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Abstract. Every generic linear functional f on a convex polytope P
induces an orientation on the graph of P . From the resulting directed
graph one can define a notion of f -arborescence and f -monotone path on
P , as well as a natural graph structure on the vertex set of f -monotone
paths. These concepts are important in geometric combinatorics and
optimization.

This paper bounds the number of f -arborescences, the number of
f -monotone paths, and the diameter of the graph of f -monotone paths
for polytopes P in terms of their dimension and number of vertices or
facets.

1. Introduction and results

Consider a d-dimensional convex polytope P in Euclidean space Rd and a
generic linear functional f on P , meaning a linear functional on Rd which is
nonconstant on every edge of P . This paper investigates extremal enumera-
tive problems about f -arborescences and f -monotone paths on the graph of
P . We first introduce briefly these notions and refer to Section 2 for more
information.

The functional f , which we think of as an objective function, induces an
orientation on the graph of P which orients every edge in the direction of
increasing objective value. Such orientations of polytope graphs are called
LP-admissible; they are of great importance in the study of the simplex
method for linear optimization (see [12, 18] and the references given there).
The resulting directed graph, consisting of all vertices and oriented edges
of P and denoted by ω(P, f), is acyclic and has a unique source and a
unique sink on every face of P . An f -monotone path on P is any directed
path in ω(P, f) having as initial and terminal vertex the unique source, say
vmin, and the unique sink, say vmax, of ω(P, f) on P , respectively. An f -
arborescence is any (necessarily acyclic) spanning subgraph A of the directed
graph ω(P, f) such that for every vertex v of P there exists a unique directed
path in A with initial vertex v and terminal vertex vmax (see Figure 1 for
an example). As explained in the sequel, f -arborescences and f -monotone
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Figure 1. The regular dodecahedron (center), with exam-
ples of an f -monotone path (left) and an f -arborescence
(right) for one of its LP-admissible orientations.

paths are important notions in geometric combinatorics and optimization.
When the context is clear, we simply refer to them as arborescences and
monotone paths.

The set of all f -monotone paths on P can be given a natural graph struc-
ture as follows. We say that two f -monotone paths on P differ by a polygon
flip (also called polygon move, or simply flip) across a 2-dimensional face
F if they agree on all edges not lying on F but follow the two different f -
monotone paths on F , from the unique source to the unique sink of ω(P, f)
on F . The graph of f -monotone paths (also called flip graph) on P is de-
noted by G(P, f) and is defined as the simple (undirected) graph which has
nodes all f -monotone paths on P and as edges all unordered pairs of such
paths which differ by a polygon flip across a 2-dimensional face of P . The
graph G(P, f) is connected; its higher connectivity was studied in [3], where
it was shown that G(P, f) is 2-connected for every polytope P of dimension
d ≥ 3 and (d−1)-connected for every simple polytope P of dimension d (see
Figure 2 for an example).

The main questions addressed in this paper ask to determine:

• the minimum and maximum number of f -arborescences on P ,
• the minimum and maximum number of f -monotone paths on P , and
• the minimum and maximum diameter of the graph G(P, f),

where P ranges over all convex polytopes of given dimension and number of
vertices and f ranges over all generic linear functionals on P . We will also
consider these (or similar) questions when P is restricted to the important
class of simple polytopes.

There are good reasons, from both a theoretical and an applied perspec-
tive, to study these problems. One motivation comes from the connection
of f -arborescences and f -monotone paths to the behavior of the simplex
method [23]. The simplex method produces a partial f -monotone path,
traversing ω(P, f) from an initial vertex to the optimal one. The simplex
method has to make decisions to choose the improving arcs via a pivot rule.
It is an open problem to find the longest possible simplex method paths and
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Figure 2. A polygon flip on the oriented dodecahedron and
the resulting flip graph

little is known about bounds (see [9] and references therein). Clearly, the
lengths of f -monotone paths are of great interest, as they bound the number
of steps in the simplex algorithm. A pivot rule gives a mapping from the set
of instances of the algorithm to the set of f -arborescences of ω(P, f). Two
pivot rules are equivalent if they always produce the same f -arborescence.
Therefore, given P and f , there are only finitely many equivalence classes
of pivot rules and counting f -arborescences is a proxy for the problem of
counting pivot rules.

Another motivation comes from enumerative and polyhedral combina-
torics, especially from the theory of fiber polytopes [7]. The flip graph of
f -monotone paths on P contains a well behaved subgraph, namely that in-
duced on the set of coherent f -monotone paths (these are the monotone
paths which come from the shadow vertex pivot rule [11]). This subgraph
is isomorphic to the graph of a convex polytope of dimension d − 1, where
d = dim(P ), which is a fiber polytope known as a monotone path polytope
[7, Section 5] [6]. Monotone paths, monotone path polytopes and flip graphs
of polytopes of combinatorial interest often have elegant combinatorial in-
terpretations. For example, the monotone path polytope of a cube is a
permutohedron [7, Example 5.4], while the flip graph of the latter encodes
reduced decompositions of a certain permutation and the braid relations
among them [8, Section 2.4]. More generally, monotone paths on zonotopes
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[4, 22] correspond to certain galleries of chambers in a central hyperplane
arrangement and the problem to estimate the diameter of the flip graph in
this important special case has been intensely studied in [14, 13, 22]. The
diameter of flip graphs of fiber polytopes has also been studied in [20, 21].
Moreover, certain zonotopes are in fact monotone path polytopes coming
from projecting cyclic polytopes [2, Section 3], or polytopes which look
like piles of cubes [1]. Monotone path polytopes are also related to frac-
tional power series solutions of algebraic equations [16]. The combinatorial
properties of f -monotone paths and flip graphs have thus been studied in
comparison to those of coherent f -monotone paths, but also because of their
own independent interest.

A special role in our results is played by a distinguished member X(n) of
the family of stacked 3-dimensional simplicial polytopes with n vertices. As
it turns out, this polytope maximizes the number of both f -arborescences
and f -monotone paths, and possibly the diameter of the flip graph too, in
this dimension. We refer to Section 2.1 for a discussion of stacked polytopes
and the precise definition of X(n), which we always consider endowed with
the specific LP-allowable orientation given there. We will typically denote
by n (and sometimes by n+ 1) and m the number of vertices and facets of
P , respectively. Let us also denote by

• τ(P, f) the number of f -arborescences on P ,
• µ(P, f) the number of f -monotone paths on P ,
• diam(G) the diameter of the graph G = G(P, f).

Our first two main results provide a fairly complete description of tight
bounds for the numbers of f -arborescences and f -monotone paths and the
diameter of the graph of f -monotone paths on a 3-dimensional polytope
with given number of vertices. The upper bound for the number of f -
monotone paths involves the sequence of Tribonacci numbers (sequence
A000073 in [24]), defined by the recurrence T0 = T1 = 1, T2 = 2 and
Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.

Theorem 1.1. For n ≥ 4,

2(n− 1) ≤ τ(P, f) ≤ 2 · 3n−3(1) ⌈n
2

⌉
+ 2 ≤ µ(P, f) ≤ Tn−1(2)

for every 3-dimensional polytope P with n vertices and every generic linear
functional f on P . The upper bound is achieved by the stacked polytope
X(n) in both situations.

