SENSELET++: A Low-cost Internet of Things
Sensing Platform for Academic Cleanrooms

Beitong Tian!, Zhe Yangl, Hessam Moeini!, Ragini Guptal, Patrick Su?, Robert Kaufman?,
Mark McCollum?, John Dallesasse?, Klara Nahrstedt!
! Coordinated Science Laboratory, >Holonyak Micro & Nanotechnology Laboratory
University of Illinois at Urbana-Champaign, Champaign, USA
{beitong2,zheyang3,moeini,raginig2,psu8, rbkaufm2,markjmcc,jdallesa, klara} @illinois.edu

Abstract—Sensory IoT (Internet of Things) networks are
widely applied and studied in recent years and have demonstrated
their unique benefits in various areas. In this paper, we bring the
sensor network to an application scenario that has rarely been
studied - the academic cleanrooms. We design SENSELET++, a
low-cost IoT sensing platform that can collect, manage and ana-
lyze a large amount of sensory data from heterogeneous sensors.
Furthermore, we design a novel hybrid anomaly detection frame-
work which can detect both time-critical and complex non-critical
anomalies. We validate SENSELET++ through the deployment
of the sensing platform in a lithography cleanroom. Qur results
show the scalability, flexibility, and reliability properties of the
system design. Also, using real-world sensory data collected by
SENSELET++, our system can analyze data streams in real-time
and detect shape and trend anomalies with a 91% true positive
rate.

Index Terms—Internet of Things; Sensor Network; Anomaly
Detection

I. INTRODUCTION

Internet of Things (IoT) is made up of various devices
embedded with sensors, actuators and software which have
the ability to connect to each other or to the Internet. By
combining IoT devices together with an automated system, we
can build an IoT system to automatically collect and analyze
information and create outputs for different given tasks. Many
smart IoT systems are designed and deployed in different
areas such as agriculture, healthcare and building automation
for the purpose of monitoring and control process [1]-[3].
However, there are only a few IoT works (e.g., [4]) that
focus on embedding IoT systems into academic cleanroom
laboratories to enable a sensing platform that would provide
scalable, evolvable, secure and safe capabilities in a dynamic
cleanroom environment.

Generally, cleanroom labs are critical environments in-
cluding a variety of scientific instruments for semiconductor
fabrication and manufacturing of chips and are characterized
by various physical control factors such as temperature, hu-
midity, airflow, and airborne particles to ensure seamless op-
eration of high-end instruments. When compared to industrial
cleanrooms, academic cleanrooms have unique challenges and
requirements: (a) highly diverse research tasks conducted by
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researchers, (b) highly diverse users with knowledge expertise
ranging from novice students to experienced faculty and lab
managers, (c) highly diverse scientific equipment ranging from
microscopes such as Scanning Electronic Microscope (SEM)
to fume-hoods and pumps, (d) highly diverse missions ranging
from teaching undergraduate students to operating scientific
instruments in graduate research to develop new chips, (e)
diverse usage of equipment and machinery in terms of their
frequency and setups since students come and go and set in-
struments into different states as they conduct experiments, and
(f) constrained budget to maintain and repair these cleanroom
instruments.

Furthermore, it is challenging to design IoT systems for
academic cleanrooms that have the following requirements:

1. Environmental monitoring: Any violation of strictly
controlled environmental parameters such as particle density
and humidity may cause experiment failures. Using the semi-
conductor experiment as an example, under a high particle
density environment, dust particles are more likely to fall on
the silicon wafer and fail the whole semiconductor manufactur-
ing process. Besides the particle density, excess humidity will
cause the photoresist process for semiconductors to behave
unexpectedly which is highly undesirable as scientific results
may become invalid.

2. Instrument monitoring: There are diverse scientific
instruments in the academic cleanroom, including core instru-
ments such as the lithography system and auxiliary equip-
ment such as pumps in water cooling systems. An auxiliary
equipment failure may cause a chain effect and result in a
core instrument failure and a significant repairing expense. A
pump failure may lead to a water cooling system’s failure
and cause expensive instruments to overheat. By monitoring
via sensors (IoT devices) some parameters of the mechanical
equipment such as surface temperature, we can determine if
the equipment such as a pump is in a healthy state. The sensory
data can help us predict the failure of instruments and replace
the unhealthy instruments ahead to avoid cascading failures.
Additionally, we can monitor safety-critical instruments such
as fume-hood and HVAC systems to make sure that toxic gas
does not undermine the safety of researchers.

3. Security monitoring: We need to monitor (a) safety in
cleanrooms since students work with chemicals, (b) reliability,
integrity and availability of measurements since scientific



instruments may interfere with sensing infrastructure, and (c)
entrances of cleanrooms to detect violated access to clean-
rooms for regulating the access control and protecting the
property in cleanrooms. Since privacy is not a first-class object
in academic cleanrooms, we only consider security, safety,
reliability, and availability of sensory data in this work.

