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AbstractÐBlockchain has been forming the central piece of
various types of vehicle-to-everything (V2X) network for trusted
data exchange. Recently, permissioned blockchains garner par-
ticular attention thanks to their improved scalability and diverse
needs from different organizations. One representative example
of permissioned blockchain is Hyperledger Fabric (ªFabricº).
Due to its unique execute-order procedure, there is a critical need
for a client to select an optimal number of peers. The interesting
problem that this paper targets to address is the tradeoff in the
number of peers: a too large number will degrade scalability
while a too small number will make the network vulnerable to
faulty nodes. This optimization issue gets especially challenging
in V2X networks due to mobility of nodes: a transaction must
be executed, and the associated block must be committed before
the vehicle leaves a network. To this end, this paper proposes
a mechanism for selecting an optimal set of peers based on
reinforcement learning (RL) to keep a Fabric-empowered V2X
network impervious to dynamicity due to mobility. We model
the RL as a contextual multi-armed bandit (MAB) problem. The
results demonstrate the outperformance of the proposed scheme.

Index TermsÐConnected Vehicles; Blockchain; Hyperledger
Fabric; BFT; RL; MAB

I. INTRODUCTION

A. Background

Vehicle-to-everything (V2X) communications are acknowl-

edged to have a massive potential to significantly decrease the

number of vehicle crashes, thereby reducing the number of

associated fatalities [1]. Based on this benefit, the literature

perceives V2X communications as the central piece in consti-

tution of intelligent transportation system (ITS) for connected

and autonomous vehicles (CAVs).

Meanwhile, the blockchain technology has been gaining

widespread interest based on its capability of providing secure,

access-regulated interactions and transactions [2]. However,

to be applied in V2X networks, the key challenge lies in

keeping the performance of a consensus due to the networks’

dynamicity attributed to mobility [3]. In general, a consensus

algorithm is defined as a process to achieve agreement on

a single data among distributed nodes. That is, a consensus

algorithm is designed to achieve a certain degree of reliability

even in a network involving unreliable nodes [4].

Permissioned blockchains are getting popular as a means

to address this issue [5]. In many distributed blockchains,

such as Ethereum and Bitcoin, which are not permissioned
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(also known as ªpublicº), any node can participate in the

consensus process, wherein transactions are ordered and bun-

dled into blocks. Because of this characteristic, these systems

rely on probabilistic consensus algorithms, which eventually

guarantee consistency of a ledger. However, such a ledger

still remains susceptible to divergence of ledgers (also known

as a ªforkº), where different participants in the network

have a different view of the accepted order of transactions.

Permissioned blockchains work differently. They aim at a

deterministic consensus among all the nodes in a validation.

B. Hyperledger Fabric

The Hyperledger Fabric (ªFabricº from now) has the widest

popularity these days owing to its design as modular consensus

protocols, which allows the system to be tailored to particular

use cases and trust models [6]. It features existence of an entity

called an orderer (also known as an ªordering nodeº) that

ªcommandsº a consensus procedure for a transaction, which,

along with other orderer nodes, forms an ordering service.

Because Fabric’s design adopts the deterministic consensus,

any validated block is guaranteed to be final and correct.

Also, the Fabric features a unique execute-order architec-

ture, which requires all peers to execute every transaction

ªbeforeº the transaction is validated. Conversely, existing

blockchain systems employ the opposite ªorder-executeº ar-

chitecture: examples range from public blockchain such as

Ethereum to permissioned ones adopted by various enterprises

[7]. The limitation of the typical, order-execute architecture is

apparent: every peer executes every transaction and transac-

tions must be deterministic.

In a Fabric network, scalability is predominantly determined

by the complexity of its endorsement policy [8] and ordering

service where a consensus has to be reached [9]. Specifi-

cally, validation of endorsements on a transaction requires

evaluation of an endorsement policy expression against the

collected endorsements and checking for satisfiability [10],

which is usually achieved via a gossip protocol in a consensus

mechanism based on Byzantine fault tolerant (BFT). This is

the key bottleneck in accomplishing scalability [11]: a larger

number of peers participating in validation usually causes a

longer latency and hence a lower throughput.