The lower bound of (1) can be achieved by pyramids and that of (2) by
prisms, when n is even, and by wedges of polygons over a vertex, when n is
odd. In particular, prisms minimize the number of f -monotone paths over
all simple 3-dimensional polytopes with given number of vertices. Moreover,

τ(P, f) = 3 · 2(n−2)/2 = 3 · 2m−3

for every 3-dimensional simple polytope P with n vertices and m facets.
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Theorem 1.2. For every n ≥ 4,

(3) d(n− 2)2

4
e ≤ max diamG(P, f) ≤ (n− 2)bn− 1

2
c,

where P ranges over all 3-dimensional polytopes with n vertices and f ranges
over all generic linear functionals on P .

Our results are substantially weaker in dimensions d ≥ 4 and leave plenty
of room for further research. The upper bounds for the number of f -
arborescences and the number of f -monotone paths are almost trivial, but
are included here for the sake of completeness.

Theorem 1.3. (a) For n > d ≥ 4,

τ(P, f) ≤ (n− 1)!

µ(P, f) ≤ 2n−2

for every d-dimensional polytope P with n vertices and every generic
linear functional f on P . These bounds are achieved by any 2-
neighborly d-dimensional polytope with n vertices.

(b) For m > d ≥ 4,

d · ((d− 1)!)m−d ≤ τ(P, f) ≤
b d
2
c∏

i=1

i(
m−d+i−1

i )
d∏

i=b d+1
2
c

i(
m−i−1

d−i )

for every simple d-dimensional polytope P with m facets and every
generic linear functional f on P . The lower and upper bounds are
achieved by the polar duals of stacked simplicial polytopes and the
polar duals of neighborly simplicial polytopes, respectively, of dimen-
sion d with m vertices.

The proofs of the results on f -arborescences, given in Section 3, rely on
the fact that τ(P, f) is equal to the product of the outdegrees of the vertices
of the directed graph ω(P, f) other than the sink (see Proposition 3.1).
This has the curious consequence that τ(P, f) is independent of f for every
simple polytope P . The proofs of the results on f -monotone paths and the
diameter of flip graphs, given in Sections 4 and 5, respectively, use ideas
from [3, Section 4] [6], reviewed in Section 2.2, to construct G(P, f) as
an inverse limit in the category of graphs and simplicial maps. Section 2
contains preliminary material on polytopes, needed to understand the main
results and their proofs, defines the stacked polytope X(n) and proves a
combinatorial lemma about its diameter (Lemma 2.1) which implies the
lower bound in Theorem 1.2. Section 6 concludes with comments about the
missing bounds and related open problems.
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2. Preliminaries

This section reviews basic background and terminology on convex poly-
topes and monotone paths and discusses a few constructions and a prelim-
inary result (Lemma 2.1) which will be useful in the sequel. We use the
notation [n] := {1, 2, . . . , n} for any positive integer n and refer the reader
to the book [25] for any undefined concepts and terminology. In particular,
the last chapter contains an introduction to fiber polytopes.

2.1. Some special polytopes. Special classes of polytopes play an im-
portant role in this paper, since they are optimal solutions of the extremal
problems considered. Recall that a polytope is called simplicial if all its
proper faces are simplices. The simple polytopes are the polar duals of sim-
plicial polytopes. A convenient way to encode the numbers of faces of each
dimension of a simple or simplicial d-dimensional polytope P is provided by
the h-vector, denoted as h(P ) = (h0(P ), h1(P ), . . . , hd(P )); see pages 8, 59
and 248 of [25] for details and more information. The h-vector of a sim-
ple polytope P has nonnegative integer coordinates which afford an elegant
combinatorial interpretation: hk(P ) equals the number of vertices of P of
outdegree k in the directed graph ω(P, f), discussed in the introduction, for
every generic linear functional f on P (see Sections 3.4 and 8.3 and Exercise
8.10 in [25]); in particular, the multiset of such outdegrees is independent of
f .

A polytope is called 2-neighborly if every pair of vertices is connected by
an edge. A d-dimensional simplicial polytope is called neighborly if any bd/2c
or fewer of its vertices form the vertex set of a face. Neighborly polytopes
other than simplices (cyclic polytopes being distinguished representatives)
exist in dimensions four and higher. Their significance comes from the fact
that they maximize the entries of the h-vector among all polytopes with
given dimension and number of vertices (see pages 15-16, and 254-257 of
[25]); in particular, they maximize the numbers of faces of each dimension
among such polytopes. The h-vector of a neighborly d-dimensional polytope
P with n vertices is given by the formulas hk(P ) =

(
n−d+k−1

k

)
for 0 ≤ k ≤

bd/2c and hk(P ) = hd−k(P ) for 0 ≤ k ≤ d (see Theorem 8.21 and Lemma
8.26 of [25]).

A stacked polytope is any simplicial polytope which can be obtained from
a simplex by repeatedly glueing other simplices of the same dimension along
common facets, so as to preserve convexity at each step. Equivalently, the
boundary complex of a stacked polytope can be obtained combinatorially
from that of a simplex by successive stellar subdivisions on facets. The h-
vector of any stacked polytope P of dimension d with n vertices has the
simple form h(P ) = (1, n − d, ..., n − d, 1) (see [17]). A fundamental re-
sult of Barnette [5] states that among all simplicial polytopes with given
dimension and number of vertices, the stacked polytopes have the fewest
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Figure 3. Example of the polytope X(10)

possible faces of each dimension. Moreover, as a consequence of the gener-
alized lower bound theorem, stacked polytopes minimize the entries of the
h-vector among all such polytopes (see [15, 19]).

Many different combinatorial types of stacked polytopes are possible. For
each n ≥ 4, we will consider a 3-dimensional stacked polytope of special
type with n vertices, denoted by X(n). This polytope comes together with a
linear functional f which linearly orders its vertices as f(v1) < f(v2) < · · · <
f(vn). The associated triangulation comprises of all faces of the simplices
with vertex sets {v1, v2, v3, v4}, {v2, v3, v4, v5}, . . . , {vn−3, vn−2, vn−1, vn}, so
the dual graph of this triangulation is a path (these dual graphs for general
stacked polytopes are trees). The regularity of this triangulation easily
implies that such polytope X(n) and linear functional f exist for every
n ≥ 4. Figure 3 shows an example with n = 10.

A crucial property of X(n) is that the directed graph ω(X(n), f) has as
arcs the pairs (vi, vj) for i, j ∈ {1, 2, . . . , n} with j ∈ {i+ 1, i+ 2, i+ 3}. The
following combinatorial lemma establishes the lower bound for the diameter
of flip graphs, claimed in Theorem 1.2.

Lemma 2.1. The diameter of the graph of f -monotone paths on X(n) is
bounded below by d(n− 2)2/4e for every n ≥ 4.

Proof. Let G be the graph of f -monotone paths on X(n). Denoting f -
monotone paths as sequences of vertices, we set

γ =


(v1, v3, v5, . . . , vn−1, vn), if n ≡ 0 (mod 2)

(v1, v2, v4, . . . , vn−3, vn−1, vn), if n ≡ 1 (mod 4)

(v1, v3, v5, . . . , vn−2, vn), if n ≡ 3 (mod 4)

and δ = (v1, v2, v3, . . . , vn). We claim that γ and δ are at a distance of
d(n− 2)2/4e apart in G. Clearly, the lemma follows from the claim.