Based on these requirements, we aim to address the follow-
ing challenges in academic cleanrooms:

« Scale and Heterogeneity: Due to the large scale and hetero-
geneity of sensors for various environmental and instrument
monitoring tasks, we need to (a) design new integrative
hardware methods to connect a large number of commodity
sensors with different interfaces and output formats to edge
devices in a highly reliable manner and (b) solve the power
problem.

o Flexibility and Evolvability: The environmental and in-
strument monitoring requirement will keep changing and
updating due to dynamic changes of cleanrooms’ settings,
which requires our sensory platform to evolve and expand
with new kinds of sensors and algorithms or replace sensors
and change the sensor layout.

o Availability and Reliability: High power machinery in
cleanrooms will interfere with the nearby wireless envi-
ronment violating instrument and environmental monitoring
requirements. For instance, interference will block the WiFi
signal and alerts will not be sent out in time. We need to
provide availability guarantees of the sensory data stream.
The IoT system should be designed in a reliable way to
extend the life-time.

« Effective and Efficient Anomaly Detection: We need to
carefully design an anomaly detection framework to satisfy
security monitoring requirements and to detect meaningful
anomalies from a large amount of sensory data streams with
the consideration of performance and latency.

To address the above challenges, we present SENSELET++,
an end-to-end low-cost and real-time IoT sensing platform for
smart cleanrooms with characteristics of scalability, flexibility,
reliability, availability, and integrity. To enable scalability, we
design a new set of interfaces and connectors for sensors and
edge devices based on 1-Wire protocol [5]. The new design
allows us to connect and power tens of heterogeneous sensors
to one edge device in a reliable way. We design hardware and
software of SENSELET++ in a highly modular fashion so
that we can easily add new kinds of sensors and algorithms
without large modification of the existing system, providing
flexibility and evolvability of the platform. Furthermore, we
carefully design the control software module running in the
edge device to realize the plug-and-play feature to increase
the flexibility. We separate the wireless part and sensing part
so that we can place the wireless part in a low interference
area of the cleanroom to secure availability.

We design two paths for achieving effective and efficient
anomaly detection. The quick path will detect critical anoma-
lies i.e., abnormal measurements (e.g., abnormal critical mea-
surements around water pumps, unusual fume-hood temper-

ature increase) with rule-based algorithms and run on edge
devices to minimize the latency between the generation of
anomalies and sending out alerts. The slow path will detect
non-time-critical anomalies where latency is not the first-class
object such as micro-climate anomalies and run on the cloud
server. We design a Singular Spectrum Analysis (SSA) [6]
based anomaly detection framework to extract meaningful
information from a large amount of sensory data. We make
the following contributions:

1) SENSELET++ Design: We present design of SENSE-
LET++, a low-cost, real-time, inclusive, evolvable (flexi-
ble), scalable, and secure IoT system for academic clean-
rooms. The design includes a unique hardware-software
co-design architecture to increase the IoT system’s scala-
bility, reliability, availability, and extensibility. We carefully
address each of these considerations in our design and to
the best of our knowledge, this is the first work towards
the design and implementation of a scalable end-to-end IoT
sensing and monitoring platform for academic cleanroom
environments.

2) Anomaly Detection Framework: We design an online
light-weight anomaly detection framework which can au-
tomatically detect abnormal events of changes in clean-
room’s micro-climate, safety and security from heteroge-
neous sensory data streams. Advanced anomaly detection
techniques are applied to real-time environmental and
contextual sensor data to identify sensor faults/variations
and environmental property fluctuations which significantly
help researchers and lab managers in academic cleanrooms.

3) Implementation and Evaluation: We validate SENSE-
LET++ in a semiconductor cleanroom. During the past sev-
eral months, we have extensively evaluated our system and
showed that the system meets our design goals. The system
has generated valuable information from the collected data
which helps the cleanroom administrator and researchers
to have new, useful findings of the cleanroom.

The paper is organized as follows. Section II surveys the
related work. Section III provides an overview of SENSE-
LET++ with its a) system architecture and data flow, and b)
system design responding to existing challenges in the aca-
demic cleanrooms. Section IV describes our anomaly detection
algorithms that provide integrity and improve performance in
SENSELET++. Section V presents the experimental results
from the deployed SENSELET++ in a real academic clean-
room. The paper concludes in Section VI.

II. RELATED WORK
In order to understand the need for an IoT infrastructure
in scientific cleanrooms, we explored the existing IoT sensing
solutions and their challenges in critical environments, current
sensory data acquisition systems, and sensor data analytics in
a networked system, discussed in detail as follows:

A. Indoor environmental monitoring in critical environments

Several previous works [7]-[10] have been steered towards
application-centric design of indoor air monitoring systems



and CO?2 sensors in cleanrooms for industries such as phar-
maceuticals, semiconductors, nuclear waste management and
logistics. However, these systems either require reconfigura-
tion in existing ventilation or air-conditioning units of the
room or are only limited to inventory and stock management
capabilities.