Moreover, there is a pitfall in the Fabric’s execute-order

structure [6]. Since an application is executed before validation

of the associated transaction, the key drawback of this system

occurs when the transaction turns out invalid at the end. It in-

curs a security problem and also waste of resources executing

the application not complying the endorsement policy.

C. Reinforcement Learning for Performance Optimization

In this paper, we propose to apply reinforcement learning

(RL) to optimize the selection of an optimal set of peers
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performing a consensus for a given block transaction in a

Fabric network implemented in a V2X environment. However,

there still remain challenges to address. Specifically, the learn-

ing is extremely complicated due to the dynamicity, which

necessitates that the learning framework itself must be resilient

and flexible according to the environment.

This paper proposes a learning mechanism formulated as a

multi-armed bandit (MAB) problem, which enables a vehicle,

without any assistance from an external infrastructure, to

autonomously learn the environment and adapt its channel

access behavior according to the outcome of the learning.

The MAB simplifies a RL by removing the learning depen-

dency on state and thus providing evaluative feedback that de-

pends entirely on the actions. The actions usually are decided

upon in a greedy manner by updating the benefit estimates of

performing each action independently from other actions. To

consider the state in a bandit solution, contextual bandits may

be used [13]. In many cases, a bandit solution may perform as

well as a more complicated RL solution or even better. Many

bandit algorithms feature stronger theoretical guarantees on

their performance even under adversarial settings [14].

Thompson sampling (TS) (also known as posterior sam-

pling) [27] provides a statistically efficient approach that

tackles the exploration-exploitation dilemma by maintaining

a posterior over models and choosing actions in proportion to

the probability that they are optimal [15]. We will show in this

paper that the endorsing peer selection problem can be solved

via Thompson sampling.

D. Contribution of This Paper

This paper proposes an endorser selection mechanism based

on RL that is performed autonomously by a client. Specifically,

this paper features the following contributions:

● It proposes an optimal channel selection protocol for

the Fabric when applied to connected vehicles. This

distinguishes our work from prior art, which mostly

remains at simply adopting the Fabric in V2X networks

without proposing a separate mechanism for performance

optimization.

● It (i) adopts RL for accomplishing the aforementioned

novel consensus protocol and (ii) models the optimization

as a contextual MAB problem as means to achieve RL.

Unlike the prior work such as [16] having provided only

little technical details on the RL, this paper takes a more

balanced view on both of the BFT and RL.

● It provides a spatiotemporal analysis framework for eval-

uating the performance of a blockchain system applied

to a V2X network. The framework has advantages on

several fronts: (i) the dynamics of vehicles are modeled

by using stochastic processes; (ii) the time effects on

the blockchain performance are evaluated; and (iii) the

performance of RL is evaluated as Bayesian statistics.

II. SYSTEM MODEL

A. Fabric-Based V2X Networking

1) Key Terminologies for Fabric: When ªFabricº is referred

to in this paper, the fourth box from the top (named ªFabric

networkº) in Fig. 2 will aid the reader’s understanding.

This paper’s system model implements three main compo-

nents forming a Fabric network: namely, peer nodes (ªpeersº

hereafter), channels and, organizations [7].

Peers are the key element of a Fabric network as they are the

entities participating in a consensus procedure for validation of

a block. One or a few of the peers are elected as the orderer(s)

who act(s) as the commander of an ordering service. As such,

a peer is the smallest unit of a member constituting a Fabric

network.

A channel is defined as a mechanism via which peers

interact with each other and with applications and exchange

transactions privately. We emphasize the importance of under-

standing the concept of a channel in relation to a peer, since a

channel is the object that the proposed mechanism targets to

optimize, as shall be presented in Eq. (1). As such, a channel

can be understood as a logical structure that is formed by a

collection of peers: hence, peers provide the control point for

access to, and management of, channels.

An organization is a party that has ownership and thus

control of a Fabric network. A Fabric network is constituted

of peers owned by the different organizations. For instance, a

certain network established in a physical area can be governed

by multiple parties: e.g., city, county, state, federal, and private

enterprise. The Fabric allows a set of physical resources shared

by multiple parties while each of the parties can maintain a

private network built upon the resources, i.e., an organization.