We only consider the case that n is even, the other two cases being similar.
By passing to the complement of the set of vertices appearing on an f -
monotone path on X(n), such paths correspond bijectively to the subsets
of {v2, v3, . . . , vn−1} containing no three consecutive elements vk−1, vk, vk+1.
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The subset which corresponds to γ, for instance, is {v2, v4, . . . , vn−2} and
the one which corresponds to δ is the empty set. The 2-dimensional faces of
X(n) have vertex sets {v1, v2, v3}, {vn−2, vn−1, vn} and {vk−1, vk, vk+2} and
{vk−1, vk+1, vk+2} for 2 ≤ k ≤ n−2. From these facts it follows that polygon
flips on f -monotone paths on X(n) correspond to the following operations
on the corresponding subsets:

• removal of v2 or vn−1, if present,
• inclusion of v2, if absent and not both v3 and v4 are present,
• inclusion of vn−1, if absent and not both vn−2 and vn−3 are present,
• removal or inclusion of one of vk, vk+1, if the other is present but
vk−1 and vk+2 are absent.

Since the subsets which correspond to f -monotone paths on X(n) con-
tain no three consecutive elements, their maximal strings of consecutive
elements are either singletons, or contain exactly two elements. Moreover,
the strings cannot be merged with these operations, they cannot be removed
except for {2} and {n − 1}, and each operation affects only one of them.
To reach the empty set from {v2, v4, . . . , vn−2}, one needs to remove each of
v2, v4, . . . , vn−2. Regardless of the order in which operations are performed,
at least one is needed to remove v2, at least three more are needed to remove
vn−2, at least five more are needed to remove v4, and so on. For example,
to remove vn−2 in at most three steps one needs to first include vn−1, then
remove vn−2 and finally remove vn−1 and to remove v4 in at most five steps
one needs to first include v3, then remove v4, include v2, remove v3 and fi-
nally remove v2. This yields a distance of 1+3+5+ · · ·+(n−3) = (n−2)2/4
between γ and δ in G. �

Remark 2.2. Perhaps it is instructive to visualize the process of flipping
γ to δ, described in the previous proof. The two f -monotone paths are
shown on Figure 4 for n = 10 and the sequence of 2-dimensional faces
(recording only vertex indices, for simplicity) across which the flips occur
could be {1, 2, 3}, {7, 9, 10}, {7, 8, 10}, {8, 9, 10}, {2, 3, 5}, {2, 4, 5}, {1, 2, 4},
{1, 3, 4}, {1, 2, 3}, {5, 7, 8}, {5, 6, 8}, {6, 8, 9}, {6, 7, 9}, {7, 9, 10}, {7, 8, 10}
and {8, 9, 10}. �

Finally, we consider prisms and wedges of polygons. Given a (d − 1)-
dimensional polytope Q, the prism over Q is the d-dimensional polytope
defined as the Cartesian product Q× [0, 1]. The wedge of Q over a face F of
Q is the d-dimensional polytope W obtained combinatorially from the prism
Q× [0, 1] by collapsing the face F × [0, 1] to F × 0. Note that Q becomes a
facet of W and that if F is a facet and Q is simple, then so is W . We will
apply the wedge construction in the special cases that Q is a polygon and
F is one of its vertices or edges.

2.2. The graph of f-monotone paths. Let P be a d-dimensional poly-
tope and f be a generic linear functional on P . We will assume that f does
not take the same value on any two distinct vertices of P .
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Figure 4. Two monotone paths on X(10)

F

F2

F1

Figure 5. The wedge of a pentagon over an edge

To investigate the graph of f -monotone paths on P , we will describe
another way to construct it from simpler graphs, arising in the fibers of the
restriction of the projection map f on P . The technical device needed, which
we now review, is the inverse limit in the category of graphs and simplicial
maps. This concept was introduced in [3, Section 4] (with motivation coming
from [6]) to study the higher connectivity of G(P, f); it leads to various more
general graphs of partial f -monotone paths on P , a useful notion which
allows for inductive arguments.

Let us linearly order the vertices v0, v1, . . . , vn of P so that f(v0) <
f(v1) < · · · < f(vn). We recall that for every interior point t of the in-
terval f(P ), the fiber P (t) := f−1(t)∩P of the map f : P → R is a (d− 1)-
dimensional polytope and thus it has a well defined graph. Setting ti = f(vi)
for 0 ≤ i ≤ n, we may thus consider the graph Gi of P (ti) for 0 ≤ i ≤ n and
the graph Gi,i+1 of P (t) for some ti < t < ti+1, for 0 ≤ i ≤ n−1 (the precise
value of t being irrelevant because, by construction, the other choices of t in
the same interval give a normally equivalent fiber P (t)); see Figure 6 for an
example. Considering these graphs as one-dimensional simplicial complexes,
we have a diagram
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(4)

G0,1
α1−→ G1

β1←− G1,2
α2−→ G2

β2←− · · · βn−2←− Gn−2,n−1
αn−1−→ Gn−1

βn−1←− Gn−1,n

of graphs and simplicial maps for which αi : Gi−1,i → Gi and βi : Gi,i+1 →
Gi result from the degeneration of the fiber P (t) when t approaches ti, with
ti−1 < t < ti or ti < t < ti+1, respectively (recall that a simplicial map
of one-dimensional simplicial complexes maps vertices to vertices and either
maps edges linearly onto edges, or contracts them to vertices; in particular,
such a map is determined by its images on vertices).

The inverse limit G of this diagram is defined as follows. The nodes are
the sequences

(v0,1, v1,2, . . . , vn−1,n),

where vi−1,i is a vertex of Gi−1,i for all i ∈ [n] and αi(vi−1,i) = βi(vi,i+1)
for all i ∈ [n − 1]. Two such sequences, say (u0,1, u1,2, . . . , un−1,n) and
(v0,1, v1,2, . . . , vn−1,n), are adjacent nodes in G if there exists a nonempty
interval I ⊆ [n] such that:

• ui−1,i and vi−1,i are adjacent in Gi−1,i for i ∈ I,
• ui−1,i = vi−1,i for i ∈ [n]rI, and
• the edges {ui−1,i, vi−1,i} and {ui,i+1, vi,i+1} are mapped homeomor-

phically onto the same edge of Gi by αi and βi, respectively, when-
ever i, i+ 1 ∈ I.

This construction associates an inverse limit graph to any diagram of
graphs and simplicial maps (4). As explained in [3, Section 4] (see [3, Propo-
sition 4.1]), the graph G is isomorphic to G(P, f) when the diagram comes
from a polytope P and linear functional f , as just described. The inverse
limit of a subdiagram of (4) of the form

Gk−1,k
αk−→ Gk

βk←− Gk,k+1
αk+1−→ · · ·

β`−1←− G`−1,`
α`−→ G`

β`←− G`,`+1,

considered in Sections 4 and 5, has nodes which can be viewed as partial
f -monotone paths on P , starting at the fiber P (t) with tk−1 < t < tk and
ending at P (t′) with t` < t′ < t`+1, and adjacency given by a suitable
extension of the notion of polygon flip, presented in the introduction.