There are several commercial environmental monitoring
systems [11], [12] available on the market. These systems can
provide basic monitoring functionalities. However, it is hard to
add new kinds of sensors and anomaly detection algorithms
which are not supported by these systems. Also, their high
price is economically infeasible for academic IoT systems.

B. Data acquisition, management and modelling

Different data acquisition systems have been largely de-
ployed in IoT applications such as smart energy [13], smart
homes [14], agriculture [15], and airports [16] where sensors
are deployed to collect real-time data followed by different
processing techniques (such as rule-based approach) to gen-
erate periodic notifications and provide device management
schedules or surveillance. 4CeeD [17] focused on designing a
cloud-based data acquisition system in academic laboratories
that facilitates data collection, data sharing and data curation
services, and Miras [18] proposed a novel resource manage-
ment framework for such systems.

C. Data analysis and Anomaly detection

Recent studies [19]-[21] examine different machine learn-
ing methods (regression, LSTM, ANN, Isolation forest) on
wireless traffic data for anomaly detection used in a variety of
applications such as intrusion detection, fraud detection, data
leakage, sensor data tampering, link failures, and sensor faults.
However, they are restricted to univariate sensor data analysis.
In a situation with a more complex and critical environment
such as cleanrooms, a thorough analysis and investigation are
required to identify anomalous events/variations under differ-
ent types of sensors (i.e. multi-variate sensor data analysis
or sensor data fusion). Moreover, algorithms such as ANN,
LSTM and Isolation Forest are very computationally expen-
sive. They are not suitable for a constrained network of edge
computing devices. Different statistical models such as ARMA
[22] and Bayesian Changepoint [23] have also been explored
to address the problem of overfitting in machine learning based
anomaly detection algorithms and reduce the false positive
alarms efficiently. Another component of this work has been
done in contextual-based anomaly detection frameworks [24]
for environmental sensors, wherein the algorithm is made
contextually aware by using the meta-information (temporal
or spatial) associated with data points. While the contextually
aware algorithm was scalable and adaptable for real-time
detection, it required extensive sensor profiling with a large
amount of historical values collected from the same sensors.

III. SENSELET++

In this section, we will discuss hardware and network
architecture in SENSELET++ (Sec. III-A) and introduce our
system design overcoming the existing challenges for building
an IoT sensing platform in academic cleanrooms (Sec. III-B).
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Fig. 1. SENSELET++ hardware and network architecture

A. System Architecture and Data Flow

Main components of SENSELET++ and their relations in
the whole architecture are illustrated in Figure 1.

SenseNode is a device used to generate single or multiple
sensory data streams. We introduce three types of SenseNode
in our design to support various sensing tasks. Wired SenseN-
odes are sensors used to collect various physical parameters
in the cleanrooms. These sensors are directly connected to
the SenseEdge by wires and cables. Wireless SenseNodes are
sensors directly connected to the SenseCloud through Wi-Fi
access points and are mainly used to detect push-based events
such as water leakage or door status change in places far
from power sockets. Finally, virtual SenseNode is a running
service in SenseCloud or SenseEdge layer used to collect
two categories of data: 1) public data such as weather data
from public datasets, and 2) network related statistics such as
bandwidth usage of a SenseEdge.

SenseEdge is the controller and a gateway for the wired
SenseNodes connected to it. It makes it possible for the
low-priced sensors to efficiently transmit their sensory data
to the SenseCloud. Moreover, SenseEdge runs a watchdog
service that handles various failures and supports the system’s
reliability.

SenseCloud is a server for collecting, storing and analyzing
sensory data. All components of SENSELET++ are pro-
tected from external attacks by the campus network firewalls.
Wireless SenseNodes and SenseEdges connect to the campus
network via nearby Wi-Fi access points while SenseCloud uses
Ethernet to connect to this network.

Figure 2 shows data flows in SENSELET++ and illustrates
how sensory data collected from different SenseNodes flows
and gets processed in the system before being stored and used
at SenseCloud. In Figure 2, the sensory data streams from
wired SenseNodes first flows into the SenseEdge. SenseEdge
uses a publish-subscribe messaging pattern to transfer data.
It then publishes the received data to the Message Queuing
Telemetry Transport (MQTT) broker [25] which handles mes-
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Fig. 2. SENSELET++ data-flow

sage transmission between SenseEdge and SenseCloud. In par-
allel, a rule-based anomaly detector running on the SenseEdge
will also examine the data and send alerts if it detects any
anomaly. Wireless and Virtual SenseNodes publish the data to
the MQTT broker directly. There exist two running programs
on the SenseCloud which subscribe to receive all the messages
in the system. The writer program is responsible to parse
the message and store this parsed message into InfluxDB,
which is a high-performance time-series database. Grafana,
an open-source data visualization tool, queries the data from
InfluxDB and visualizes the data within predefined dashboards.
The anomaly detection engine also listens to all the published
messages and detects anomalies in a timely manner. Next,
we will introduce the system design and discuss solutions to
handle existing challenges in academic cleanrooms.