Further, it is also worth to note of the mechanism that Fabric

adopts to implement a consensus. The Raft is the protocol

that Fabric uses for the consensus in its ordering service.

Raft features a ªleader and followerº model where a leader is

dynamically elected among the ordering nodes in a channel,

and that leader replicates messages to the follower nodes.

Raft is considered a step forward to BFT from Kafka, its

predecessor that was based on crash fault tolerant (CFT) [17].

2) This Paper’s Fabric-Based V2X Network Model: This

paper assumes a V2X network on which a permissioned

blockchain is formed based on the Fabric v2.0 [17]. Specif-

ically, the roadside units (RSUs) act as peers that participate

in endorsement and consensus (i.e., validation and commit)

in a Fabric network, while the onboard units (OBUs)Ð

i.e., vehiclesÐserve as clients. Applying the Fabric to this

architecture, the RSUs have the authority to validate and order

a block, which means that all the endorsing peers and orderers

are selected from the RSUs. Meanwhile, OBUs request the

execution and ordering services to RSUs.

By this architecture, we mean to make the blockchain sys-

tem operate stably despite the vehicles’ frequent entry into and

departure from the blockchain network. Also, this architecture

makes practical sense because a blockchain system will likely

be managed by a certain party such as a state or federal

organization or a private enterprise, through which vehicles

pass and some of them may generate blocks that should be

processed in the blockchain managed by such an organization.

As a significant remark, we remind that from v2.0, via an

ordering service named ªRaft,º the Fabric started to provide

a BFT-based consensus for validation and commit of a block.

We emphasize that this also suits to address the dynamicity

of a V2X network, which is highly dynamic in the network
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topology and the member composition, which implies a far

higher possibility of malice or fault. As such, the employment

of Fabric is justified in both aspects of efficiency and security.

3) This Paper’s Goal: Channel Selection Optimization: As

shall be detailed in Section III, the key problem statement

of this paper is based on the tradeoff of channel selection.

By definition, channels partition a Fabric network in such a

way that only the stakeholders can view the transactions. In

this way, organizations are able to utilize the same network

while maintaining separation between multiple blockchains.

The mechanism works by delegating transactions to different

ledgers. Members of the particular channel can communicate

and transact privately, while other members of the network

cannot see the transactions on that channel. The Raft consen-

sus service allows an orderer to select a channel through which

it will serve the ordering service. As such, this paper focuses

on finding an optimal channel that minimizes the latency and

maximizes the throughput.

4) Assumptions: We assume that not all RSUs are con-

nected to each other. A RSU usually has no wired connection,

which causes that it only has a finite coverage [18]. Taking this

practical aspect into consideration, we assume that only a cer-

tain number of RSUs falling into each other’s communications

range are connected. Interestingly, the Fabric does already

consider this type of situation, which leads to employment

of a Gossip protocol in disseminating information to reach a

consensus during a block validation procedure.

It is also noteworthy that we consider a discrete time setting.

Specifically, in each period t = 1,⋯, T , where T ∈ N is a finite

time horizon. It is a synchronous network [19], wherein all the

clients (i.e., vehicles) and peers (i.e., RSUs) refer to the same

discrete time t. As such, in the evaluation of this network’s

performance, we measure at any arbitrary node (i.e., a vehicle

or a RSU) the number of slots that are consumed to process

a transaction to append a block to the chain. We also remind

to assume the same length of t for all nodes.

B. Geometry

We reiterate that not all nodes are connected directly to each

other; however, every node is equipped with communications

functionality and hence is able to exchange a transaction or a

block to each other.

This paper adopts the stochastic geometry for characteriza-

tion of a V2X network on a space [20]-[23]. They commonly

rely on the fact that uniform distributions of nodes on X and

Y axes of a Cartesian-coordinate two-dimensional space yield

a Poisson point process (PPP) on the number of nodes in the

space. The distributions of RSUs and OBUs are modeled as

an independent homogeneous PPP Φr and Φo with the vehicle

density λr and λo.

A two-dimensional space R
2 is defined with the length

and width of l and w meters (m), respectively. To capture a

more dynamic and realistic movement of nodes in a vehicular

network, this system model considers no separation of lanes.