3. On the number of arborescences

As explained in the introduction, we are interested in counting f -arborescences
on a polytope P , meaning oriented spanning trees in the directed graph
ω(P, f) which are rooted at the unique sink vmax. Recall that τ(P, f) de-
notes the number of f -arborescences on P . The following statement provides
an explicit product formula for this number.
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Figure 6. A combinatorial cube and some of its fibers

Proposition 3.1. Given a d-dimensional polytope P and generic linear
functional f , let outf (v) denote the outdegree of the vertex v of P in the
directed graph ω(P, f). Then,

τ(P, f) =
∏

v 6=vmax

outf (v),

where the product ranges over all vertices of P other than the sink vmax. In
particular, if P is simple, then

τ(P, f) =
d∏
i=1

ihi(P )

is independent of f .

Proof. Since ω(P, f) is acyclic, an f -arborescence is uniquely determined by
a choice of edge coming out of v for every vertex v of ω(P, f) other than
the sink vmax. Since there are exactly outf (v) choices for every such v, the
proof of the first formula follows. The second formula follows from the first
and the combinatorial interpretation of the h-vector of a simple polytope P ,
mentioned in Section 2.1. �

Remark 3.2. Since every edge of ω(P, f) has a unique initial vertex, the
sum of the outdegrees outf (v) of the vertices of P in the directed graph
ω(P, f) is equal to the number of edges of P .
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Corollary 3.3. For m > d ≥ 4, the maximum number of f -arborescences
over all simple d-dimensional polytopes with m facets is achieved by the polar
duals of neighborly polytopes and is given by the formula

max τ(P, f) =

b d
2
c∏

i=1

i(
m−d+i−1

i )
b d−1

2
c∏

i=0

(d− i)(
m−d+i−1

i ).

Similarly, the minimum number of f -arborescences in this situation is achieved
by the polar duals of stacked polytopes and is given by the formula

min τ(P, f) = d · ((d− 1)!)m−d .

For 3-dimensional simple polytopes P with m facets, τ(P, f) = 3 · 2m−3.

Proof. The case d ≥ 4 follows from the last sentence of Proposition 3.1, the
upper and lower bound theorems for the h-vector of a simplicial polytope,
discussed in Section 2.1, and the formulas for the h-vectors of d-dimensional
neighborly and stacked simplicial polytope with m vertices given there. The
case d = 3 follows again from the second formula of Proposition 3.1, since
h0(P ) = h3(P ) = 1 and h1(P ) = h2(P ) = m − 3 for every 3-dimensional
simple polytope P with m facets. �

The following two statements apply to general polytopes. Combined with
Corollary 3.3, they imply the results about f -arborescences stated in the
introduction.

Theorem 3.4. For n > d ≥ 3, the maximum number of f -arborescences
over all d-dimensional polytopes with n vertices is achieved by the stacked
polytope X(n) for d = 3 and by any 2-neighborly polytope for d ≥ 4. This
number is equal to 2 · 3n−3 and (n− 1)! in the two cases, respectively.

Proof. Let us order the vertices v1, v2, . . . , vn of the d-dimensional polytope
P so that f(v1) ≤ f(v2) ≤ · · · ≤ f(vn), where vn = vmax. Then, arcs of
the directed graph ω(P, f) can only be pairs (vi, vj) with i < j and hence
outf (vi) ≤ n− i for every i ∈ [n]. Thus, in view of Proposition 3.1, we get

τ(P, f) =
n−1∏
i=1

outf (vi) ≤
n−1∏
i=1

(n− i) = (n− 1)!

and equality holds if and only if P is 2-neighborly.
Since no such polytopes other than simplices exist in dimension d = 3,

this case has to be treated separately. Setting di = outf (vi) for i ∈ [n−1], we
have positive integers d1, d2, . . . , dn−1 such that dn−1 = 1 and dn−2 ∈ {1, 2}.
Since P can have no more than 3n− 6 edges, we have d1 +d2 + · · ·+dn−1 ≤
3n−6 by Remark 3.2. It is an elementary fact that, under these assumptions,
the product τ(P, f) = d1d2 · · · dn−1 is maximized when dn−1 = 1, dn−2 = 2
and di = 3 for every i ∈ [n − 3]. Exactly that happens for the stacked
polytope X(n) and the proof follows. �
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Theorem 3.5. For all n ≥ 4, the minimum number of f -arborescences
over all 3-dimensional polytopes with n vertices is equal to 2(n− 1). This is
achieved by any pyramid P and any generic linear functional f which takes
its minimum value on P at the apex.

Proof. As a simple application of Proposition 3.1, we have τ(P, f) = 2(n−1)
for every pyramid P over an (n−1)-gon and every generic functional f which
takes its minimum value on P at the apex.

We now consider any 3-dimensional polytope P with n vertices and any
generic functional f on P . We need to show that τ(P, f) ≥ 2(n − 1). We
may linearly order the vertices v1, v2, . . . , vn of P in the order of decreasing
outdegree in the directed graph ω(P, f) and denote by k the number of
those vertices which have outdegree larger than one. Then, k ≥ 2 and the
respective outdegrees d1, d2, . . . , dn of v1, v2, . . . , vn satisfy d1, d2, . . . , dk ≥ 2,
dn = 0 and di = 1 for every other value of i. Letting D1, D2, . . . , Dn be the
degrees of v1, v2, . . . , vn in the undirected graph of P , respectively, we have
τ(P, f) = d1d2 · · · dk and

2 ·
n∑
i=1

di =
n∑
i=1

Di

by Remark 3.2. Clearly, Di = di for one value of i ∈ {1, 2, . . . , k} (the
one corresponding to the source vertex), Di ≥ di + 1 for every other such
value and Di ≥ 3 for all k < i ≤ n. These considerations result in the
inequality d1 + d2 + · · · + dk ≥ n + 1 and thus, it remains to show that
d1d2 · · · dk ≥ 2(n−1) for every k ≥ 2 and all d1, d2, . . . , dk ∈ {2, 3, . . . , n−1}
summing at least to n+ 1. Indeed, from the inequality ab > (a − 1)(b + 1)
for integers a ≤ b, applied repeatedly when b is the largest of d1, d2, . . . , dk
and a is any other number from these larger than 2, we get

d1d2 · · · dk ≥ (d1 + d2 + · · ·+ dk − 2k + 2) · 2k−1 ≥ (n− 2k + 3) · 2k−1.
Applying repeatedly the fact that 2m ≥ m+ 2 for m ≥ 2, we conclude that
d1d2 · · · dk ≥ 2(n− 1) and the proof follows. �

More generally, for any d ≥ 3, the (d − 2)-fold pyramid P over an (n −
d+ 2)-gon has n vertices and dimension d. Moreover, if f is chosen so that
every cone vertex has smaller objective value than any of the vertices of
the (n − d + 2)-gon, then the number of f -arborescences on P is equal to
2(n− 1)(n− 2) · · · (n− d+ 2).

Question 3.6. What is the minimum number of f -arborescences over all
d-dimensional polytopes with n vertices, for d ≥ 4? Does it equal 2(n −
1)(n− 2) · · · (n− d+ 2) for all n > d ≥ 4?