B. System Design

We consider different challenges in designing an IoT sens-
ing platform for academic cleanrooms and make sure SENSE-
LET++ is: 1) scalable and flexible, 2) reliable and highly
available, and 3) capable of finding anomalies from large-scale
sensory data streams with a minimized latency and maximized
completeness. We will discuss each of these considerations in
detail.

Scalability and Flexibility. We consider both vertical and
horizontal scalability of SENSELET++. Vertical scalability
requires the system to easily upgrade the existing components
and handle more intensive tasks in the future. We choose
Raspberry Pi as the core of SenseEdge because it can easily be
replaced and upgraded. The vertical scalability of SenseNodes
is demonstrated by the ease of upgrading the sensor with better
characteristics such as accuracy or response time. To enable
this, we design SenseNodes in a modular way that separates
the sensor from other parts of the SenseNode. We then can
easily upgrade the sensor when needed.

Horizontal scalability requires that increasing the number
of SenseNodes will increase the total costs in a linear or sub-
linear function of the number of SenseNodes. This overall cost
includes the installation and operational cost of SenseNodes
and SenseEdges, bandwidth usage, as well as storage and
processing time of SenseEdges and SenseCloud. Due to the
lack of a unified and reliable interface needed to connect
and power heterogeneous sensors with the edge devices, there
exists a scalability bottleneck at the sensor and edge layer. We
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design a new interface between SenseEdges and SenseNodes
as shown in Fig. 3-A to remove this bottleneck.

1) Interconnection interface: In the academic cleanroom,
tens of sensors need to be connected to a single edge device to
save space and reduce the cost. However, scalability is an issue
because the number of interfaces on each edge device limits
the number of connected sensors. We design a new interface
between the SenseEdge and SenseNodes to provide scalability.
The idea is to convert various output types! into a uniform one.

We use 1-Wire protocol, a serial protocol with features
known as long-range covering (fits our academic cleanroom
size: Sm x 10m), simplicity, and low data rate requirements.
As shown in Fig. 3-A, each SenseNode has a dedicated bridge
chip to convert the sensor’s output type into the uniform
1-Wire protocol. The converted 1-Wire data stream is then
transmitted to the SenseEdge via the 1-Wire data bus. On the
SenseEdge, a bridge chip will convert the 1-Wire data stream
back to I2C stream for the reading of Raspberry Pi.

The power bus provides 3.3V and 5V power to SenseNodes
from the SenseEdge which itself is powered by abundant
sockets on the cleanroom walls. Connectors are used to
connect SenseEdge and SenseNodes. We use the modular
cable to connect two connectors as shown in Fig.3-C. Our
new interface allows us to connect heterogeneous sensors to
any connectors on the SenseEdge and chain sensors together
which increases the scalability and supports different types of
sensor network topologies.

2) Plug-and-Play design: Most cheap commodity sensors
are not automatically detectable and identifiable at the edge
level. Hence, people need to plan ahead what sensors each
edge device needs to connect and hard code the software
accordingly. This static design forces users to rearrange con-
nected sensors and redesign the software when a system
adjustment is needed, which is laborious and undesirable. The
plug-and-play design enables us to easily add, remove and re-
place SenseEdges and SenseNodes without any rearrangement

'Some sensors output analog voltage. Some sensors support serial commu-
nication buses such as 12C or SPI. Here we collectively call them the output

type.



of the infrastructure. To make SenseNodes plug-and-play, the
SenseEdge needs to (1) detect the plug and unplug events of
SenseNodes; (2) identify the metadata of SenseNodes such as
the output type, the location and sampling rate; and (3) use
the dedicated API to read in and process the sensor data.

The 1-Wire bridge chip used in our new design can provide
a unique ID for each SenseNode. We collect the information of
currently connected sensors continuously from a folder in the
SenseEdge operating system where the 1-Wire bus driver lists
all the connected SenseNode’s ID. When a new SenseNode
plugs in, SenseEdge uses its ID to query the metadata database
(which has the metadata for all the SenseNodes we manu-
factured). This metadata then will be used by the SenseEdge
to update the sensor membership list. A thread will read the
data, detect the anomaly, and then publish the data to the
SenseCloud for each sensor in the membership list. When
the SenseNode is unplugged, it will be removed from the
membership list and related resources will be recycled.

