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Abstract

Oriented matroids are combinatorial structures that generalize point configura-
tions, vector configurations, hyperplane arrangements, polyhedra, linear programs,
and directed graphs. Oriented matroids have played a key role in combinatorics,
computational geometry, and optimization. This paper surveys prior work and
presents an update on the search for bounds on the diameter of the cocircuit graph
of an oriented matroid. The motivation for our investigations is the complexity of
the simplex method and the criss-cross method.

We review the diameter problem and show the diameter bounds of general ori-
ented matroids reduce to those of uniform oriented matroids. We give the latest
exact bounds for oriented matroids of low rank and low corank, and for all oriented
matroids with up to nine elements (this part required a large computer-based proof).
For arbitrary oriented matroids, we present an improvement to a quadratic bound
of Finschi. Our discussion highlights an old conjecture that states a linear bound
for the diameter is possible. On the positive side, we show the conjecture is true
for oriented matroids of low rank and low corank, and, verified with computers, for
all oriented matroids with up to nine elements. On the negative side, our computer
search showed two natural strengthenings of the main conjecture are false.

Mathematics Subject Classifications: 52C40, 05C12, 52C45, 52B40
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1 Introduction

Oriented matroids are combinatorial structures that generalize many types of objects, in-
cluding point configurations, vector configurations, hyperplane arrangements, polyhedra,
linear programs, and directed graphs. Oriented matroids have played a key role in com-
binatorics, geometry, and optimization (see the book by Björner et al. [4] for a complete
treatise and Chapter 6 of Ziegler [29] for a quick introduction we assume in the rest). In
this paper we investigate a natural graph called the cocircuit graph of an oriented matroid.

An important family of oriented matroids, realizable oriented matroids, are given by
hyperplane arrangements. In this case, the cocircuit graph is just the one-skeleton of
the cell complex obtained by intersecting a central hyperplane arrangement with a unit
sphere. In general, the cocircuit graph is the graph of a combinatorial manifold and it
has a rich structure. Later we review this geometry in some detail.

General characterizations and properties of oriented matroids and their cocircuit graphs
have been explored by several authors: While it is known that the cocircuit graph does
not uniquely determine the oriented matroid (see [5, 6]), labeled cocircuit graphs can
be characterized (see [2, 6]). Other topics of research have been the connectivity of the
cocircuit graph (see [5, 4]) and how the cocircuit graph could define the entire oriented
matroid and discussed the connectivity of the graph (see [11, 21, 23]). In this article
we are interested instead in bounding the diameter of the cocircuit graph of an oriented
matroid. We recall that the diameter of a graph is the largest distance between a pair
of its vertices, where the distance between two vertices is the length of a shortest path
connecting them.

The motivation for our investigations is the complexity of the simplex method [3, 27]
and of the criss-cross method [16, 17]. Both algorithms are pivoting methods that jump
from cocircuit to cocircuit along edges of the cocircuit graph. Bounds on the diameter
are relevant for understanding their running time. The following conjecture is the oldest
and the most ambitious open challenge about the diameter of oriented matroids today.

Conjecture 1. Let M be an oriented matroid of rank r on n elements, and let G∗(M)
be its cocircuit graph. Then diam(G∗(M)) 6 n− r + 2.

Prof. K. Fukuda (personal communication) kindly informed us that Conjecture 1 is
an old folklore problem that goes back at least 25 years. We hope to revive interest in
this conjecture with this article. Conjecture 1 bears a striking resemblance to the famous
Hirsch conjecture for convex polytopes, which was disproved by F. Santos in [25], and with
good reason. Let P ⊆ Rd be a d-polytope defined by n hyperplane inequalities. Lifting
P to Rd+1 (and setting r = d + 1) determines a central hyperplane arrangement in Rr,
one of whose cones is the nonnegative span of P . Therefore, P gives rise to an oriented
matroid M whose cocircuit graph contains the graph of P as an induced subgraph (see
Figure 1).

Substituting r = d+ 1 in Conjecture 1 gives an upper bound of n− r+ 2 = n− d+ 1,
which differs from the conjectured Hirsch bound by 1. The reason for this is that each
signed cocircuit X has an antipodal cocircuit −X. We will see later that when M is
uniform, the distance between antipodal cocircuits is exactly n− r + 2.
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Figure 1: A polytope in R2 (left), its lifting to R3 (center), and the intersection with the
resulting hyperplane arrangement on S2 (right).

Conjecture 1 has appeared in the literature in several forms. Babson, Finschi, and
Fukuda [2, Lemma 6] established Conjecture 1 for uniform oriented matroids of rank 2 and
rank 3, showing further that only antipodal cocircuits can have distance n−r+2. Felsner
et al. [11, Lemma 4.1] also showed that the conjecture is true for uniform oriented matroids
with rank at most 3 and stated again the famous Conjecture 1 in [11, Question 4.2] with a
strong emphasis on the important role of antipodal cocircuits. Finschi [12, Open Problem
5] asked whether diam(G∗(M)) 6 c · n for some constant c that is independent of n and
r. Aside from the results of Babson, Finschi, and Fukuda in low rank, the most general
progress that has been made on Conjecture 1 seems to have come from Finschi’s Ph.D
thesis.

Theorem 2. (Finschi [12, Proposition 2.6.1])
LetM be a uniform oriented matroid of rank r on n elements. Then

diam(G∗(M)) 6 n− r + 2 +

min(r−2,n−r)∑
k=1

(⌊
n− r − k

2

⌋
+ 1

)
.

The bound in Theorem 2 is tight when r = 2 or r = n, but in general it is not.

1.1 Notation and Definitions

We use standard notation about oriented matroids from Ziegler [29] and the classic
book of Björner et al. [4]. The geometric intuition that accompanies these definitions
will be discussed at greater length in Section 2, but for now we introduce the minimal
notation and definitions so that we can state our results formally.

A purely combinatorial description of oriented matroids can be given in terms of
special sign vectors. If E is a finite set, we use {+,−, 0}E to denote the set of all vectors
of signs, with entries indexed by the elements of E. We will use capital letters X, Y, Z, . . .
to represent elements of {+,−, 0}E and subscripts Xe to reference the entry of X indexed
by the element e ∈ E. We can always negate a sign vector: if X = (Xe : e ∈ E), then
−X = (−Xe : e ∈ E).
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The positive, negative, and zero parts of a sign vector X ∈ {+,−, 0}E are defined
respectively as X+ = {e ∈ E : Xe = +}, X− = {e ∈ E : Xe = −}, and X0 = {e ∈ E :
Xe = 0}. The support of X is defined as supp(X) = X+ ∪ X−. If X and Y are sign
vectors, their separating set is S(X, Y ) = (X+ ∩ Y −)∪ (X− ∩ Y +), and their composition
is the sign vector X ◦ Y whose entries are given by

(X ◦ Y )e =

{
Xe if Xe 6= 0,

Ye otherwise.

For the moment we will only provide the cocircuit axioms of oriented matroids. As with
classical matroids, there are also several cryptomorphic definitions of oriented matroids;
see [4] for more details. We will briefly introduce some of these details later. The cocircuits
and covectors of an oriented matroid are special types of sign vectors that satisfy certain
axioms:

Definition 3. An oriented matroid M = (E, C∗) consists of a finite set E and a subset
C∗ ⊆ {+,−, 0}E, called signed cocircuits, that satisfy the following conditions.

(CC0) 0 /∈ C∗;

(CC1) if X ∈ C∗, then −X ∈ C∗;

(CC2) for all X, Y ∈ C∗, if supp(X) ⊆ supp(Y ), then X = Y or X = −Y ; and

(CC3) if X, Y ∈ C∗, X 6= −Y , and e ∈ S(X, Y ), then there exists Z ∈ C∗ such that
Z+ ⊆ (X+ ∪ Y +) \ {e} and Z− ⊆ (X− ∪ Y −) \ {e}.

Given an oriented matroid M, we can consider the set V∗ = {X0 ◦ X1 ◦ · · · ◦ Xk :
X i ∈ C∗(M)} of all possible signed covectors, obtained by successively composing signed
cocircuits. The set V∗ has a natural poset structure, which we denote by L(V∗) (in fact,
L(V∗) is a graded lattice). The order is obtained from the component-wise partial order
on vectors in {+,−, 0}E with 0 < +,−. We will revisit this poset later in a geometric
setting.