Notice that such a generalized model enables the subsequent

analyses more widely applicable [3]. Furthermore, to consider

the most generic vehicle movement characteristic, this model

assumes that every vehicle can move in any direction, which

enables the system to capture every possible movement sce-

nario including flight of unmanned aerial vehicles (UAVs),

lane changing, intersection, and pedestrian walking.

III. PROPOSED MECHANISM

As was introduced in Section I-D, this paper proposes to

enable a vehicle to (i) autonomously learn about a channel that

provides an optimal number of peers and (ii) hence minimize

the latency and maximize the throughput.

A. Improvement to the Fabric Architecture

The key improvement is to introduce an optimal channel

selection mechanism based on the RL. Fig. 1a demonstrates

the proposed RL-based execute-order mechanism. We remind

that in the proposed architecture, a vehicle becomes a client

and RSUs serve as peers (i.e., endorsers and an orderer). A

channel is formed among a certain subset of peers. There are

multiple channels, from which a client can make a selection.

Specifics of the procedure of the proposed RL-based consensus

protocol is as follows: 1 Each client has a training done

before the beginning of joining a network for RL; 2 When an

application invokes, the client sends a proposal to the number

of endorsers as a result of the RL; 3 The endorsers send

the result of execution back to the client; 4 The client sends

the endorsed transaction to an order; 5 the orderer puts the

transaction into a block along with other transactions and

multicasts the block to a set of endorsers that are directly

connected to it; 6 The endorsers use a gossip protocol

to disseminate the block to all among themselves; 7 The

endorsers compare their ledgers if they are all final and validate

the new block; 8 Once the endorsers reach a consensus, they

append the block to the chain.

We emphasize that the proposed architecture is distin-

guished from the current Fabric’s execute-order mechanism

where a client works with only a certain subset of the peers

(i.e., not all of the peers) depending on the endorsement policy

in which the client operates [7]. Unless certain peers are

designated by the policy, the client randomly selects the peers

that will endorse its transaction. This is the part that this paper

targets to improve: we propose a mechanism in which a client

learns to optimize its selection of a channel.

B. RL for Channel Selection

1) Spatiotemporal Perspective: It is critical for a vehicle

to collect the prior distribution for each channel. Fig. 1b

illustrates a spatiotemporal view on a vehicle from its first

entry into a Fabric network to departure. Before entry, the

vehicle sends a Join Request (REQ) to the closest RSU, from

which it receives a Join Confirm (CFM) upon entry to the

network. The Join CFM message contains the information that

is necessary to train a newly entering vehicle into the network:

i.e., the minimum required number of endorsers and the latest

number of clients queued in each endorser.

It is required that the vehicle i needs to obtain the prior

distribution, which will serve as the initial seed information
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Fig. 1: Proposed RL-based optimal channel selection mechanism

for a learning algorithm. However, a newly entering vehicle

has no prior information about the channels available in the

Fabric network. This explains the necessity of a dedicated time

period for a newly entering vehicle to train itself order to make

a decision that is close to an optimal. An arbitrary vehicle i is

designed to spend a certain length of time, Ttrain, observe the

context ci and update the reward ri. After Ttrain elapses, the

vehicle exploits the learned rewards among the arms.

2) Problem Formulation: Now, we present technical details

of the MAB framework. Specifically, we characterize the

proposed framework as a contextual MAB problem with the

following details. That is, in time slot t, vehicle i (i.e., a

client for a blockchain) becomes an agent that observes the

context and chooses an action based on the reward achieved

from the action. Since the vehicle i does not know an optimal

action a priori, the vehicle needs to learn which action to

select according to the given context and hence become able

to optimize the transaction. In order to learn the policy, the

vehicle has to try out different arms (i.e., channels defined

in the current policy) for different contexts over time, which

forms a contextual MAB problem. As such, in the proposed

MAB problem, a newly entering vehicle (i.e., a client from

the blockchain’s point of views) is regarded a bandit, and each

channel is modeled as an arm of the bandit.