Reliability and Availability. We take reliability as a very
important goal during the system design because a reliable
design can protect the system from various adverse factors
which are common in the complex academic cleanroom envi-
ronment or minimize the cost after the occurrence of failures.
We increase the reliability of our system by: (1) protecting
the system from possible adverse factors ahead; (2) making
the system automatically recovers after failures.

Some of the adverse factors can simply be avoided by
improving the system design. Interference from instruments
is the first one. Some instruments in cleanrooms can cause
electronic-magnetic interference resulting in wireless packets
loss between SenseEdges and other devices. This communi-
cation failure can delay or even lose urgent alert messages
which is highly undesirable because it violates safety and
security requirements. We solve the problem by measuring
the interference level at each location of the cleanrooms and
generate a map of interference regions, to move the SenseEdge
away from these regions. The wired communication between
SenseNodes and the SenseEdge is robust to the interference
and SENSELET++ can safely collect data from SenseNodes
in high interference areas. However, the design of traditional
wireless sensor network infrastructure, where the wireless
interface and the sensor of each sensing node are in a whole,
cannot easily deal with the interference as our solution does.
Another adverse factor that can be avoided is Hardware faults.
Due to the high-frequency usage of academic cleanrooms, in
a long-term deployment, there is a high probability for our
system to suffer from hardware faults like sensor or circuit
defects due to poor or loose protections. In the event of such
hardware faults, we will lose valuable sensor measurements.
Thus, to increase the reliability of the hardware, we have
designed: (1) circuit boards to support and connect electronic
components; (2) connectors to connect devices via cables
in a highly reliable way; (3) closures for SenseEdges and
SenseNodes to protect sensors and circuit board from water,
dust and accidentally touching from users in cleanrooms. The

implementation of these designs is illustrated in Fig. 3-B&C.

The above failure prevention methods do not guarantee
the reliability and we need an automatic system recovery
solution to recover devices after the occasional failures happen.
Our system can be seen as a distributed system where each
SenseEdge is a distributed node. After a node fails, we need
to detect the failure, fix the error and restart the node which
is a non-trivial process. A watchdog previously introduced in
[4] helps SENSELET++ to automatically reboot the device
when a failure occurs in the system. A timer will time out and
invoke a reboot if some hardware or software failures block
the program. This mechanism is found to be effective in the
past few months of deployment, and the system recovers from
failures autonomously with no human intervention.

IV. ANOMALY DETECTION IN SENSELET++

There are different types of time-critical and non-time-
critical sensing events in academic cleanrooms. We first
consider time-critical events and introduce a critical anomaly
detection pipeline in Sec. IV-A. We then consider non-time-
critical events and introduce our SSA-based anomaly detection
algorithms in Sec. IV-B to detect anomalies in these events.
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Fig. 4. Anomaly detection data-flow
A. Critical Anomaly Detection

It is challenging to extract useful information with a large
amount of data in a real-time manner. We observed critical
anomalies are usually simple to be detected, so detecting them
does not require advanced algorithms and high computing
power, instead, minimizing the latency between the occurrence
of the anomaly and sending out the alert is the first priority.
Since the sensor reading time is relatively static and cannot be
fully optimized, the only opportunity to optimize the latency
is in data transmission and data analysis. We add an anomaly
detector for critical anomalies on SenseEdges to reduce the
delay as shown in Figure 4. The detailed data flow is shown
in the red path in Figure 4, we call this path the fast path. We
keep algorithms used in the SenseEdge as simple as possible
to reduce the data processing delay. The algorithms we used
are threshold-based algorithms. For example, we will identify
the environmental temperature reading as an anomaly if its
value is above 30°C. The threshold we used are suggested by
domain experts. We also add a fast re-sampling step to avoid
the false positive because we observed some sensors rarely
(once in a week) give extremely high or low readings. We
also proactively broadcast the alert to other devices in our
system to increase the success rate of sending out the alert.



B. SSA-based Anomaly Detection

Besides critical anomalies, there are interesting or inno-
vative events happening in academic cleanrooms, which can
only be found by more complex algorithms on more powerful
servers. However, finding those anomalies are not urgent. We
call the data flow to find such anomalies as a slow path
as shown in the blue path in Figure 4. Those findings will
be used for helping lab managers and researchers to have
a better understanding of the cleanroom’s micro-climate and
operation. In order to find this useful information, we proposed
an anomaly detection framework based on SSA [6].

SSA Algorithm Description. SSA is a method that can
decompose a time series into several meaningful components
such as trend, periodicity and noise. Given a time series, where
N is the number of samples:

F={f1,f2y.-s [N} (N >2) (D

The first step of SSA is to form a set of lagged column vectors
X; from F' and use these vectors to build a trajectory matrix
X. Let L be the length of each lagged vector, 2 < L < N/2,
and K = N — L+ 1, the total number of lagged vectors. The
lagged vectors and the trajectory matrix are:

Xi={fi fir1s o frric1} (1 <i < K)
X = [le"'aXK]

The second step of SSA is to decompose the trajectory matrix
X with singular value decomposition (SVD). After applying
SVD, the trajectory matrix can be written into a combination
of d elementary matrices:

X=X 4 xX® 4 XD 3)

where X = ;U VT, i = 1,...,d, and d is the rank of X.
The collection of {;, U;, V; } is called the ith eigentriple of the
SVD, where o; is the singular value indicating the importance
of this eigentriple and U; and V; are corresponding left and
right singular vectors.