The rank of M is defined to be one less than the length of the longest chain of
elements in the poset L(V∗). Again, this is not the only way to define the rank of an
oriented matroid [4]. We say an element of E is a coloop if it is not present in the support
of any signed cocircuit. For brevity, signed cocircuits will also be called cocircuits. It is
well known that every matroid has a dual matroid. In the case of oriented matroids, this
concept is more delicate, but there is also a notion of duality. One can then talk about
circuits, which are the cocircuits of the dual oriented matroid, and the related notions of
corank, loops, etc. The corank of an oriented matroid on n elements of rank r is n− r.

The cocircuit graph of an oriented matroid M of rank r is the graph G∗(M) whose
vertices are the signed cocircuits of M, with an edge connecting signed cocircuits X and
Y if |X0 ∩ Y 0| > r − 2 and S(X, Y ) = ∅. An oriented matroid is uniform if |X0| = r − 1
for every cocircuit X ∈ C∗. If X and Y are signed cocircuits in M, we use dM(X, Y ) to
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denote the distance from X to Y in G∗(M); that is, the length of the shortest path from
X to Y in G∗(M). We call a path P from X to Y crabbed (introduced in [23, 21]), if for
every cocircuit W ∈ P , W+ ⊆ X+ ∪ Y + and W− ⊆ X− ∪ Y −. The diameter of G∗(M)
is defined as diam(G∗(M)) = max{dM(X, Y ) : X, Y ∈ C∗(M)}.

1.2 Our Results

This paper presents some new results and also reviews the state of the art of the diameter
problem.

(I) To help the reader get started, in Section 2, we quickly review the key notions of
oriented matroids that will be relevant for us. Our contributions are as follows:

(II) In Section 3, we present several auxiliary lemmas. One of the first reductions
made in studying the Hirsch conjecture was given by Klee and Walkup [20], who showed
it was sufficient to study simple polytopes. These are d-polytopes in which each vertex
is supported by exactly d facets. We make a similar reduction from arbitrary to uniform
oriented matroids.

Lemma 4. Let M be an oriented matroid of rank r on n elements. Then there exists a
uniform oriented matroidM′ of rank r on n elements such that

diam(G∗(M)) 6 diam(G∗(M′)).

Moreover, whenM is realizable, thenM′ can be taken to be realizable as well.

Lemma 4, reduces Conjecture 1 to studying uniform oriented matroids. Therefore,
for the purposes of studying Conjecture 1, it suffices to consider only uniform oriented
matroids.

The following auxiliary lemma shows that the discrepancy between the diameter given
in Conjecture 1 and the classical Hirsch bound cannot be improved. Essentially, Conjec-
ture 1 cannot be improved because the distance between antipodal cocircuits is exactly
n− r + 2.

Lemma 5. LetM be a uniform oriented matroid of rank r on n elements, and let X, Y ∈
C∗(M). Then

dM(X, Y ) >

{
|S(X, Y )|+ |X0 \ Y 0| if X 6= −Y,
n− r + 2 if X = −Y. (1)

Moreover, if |X0 \ Y 0| 6 1, then the inequality (1) holds with equality: dM(X, Y ) =
1 + |S(X, Y )|, and in particular, when X = −Y , then dM(X, Y ) = n− r + 2.

(III) Section 4 presents computational results that establish Conjecture 1 for uniform
oriented matroids whose ground set has at most nine elements (see Theorem 15). Our
proof uses an exhaustive computer search over a database of small oriented matroids.

We then move on to establish Conjecture 1 in low rank. Babson, Finschi, and Fukuda
[2, Lemma 6] and Felsner et al. [11, Lemma 4.1] gave proofs of Conjecture 1 for r 6 3.
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We present a new geometric proof of that same result (see Theorem 16). We explain
why our method does not generalize for rank four matroids. Finally, we also settle the
conjecture for oriented matroids of low corank (i.e. n − r). In summary, we have the
following theorem:

Theorem 6. LetM be a uniform oriented matroid of rank r on n elements.

a. If n 6 9, then diam(G∗(M)) = n− r + 2.

b. If r 6 3, then diam(G∗(M)) = n− r + 2.

c. If n− r 6 4, then diam(G∗(M)) = n− r + 2.

(IV) Section 5 discusses a stronger quadratic upper bound on the diameter of a
uniform oriented matroid (see Theorem 7). We modify Finschi’s proof of Theorem 2 [12,
Proposition 2.6.1] to give a slightly stronger bound. Our new bound is tight in rank three,
while Finschi’s is not. Another improvement is that, as a consequence of Lemma 4, our
bound is valid for all oriented matroids rather than just uniform oriented matroids.

Theorem 7. Let M be an oriented matroid of rank r on n elements, and let X, Y ∈
C∗(M) with X 6= −Y . Then

dM(X, Y ) 6 n− r + 1 +

|X0\Y 0|−1∑
k=2

(⌊
n− r − k

2

⌋
+ 1

)
. (2)

In particular, when r > 4 and n− r > 2,

diam(G∗(M)) 6 n− r + 1 +

min(r−2,n−r)∑
k=2

(⌊
n− r − k

2

⌋
+ 1

)
. (3)

This bound contrasts the best-known upper bounds on polytope diameters, which are
linear in fixed dimension, but grow exponentially in the dimension (e.g., [18] and [10]).
For a survey of the best bounds and more updates about diameters of polytopes see
[7, 8, 10, 26, 28] and the references therein.

(V) The strong similarities and connections between the diameter problem of convex
polytopes and the diameter problem for oriented matroids suggest fascinating questions
we try to answer in Section 6:

To start, one may hope that dM(X, Y ) 6 n− r + 1 when X and Y are not antipodal
cocircuits. In fact, Finschi posed a similar question in his thesis [12, Open Problem 2], as
did Felsner et al. [11, Question 4.2]. Here we answer this question. We show the answer
is negative by considering Santos’s counterexample to the Hirsch conjecture.

Proposition 8. There is a uniform oriented matroidM of rank 21 on 40 elements that
has a pair of non-antipodal cocircuits X and Y such that dM(X, Y ) > 21 = n− r + 2.
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It is not immediately clear whether bounds on the diameter of the cocircuit graph of a
realizable oriented matroid imply bounds on polytope diameters. This possible connection
has been discussed before. For example, a connection of the (original) Hirsch conjecture
to Conjecture 1 was stated in Remark 4.3 of [11]. Their proof of their remark shows that,
thanks again to Santos’s counterexample, there is an example of two cocircuits in the
same tope that cannot be connected by a crabbed path of length n− r+ 1. Their remark
also suggests two natural strengthenings of Conjecture 1, both of which would imply the
polynomial Hirsch conjecture is true for convex polytopes:

First, if X and Y are vertices in a tope T , does the shortest path from X to Y in the
supergraph G∗(M) of cocircuits leave the tope T ? The question is already interesting for
a realizable M where a tope T corresponds to a polytope. If the shortest path between
X, Y always stays in a tope containing both, then a quadratic bound on the diameter of
polytopes follows from the quadratic bound for oriented matroids. This would prove the
famous polynomial Hirsch Conjecture for those polytopes in the arrangement (recall the
polynomial Hirsch conjecture states that the diameter of all convex polytopes is bounded
by a polynomial in terms of the number of facets and the dimension, see [26]).

Second, even more strongly, is there always a crabbed path from X to Y whose length
is no bigger than the length of any path from X to Y in the entire cocircuit graph M?
Again, if this was true, the diameter computed over the topes that contain X, Y is always
no larger than the diameter of the entire cocircuit graph. Unfortunately, we show the two
strengthenings of Conjecture 1 are false. This is the content of Theorem 9. We used a
computer search to find the counterexamples and to show they are smallest possible.

Theorem 9. There is a realizable rank 4 uniform oriented matroid M with 9 elements
and a pair its cocircuits X, Y ∈ C∗(M), whose distance dM(X, Y ) is smaller than the
length of any crabbed path from X to Y . We prove that no such example with fewer
than 9 elements is possible. Moreover, by adding another element to M, we construct a
realizable rank 4 oriented matroid M′ on 10 elements with two cocircuits X, Y inside a
common tope T , such that dM′(X, Y ) < dT (X, Y ).