Here is a justification for a ªcontextualº MAB. By defini-

tion, a bandit problem is defined as a single state version of

a Markov decision process (MDP). However, in our proposed

system, an action taken by a vehicle is affected by a context in

which the vehicle lies in. Specifically, let us take the mobility,

the key factor in determination of the scalability performance

of the proposed mechanism. As described in Fig. 1b, our

system model formulates the mobility by using the variable

Tdwell, the length of time that a vehicle takes while passing

through the Fabric network area. See Definition 1 for details

on formulation of the context.

Now, we formulate our proposed mechanism into an opti-

mization problem. Let xi,t ∈ R
1 denote the context of vehicle

i at time t. Also, we denote by Yi,t ∈ R
2 a vector of possible

actions. Notice that ỹi,t ∈ Yi,t is an action selected by the

policy π (yi,t∣xi,t). Now, the goal is to train π in order to

maximize the reward r (yi,t ∣ xi,t) over a training period T via

a finite-horizon decision problem, aiming to find the optimal

π∗, which yields an optimal action (yi,t)∗. We formulate this

process of predicting the optimal π∗, which is formally written

as

(yi,t)∗ = π∗ (yi,t ∣ xi,t) = argmax
yi,t∈Yi,t

r (yi,t ∣ xi,t) (1)

subject to c (yi,t ∣ xi,t) ≤ C
where c(⋅) denotes the cost and C gives the maximum

acceptable cost for operating action yi,t in context xi,t. Notice

that in this problem setting, we define the cost as the length

of time taken for a consensus, which is also called the latency

as shall be shown in Fig. 6a.

Remark 1 (0-1 knapsack problem). We notice that the prob-

lem presented in Eq. (1) is a 0-1 knapsack problem (KP) [24],

which aims to maximize the reward while keeping the cost

under a certain level. The key challenge is that a KP already

is a non-deterministic polynomial-time (NP)-complete problem

[25], which will make prediction of π cumbersome even with

input variable X in a low dimension. As a means to deal with

this challenge, we take a numerical approach to produce the

results, which will be presented in Section IV.

The key challenge in a MAB problem lies in solving the

exploration vs. exploitation dilemma, since all actions should

be explored sufficiently often to learn their rewards, but also

those actions which have already yielded high rewards should

be exploited [26]. Further, an additional challenge unique to

a ªcontextualº MAB problem is how to exploit historical

reward observations under similar contexts. More technically,

the problem of selecting an optimal channel comes from a

tradeoff described in the following lemma:

Lemma 1 (Tradeoff on the number of peers). Regarding the

constraint in Eq. (1), for a client, a tradeoff is formed in

selecting a channel through which a transaction is executed
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and committed. In particular, the latency and throughput

depend on ªthe number of peers.º If there are too many

peers, a higher latency will be caused for endorsement and

consensus; on the other hand, too few peers will more easily

cause a consensus failure when Byzantine faults occur.

3) Context: Minimizing the need for modification to the

current version of Fabric, we propose to design the context as

those can be defined within an endorsement policy.

Definition 1 (Context: Client’s dwelling time in a Fabric

network). A client (i.e., a bandit in the MAB) makes an action

based on its dwelling time in the Fabric blockchain network,

which is denoted by Tdwell. The geographic information (e.g.,

the estimated radius of the network’s boundary) is provided

from the network via an endorsement policy in Join CFM upon

joining of the network. Based on this information, each vehicle

estimates its Tdwell and uses it as the context to make the

selection on a channel. It is formally written as Tdwell = r/v
where r gives the radius of a Fabric network and v denotes

the speed of the tagged vehicle.

4) Reward: We characterize this MAB as a ªBeta-Bernoulli

banditº where the reward measured by vehicle i in time t, ri,t,

is modeled to be either 1 (i.e., a success) or 0 (i.e., a failure).

Definition 2 (Reward: Beta-Bernoulli bandit). The reward for

an action by client i in time t is defined as

ri,t = r
e&c
i,t ∩ r

l<d
i,t (2)

where

re&c
i,t = 1 (Block executed and committed to the chain)
rl<d
i,t = 1 (Total latency shorter than Tdwell)

with 1 (⋅) denoting an indicator function.