The third step is to use diagonal averaging to reconstruct a
time series component F; from elementary matrix X (9, where:

2

3 %Zjil Xa(',,r)z—jﬂ if1<n<L
K3 .
Fi(n) = %Zj:l Xn—jt1 " ifL<n<K
1 N—-K+1 7 .
Nt T D K1 X1 ALK <n < I\(14)

Xfll)b means the element at row a and column b of elementary
matrix X (),

According to the linear nature of diagonal averaging and
math deduction:

F=F+F+.. +F (5)

In the last step, we calculate the w-correlation [26] and
automatically group F;s into trend, periodicity and noise
components based on the correlation factor. After this step,
the original time series F' can be written as:

F ~ F(Trend) + F(Periodicity) + F(Noise) (6)

SSA Decomposition Result
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Online Anomaly Detection Framework. To make the SSA
algorithm work on data streams, we segment each sensor
stream with a sliding window with the width of W and the
step size of S and get the segment of data Fj,, where s
is the index of the sensor and w is the index of the sliding
window. We apply SSA algorithm on Fj ,, to get a SSATriple
SSA _ {F’(Trend) F(Periodicity) F(Noise)} which is the

s,w S,w s s, w s L's,w 5
building block for our anomaly detection framework. As an
example, Fig. 5 shows the SSATriple of a segmented data
stream from a humidity sensor.

The idea of our anomaly detection algorithm is to find how
similar a target SSATriple, SSAL 9 is to one or several
reference SSATriples, which represent the past or averaged
behavior. If they differ to some degree, we can conclude there
is an anomaly. Following this idea, the immediate problem to
be solved is: How to choose the reference SSATriples?

Intuitively, we want to compare the current reading with
the past reading. So, we choose SSATriple calculated in the
last sliding window as the reference SSATriple, denoted as
S SA@?{;”’OTM. After we find proper reference SSATriples, the
second problem is: How fto compare the target SSATriple
with reference SSATriples and find various anomalies? We
notice there is not a one-size-fits-all solution for this question
because comparing different components of an SSATriple or
using different comparison methods will lead to different types
of anomalies. Hence, we categorize anomalies into 2 groups
which are most important to cleanrooms. Below we describe
each of these two types of anomaly:

A B C.__

Fig. 6. Two kinds of anomaly we are interested in: (A) Short-Period Shape
Anomaly; (B) Long-Period Shape Anomaly; (C) Trend Anomaly;

From the collected data, we can find two kinds of Shape
Anomaly as shown in Fig.6-A&B. The shape anomaly usually
has a short duration (A) and is similar to noise. The sensor
reading will come back to normal after the anomaly disap-
pears. Sometimes we can observe long-period shape anomaly
(B) which has a unique pattern and are highly desired to be
detected. The trend of the sensor reading can change dramat-
ically as depicted in Fig.6-C. We name it Trend Anomaly.

We calculate shape and trend anomaly scores every time
when the sliding window slides one step ahead. Given the
target SSATriple of the target time series:

SSAZ?;get — {Fs(:l;z“end),FgZeriodicity)’ Féﬂl\f}oise)} 7



and its temporal correlated SSATriple:
SSAtemporal {F(Trend) F(Pemodzczty) F(Nozse)} (8)

s,w s,w—1 1 s,w—1

The shape anomaly score is the norm of the last S values of
the noise component of the target time series, where S is the
step size of the sliding window. From the experiment result,
the shape anomaly score is good at detecting short-term shape
anomalies.

ASSha,,e—HﬂNO”e)[(W S) : ]H2 )

To detect long-period shape anomalies and trend anomalies,
we calculate the trend anomaly score by normalizing the
Euclidean distance between the trend components of two
SSATriples.

1
AST'rend =

- Fs(z)rend) F(Trend) H
Mean(Eg(fvrend)) H , 9

s,w—1
(10)
An anomaly is identified if the anomaly score is above a
predefined threshold.