2 A Quick Review of Oriented Matroids

Let E = {v1, . . . ,vn} ⊆ Rr be any set of vectors. For simplicity, we will assume that
E spans Rr. We will not make a distinction between E as a set of vectors or E as a
matrix in Rr×n. In classical matroid theory, we consider the set of linear dependences
among the vectors in E. In oriented matroid theory, we consider not only the set of linear
dependences on E, but also the signs of the coefficients that make up these dependences.
To any linear dependence

∑n
i=1 zi vi = 0 we associate a signed vector (sign(zi))

n
i=1. The

sign of a number z ∈ R, denoted sign(z) ∈ {+,−, 0}, encodes whether z is positive,
negative, or equal to 0. If z = (z1, . . . , zn) ∈ Rn is a vector, we use sign(z) to denote the
vector of signs: sign(z) := (sign(zi))

n
i=1 ∈ {+, 0,−}n. We define the set of signed vectors

on E as
V(E) = {sign(z) : z is a linear dependence on E}.
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In other words, V(E) = {sign(z) : E z = 0}.
Among all signed vectors determined by linear dependences on E, those with minimal

(and nonempty) support under inclusion, are called the signed circuits of E. The set of
such signed circuits is denoted C(E).

Dually, for any c ∈ Rr, we can consider the signed covector
(
sign(cT vi)

)n
i=1

. The set
of all signed covectors on E is

V∗(E) = {sign
(
cT E

)
: c ∈ Rr}.

The set of signed covectors of minimal, nonempty support are called signed cocircuits and
are denoted by C∗(E). It is important to note that if X is a cocircuit, then so is −X.

Summarily, to any collection of vectors E ⊆ Rr, there are four sets of vectors that
encode dependences among E. Those are the signed vectors V(E) arising from linear
dependences, the signed circuits C(E) arising from minimal linear dependences, the signed
covectors V∗(E) arising from valuations of linear functions, and signed cocircuits C∗(E)
arising from linear valuations of minimal support. The first fundamental result in oriented
matroid theory shows that any one of these sets is sufficient to determine the other three
[29, Corollary 6.9]. Any oriented matroid that arises from a collection of signed cocircuits
in this way is called a realizable oriented matroid.

Now we are ready to motivate the definition of oriented matroids through a geo-
metric model that proves to be more useful than the axiomatic definition. Let E =
{v1, . . . ,vn} ⊆ Rr be a collection of vectors, and let M(E) be the oriented matroid de-
termined by E. To each vector vi, there is an associated hyperplane Hi := {x ∈ Rr :
xT vi = 0}. Each Hi is naturally oriented by taking H+

i := {x ∈ Rr : xT vi > 0} and
defining H−i analogously.

Therefore, the vectors in E determine a central hyperplane arrangement H in Rr.
Any vector x ∈ Rr has an associated sign vector determined by its position relative to the
hyperplanes in H. These signs can be computed as sign(xT vi) for each i; in other words,
by computing sign

(
xT E

)
. Therefore, the signed covectors ofM(E) are in bijection with

the regions of the hyperplane arrangement H.
Further, because sign

(
xT E

)
= sign

(
(cx)TE

)
for any positive scalar c, no informa-

tion from H is lost if we intersect H with the unit sphere Sr−1, giving a collection of
codimension-one spheres {si = Hi ∩ Sr−1 : Hi ∈ H}. This induces a cell decomposi-
tion of Sr−1 whose nonempty faces correspond to covectors of M(E) and whose vertices
correspond to cocircuits of M(E). The regions corresponding to covectors of maximal
support are called topes. An example is illustrated in Figure 2. In that figure, the cocir-
cuit X is encoded by the sign vector (+,+, 0,−, 0). Similarly, the shaded region (a tope)
corresponds to the covector (+,+,+,−,+).

Not all matroids can be oriented. Determining whether a matroid is orientable is an
NP-complete problem, even for fixed rank (see [24]). But, a topological model provides the
“right” intuition for visualizing arbitrary oriented matroids. Every oriented matroid can
be viewed as an arrangement of equators on a sphere, as in the realizable case, provided
that one is allowed to slightly perturb the spheres determined by Hi∩Sr−1 in the following
way.
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s1+

s2 +
−

s3

+
−

s4

+−
s5

+−

X

Figure 2: An oriented matroid arising from an arrangement of five hyperplanes.

Let Q be an equator of Sr−1; that is, the intersection of Sr−1 with some (r − 1)-
dimensional subspace of Rr. If ϕ : Sr−1 → Sr−1 is a homeomorphism, then the image
of the equator ϕ(Q) ⊆ Sr−1 is called a pseudosphere. Because Q decomposes Sr−1 into
two pieces, so too does ϕ(Q). Therefore, we may define an oriented pseudosphere to
be a pseudosphere, s, together with a choice of a positive side s+ and negative side s−.
Now we may define an arrangement of pseudospheres in Sr−1 to be a finite collection of
pseudospheres P = {se : e ∈ E} ⊆ Sr−1 such that

1. for any subset A ⊆ E, the set SA =
⋂
e∈A se is a topological sphere, and

2. if SA 6⊆ se for A ⊆ E and e ∈ E, then SA ∩ se is a pseudosphere in SA with two
parts, SA ∩ s+e and SA ∩ s−e .

A pseudosphere arrangement is essential if
⋂
e∈E se = ∅. Any essential pseudosphere

arrangement P induces a regular cell decomposition on Sr−1. Because each pseudosphere
in P has a positive and negative side, the cells of this decomposition are naturally indexed
by sign vectors in {+,−, 0}E. We use Γ(P) to denote the poset of such sign vectors,
ordered by face containment. We have encountered this same (abstract) poset before as
L(V∗) in the introduction, the poset induced over the set of covectors V∗ of an oriented
matroid. As it turns out the following theorem of Folkman and Lawrence gives an exact
correspondence between oriented matroids and pseudosphere arrangements. The same
sets of sign vectors appear in both cases.

Theorem 10. (Topological Representation Theorem [15])
Let P be an essential arrangement of pseudospheres in Sr−1. Then Γ(P) ∪ {0} is the

set of covectors of an oriented matroid of rank r. Conversely, if V∗ is the set of covectors
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of a loopless oriented matroid of rank r, then there exists an essential arrangement of
pseudospheres P on Sr−1 with Γ(P) = V∗ \{0}.

If M is an oriented matroid, the pseudosphere arrangement P guaranteed by the
Topological Representation Theorem is called the Folkman-Lawrence representation of
M. Two elements e, f ∈ E are parallel if Xe = Xf for all X ∈ V∗ or Xe = −Xf for all
X ∈ V∗. Note that we can eliminate parallel elements without changing the pseudosphere
arrangement P .

Remark 11. Let M be a uniform oriented matroid of rank r. If A ⊆ E(M) is any set
with |A| 6 r − 1, then SA =

⋂
e∈A se is an (r − 1− |A|)-dimensional pseudosphere in the

Folkman-Lawrence representation P(M).

Let M be an oriented matroid of rank r, and let P be the Folkman-Lawrence rep-
resentation of M. Then the underlying graph of P (as a cell complex) is the cocircuit
graph G∗(M). This provides a geometric model for visualizing cocircuit graphs of ori-
ented matroids. A coline in M is a one-dimensional sphere in the Folkman-Lawrence
representation ofM. In matroidal language, a coline is a covector that covers a cocircuit
in the natural component-wise partial order where 0 < +,−. For a uniform oriented ma-
troid of rank r, a coline is a covector U with |U0| = r− 2. Further, in a uniform oriented
matroid, for each subset S ∈

(
[n]
r−2

)
, there exists a coline U with U0 = S. The graph of

any coline is a simple cycle of length 2(n− r + 1).
The Folkman-Lawrence representation gives us a more concrete topological under-

standing of the following operations on oriented matroids. LetM be an oriented matroid
on ground set E with signed covectors V∗(M), and let A ⊆ E. The restriction of a sign
vector X ∈ {+,−, 0}E to A is the sign vector X|A ∈ {+,−, 0}A defined by (X|A)e = Xe

for all e ∈ A. The deletion M\A is the oriented matroid with covectors

V∗(M\A) = {X|E\A : X ∈ V∗(M)} ⊆ {+,−, 0}E\A.