As formulated above, the superscript ªe&cº denotes an

event where a transaction gets through both execution and

commit, which means the transaction successfully completes

Steps 1 through 9 as described in Algorithm 1. Meanwhile,

the superscript ªl<dº indicates an event where a transaction can

make it through Steps 1 through 9 with a latency shorter

than the vehicle’s dwelling time Tdwell within the area of a

Fabric network.

The regret of learning is defined as the difference between

the reward achieved by vehicle i in time slot t and the optimal,

which is formulated as

ρi,t = ∣ri,t − r∗i,t∣ (3)

where r∗i,t denotes the reward that can be achieved by an

optimal channel selection.

5) Algorithm: Now, we propose an online learning algo-

rithm implementing the proposed contextual MAB problem.

Notice that the algorithm is meant to run at each vehicle on

the fly as the vehicle passes through an area operating a Fabric-

based blockchain network. As described in Algorithm 1, the

proposed framework features a RL mechanism to decide a

channel, via which it sends a transaction proposal.

As shown in Line 4, a vehicle i is recognized by a Fabric

network upon its entrance to the network, which is certified

Algorithm 1: Proposed RL-based execution-order al-

gorithm for a vehicle sending a block in Fabric-

empowered V2X network

1 Input: Ttrain; Output: ri,t and (αk, βk)
2 Initialize: ri,yi

3 for t = 1, ⋯, Tdwell do

4 Send Join REQ and receive Join CFM;

5 if t ≤ Ttrain then

6 %Ð Training Ð%

7 yi ←Ð yi,t;

8 ri ←Ð ri,t,k
9 where ri,k ∼Beta (αk, βk)←Ð (αk, βk)t

10 ∀k ∈ {1,⋯,Narm};
11 else

12 %Ð Step 1 : Channel selection Ð%

13 if ϵ-greedy then

14 if rand ≤ ϵ then

15 % Explore

16 k̂i,t = U(Npeer, min,Npeer, max);

17 else

18 % Exploit

19 k̂i,t = argmaxk ri,k∣1,2,⋯,t−1;

20 end

21 else

22 %Ð Thompson sampling Ð%

23 θ̂i,t ∼ Beta (αk, βk) for k = 1,⋯,Narm;

24 k̂i,t ←Ðmaxk θ̂i,t;

25 end

26 %Ð Steps 2 and 3 Ð%

27 Send a transaction to the peers in channel k̂i,t;

28 Receive endorsement result from the peers in

channel k̂i,t;

29 if Endorsement successful then

30 % Step 4

31 Request order;

32 (Steps 5 - 8 by orderers and endorsers)

33 if Validation successful then

34 re&c
i,t ←Ð 1;

35 else

36 re&c
i,t ←Ð 0;

37 end

38 else

39 re&c
i,t ←Ð 0;

40 end

41 %Ð Latency examination Ð%

42 if Latency ≤ Tdwell then

43 rl<d
i,t ←Ð 1;

44 else

45 rl<d
i,t ←Ð 0;

46 end

47 % Reward

48 ri,t ←Ð re&c
i,t ∩ r

l<d
i,t ;

49 % Step 9

50 (αk, βk)←Ð (αk, βk)t + ri,t;
51 end

52 end
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TABLE I: Parameters used for simulations

Parameter Setting

V2X networking DSRC
Blockchain system Hyperledger Fabric v2.0
Consensus mechanism BFT
Block dissemination for consensus Gossip protocol
# channels 10
# peers per channel Random ∼ Uniform(5,10)
RL scheme {ϵ-greedy, TS}

by receiving a Join CFM message from the network admin

server.

As described in Line 6, the vehicle should start a training pe-

riod for Ttrain slots upon new entry to a network. At time t, the

vehicle i observes context ci,t As a consequence, the vehicle

collects the history of reward ri to update the prior distribution

for the reward from channel k. Specifically, after Ttrain elapses,

for each arm k, the vehicle piles successes and failures to the

prior, which is characterized as ri,k ∼Beta (αk, βk).
From Line 11, now the vehicle i starts to utilize the learned

prior distribution to select a channel k̂i,t when it needs to

execute a transaction. As shown in Lines 13-23, a vehicle

chooses between two representative strategies. In ϵ-greedy, the

vehicle still explores at the rate of ϵ and select channel k̂i,t
at random. At the other rate of 1 − ϵ, it selects the k having

the greatest mean reward so far. Meanwhile, TS performs a

sampling for each of the Narm arms and selects channel k̂i,t
as k showing the largest sample. We compare the prediction

performance between the two learning schemes in Section IV.