V. EXPERIMENTAL VALIDATION

In this section, we discuss the results of experiments we
have conducted to validate SENSELET++ and verify the
effectiveness of our design. We first introduce the test-beds we
built to perform experiments. To evaluate SENSELET++ in a
real environment, we implement and deploy it in an academic
semiconductor lithography cleanroom in Holonyak Micro and
Nanotechnology Laboratory (HMNTL) at the University of
Mlinois at Urbana-Champaign. We deployed 16 SenseNodes
and 4 SenseEdges in this cleanroom to: 1) test the system
reliability (V-B), 2) check the latency and effectiveness of
critical anomaly detection module (V-C), and 3) collect data
for evaluating our SSA based anomaly detection framework
(V-D). Table I lists hardware details for all the devices placed
in the cleanroom. The SenseEdge uses Raspberry Pi Zero
W, which has a 1GHz, single-core CPU and 512MB RAM
and runs a Debian operating system. The SenseCloud in this
setting is a desktop computer with Intel(R) Core(TM) 17-2600
CPU @ 3.40GHz and 4 GB memory running Ubuntu 16.04.
Developed programs in the SenseEdge and SenseCloud are
written in Python and the network environment used by this
test-bed is the UIUC campus network. Part of the deployment
is shown in Fig. 7.
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Fig. 7. Part of the SENSELET++ deployment. Three temperature and
humidity (T&H) SenseNodes, one surface temperature SenseNode, and one
airflow SenseNode are connected to a single SenseEdge device.

The second test-bed is a home-based setup to: 1) test
the scalability of SenseEdge (V-A), and 2) evaluate the per-
formance of the SSA-based anomaly detection (V-D). The
SenseCloud in this test-bed uses AMD Ryzen 5 3600 6-Core
Processor @ 3.60GHz and has 16 GB memory.

A. Scalability of SenseEdge

We connect a different number of 12C-based SenseNodes
(from 1 to 10) to a SenseEdge and monitor changes in CPU
and bandwidth usages to verify its scalability. We record the
metrics of each setting every second and for a period of one
minute, with a 0.5 Hz sampling rate and the result is shown in
Fig. 8. We use I12C based SenseNodes here because they are
more resource-consuming than other types of SenseNodes. The
result suggests that the CPU and bandwidth overhead increases
linearly with the number of SenseNodes and remains at a low
level. A scalable SenseEdge also guarantees the real sampling
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Fig. 8. %CPU usage and bandwidth usage of a SenseEdge when it is
connected with different numbers of SenseNodes.

rate close to the required sampling rate. We set the required
sampling rate to 0.5Hz, which is a quite fast sampling rate and
faster than many sensors’ response time. We connected ten
12C-based SenseNodes to one edge device and recorded the
time interval between two valid readings of each SenseNode.
The result illustrated in Fig. 9 verifies that the average real
sampling rate is close to 0.5Hz.
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Fig. 9. The distribution of real sample intervals of each SenseNode when
the expected interval is 2 seconds. The data is collected from one SenseEdge
connected with ten 12C SenseNodes in one hour.
TABLE I
SENSELET++ HARDWARE DETAILS

Name Main Components Count | Price ($)
Temp. & Humidity SHTS8S5, DS28E17 8 35
Airflow D6F-V03A1, DS2438 3 30
Surface Temp. MLX90614ESF, DS28E17 2 20
Magnetic Door GF19002, DS2413 2 5
Water Leakage RCHWES4/U, DS2438 1 25
SenseEdge RaspberryPi 0-W, DS2482 4 25




B. Robustness to the Wireless Interference

We test the wireless interference in cleanrooms and check
our design if it can easily increase the robustness to any
potential interference. We set up one SenseEdge in the fume-
hood (close to possible wireless interference) and another
one right outside the fume-hood where the point-to-point
distance between these two SenseEdges is less than 1 meter.
To control the variables, we don’t connect any sensors to
these SenseEdges and also make sure both are linked to the
same socket on the wall and have connected to the same
wireless access point. Each SenseEdge keeps sending data
to the SenseCloud to generate network traffic. We record
the network traffic bandwidth of each SenseEdge from 4 am
to 2 pm which covers the closing and opening time of the
cleanroom. Figure 10 shows the results of this experiment.

RF Interference in Cleanrooms

—— SenseEdge Outside the Fume-hood
SenseEdge Inside the Fume-hood

N o @
o = =3
1) 1) S

Transmission Rate (Byte/s)
3
3

— — i

06:00 08:00 10:00 12:00 14:00

Oo

Door Status

Time

Fig. 10. Top graph shows the transmission rate of two SenseEdges. Bottom
graph shows the door sensor data of the cleanroom which can indicate the
occupancy of the cleanroom.

From the results in Fig. 10, we can find: (1) The interference
only happens at working hours, which can prove the wireless
interference is caused by some operations conducted in the
cleanroom. (2) The SenseEdge outside the fume-hood is robust
to the RF interference where its bandwidth is stable and never
drops to zero. This can prove that by taking the advantage
of our design, we can simply move the SenseEdge away from
the interference to avoid such interference. On the contrary, the
SenseEdge in the fume-hood which represents the traditional
wireless sensor has an approximate 0.6 hour downtime in the
10-hour experiment.