4. On the number of monotone paths

This section investigates the smallest and largest possible number of f -
monotone paths on polytopes. For notational convenience, we let v0, v1, . . . , vn
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be the vertices of a polytope P , linearly ordered so that f(v0) < f(v1) <
· · · < f(vn), as in Section 2.2. We recall that µ(P, f) denotes the number
of f -monotone paths on P and that we refer to general directed paths in
ω(P, f) as partial f -monotone paths, i.e., they may start or end at vertices
other than vmin or vmax.

The following formula is the key to most results in this section.

Lemma 4.1. The number of f -monotone paths on P can be expressed as

µ(P, f) = 1 +

n−1∑
k=0

(dk − 1)µk(P, f),

where dk = outf (vk) is the outdegree of vk in ω(P, f) and µk(P, f) stands
for the number of partial f -monotone paths on P with initial vertex v0 and
terminal vertex vk.

Proof. Let P (t) = f−1(t) ∩ P be the fibers of the map f : P → R, as in
Section 2.2, and ti = f(vi) for 0 ≤ i ≤ n. For 0 ≤ k ≤ n − 1 let Hk(P, f)
be the set of partial f -monotone paths on P having initial vertex v0 and
ending in the fiber P (t) with tk < t < tk+1. Formally, these are essentially
the nodes of the inverse limit of the part

G0,1
α1−→ G1

β1←− G1,2
α2−→ G2

β2←− · · · αk−→ Gk
βk←− Gk,k+1

of the diagram (4). Let ηk(P, f) be the number of these partial f -monotone
paths. We claim that

(5) ηk(P, f)− ηk−1(P, f) = (dk − 1)µk(P, f)

for every k ∈ [n− 1]. Since η0(P, f) = outf (v0) = d0 and µ0(P, f) = 1, this
implies that

ηk(P, f) = 1 +

k∑
i=0

(di − 1)µi(P, f)

for 0 ≤ k ≤ n − 1. Since ηn−1(P, f) = µn(P, f) = µ(P, f), the desired
formula follows as the special case k = n− 1 of this equation.

To verify (5), let ϕk : Hk(P, f)→ Hk−1(P, f) be the natural map obtained
by restriction of diagrams. More intuitively, ϕk(γ) is obtained from γ ∈
Hk(P, f) by removing its last edge. Paths in Hk−1(P, f) and Hk(P, f) either
pass through vertex vk or not, depending on whether or not their last edge
maps to vk under the map αk or βk, respectively. Clearly, for every δ ∈
Hk−1(P, f) which passes through vk there are exactly dk paths γ ∈ Hk(P, f)
such that ϕk(γ) = δ, obtained by choosing an edge of ω(P, f) coming out of
vk and attaching it to δ, while for every δ ∈ Hk−1(P, f) which does not pass
through vk there is a unique path γ ∈ Hk(P, f) such that ϕk(γ) = δ. These
observations imply directly Equation (5) and the proof follows. �

Recall that the Tribonacci sequence (Tn) is defined by the recurrence
relation T0 = T1 = 1, T2 = 2 and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 3.
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Theorem 4.2. The maximum number of f -monotone paths over all 3-
dimensional polytopes with n + 1 vertices is equal to the nth Tribonacci
number Tn for every n ≥ 3. This is achieved by the stacked polytope X(n).

Proof. We proceed by induction on n. The result holds for n = 3, since
there are exactly T3 = 4 monotone paths on any 3-dimensional simplex. We
assume that it holds for integers less than n and consider a 3-dimensional
polytope P with n + 1 vertices v0, v1, . . . , vn, linearly ordered as in the be-
ginning of this section by a generic functional f .

We wish to apply Lemma 4.1. Since partial f -monotone paths on P with
initial vertex v0 and terminal vertex vk are f -monotone paths on the convex
hull of v0, v1, . . . , vk, we have µk(P, f) ≤ Tk for k ∈ {3, 4, . . . , n − 1} by the
induction hypothesis. Since this bound holds trivially for k ∈ {0, 1, 2} as
well, from Lemma 4.1 we get

µ(P, f) ≤ 1 +

n−1∑
k=0

(dk − 1)Tk.

To bound the right-hand side, we note that

dn−k + dn−k+1 + · · ·+ dn−1 ≤ 3k − 3

for k ∈ {2, 3, . . . , n − 1}, since dn−k + dn−k+1 + · · · + dn−1 is equal to the
number of edges of P connecting vertices vn−k, vn−k+1, . . . , vn and hence to
the number of edges of a planar simple graph with k + 1 vertices. From
these inequalities and the trivial one dn−1 ≤ 1, and setting T−1 := 0, we get

n−1∑
k=0

dkTk =
n∑
k=1

(dn−1 + dn−2 + · · ·+ dn−k)(Tn−k − Tn−k−1)

≤ (Tn−1 − Tn−2) + (3k − 3)
n∑
k=2

(Tn−k − Tn−k−1)

= Tn−1 + 2Tn−2 + 3Tn−3 + 3Tn−4 + · · ·+ 3T0

=
n∑
k=1

Tk,

where the last equality comes from summing the recurrence Tk = Tk−1 +
Tk−2 + Tk−3 for k ∈ [n]. We conclude that

µ(P, f) ≤ 1 +
n−1∑
k=0

(dk − 1)Tk = 1 +
n−1∑
k=0

dkTk −
n−1∑
k=0

Tk ≤ Tn.

This completes the induction.
Finally, it is straightforward to verify that the number of f -monotone

paths on X(n+ 1) satisfies the Tribonacci recurrence (or alternatively, that
all inequalities hold as equalities in the previous argument) and is thus equal
to Tn for every n. �
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Remark 4.3. The number of f -monotone paths on a polytope P with n+1
vertices is no larger than the number of subsets of its vertex set containing
the source and the sink and hence at most 2n−1. Equality holds exactly
when P is 2-neighborly, meaning that the 1-skeleton of P is the complete
graph on n+ 1 vertices, since then every such subset is the vertex set of an
f -monotone path on P . As a result, the maximum number of f -monotone
paths over all d-dimensional polytopes with n + 1 vertices is equal to 2n−1

for all n ≥ d ≥ 4. �

The following statement completes the proof of the results about the
number of f -monotone paths, stated in the introduction.

Theorem 4.4. The minimum number of f -monotone paths over all 3-
dimensional polytopes with n vertices is equal to dn/2e+ 2. This is achieved
by prisms, when n is even, and by wedges of polygons over a vertex, when n
is odd.

In particular, prisms minimize the number of f -monotone paths over all
simple polytopes of dimension three with given number of vertices.

Proof. Applying Lemma 4.1 and noting that µk(P, f) ≥ 1 for every k, we
get

µ(P, f) ≥ 1 +
n−2∑
k=0

(dk − 1) =
n−2∑
k=0

dk − n+ 2.

Since
∑n−2

k=0 dk is equal to the number of edges of P (see Remark 3.2), which
is bounded below by d3n/2e, it follows that µ(P, f) ≥ dn/2e + 2. It is
straightforward to verify that prisms achieve the minimum when n is even
and wedges of polygons over a vertex (obtained from prisms by identifying
two vertices at different levels which are connected by an edge) achieve the
minimum when n is odd. �

The lower bound for the number of f -monotone paths in any dimension,
given in the following statement, is not expected to be tight.

Proposition 4.5. The number of f -monotone paths on any polytope of
dimension d with n vertices is bounded below by ddn/2e − n+ 2.