Line 27 implements that upon selection of a channel k̂i,t, the

vehicle i is allowed to send a proposal to peers belonging to

the channel. We remind that the proposal contains information

about a new transaction that is generated by an application that

the vehicle performs. In a Fabric network, the peers execute

the application and simulates the transaction if it is valid as per

the endorsement policy. If valid, each peer sends the vehicle

an endorsement as shown in Line 28.

Upon collection of a sufficient number of endorsements,

the vehicle now requests validation of the transaction to the

orderer, which Line 31 describes. The next step is to examine

whether the execution and commit have been successful, i.e.,

whether re&c
i,t = 1, which is executed as in Lines 33 through 39.

(We remind that this algorithm is designed to run on a vehicle;

the tasks for orderers and endorsersÐi.e., Tasks 5 - 8 Ðare

written in parentheses in Line 32.)

Now, as Lines 41 through 46 show, the vehicle examines if

it has been able to receive a reply from the order confirming

commit of the transaction while it still dwells in the network,

the vehicle sets rl<d
i,t = 1, or 0 otherwise. It is grave to notice

that the condition in Line 42 is where the spatiotemporal

analysis is taken into account. As reminded from Fig. 1b,

Tdwell measures how fast a vehicle passes through an orderer’s

communication range, which translates a spatial measure to a

temporal one. We claim that this is how the algorithm holds

the foundation for a spatiotemporal analysis, which therefore

makes it capture the dynamicity of a V2X network.

Finally, the reward ri,t is computed and updated to the

prior for each channel k, which are performed as Lines 47

P1 P2 P3

Org1

P4

P5

Org2

P6

P7

P8

P9

Org3

Ch1

Ch2

Fabric network

Proposed RL

V2X network

Vehicle distribution

P1
P2

P9
P5

Consensus: Gossip protocol

Fig. 2: The simulation software structure (An example with

two channels, three organizations, and 9 peers)

through 50 in Algorithm 1. As evident from Lines 47-50 of the

algorithm, the direct output upon completion of the algorithm

consists of (i) a reward at vehicle i as of time t, ri,t, and

(ii) a cumulated pair of successes and failures for channel k,(αk, βk). We recall that αk and βk denote a success and a

failure from a commit/execution, respectively, which form the

shape parameters of a beta distribution. We remind that this(αk, βk) is ultimately used to identify the optimal channel.

IV. PERFORMANCE EVALUATION

This section presents the results of numerical evaluation of

the proposed framework, which are displayed in five metrics:

namely, latency, block dissemination rate, convergence, scala-

bility, and regret.

A. Simulation Setting and Structure

For evaluating the performance, we constructed simulations

for a Fabric-based V2X network on MATLAB. Table I summa-

rizes the parameters and their settings. Our test Fabric network

consists of three organizations, each of which is with 5-10

endorsing peers for a total of 100 peer nodes. We experimented

on different numbers of channels: i.e., {10, 20, 30} channels

on different subsets of peers are tested. There is one orderer

node operating in Raft [28].

Fig. 2 illustrates key components consisting of the simu-

lation software and their structure. On the top, we generate

vehicles on a square-shaped two-dimensional space R
2 with

the length and width of l and w m, respectively, as has

been mentioned in Section II-B. The vehicles ªdroppedº on

R
2 operate based on the DSRC networking principles: i.e.,

10 basic safety messages (BSMs) per second and listen-

before-talk multiple access. The V2X network runs the Fabric

overlaid on it and adopts the proposed RL-based algorithm to
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Fig. 3: Average latency (in seconds) vs. {number of peers

(Npeer), probability of fault (pf )}
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Fig. 4: Rate of dissemination of a block among a group of

peers

optimize the performance of the Fabric network. As shown

in the fourth block from the top, our simulation software

implements several key components for a Fabric network: viz.,

organization, peer, channel, and orderer. Specifically, for each

channel, we execute a Gossip protocol so the peers on the

channel achieve a BFT-based consensus. The last block from

the top shows an example of having Channel 1 selected, which

is constituted by Peers {1, 2} belonging to Organization 1,

Peer 5 belonging to Organization 2, and Peer 9 belonging to

Organization 3.