The contraction M /A is the oriented matroid with covectors

V∗(M /A) = {X|E\A : X ∈ V∗(M), A ⊆ X0} ⊆ {+,−, 0}E\A.

The fact that M\A and M /A are oriented matroids is proved in [4, Lemma 4.1.8].
The deletionM\A is also referred to as the restriction of M to E\A. Geometrically,

M\A is the oriented matroid of the same rank asM obtained by removing pseudospheres
{se : e ∈ A}. The contraction M /A is the oriented matroid obtained by intersecting
SA with {se : e ∈ E\A}.

Note also that the pseudosphere arrangement of an oriented matroid of rank r lies on
the sphere Sr−1. The topes correspond to the regions, homeomorphic to balls of dimension
r−1, that partition the sphere. For realizable oriented matroids coming from a hyperplane
arrangement, topes are actual convex polytopes.

Given a tope T of an oriented matroid M, we define its graph as the subgraph of
G∗(M) induced by the cociruits of M in T . Next, we show the graph of a tope T in
a uniform oriented matroid M of rank r on n elements, is isomorphic to a graph of an
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abstract polytope of dimension r − 1 on n elements. Abstract polytopes, an abstraction
of simple polytopes, were introduced by Adler and Dantzig [1] for the purpose of studying
the diameter of their graphs. Abstract polytopes have been further generalized in recent
years by several authors (see [10, 26] and references there for details).

Definition 12. Let T be a finite set. A family A of subsets of T (called vertices) forms
a d-dimensional abstract polytope on the ground set T if the following three axioms are
satisfied:

(i) Every vertex of A has cardinality d.

(ii) Any subset of d−1 elements of T is either contained in no vertices of A or in exactly
two (called neighbors or adjacent vertices).

(iii) Given any pair of distinct vertices X, Y ∈ A, there exists a sequence of vertices
X = Z0, Z1, . . . , Zk = Y in A such that

(a) Zi, Zi+1 are adjacent for all i = 0, 1, . . . , k − 1, and

(b) X ∩ Y ⊂ Zi for all i = 0, 1, . . . , k.

The graph Gabs(A) of an abstract polytope A is composed of nodes corresponding to
its vertices, where two vertices are adjacent on the graph as specified in axiom (ii).

Consider a simple polytope P of dimension d which is the intersection of n facet-
defining half-spaces. Then, indexing the n facets by 1, . . . , n, the family of all sets of
indices that define a vertex of P is an abstract polytope of dimension d on the ground
set {1, . . . , n}. In particular, the three axioms of abstract polytopes state that the graph
G(P) associated with the vertices of P has the following three properties:

(i) G(P) is regular of degree d (as all the hyperplanes corresponding to the half-spaces
are in general position.)

(ii) All edges of G(P) have two vertices as end points (as P is bounded).

(iii) For any two vertices X, Y that lie in a face F of P , there exists a path between the
nodes corresponding to X and Y on G(P) composed entirely of nodes corresponding
to vertices on F (as F is also a polytope.)

Interestingly, while the axioms of abstract polytopes represent only three basic properties
related to graphs of simple polytopes, a substantial number of the results related to
diameter of simple polytopes in [20] have been proved in [1] for abstract polytopes.

Next, we show that these properties are satisfied by the graph of topes of uniform ori-
ented matroids. The graph of a tope, its connectivity, and the relation to pseudomanifolds
has been studied in [5].
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Lemma 13. Given a uniform oriented matroidM = (E, C∗) of rank r > 2 and a tope T
ofM, let

CT = {X ∈ C∗ : X < T }, and A = {X0 : X ∈ CT }.
Then, A is a d-dimensional abstract polytope on the ground set E, where d = r − 1.
Moreover, the graph G(T ) of T is isomorphic to the graph Gabs(A) of A.

Proof. We show that A satisfies the three axioms of abstract polytopes:

(i) Axiom (i) holds because M is a uniform oriented matroid of rank r.

(ii) Let E ′ ⊂ E such that |E ′| = d− 1, and assume that there exists X ∈ CT such that
E ′ ⊂ X0 (otherwise, no vertex of A contains E ′ and we are done). Let U = {W ∈
M∗ : E ′ ⊂ W 0}, then U is a coline of M whose graph is a simple cycle. Let Y1, Y2
be the two adjacent cocircuits to X in U . Then, there exists an element e ∈ E \E ′
such that S(Y1, Y2) = e and S(X, Yi) = ∅ (i = 1, 2), implying that exactly one of
Y1, Y2, say Y1, is in T . However, no other cocircuit in U is in T . Suppose, to the
contrary, that there exists Z ∈ U , distinct from X and Y1 that belongs to T . Then
by definition

|X0∩Y 0
1 | = |X0∩Z0| = |Y 0

1 ∩Z0| = d−1, and S(X, Y1) = S(X,Z) = S(Y1, Z) = ∅.

This means that X, Y1, and Z, are all adjacent on U . As the graph of U is a simple
cycle of size 2(n− r + 1), this leads to contradiction.

(iii) By [11, Theorem 2.3], for any X, Y ∈ C∗ there exists an (X, Y ) crabbed path on
G∗(M). That is, there exists a path X = Z0, Z1, . . . , Zk = Y on G∗(M) such that
Z+
i ⊆ X+∪Y + and Z−i ⊆ X−∪Y − for all 0 6 i 6 k. This implies that if X, Y ∈ CT ,

then for i = 1, . . . , k− 1, Zi ∈ CT (as Zi < T ), so Z0
i ∈ A, and X0∩Y 0 ⊆ Z0

i . Now,
let G(T ) be the graph of T . Note that as S(X, Y ) = ∅ for any X, Y ∈ CT , X and Y
share an edge on G(T ) if and only if |X0 ∩ Y 0| = d− 1. However, the two vertices
on Gabs(A) corresponding to X0, Y 0 are adjacent if and only if |X0 ∩ Y 0| = d − 1.
Thus, we conclude that G(T ) is isomorphic to Gabs(A), so Axiom (iii) is satisfied.

Note that by the proof of part (iii) above we have that the graph G(T ) of T is isomorphic
to the graph Gabs(A) of A.

3 Reductions and Lower Bounds

For the ease of notation, let OM(n, r) be the set of all oriented matroids of rank r
whose ground set has cardinality n. Let UOM(n, r) be the set of all uniform oriented
matroids in OM(n, r). Let ∆(n, r) denote the maximal diameter of G∗(M) asM ranges
over OM(n, r). Klee and Walkup [20] showed that the maximal diameter among all d-
dimensional polytopes with n facets is achieved by a simple polytope. Their argument
was straightforward: if P is a d-polytope with n facets that is not simple, then slightly
perturbing the facets of P will produce a simple polytope whose diameter is at least as
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large as that of P . Our goal in this section is to prove an analogous result for oriented
matroids. First we require some definitions, see [4, Section 7.1 and 7.2] for more details.

Let M be an oriented matroid on ground set E. An extension of M is an oriented
matroid M̃ on a ground set Ẽ that contains E, such that the restriction of M̃ to E isM.
We say M̃ is a single element extension if |Ẽ\E| = 1. For any single element extension

M̃, there is a unique way to extend cocircuits ofM to cocircuits of M̃. Specifically, there
is a function

σ : C∗(M)→ {+,−, 0}
such that σ(−Y ) = −σ(Y ) for all Y ∈ C∗(M) and

{(Y, σ(Y )) : Y ∈ C∗(M)} ⊆ C∗(M̃).

That is, (Y, σ(Y )) is a cocircuit of M̃ for every cocircuit Y of M. The functions σ :
C∗ → {+,−, 0} that correspond to single element extensions are called localizations.

Furthermore, M̃ is uniquely determined by σ, with

C∗(M̃) = {(Y, σ(Y )) : Y ∈ C∗(M)}∪
{(Y 1 ◦ Y 2, 0) : Y 1, Y 2 ∈ C∗(M), σ(Y 1) = −σ(Y 2) 6= 0, S(Y 1, Y 2) = ∅, ρ(Y 1 ◦ Y 2) = 2}.