Proof. Once again, this follows from the inequality
∑n−2

k=0 dk ≥ ddn/2e and
Lemma 4.1. �

We end this section with a conjecture for the maximum number of mono-
tone paths on simple 3-dimensional polytopes. The proposed maximum
can be achieved by wedges of polygons over an edge whose vertices are the
source and the sink, and all vertices of the polytope lie on a monotone path.
We recall that the Fibonacci sequence (Fn) is defined by the recurrence
F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

Conjecture 4.6. We have µ(P, f) ≤ Fn+2+1 for every simple 3-dimensional
polytope P with 2n vertices.
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Figure 7. An example of a polytope on 8 vertices conjec-
tured to be the maximizer of the number of monotone paths
among simple polytopes. f(v1) < f(v2) < · · · < f(v8).

The argument in the proof of Theorem 4.2 yields the following weaker
result.

Proposition 4.7. We have µ(P, f) ≤ 2Fn for every 3-dimensional simple
polytope P with n+ 1 vertices and every generic linear functional f on P .

Proof. Let (an) be the sequence of numbers defined by the recurrence rela-
tion a0 = a1 = 1, a2 = 2, a3 = 4 and an = an−1 + an−2 for n ≥ 4. Note
that an = 2Fn for n ≥ 2. We mimick the proof of Theorem 4.2 to show that
µ(P, f) ≤ an for all n ≥ 3. For the inductive step, since P is simple, we
have d0 = 3, d1, d2, . . . , dn−2 ≤ 2 and dn−1 = 1 and compute that

µ(P, f) ≤ 1 +

n−1∑
k=0

dkak −
n−1∑
k=0

ak ≤ 1 + an−2 + an−3 + . . .+ a1 + 2a0

≤ an−1 + an−2 = an,

since an−1 = 1 + an−3 + · · ·+ a1 + 2a0. �

5. On the diameter of monotone path graphs

The main goal of this section is to prove Theorem 1.2.
The lower bound of (3) for the maximum diameter follows from Lemma 2.1.

The upper bound will be deduced from the following result. Clearly, given
a polytope P and a generic linear functional f , every f -monotone path on
P meets each of the fibers f−1(t) ∩ P , where t ∈ f(P ), in a unique point.
For f -monotone paths γ and γ′ on P , let us denote by ν(γ, γ′) the number
of connected components of the set of values t ∈ f(P ) for which γ and γ′

disagree on f−1(t)∩P . For example, for the two monotone paths, say γ and
γ′, shown on Figure 4 we have ν(γ, γ′) = 4. Note that ν(γ, γ′) = 0⇔ γ = γ′.
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Theorem 5.1. Let P be a 3-dimensional polytope and f be a generic linear
functional on P . The distance between any two f -monotone paths γ and γ′

in the graph G = G(P, f) satisfies

(6) dG(γ, γ′) ≤ ν(γ, γ′)

2
· f2(P ),

where f2(P ) is the number of 2-dimensional faces of P .

Remark 5.2. Theorem 5.1 gives a diameter bound for all three-dimensional
polytopes. Cordovil and Moreira had studied bounds for three-dimensional
zonotopes and rank-three oriented matroids [10], which they gave in terms
of the dual pseudo-line arrangements.

We will first state a technical result (see Proposition 5.3) which constructs
a walk in G(P, f) between two monotone paths γ and γ′ with the required
properties from walks on the fibers, assuming that the latter satisfy certain
necessary compatibility conditions. To allow for all possible ways that γ and
γ′ may intersect each other, we consider the following general situation. Let
F be a connected polygonal complex in Rd having vertices v0, v1, . . . , vn and
f : Rd → R be a linear functional such that f(v0) < f(v1) < · · · < f(vn).
The graph of f -monotone paths on F , denoted by G(F , f), having initial
vertex v0 and terminal vertex vn, can be defined with adjacency given by
polygon flips just as in the special case in which F is the 2-skeleton of a
convex polytope (see Section 2.2). Alternatively, and in order to relate it
to the graphs of the fibers of f , we may view G(F , f) as the inverse limit
associated to a diagram

(7)

G0,1
α1−→ G1

β1←− G1,2
α2−→ G2

β2←− · · · βn−2←− Gn−2,n−1
αn−1−→ Gn−1

βn−1←− Gn−1,n

of graphs and simplicial maps. This is defined as in Section 2.2 provided
the fiber f−1(t) ∩ P is replaced with f−1(t) ∩ ‖F‖, where ‖F‖ is the poly-
hedron (union of faces) of F . Thus, the Gi and Gi,i+1 are graphs of (one-
dimensional) fibers f−1(t)∩‖F‖ and the αi and βi are natural degeneration
maps.

Given an f -monotone path γ on F and i ∈ [n], let us denote by πi(γ)
the node of Gi−1,i in which the union of the edges of γ intersects the cor-
responding fiber f−1(t) ∩ ‖F‖. Then, πi : G(F , f) → Gi−1,i is a simplicial
map. Given a walk P in a graph G, thought of as a sequence of edges, and
a simplicial map ϕ : G → H of graphs, let us denote by ϕ(P) the walk in
H which is formed by the images of the edges of P under ϕ, disregarding
those edges of P which are contracted to a node by ϕ.

Proposition 5.3. Let γ and δ be f -monotone paths on F . Suppose that
for every i ∈ [n] there exists a walk Pi in Gi−1,i with initial node πi(γ) and
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terminal node πi(δ) which traverses each edge in Gi−1,i exactly once, so that

(8) αi(Pi) = βi(Pi+1)

for every i ∈ [n − 1]. Then, there exists a walk P in G(F , f) with initial
node γ and terminal node δ which traverses each 2-dimensional face of F
exactly once, such that πi(P) = Pi for every i ∈ [n].

We first illustrate the proposition with an important special case and then
use it to prove Theorem 5.1.

Example 5.4. To motivate the proof of Theorem 5.1, consider the special
case in which the monotone paths γ and γ′ do not have common vertices,
other than those on which f attains its minimum and maximum value on
P . Then, ν(γ, γ′) = 1 and the edges of γ and γ′ form a simple cycle C
which divides the boundary of P into two closed balls, say B+ and B−,
having common boundary C. Let F+ and F− be the two subcomplexes of
the boundary complex of P which correspond to these balls. We wish to
show that for each ε ∈ {+,−}, there exists a walk in G(P, f) joining γ and
γ′ which traverses each 2-dimensional face of Fε exactly once. This would
imply the desired bound for dG(γ, γ′). Such a walk must traverse every edge
of each fiber f−1(t)∩Bε exactly once and thus induce walks on these fibers
with the same property.

