 

methodology) was designed to achieve this aim and is widely considered a 

revolution in molecular breeding (Technow et al. 2015; Messina et al. 2020; 

Diepenbrock et al. 2022)⁠ . The continued development of models that enable 

linkage between performance, physiology, and functional genomics remain a 

priority for agriculture and will require the continued close collaboration of 

breeders, geneticists, physiologists, and modelers (Tardieu et al. 2018; 

Tardieu 2022)⁠ . 

Conclusions 

We uncovered two contrasting trait networks likely to confer improved 

performance when water limits plant growth (particularly late-season growth) 

versus when water is non-limiting. These two trait networks can be 

understood by their aggregate effect on water use and water conservation. 

Dry climates with late-season deep soil water availability featured plants with 
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conservative stomata, deep roots, and high Vpmax, whereas wet environments 

featured plants with risky stomata, deep roots, efficient and safe water 

transport, and high maximum LAI. The efficacy of these trait networks arose 

from climate differences among sites (precipitation amount, precipitation 

timing, VPD, and temperature), i.e., “envirotype” (Xu 2016)⁠ . In addition to the 

trait differences separating these two broad water use strategies, we also 

found striking trait similarities within each of these groups (e.g., among the 

two “wet” and irrigated scenarios). Such generalization is important because if 

the benefit of a single trait network cannot be extended across multiple sites 

then every site and crop combination will represent an independent breeding 

challenge (Tardieu 2012) ⁠ . Custom designing crop plants for every situation 

is at odds with the global challenges facing agriculture. The process-based 

approach to crop modeling presented here may help to meet these challenges 

by complementing and extending site-specific experimental results to a 

broader range of cropping systems, soils, and climates, and thus improve our 

general understanding of trait network effects on water use, plant growth, and 

grain yield.  
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Fig. 1 Key interactions among physiological processes (green shaded arrows) that control 
carbon-water 
exchange, and how these interactions manifest as differences in CO2 assimilation in a given 
climate (blue 
box). The plant traits and soil characteristics that were manipulated in this study are repre-
sented by beige shaded arrows. 
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Fig. 2 Daily precipitation, air temperature, vapor pressure deficit, and photosynthetically active 
radiation for 
each of the five climate scenarios. Cumulative precipitation for each climate scenario is repre-
sented with an unbroken black line. 

 

Fig. 3 “Importance” scores for individual traits that have been derived from 350 decision tree 
ensembles. 
Larger importance values denote trait contrasts (e.g., deep vs shallow roots) that resulted in 
large differences 
in net primary productivity (NPP), i.e., reduction in root mean square error (MSE; square root 
of model 
variance) when the trait was included in the model. Small importance values reflect trait con-
trasts that resulted in smaller reductions in model variance. 

 

Fig. 4 Net primary productivity (NPP) and reproductive output for stomatal sensitivity trait con-
trast (“risky” 
vs “conservative” stomatal response to leaf water potential) for the Central Plains Dry (a) and 
the High 
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Plains Dry (b) sites. Measured soil temperature (15 cm) and simulated soil water fraction 
(fraction of 
rhizosphere volume that is water) for the 20-40 cm layer at the Central Plains Dry (orange) 
and High Plains 
Dry (magenta) sites (c). Symbol sizes for NPP (panels a and b) have been scaled proportion-
ately by the standard deviation in NPP across simulations. 

 
Fig. 5 Representative multiple trait decision tree for the High Plains Wet scenario. Manipulat-
ed traits are 
represented with shaded boxes, whereas the contrasting values of these traits (e.g., “low”, 
“high”) are denoted 
by labeled arrows. The first branch point (trait contrast) is the trait resulting in the largest de-
crease in 
model variance, whereas the last branch point denotes the trait contrast resulting in the 
smallest decrease 
in model variance. The first four most important nodes (trait contrasts) are shown. Error bars 
denote +/- 
1 standard deviation (n=16). Vpmax = maximum activity of PEP-carboxylase. Root depth = 
maximum 
depth of root system. Max LAI = maximum achievable leaf area index. Saf = xylem embolism 
resistance. 
Gs sensitivity = stomatal response to leaf water potential. Eff = maximum xylem conductance. 
6 



 

This article is protected by copyright. All rights reserved. 

A
cc

ep
te

d 
A

rt
ic

le
 

 

Fig. 6 Representative multiple trait decision tree for the High Plains Dry scenario. Manipulated 
traits are 
represented with shaded boxes, whereas the contrasting values of these traits (e.g., “low”, 
“high”) are denoted 
by labeled arrows. The first branch point (trait contrast) is the trait resulting in the largest de-
crease in 
model variance, whereas the last branch point denotes the trait contrast resulting in the 
smallest decrease 
in model variance. The first four most important nodes (trait contrasts) are shown. Error bars 
denote +/- 
1 standard deviation (n=16). Vpmax = maximum activity of PEP-carboxylase. Root depth = 
maximum 
depth of root system. Max LAI = maximum achievable leaf area index. Saf = xylem embolism 
resistance.Gs sensitivity = stomatal response to leaf water potential. Eff = maximum xylem 
conductance. 
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Table 1 Parameter settings for all manipulated traits and soil characteristics (“dynamic 
parameters”) and for 
parameters that were constant across all simulations (“static” parameters). Specific leaf area 
(SLA) was 
calculated as a function of the net CO2 assimilation rate and the amount of stored carbon 
(starch), and was 

allowed to vary within the given range 

Parameter description Unit Value / Range 
Dynamic parameters (two values, all climate scenarios) 
Water potential initiating stomatal closure (“Stomatal sensitivity”) MPa -1.5 or -2.5 
Leaf-specific hydraulic conductivity (“Hydraulic efficiency”) 4.2 or 5.0 
Water potential resulting in 50% loss of conductance (“Hydraulic safety”) MPa -1.60 or -2.70 
Maximum root depth (“Root depth”) m 0.75 or 1.15 
Maximum Leaf Area Index (LAI) unitless 4.0 or 4.5 
60 or 120 
Soil water fraction of bottom-most soil layer at day 1 (“Initial soil water”) unitless 0.15 or 0.20 
Soil texture (sand-silt-clay fraction) unitless 0.66-0.09-0.25 or 0.76-0.09-0.15 
Static parameters (same for all simulations) 
Leaf absorptance fraction unitless 0.92 
Quantum yield of photosynthesis 0.32 
175 
80 
PEPC regeneration rate 80 
Mesophyll conductance 1.78 
Bundle sheath conductance 0.003 
Reference conductance 0.303 
Specific leaf area range 29-60 
Plant height m 2 
Specific root length at 0.25 mm diam. 350 
Minimum fine root diameter mm 0.125 
Root lifespan of the finest roots years 0.33 
mmol m-2 s-1 

Activity of Phosphoenolpyruvate carboxylase (PEPC) (Vpmax) μmol m-2 s-1 

e- photon-1 

Max. electron transport rate at 25 °C μmol m-2 s-1 

Michaelis constant of PEPC for CO2 at 25 °C (Kp) μbar 
μmol m-2 s-1 

mol m-2 s-1 

mol m-2 s-1 

mol m-2 s-1 

m2 kgC-1 
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