Here ρ is the rank function and ◦ is the composition of covectors.
Now we are ready to define the perturbation map on non-uniform oriented matroids.

Definition 14. [4, Theorem 7.3.1] Let M be an oriented matroid of rank r > 2 on E. If
f ∈ E is not a coloop, then M is a single element extension of a rank r oriented matroid
M0 := M\f , with localization σf . Let W ∈ C∗(M0) be a cocircuit with σf (W ) = 0,
meaning W = (W, 0) is a cocircuit of M. Then the local perturbation M′ of M can be
defined as a single element extension of M0 with localization

σLP (Y ) =


+ if Y = W,

− if Y = −W,

σf (Y ) otherwise.

We can now reduce the general diameter problem to the case of uniform oriented
matroids, as promised by Lemma 4.

Proof. (of Lemma 4)
LetM be a non-uniform oriented matroid. We may assume without loss of generality

that,M does not have any loops, coloops or parallel elements since removing them will not
affect the cocircuit graph of M. Note that there exists W ∈ C∗(M) with |W 0| > r − 1.
Pick an arbitrary f ∈ W 0. Let M0 := M\f and let M′ be the perturbed oriented
matroid defined in Definition 14. We will show diam(M) 6 diam(M′). In addition, ifM
is realizable, then we will show the perturbedM′ can also be made realizable. From this,
it will follow that for all n and r, the optimal bound ∆(n, r) is achieved by a uniform
oriented matroid.
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Figure 3: A non-uniform oriented matroid (left), a local perturbation (center), and a
realizable local perturbation (right).

Denote by {X1, X2, . . . , Xk} = {X ∈ C∗(M0) : σf (X) = −, S(W,X) = ∅, ρ(W,X) =
2}. Note that X1, . . . , Xk are exactly the cocircuits that are adjacent to W in G∗(M0)
before the extension with σf (X

i) = −. Let Zi = (X i ◦W, 0). After the perturbation
by σLP , W is mapped to W ′ = (W,+). Since σLP and σf only differ on ±W , it follows
that ±Z1, . . . ,±Zk are all the cocircuits created by this perturbation. After the pertur-
bation, each edge of the form {W,X i} in G∗(M) is subdivided into two edges {W,Z i}
and {Zi, X i} (similarly {−W,−X i} is subdivided into {−W ′, Zi} and {−Zi,−X i}).

Now let X, Y ∈ C∗(M) be any two cocircuits of M such that X, Y ∈ C∗(M′) (X, Y
could be ±W , in this case we just consider ±W ′ in M′). Take a minimal path between
X and Y on G∗(M′), and replace any elements of {±W ′,±Z1, . . . ,±Zk} with ±W re-
spectively. This gives us a path (potentially having repeated elements and not necessarily
shortest) between X and Y inM. Now if we pick X, Y ∈ C∗(M) that realize the diame-
ter of M, since dM(X, Y ) 6 dM′(X, Y ), we have diam(M) = dM(X, Y ) 6 dM′(X, Y ) 6
diam(M′).

Now suppose M is realizable. Let H = {H1, . . . , Hn} be the hyperplane arrangement
corresponding to M (with f corresponding to Hn). Let Hi = {x : xT vi = 0}, and w
be the vector realizing W . Note that we have wT vn = 0 since the last entry of W is 0.
Consider y, the minimizer of xT vn over all cocircuits of M subject to xT vn > 0. Now
we replace Hn by H ′n = {x : xT ((1 − ε) vn +εy) = 0}, in which the choice of ε will be
made later. Note that,

xT ((1− ε) vn +εy) = xT vn−εxT vn +εxT y .

We first pick the sign of ε so that εwT y > 0; as a result, w ∈ H ′+n and −w ∈ H ′−n .
Then we take |ε| small enough such that |xT vn | > |ε(xT vn−xT w′)| for all x vectors
that realize a cocircuit inM (this choice of ε exists since the number of cocircuits is finite
and we may scale the vector). The construction ensures that all cocircuits, except those
that lie on Hn with degeneracy, will have the same sign as defined in Definition 14. As a
result H′ = {H1, . . . , Hn−1, H

′
n} corresponds to some realizable oriented matroidM′ after

some local perturbations (the composition of perturbation maps on all cocircuits with
degeneracy on Hn (including W ) as defined in Definition 14).
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To conclude, we have decreased the number of pairs of (W, f) with |W 0| > r − 1 and
Wf = 0 without decreasing the diameter. By continuing this procedure, we will eventually
obtain an oriented matroid in which no such pair of (W, f) can be found, or equivalently
|X0| = r − 1 for all X ∈ C∗(M). Hence ∆(n, r) will be achieved by a uniform oriented
matroid.

Hence it suffices to study uniform oriented matroids for the purpose of bounding
∆(n, r). The bound in Conjecture 1 can be rewritten as ∆(n, r) 6 n − (r − 1) + 1. For
polytopes, n− (r− 1) + 1 = n−d+ 1. It may seem mysterious that the bound here is one
more than the Hirsch bound, so we will pause for a moment to discuss this. We begin by
proving Lemma 5 from the Introduction.

Proof. (of Lemma 5)
Recall that if cocircuits Z and W are adjacent in G∗(M), then there are elements

e ∈ Z0 \W 0 and e′ ∈ W 0 \ Z0 such that Z0 = (W 0 \ {e′}) ∪ {e}. In other words, when
we move from Z to W , we see Ze = 0 change to become We 6= 0 and Ze′ 6= 0 change
to become We′ = 0. Therefore, we will say that each edge in G∗(M) encodes two “basic
transformations”, which are changes to the cocircuit that transform a nonzero entry into
a zero entry or vice versa.

Now we consider the differences in the sign patterns of X and Y . For each e ∈ S(X, Y )
we require two basic transformations to move from X to Y : one to transform Xe to 0,
and another to transform 0 to −Xe = Ye. For each e ∈ X0 \ Y 0, we require one basic
transformation to transform 0 to Ye. Similarly, for each e ∈ Y 0 \X0, we require one basic
transformation to transform Xe to 0. Therefore, moving from X to Y requires at least
2|S(X, Y )|+ |X0 \Y 0|+ |Y 0 \X0| = 2|S(X, Y )|+ 2|X0 \Y 0| basic transformations. Thus
dM(X, Y ) > |S(X, Y )|+ |X0 \ Y 0|.

Now we examine the case where X = −Y more closely. In this case, S(X, Y ) =
supp(X) and X0 = Y 0. Pick a shortest path from X to Y in G∗(M) and let Z be the
neighbor of X on this path. Then |S(Y, Z)| = n − r and |Z0 \ Y 0| = 1, so dM(Y, Z) >
n− r + 1 by the above argument. Therefore, dM(X, Y ) = 1 + dM(Y, Z) > n− r + 2.

Next, consider the case |X0 \ Y 0| 6 1. We show that the equality holds for expres-
sion (1).

Let A ⊆ X0∩Y 0 have cardinality r−2. If |X0\Y 0| = 1, then A = X0∩Y 0; otherwise,
X = −Y and we can pick r − 2 elements arbitrarily from X0 = Y 0. Let {se : e ∈ E} be
the pseudospheres in the Folkman-Lawrence representation of M and let SA =

⋂
e∈A se.

Because M is uniform, we know SA ≈ S1.
We saw above that in general dM(X, Y ) > 1 + |S(X, Y )|. On the other hand, the

elements of S(X, Y ) are in bijective correspondence with cocircuits along the shortest path
from X to Y in SA. Indeed, if Z is such a cocircuit, then Z and −Z are antipodal vertices
on SA, so they constitute a 0-dimensional pseudosphere whose positive side contains one
of X or Y and whose negative side contains the other. Thus the distance from X to Y
on SA is exactly 1 + |S(X, Y )|. This proves dM(X, Y ) 6 1 + |S(X, Y )|.
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4 Results for small matroids

4.1 Computer-based results for oriented matroids with few elements

Finschi and Fukuda [13] computed the exact number of isomorphism classes of uniform
oriented matroids, and gave a representative of each isomorphism class, when n 6 9 and
in small rank/corank when n = 10. We established Conjecture 1 for all of these examples
using computers.