Let us consider the diagram (7) for the polygonal complex Fε. Clearly,
the fiber f−1(t) ∩ ∂P is the boundary of a polygon for every interior point
t of the interval f(P ), where ∂P denotes the boundary of P . Since, by
the f -monotonicity of γ and γ′, this fiber intersects the cycle C, which is
the boundary of the ball Bε, in exactly two points, its intersection with Bε

must be homeomorphic to a line segment. Thus, all graphs appearing in the
diagram (7) for Fε are path graphs, where Gi−1,i has endpoints πi(γ) and
πi(γ

′) for every i ∈ [n]. As a result, there are unique walks Pi, as in the
statement of Proposition 5.3, where condition (8) holds by the degeneration
of fibers. Thus, Proposition 5.3 implies the existence of a walk in G(Fε, f)
with initial node γ and terminal node γ′ which traverses each 2-dimensional
face of Fε exactly once. �

Proof of Theorem 5.1. We first observe that it suffices to prove the special
case ν(γ, γ′) = 1. Indeed, given f -monotone paths γ and γ′ on P and
setting ν = ν(γ, γ′), it is straightforward to define f -monotone paths γ = γ0,
γ1, . . . , γν = γ′ on P satisfying ν(γi−1, γi) = 1 for every i ∈ [ν − 1]. Then,
the triangle inequality and the special case imply that

dG(γ, γ′) ≤
ν∑
i=1

dG(γi−1, γi) ≤ ν ·
f2(P )

2
,

as claimed by (6).
So let γ, γ′ be f -monotone paths on P such that ν(γ, γ′) = 1. Let u and

v be their unique common vertices, satisfying f(u) < f(v), for which γ and
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γ′ disagree on each fiber f−1(t) ∩ P with f(u) < t < f(v) and agree on
the other fibers; in the special case of Example 5.4, u and v are the unique
vertices vmin and vmax on which f attains its minimum and maximum value
on P , respectively. As in that special case, the edges of γ and γ′ joining u
and v form a simple cycle C which divides the 2-dimensional sphere ∂P into
two closed 2-dimensional balls B+ and B− having common boundary C.
Moreover, the f -monotonicity of γ and γ′ implies that for each ε ∈ {+,−}
and every interior point t of the interval f(Bε), the fiber f−1(t) ∩ Bε is
homeomorphic to a line segment or a circle. We wish to apply Proposition 5.3
to the subcomplex Fε of the boundary complex of P which corresponds to
Bε.

We claim that there exist unique walks Pi satisfying the assumptions of
the proposition. Indeed, according to our previous discussion, every graph
Gi−1,i appearing in the diagram (7) for Fε is either a path graph, with
endpoints πi(γ) and πi(γ

′), or a cycle. As a result, there exists a unique
walk Pi in Gi−1,i with initial node πi(γ) and terminal node πi(γ

′) which
traverses each edge in Gi−1,i exactly once, if the latter is a path graph, and
exactly two such walks, corresponding to the two possible orientations of
Gi−1,i, if the latter is a cycle. There are the following cases, illustrated in
Example 5.5, to consider:

Case 1: The relative interior of Bε contains neither vmin nor vmax. Then,
all the Gi−1,i are path graphs and conditions (8) hold by degeneration of
fibers, as in the special case u = vmin and v = vmax of Example 5.4.
Case 2: The relative interior of Bε contains exactly one of vmin and vmax,
say vmin. Then, the Gi−1,i associated to fibers f−1(t) ∩ Bε with t < f(u)
are cycles and all others are path graphs which degenerate to cycles as the
value of f approaches f(u). Clearly, the cycles can be uniquely oriented, so
that the resulting walks Pi satisfy conditions (8).
Case 3: The relative interior of Bε contains both vmin and vmax. Then, the
Gi−1,i associated to fibers f−1(t)∩Bε with f(u) < t < f(v) are path graphs
and the rest are cycles which can be uniquely oriented, so that the resulting
walks Pi satisfy conditions (8).

Thus, Proposition 5.3 applies in all cases and we may conclude that
dG(γ, γ′) ≤ f2(Fε) for each ε ∈ {+,−}. Hence,

dG(γ, γ′) ≤ f2(F+) + f2(F−)

2
= f2(P )/2

and the proof follows. �

Example 5.5. Let P = X(10) be the stacked polytope shown in Figure 3.
The following two situations illustrate the three cases within the proof of
Theorem 5.1.
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(a) Consider the f -monotone paths on P

γ = (v1, v3, v6, v9, v10),

γ′ = (v1, v3, v5, v8, v9, v10),

presented as sequences of vertices. Then, the cycle C has edges with vertex
sets {v3, v5}, {v5, v8}, {v8, v9}, {v6, v9} and {v3, v6}, and one of the Fε
consists of the faces of the facets of P with vertex sets {v3, v5, v6}, {v5, v6, v8}
and {v6, v8, v9} and falls in the first case of the proof, while the other consists
of the faces of the remaining thirteen facets of P and falls in the third case.
Three flips are needed to reach γ′ from γ across Fε in the former case, and
thirteen flips in the latter.
(b) Consider also the f -monotone paths

γ = (v1, v3, v6, v9, v10),

γ′′ = (v1, v3, v4, v5, v8, v9, v10).

Now C has six edges with vertex sets {v3, v4}, {v4, v5}, {v5, v8}, {v8, v9},
{v6, v9} and {v3, v6}, and one of the Fε consists of the faces of the facets of P
with vertex sets {v1, v2, v3}, {v1, v2, v4}, {v1, v3, v4}, {v2, v3, v5}, {v2, v4, v5},
{v3, v5, v6}, {v5, v6, v8} and {v6, v8, v9}, while the other consists of the faces
of the remaining eight facets of P . Both fall in the second case of the proof.
The fibers f−1(t) ∩Bε are path graphs for f(v3) < t < f(v9) in either case,
and cycles for t ≤ f(v3) or t ≥ f(v9) in the two cases, respectively. �

Proof of Theorem 1.2. As we have already mentioned, the lower bound of (3)
follows from Lemma 2.1. The upper bound follows from Theorem 5.1 and
the obvious inequalities ν(γ, γ′) ≤ b(n− 1)/2c and f2(P ) ≤ 2n− 4. �

Question 5.6. What is the exact value of the maximum diameter in Theo-
rem 1.2? In particular, is it equal to the lower bound given there for every
n?

Proof of Proposition 5.3. Consider indices 0 < k ≤ m ≤ ` < n and denote
by K and L the graphs of partial f -monotone paths on F which arise as
inverse limits of the subdiagrams

(9) Gk−1,k
αk−→ Gk

βk←− Gk,k+1
αk+1−→ · · · αm−1−→ Gm−1

βm−1←− Gm−1,m

and

(10) Gm,m+1
αm+1−→ Gm+1

βm+1←− · · ·
β`−1←− G`−1,`

α`−→ G`
β`←− G`,`+1

of (7), respectively. Let us call a polygon any 2-dimensional face of F which
intersects the fiber f−1(t) ∩ ‖F‖ for some tk−1 < t < tm in the case of (9)
and any 2-dimensional face of F which intersects the fiber f−1(t) ∩ ‖F‖ for
some tm < t < t`+1 in the case of (10). Thus, the polygons are exactly
the 2-dimensional faces of F in the case of the entire diagram (7) and are
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in one-to-one correspondence with the edges of Gm−1,m in the special case
k = m of (9). Define similarly the graph H of partial f -monotone paths on
F and its polygons from the subdiagram

(11)

Gk−1,k
αk−→ · · · βm−1←− Gm−1,m

αm−→ Gm
βm←− Gm,m+1

αm+1−→ · · · β`←− G`,`+1

of (7) and note that there are natural restriction maps πK : G(F , f) → K,
πL : G(F , f)→ L and πH : G(F , f)→ H.