C. Critical Anomaly Detection

In this subsection, we test the accuracy and latency of our
critical anomaly detection pipeline. Critical anomalies are rare
in the real world, then we manually trigger critical events
around SenseNodes in order to gather enough data to validate
the design. We emulate four events for four different kinds
of sensors: (1) Fire events for the temperature sensor; (2)
Overheat events for the surface temperature sensor; (3) Water
leakage for the water leakage sensor; (4) Door open events
for the door sensor. End-to-end latency is averaged over ten
event invocations, recording the number of cases when the
system successfully detects the event. We define end-to-end
latency as the time when the SenseEdge invokes a sensor
reading until the alert arrives at the user’s server. Because some
events such as fire cannot be emulated in cleanrooms, we run
this experiment using the home-based test-bed. We increase

the network transmission delay accordingly (54 ms) to bring
our results closer to those measured values in the cleanroom.
Table II shows results in this experiment. It verifies the rule-
based algorithm is very effective and all critical events are
successfully detected. We also notice the end-to-end latency
introduced by the sensor reading, data processing, and network
transmission is fairly low which demonstrates our system can
detect critical anomaly detection in real-time.

TABLE II
CRITICAL ANOMALY DETECTION RESULTS

Event Alert Rule | Success Rate | Latency Mean * Std. (s)
Fire > 30°C 10/ 10 0.23 £ 0.09
Overheat > 70°C 10/ 10 0.14 £ 0.04
Water Leak if True 10/ 10 0.29 £ 0.04
Door Open if True 10/ 10 0.09 + 0.03

D. SSA-based Anomaly Detection

We randomly choose a 5-days long subset of our dataset
including two humidity time series and two temperature time
series. We preprocess the data by averaging the data in each
10s interval to remove noise. After the preprocessing, each
time series in the test dataset contains 43200 samples with a
sampling interval of 10s. The SenseCloud will read in the time
series continuously to emulate the online anomaly detection
procedure and output anomaly detection results which will
be compared with the ground truth. To obtain the ground
truth of anomalies, we visually inspect and label each time
series. We find similar patterns to the sample patterns shown
in Fig. 6 and label them with the corresponding anomaly types.
We label each anomalous event across a period of time and
call the period anomaly period. We choose sliding window
width W, sliding window step size S, and L, which is the
size of trajectory matrix X used in equation 2 based on
the characteristics of observed anomalies in cleanrooms. For
each combination of anomaly type and physical property, we
choose a threshold based on the historical observations. The
parameters used in the experiment are listed in table III.

We use number of false positives and number of false neg-
atives as our metrics to validate our algorithms. False-positive
means our algorithm falsely detected non-exist anomalies.
False-negative indicates our algorithm missed some anomalous
events. When the anomaly identified by our algorithm hits
an anomaly period, we consider the anomaly is successfully
detected. The result is shown in table IV. z/y means our
algorithms successfully find x anomalies out of y labeled
anomalies. False-negative count is equal to y — z. From the
result, we can find our algorithm has a high hit rate for both
shape and trend anomalies and have only a few false positives.
We carefully re-examine our dataset and find some false
positive reports are real anomalies but are missed during the
data labeling process. Figure 11 shows the detection result of
the time series of a humidity sensor placed in the fume-hood.
From the figure, we can find detected anomalies are highly
close to patterns that people will find interesting. The average
running time for each sliding window of each data stream is
68 ms with the parameters in table III. Considering the current



TABLE III
SSA-BASED ANOMALY DETECTOR SETTING

Parameter Name & Symbol

Value

Sliding Window Width W

180 samples (30 minutes)

Sliding Window Step S

30 samples (5 minutes)

Trajectory Matrix Size L

60 samples (10 minutes)

Anomaly Shape Threshold

1.5 (humidity); 0.125 (temperature)

Trend Change Threshold

0.15 (humidity); 0.08 (temperature)

TABLE IV
SSA-BASED ANOMALY DETECTION RESULT

Data Stream Shape Anomaly | Trend Anomaly | False Positive
Humidity 1 5/6 11/11 2
Humidity 2 172 9/11 1

Temperature 1 0/0 7/8 8

Temperature 2 14/14 4/4 1

Total 20/22 31/34 12

step size of the sliding window is 5 minutes, the SenseCloud
used in the home-based test-bed can process about 4000 data
streams before the updating deadline, which demonstrates
the scalability of our anomaly detection algorithm. Because
anomalies detected by SSA are not time-critical, the S-minute
delay caused by the time-window step size is reasonable.

VI. CONCLUSION

We presented SENSELET++ for academic cleanrooms.
SENSELET++ helped the cleanroom managers and re-
searchers better understand the operation details of the clean-
room and allowed us to discover new challenges in sensor
networks within challenging academic scientific environments
such as their wireless interference, and other anomalies.
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