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
r = 2 1 1 1 1 1 1 1 1 1
r = 3 1 1 1 4 11 135 4382 312356
r = 4 1 1 1 11 2628 9276595 unknown
r = 5 1 1 1 135 9276595 unknown
r = 6 1 1 1 4382 unknown
r = 7 1 1 1 312356
r = 8 1 1 1
r = 9 1 1
r = 10 1

Table 1: Number of uniform oriented matroids for n 6 10.

Each isomorphism class is encoded by its chirotope representation. Chirotopes, or
basis orientations, are one of the equivalent axiomatic systems for oriented matroids (see
[4, Section 3] for more details). For a given oriented matroid on ground set E, the
chirotope defines a mapping χ : Er → {−, 0,+}. For a realizable oriented matroid with
vector configuration {v1, . . . ,vn},

χ(λ1, . . . , λr) = sign(det(vλ1 ,vλ2 , . . . ,vλr)).

The data can be found on Finschi and Fukuda’s Homepage of Oriented Matroids [14].
Given a chirotope map χ of an oriented matroid of rank r on E = {1, 2, . . . , n}, we
can generate the cocircuits by computing the set C∗(χ) = {(χ(λ, 1), χ(λ, 2), . . . , χ(λ, n)) :
λ ∈ Er−1}. Since M is uniform, we add an edge between X, Y ∈ C∗(M) if and only if
|X0 ∩ Y 0| = r − 2 and |S(X, Y )| = 0. For n = 9, r = 5 and n = 10, r = 7, the chirotope
maps are missing in the original dataset. However we can look at their duals (n = 9,
r = 4 and n = 10, r = 3) and consider the set of circuits instead. The pseudocode for
computing the set of cocircuits and circuits is given below in Algorithms 1 and 2.

After finding all the cocircuits and edges, we used the Python NetworkX package [9]
to construct the cocircuit graph. This package has a method for computing the diameter
of a graph, and also for determining the distance between any pairs of vertices. Table
1 shows the number of isomorphism classes (up to reorientation) of uniform oriented
matroids of cardinality n and rank r. We used a MacBook Pro with quad-core 2.2GHz
Intel i7 processor, as well as UC Davis Math servers to construct the cocircuit graphs
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Algorithm 1 Construct cocircuits given the chirotope map

Input Cardinality n, rank r of M and χ the chirotope map
Output A list containing all cocircuits C∗(M)

for A ⊆ [n] and |A| = r − 1 do
Initialize v = 0 ∈ Rn

Sort and vectorize A to λ
for i = 1 to n do

if i 6∈ A then
v[i]← χ(i, λ)

end if
end for
Add ±v to the set of cocircuits

end for

and compute their diameters. When n = 9, r = 4, 5 the algorithm takes the longest to
terminate. On average, each instance of an oriented matroid takes about 0.36 seconds to
compute, resulting in around 38.7 days to complete the checking of all oriented matroids
of cardinality nine and rank four.

We investigate other interesting questions such as whether the shortest path between
two cocircuits on the same tope stays on the tope (see Section 5). Our code is available on
Github.1 Based on our explicit computations, we derive the following theorem for small
matroids, as promised in the introduction.

Theorem 15. Let r 6 n 6 9 and M ∈ UOM(n, r), then diam(G∗(M)) = n − r + 2.
Moreover, if X, Y ∈ C∗(M) with X 6= −Y and n 6 9, then dM(X, Y ) 6 n− r + 1.

4.2 Results in low rank

As a next step, we explore Conjecture 1 in low rank. If M ∈ UOM(n, 2), then the
cocircuit graph G∗(M) is a cycle on 2n vertices, so its diameter is n = n − r + 2. Thus
Conjecture 1 holds trivially when r = 2. Now we move on to study uniform oriented
matroids of rank three.

Theorem 16. LetM∈ UOM(n, 3), then diam(G∗(M)) = n− r + 2 = n− 1.

Proof. LetM∈ UOM(n, 3) and X, Y ∈ C∗(M). If X = −Y , then dM(X, Y ) = n− r+ 2
by Lemma 5. If |X0 \ Y 0| = 1, then dM(X, Y ) 6 n − r + 1 by Lemma 5. So we only
need to consider the case that |X0 \ Y 0| > 2. But |X0| = |Y 0| = r− 1 = 2, so this means
X0 ∩ Y 0 = ∅.

Identify the elements of E(M) with {1, 2, . . . , n}. Let P(M) be the Folkman-Lawrence
representation of M with pseudospheres {s1, . . . , sn}.

Without loss of generality we can assume X0 = {1, 2} and Y 0 = {3, 4}. LetM′ denote
the restriction of M to {1, 2, 3, 4} ⊆ E. The Folkman-Lawrence representation of M′ is

1https://github.com/zzy1995/OrientedMatroid
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Algorithm 2 Construct circuits given the chirotope map

Input Cardinality n, rank r of M and χ the chirotope map
Output a list containing all circuits C(M)

for A ⊆ [n] and |A| = r − 1 do
Initialize v = 0 ∈ Rn

Sort and vectorize A to λ
for i = 1 to n do

if i ∈ A then
if i = minA then

v[i]← 1
else

v[i]← −χ(min(A), λ)× χ(i, λ)
end if

end if
end for
Add ±v to the set of circuits

end for

obtained from P(M) by removing si for all i > 4. Up to relabeling and reorientation,
there is only one uniform oriented matroid of rank three on four elements. We can further
assume X3 = X4 = Y1 = Y2 = +. In particular, there are cocircuits W and Z such
that W 0 = {1, 3}, Z0 = {2, 4}, and W2 = W4 = Z1 = Z3 = +. Consider the region,
D = s+1 ∩ s+2 ∩ s+3 ∩ s+4 ⊆ P(M). This is the quadrilateral region bounded by cocircuits
X, Y , Z, and W in Figure 4.

We claim that for each i > 4, the pseudosphere si can intersect the boundary of D in
at most two points. Indeed, suppose si intersects the boundary of D at a point p0 ∈ sj
for some j ∈ {1, 2, 3, 4}. Because M is uniform, p0 /∈ {X, Y, Z,W}, so sj is unique. Let
ϕi : [0, 1] → P(M) be a parametrization of si. We can assume ϕi(0) = p0 and ϕi(t)
passes into the interior of D for sufficiently small t > 0. Let t1 be the next time when
ϕi(t1) is on the boundary of D. Assume ϕi(t1) ∈ sk. Once again, sk is unique becauseM
is uniform. Further, k 6= j because otherwise sj would intersect si in at least four points:
ϕi(0), ϕi(t1), and their antipodes.

When t > 0 is sufficiently small, ϕi(t) ∈ s+j ∩ s+k . When t > t1 and t− t1 is sufficiently
small, ϕi(t) ∈ s+j ∩ s−k . By the definition of a pseudosphere arrangement, the image of ϕi
cannot cross back into s+k before it crosses into s−j . However, any other points where the
image of ϕi could intersect the boundary of D lie in s+j ∩ s+k . Thus ϕi(0) and ϕi(t1) are
the only points of intersection of si with the boundary of D.

Now we consider two paths from X to Y in G∗(M). The first path PW travels from
X to W along s1, then from W to Y along s3. The second path PZ travels from X to Z
along s2, then from Z to Y along s4. Let `(PW ) and `(PZ) denote the lengths of these
paths. Initially, in M′, `(PW ) = `(PZ) = 2.

For each i > 4, the pseudosphere si meets the boundary of D in at most two points.
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Figure 4: The unique rank-3 pseudosphere arrangement with four pseudolines.

This means `(PW ) + `(PZ) increases by at most two when we add si back into P(M).
Thus, in M,

`(PW ) + `(PZ) 6 4 + 2(n− 4) = 2n− 4.

By the pigeonhole principle, either `(PW ) 6 n − 2 or `(PZ) 6 n − 2, so dM(X, Y ) 6
n− 2.

Corollary 17. Let r > 3 and M ∈ UOM(n, r). If X, Y ∈ C∗(M) and |X0 \ Y 0| = 2,
then dM(X, Y ) 6 n− r + 1.