We assume that there exist a walk Q in K with initial node πK(γ) and
terminal node πK(δ) which traverses each polygon of (9) exactly once and a
walk R in L with initial node πL(γ) and terminal node πL(δ) which traverses
each polygon of (10) exactly once, such that πi(Q) = Pi for k ≤ i ≤ m and
πi(R) = Pi for m < i ≤ ` + 1. As a consequence, there exists a walk P in
H with initial node πH(γ) and terminal node πH(δ) which traverses each
polygon of (11) exactly once, such that πi(P) = Pi for k ≤ i ≤ ` + 1. The
proposition then follows by applying the claim several times, for instance
when k = 1 and m = `, for m ∈ [n− 1].

To prove the claim, we only need to patch Q and R along the walk
αm(Pm) = βm(Pm+1) in Gm. Any two nodes ζ of K and η of L produce by
concatenation a node ζ ∗ η of H, provided that the terminal edge of ζ and
the initial edge of η have equal images under αm and βm, respectively. Let
ζ0, ζ1, . . . , ζq be the successive nodes of Q and η0, η1, . . . , ηr be the successive
nodes of R. By our assumptions, we have ζ0 ∗ η0 = πK(γ) ∗ πL(γ) = πH(γ)
and ζq ∗ ηr = πK(δ) ∗πL(δ) = πH(δ). We define P to have nodes of the form
ζi ∗ ηj , starting with ζ0 ∗ η0, so that the node immediately following ζi ∗ ηj is

(12)


ζi+1 ∗ ηj , if well defined,

ζi ∗ ηj+1, if well defined but ζi+1 ∗ ηj is not,

ζi+1 ∗ ηj+1, otherwise.

We leave to the reader to verify that, because αm(Pm) = βm(Pm+1), this is
a well defined walk in H with initial node ζ0 ∗η0 = πH(γ) and terminal node
ζq ∗ ηr = πH(δ). By construction, we have πi(P) = πi(Q) for k ≤ i ≤ m and
πi(P) = πi(R) for m < i ≤ ` + 1, and hence πi(P) = Pi for k ≤ i ≤ ` + 1.
Finally, we note that P traverses the polygons traversed by Q or R which do
not intersect the fiber f−1(tm)∩‖F‖ by steps which move ζi ∗ ηj to the first
two paths shown in (12), respectively, each exactly once by our assumptions
on Q and R, and the 2-dimensional faces of F which intersect f−1(tm)∩‖F‖
by steps which move ζi ∗ ηj to the third path shown in (12), each exactly
once by our assumptions on Pm and Pm+1, and that these are precisely the
polygons of (11). �
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6. Conclusions

The following tables summarize our results on monotone paths and ar-
borescences and indicate the problems which remain open.

We have no reason to doubt that Question 3.6 on the minimum number
of f -arborescences in dimensions d ≥ 4 and Question 5.6 on the maximum
diameter of flip graphs in dimension 3 have positive answers. For the min-
imum diameter of flip graphs, we expect that the diameter of G(P, f) is
bounded below by the integral part of half the number of facets for ev-
ery 3-dimensional polytope P . In particular, we expect that the following
conjecture is true.

Conjecture 6.1. The minimum diameter of G(P, f), when P ranges over
all 3-dimensional polytopes with n vertices and f ranges over all generic
linear functionals on P , is equal to b(n+ 5)/4c for every n ≥ 4. This can
be achieved by simple polytopes for every even n.

# of arborescences all polytopes simple polytopes

d = 3
upper bound Theorem 3.4

Corollary 3.3
lower bound Theorem 3.5

d ≥ 4
upper bound Theorem 3.4 Corollary 3.3
lower bound Question 3.6 Corollary 3.3

Table 1. Summary for f -arborescences

# of monotone paths all polytopes simple polytopes

d = 3
upper bound Theorem 4.2 Conjecture 4.6, Proposition 4.7
lower bound Theorem 4.4

d ≥ 4
upper bound Remark 4.3 open
lower bound Proposition 4.5

Table 2. Summary for f -monotone paths

diameter of flip graph all polytopes simple polytopes

d = 3
upper bound Theorem 1.2, Question 5.6 open
lower bound Conjecture 6.1

d ≥ 4
upper bound open open
lower bound open open

Table 3. Summary for the diameter of flip graphs
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The outdegrees of the vertices of ω(P, f) play an important role in the
proofs of Theorems 1.1 and 1.3. It seems a very interesting problem to
characterize, or at least obtain significant information about, the possible
multisets of these outdegrees when P ranges over all polytopes of given
dimension and number of vertices and f ranges over all generic linear func-
tionals on P . Finally, it would be interesting to address the questions raised
in this paper for coherent f -monotone paths as well. Their number typically
grows much slower than the total number of f -monotone paths [2].
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[11] D. Dadush and N. Hähnle. On the shadow simplex method for curved polyhedra.

Discrete Comput. Geom., 56(4):882–909, 2016. URL: https://doi.org/10.1007/

s00454-016-9793-3, doi:10.1007/s00454-016-9793-3.
[12] M. Develin. LP-orientations of cubes and crosspolytopes. Adv. Geom., 4(4):459–

468, 2004. URL: https://doi.org/10.1515/advg.2004.4.4.459, doi:10.1515/

advg.2004.4.4.459.
[13] R. Edman, P. Jiradilok, G. Liu, and T. McConville. Zonotopes whose cellular strings

are all coherent, 2018. arXiv:1801.09140.

https://doi.org/10.1007/PL00009404
https://doi.org/10.1007/PL00009404
http://dx.doi.org/10.1007/PL00009404
https://doi.org/10.4153/CJM-2001-042-3
https://doi.org/10.4153/CJM-2001-042-3
http://dx.doi.org/10.4153/CJM-2001-042-3
http://projecteuclid.org/euclid.pjm/1102946311
http://projecteuclid.org/euclid.pjm/1102946311
http://dx.doi.org/10.1017/CBO9780511586507
http://www.sciencedirect.com/science/article/pii/0012365X9390149N
http://www.sciencedirect.com/science/article/pii/0012365X9390149N
http://dx.doi.org/https://doi.org/10.1016/0012-365X(93)90149-N
http://dx.doi.org/https://doi.org/10.1016/0012-365X(93)90149-N
https://doi.org/10.1007/s00454-016-9793-3
https://doi.org/10.1007/s00454-016-9793-3
http://dx.doi.org/10.1007/s00454-016-9793-3
https://doi.org/10.1515/advg.2004.4.4.459
http://dx.doi.org/10.1515/advg.2004.4.4.459
http://dx.doi.org/10.1515/advg.2004.4.4.459
http://arxiv.org/abs/1801.09140


ENUMERATION OF ARBORESCENCES AND MONOTONE PATHS 25

[14] R.B. Edman. Diameter and Coherence of Monotone Path Graphs in Low Corank. PhD
thesis, May 2015. URL: http://www-users.math.umn.edu/~reiner/edman-thesis.
pdf.

[15] G. Kalai. Rigidity and the lower bound theorem. I. Invent. Math., 88(1):125–151,
1987. URL: https://doi.org/10.1007/BF01405094, doi:10.1007/BF01405094.

[16] J. McDonald. Fiber polytopes and fractional power series. J. Pure Appl. Algebra,
104(2):213–233, 1995. URL: https://doi.org/10.1016/0022-4049(94)00129-5.

[17] P. McMullen. Triangulations of simplicial polytopes. Beiträge Algebra Geom.,
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