Proof. Let A = X0 ∩ Y 0. Let {se : e ∈ E(M)} be the pseudospheres in the Folkman-
Lawrence representation of M and let SA =

⋂
e∈A se. BecauseM is uniform, |A| = r− 3

and hence SA ≈ S2 is the Folkman-Lawrence representation of the uniform oriented
matroid M /A ∈ UOM(n− r + 3, 3).

Both X and Y are cocircuits on SA and clearly X 6= −Y , so by Theorem 16,

dM(X, Y ) 6 dM /A(X, Y ) 6 (n− r + 3)− 2 = n− r + 1.

Recall that in the proof of Theorem 16 for oriented matroids of rank three, the two
cocircuits we choose lie on four different hyperplanes, and they form a combinatorial
square. Each additional hyperplane will intersect the square twice, which implies that
one of the two paths will at most increase by one. Santos (personal communication) has
pointed out that this cannot be directly extended to establish Conjecture 1 in rank four.
For a realizable uniform oriented matroid of rank four, six hyperplanes will enclose a
combinatorial cube. For concreteness, we can consider the cube with −1 6 xi 6 1 for all
i = 1, 2, 3.

Figure 5 illustrates three edge-disjoint paths, colored red, green, and blue, from
(−1,−1,−1) to (1, 1, 1). Here, (−1,−1,−1) is the vertex incident to the three dotted
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edges, and (1, 1, 1) is its polar opposite. The three images show slices of the cube by
hyperplanes xi + xj = (2− εk)xk for all choices of {i, j, k} = {1, 2, 3} and with ε1, ε2, and
ε3 all distinct. Each plane intersects two edges incident to (−1,−1,−1) and two edges
incident to (1, 1, 1), and hence increases the total length of all three paths by at least four.
If each of the remaining n − 6 hyperplanes has one of the three illustrated types (with
the εk generic) then the total length of the red, blue, and green paths will be at least
4(n − 6) + 9. If there are approximately n−6

3
hyperplanes of each type, then each of the

red, green, and blue paths will have length at least
⌊
4
3
n
⌋
− 5.

Figure 5: Hyperplanes xi + xj = (2− εk)xk slicing the ±1 cube for {i, j, k} = {1, 2, 3}.

4.3 Results in low corank

Recall that the corank of an oriented matroid of rank r on n elements is equal to n−r.
Lemma 18. LetM∈ UOM(n, r) with n− r = k for k > 0. Then

diam(G∗(M)) 6 max{diam(G∗(M′)) :M′ ∈ UOM(r′ + k, r′), 2 6 r′ 6 k + 2}.

Proof. LetM be a uniform oriented matroid of corank k, and let X, Y ∈ C∗(M) such that
diam(G∗(M)) = dM(X, Y ). If Y = −X, we are done, since by, Lemma 5 the diameter of
any uniform oriented matroid of corank k is at least k + 2, and dM(X,−X) = k + 2. So
we assume that Y 6= −X.

Consider the contraction M′ =M /(X0 ∩ Y 0), and let X ′ and Y ′ be the images of X
and Y under this contraction. Let r′ = rank(M′) and n′ = |E(M′)|. We know that M′

is uniform because M is. Note that (X ′)0 ∩ (Y ′)0 = ∅ by construction, so supp(X ′) ∪
supp(Y ′) = E(M′). In addition, since M′ is uniform, | supp(X ′)| = | supp(Y ′)| = k + 1.
This shows |E(M′)| 6 2(k + 1). Further, supp(X ′) 6= supp(Y ′) because Y 6= −X, so
| supp(X ′) ∪ supp(Y ′)| > k + 2, which implies 2 6 r′ 6 k + 1, as |E(M′)| = r′ + k.

Then, as X ′, Y ′ ∈ C∗(M′) and G∗(M′) is a subgraph of G∗(M), we have that
diam(G∗(M)) = dM(X, Y ) 6 dM′(X ′, Y ′) 6 diam(G∗(M′)). Thus, we conclude that
for every matroid M of corank k, there exists a matroid M′ ∈ UOM(r′ + k, r′), where
2 6 r′ 6 k + 2, such that diam(G∗(M)) 6 diam(G∗(M′)).

Theorem 19. LetM∈ UOM(n, r) with n− r 6 4. Then diam(G∗(M)) = n− r + 2.
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Proof. If n− r 6 3 the theorem follows directly from Lemma 18 and Theorem 15.
When n−r = 4, by Lemma 18 we have ∆(r+4, r) 6 max26r′66{∆(r′+4, r′)}. However,

by Theorem 15, for 2 6 r′ 6 5, max{∆(r′+4, r′)} 6 r′+4−r′+2 = 6. So we only need to
consider M∈ UOM(10, 6). Let X, Y ∈ C∗(M) be such that diam(G∗(M)) = dM(X, Y ).
If Y = −X, the result holds by Lemma 5. If X0 ∩ Y 0 6= ∅, then as in Theorem 18, the
contraction M′ = M /(X0 ∩ Y 0) satisfies dM(X, Y ) 6 diam(M′). Since |E(M′)| 6 9,
the result holds by Theorem 15. So we may assume that X0 ∩ Y 0 = ∅.

Define T = X ◦ Y . Then, by Lemma 13 the graph G(T ) of T is isomorphic to the
graph GA(A) of A, where A is the abstract polytope on the covector of T with dimension
5 on 10 elements. However, by [1, Theorem 7.1] the diameter of GA(A) is 5, implying
that dM(X, Y ) = 5. Noting that dM(X,−X) = 6, we conclude that diam(G∗(M)) = 6
which completes the proof.

Note that while the theorems about coranks in this subsection are for uniform oriented
matroids, they are valid for general oriented matroids due to Lemma 4. Now we are ready
to combine all the results in this section to prove Theorem 6.

Proof. (of Theorem 6)
The proof of part (a) for small oriented matroids is in Theorem 15. The proof of part

(b) for rank three oriented matroids is in Theorem 16. The proof of part (c) for oriented
matroids of corank no more than four is in Theorem 19.

5 An Improved Quadratic Diameter Bound

LetM be an oriented matroid. Recall that a coline inM is a one-dimensional sphere in
the Folkman-Lawrence representation ofM. Now we present an improved quadratic upper
bound on ∆(n, r) for uniform oriented matroids, improving Theorem 2. In particular, our
expression (2) is tight for rank three. Our proof relies on a modification of Finschi’s
proof [12].

Proof. (of Theorem 7)
By Lemma 4, it suffices to consider the case that M is uniform. We prove the claim

by induction on |X0 \ Y 0|. If |X0 \ Y 0| = 1, then dM(X, Y ) 6 n− r + 1 by Lemma 5. If
|X0 \ Y 0| = 2, then dM(X, Y ) 6 n− r + 1 by Corollary 17.

Now we move on to the inductive step. Suppose |X0 \ Y 0| = ` > 3. Pick any element
e ∈ Y 0 \X0, and consider the coline U , with U0 = Y 0 \ {e}. Note that |U0 \X0| = `− 1.

Now we look more carefully at the coline U , which is a cycle on 2(n−r+2) cocircuits.
We distinguish ` pairs of these cocircuits. For each element f ∈ X0 \ U0, there is a
cocircuit Zf with (Zf )0 = U0 ∪ {f}. Because |X0 \ U0| = `, there are ` such pairs of
antipodal cocircuits, which we denote as ±Z1, . . . ,±Z` for simplicity.

The cocircuits Y and −Y are antipodal on U , and hence partition U into two halves,
each of which contains n − r + 1 cocircuits. Assume without loss of generality that
Z1, . . . , Z` all lie on one half of the coline (as it is partitioned by Y and −Y ), and further
that Z1, . . . , Z` are ordered by their distance from Y , with Z1 closest to Y and Z` farthest.
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Because there are (n − r + 2) − (` + 1) = n − r − ` + 1 remaining pairs of antipodal
circuits on U , and at most one element from each pair can lie on the arc from Z1 to −Z`

that contains Y , it follows that there exists a path of length at most
⌊
n−r−`+1

2

⌋
+ 1 from

Y to one of Z1 or −Z` along U . For simplicity, let Z denote whichever of Z1 and −Z` is
closer to Y along U .

In summary, we have shown that there exists a cocircuit Z whose distance to Y is at
most

⌊
n−r−`+1

2

⌋
+ 1 with |X0 \Z0| = `− 1. Because `− 1 6= 0, we know Z 6= −X as well.

The result now follows by induction, and after reindexing with k = `− 1 we have

dM(X, Y ) 6 n− r + 1 +

|X0\Y 0|−1∑
k=2

(⌊
n− r − k

2

⌋
+ 1

)
.

To get Eq. (3), note that |X0 \Y 0| 6 min(r−1, n− r+1), because |X0 \Y 0| 6 |X0| =
r − 1 and |X0 \ Y 0| 6 |E \ Y 0| = n− r + 1. So, when r > 4 and n− r > 2,

diam(G∗(M)) 6 n− r + 1 +

min(r−2,n−r)∑
k=2

(⌊
n− r − k

2

⌋
+ 1

)
.

6 Similarities to the diameter of polytopes problem and two
conjectures

One could hope that dM(X, Y ) 6 n − r + 1 provided X, Y ∈ C∗(M) are not antipodal
cocircuits. However, this is not the case. Matschke, Santos, and Weibel [22] built on the
methodology of Santos’s original non-Hirsch polytope [25] to construct a simple polytope
P20,40 of dimension 20 with 40 facets which has diameter 21. Let M20,40 be the oriented
matroid obtained by lifting P20,40 into R21 and intersecting its hyperplane arrangement
with the unit sphere. Since P20,40 is simple, M20,40 is uniform, and one of its topes is
P20,40. We will show that the oriented matroid M20,40 ∈ UOM(40, 21) has a pair of
non-antipodal cocircuits X and Y such that dM20,40(X, Y ) > 21 = n− r + 2.

Proof. (of Proposition 8)
Let X, Y be the pair of cocircuits that are of distance 21 in P20,40. Let E = {1, . . . , 40}.

After reorientation and relabeling, we may assume that X0 = {1, 2, . . . , 20}, X+ =
{21, . . . , 40} and Y 0 = {21, . . . , 40}, Y + = {1, . . . , 20}.

Consider a shortest path, γ, from X to Y in M20,40. If each cocircuit on γ belongs
to the tope P20,40, then its length is 21. So we may suppose instead that γ contains a
cocircuit Z that does not belong to P20,40. This means Z− 6= ∅.

Recall the notion of a “basic transformation” from the proof of Lemma 5. Each edge
in the cocircuit graph accounts for two basic transformations, which change some entry
on a cocircuit from +/− to 0 or from 0 to +/−.

Let i ∈ Z−. If Xi = + and Yi = 0, then walking from X to Y via Z requires at least
20 + 19 + 3 = 42 basic transformations. This is because each j ∈ X0 requires one basic
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transformation to become an element of Y +; each j ∈ X+ \ {i} requires one basic trans-
formation to become an element of Y 0, and i ∈ X+ requires two basic transformations
to become an element of Z− and one additional transformation to subsequently become
an element of Y 0. Similarly, if Xi = 0 and Yi = +, then walking from X to Y via Z also
requires at least 42 basic transformations. This tells us dM20,40(X, Y ) > 21 = n−r+2.

We now prove Theorem 9. Let M be a uniform oriented matroid. We say a path
X1, X2, . . . , Xk in the cocircuit graph G∗(M) stays on a tope T if each cocircuit X i is a
vertex of T .

Proof. (of Theorem 9) We used computers to look over all (chirotopes) oriented matroids
with n 6 10 computed by Finschi and Fukuda [13] (we used them already earlier in the
paper). We used the Python package NetworkX [9] to find all shortest paths between
a given pair of cocircuits and verify that one of the shortest paths between them is a
crabbed path. We also checked when shortest paths stay on a common tope. We found
that for allM∈ UOM(n, r) with n 6 8, there exists a crabbed path from X to Y whose
length is no bigger than the length of any path from X to Y in the entire cocircuit graph
M. But we eventually found a smallest counterexample in our search. This is an oriented
matroid with 9 elements in rank 4. The chirotope mapping of this counterexample is
+++++++++++++++++++++++++++++++++−−++++++
+++++++++−++−−+++++−+−−−+−−−−++−++−+−+++−+
−−+−−+++−−−−+−−++−−++++−−−−+−−++−−++−−−+−
shown here ordered by reverse lexicographical order. That is, the first two and the
last two signs in the list (shown in red there) are χ(1, 2, 3, 4, 5) = +, χ(1, 2, 3, 4, 6) =
+, χ(4, 6, 7, 8, 9) = +, χ(5, 6, 7, 8, 9) = −.

CocircuitX12 = (0, 0,−,−,−,−,−,−, 0) and cocircuit X37 = (0,−,−,−, 0, 0,−,−,+)
lie on the same tope. But as shown in Figure 6, the shortest path between X12 and X37

goes through cocircuits X85 and X79, where

X85 = (+, 0,−,−, 0,−,−,−, 0), X79 = (+, 0,−,−, 0, 0,−,−,+).

Note that X+
85 = {1} 6⊆ X+

12∪X+
37, and thus the shortest path is shorter than any crabbed

path.
Next, we take a hyperplane arrangement that realizes the tope in Figure 6 as a polytope

and add a tenth hyperplane that cuts through (among others) the edge between X37 and
X79, X85 and X12, as shown in Figure 7. By lifting all these hyperplanes (see Figure 1
for intuition of what is happening, we go from three to four dimensions), we obtain the
central hyperplane arrangement that yields a (realizable) uniform oriented matroid M′

of rank 4 with 10 elements. Below are the explicit equations of these ten hyperplanes of
the arrangement:

H0 : −8x1 − 15.99x2 − 9x3 + 160z = 0,

H1 : −56x1 + 112x2 − 39x3 + 672z = 0,

H2 : 56x1 − 112x2 − 39x3 + 448z = 0,
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Figure 6: The subgraph induced by the tope containing X12 and X37 (left) and a realiza-
tion of the tope as a 3-polytope (right).
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Figure 7: The subgraph after the tenth hyperplane is added, creating cocircuits
X ′A, . . . , X

′
H (left) and a realization of the tope and the hyperplane (right). The rele-

vant shortest path is X ′37 → X ′C → X ′79 → X ′85 → X ′G.

H3 : 8x1 + 16x2 − 9x3 = 0,

H4 : −2x2 − x3 + 12z = 0,

H5 : 280x1 − 31x3 = 0,

H6 : x3 = 0,

H7 : 2x2 − x3 + 4z = 0,

H8 : −280x1 − 31x3 + 3360z = 0,

H9 : x1 + 2x2 + 100x3 − 300z = 0.

After constructing the cocircuit graph of M′, we find that the path X ′37 → X ′C →
X ′79 → X ′85 → X ′G, going from X ′37 to X ′G, leaves the tope they share. Their common
tope is composed by the red and yellow vertices in Figure 7 (these are points with indices
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A to H). The path we proposed is shorter than any path from X ′37 to X ′G staying on
their common tope. This shows two cocircuits on a common tope while the shortest
path between them leaves the tope. This completes the proof of the second part of the
theorem.

Remark 20. For polytopes, t is natural to ask the following question: if two vertices lie
on a common facet, does there exist a shortest path between them that stays within
that facet? One can show that this property implies the non-revisiting path property
[19], and therefore implies the (linear) Hirsch conjecture. The linear Hirsch conjecture
was disproved by Santos, thus we know the polytope version of must be false starting in
dimension 20. But Aviv Adler (personal communication) pointed out to us that already in
three dimensions it is possible to have two vertices on a common facet while the shortest
path between them leaves the facet. Our Theorem 9 demonstrates this fails for oriented
matroids too and here we provided the smallest counterexample.
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[11] S. Felsner, R. Gómez, K. Knauer, J. J. Montellano-Ballesteros, and R. Strausz. Cu-
bic time recognition of cocircuit graphs of uniform oriented matroids. European J.
Combin., 32(1):60–66, 2011. https://doi.org/10.1016/j.ejc.2010.07.012.

[12] L. Finschi. A graph theoretical approach for reconstruction and
generation of oriented matroids. PhD thesis, ETH Zürich, 2001.
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