B. Justification of Methodology

We found that simulation would accomplish the best effi-

ciency as the main method to evaluate the performance of the

proposed mechanism, based on several advantages [4].

First, as shall be presented through Figs. 3 through 6, the

parameters defining and operating the proposed mechanism are

quite diverse in types and values, which makes it challenging

to explore the parameters’ dynamic orchestration in concert.

A simulation provides a relatively easier control over such a

large space composed of various parameters with wide ranges

of values. It gives an obvious advantage over mathematical

derivations and testbed implementations. An example is eval-

uation of a consensus process depending on the size of a

channel. As presented in Table I, we intend to vary the number

of channels in the range of Nch ={10, 20, 30} with a different

combination of peers for each channel every time a simulation

is run. One can easily anticipate a high degree of complexity

in changing the setting every time a new round of simulation

is executed, while a large number of iterations is inevitable to

present a statistically stable result in such a complex setting.

As an effort to deal with the complexity, we adopt simulation

as the main methodology, which, as shall be presented in this

section, did efficiently evaluate the proposed system in a wide

diversity of parameter settings.

Second, simulations enable computations without being

caught up with restrictions or errors caused by computing

environmental factors including hardware, compiler, language,

etc. Accounting all the available options for all of those factors

will complex the performance evaluation to a too high degree,

which, thus, will make it hard to precisely identify the factors

determining the key performance. In fact, existing literature

has mentioned possible inaccuracy that could be caused by

selection of a certain hardware [29]. As such, a software suite

can provide a higher consistency than a real road test can do

[30]. To wit, a simulation running on a computer provides an

identical traffic scenario for multiple driver participants, which

would likely be very costly and inaccurate in a road test due

to the extreme variety in traffic situations including speed of

other cars, road conditions, weather, etc.

With the above two advantages considered, we claim that

when it comes to assessing the performance of a connected

vehicle network, simulation is found to provide a more effi-

cient approach compared to on-road experiment. We reiterate

that a simulation can provide a lower-cost, easier-to-maneuver

option to focus on a certain set of variables while keeping other

variables controlled. Hence, the results that will be presented

in this section are generated from simulations.

C. Results and Discussions

Via Figs. 3 through 7, we demonstrate the results of

the performance evaluation. In what follows, we discuss the

implications of the results.

1) Latency: Fig. 3 shows the average latency versus (i) the

number of peers in a channel, Npeer, and (ii) the probability

of fault, pf , at each peer in a consensus procedure. Notice

that the latency is defined as the total length of time that

is taken for processing steps 1 through 9 of the proposed

mechanism. The degree of latency is expressed as the intensity

on a ªheatmap,º as shown in the legend placed on the right-

hand side of the heatmap.

To discuss what the result implies, it is obvious from the

figure that a higher pf at each peer incurs a higher latency.

The relationship is attributed to the fact that too many faulty

peers can induce a delay in a consensus, which takes up a

major part in the entire block validation process.

Conversely, it is interesting to observe that the dependency

of the latency on Npeer is not monotonic. That is, a larger Npeer

may incur a shorter latency, which suggests that an optimal

Npeer yielding the smallest latency exists. The reason for this

relationship is the tradeoff that was described in Lemma 1. To

wit, too many peers take a longer time to achieve a consensus,
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while too few peers draw a higher chance of ending up with

a consensus failure. In particular, if the latter is the case, it

likely ends up with an even higher latency due to the need to

start over the entire consensus process from the beginning.

2) Block Dissemination Rate: Figs. 4 shows the rate of

dissemination of a block within a group of peers via a channel.

Each curve indicates the length of time taken for propagation

of a block from the master peer to all the other nodes. It

is critical to recall that a consensus consumes the largest

proportion in the latency for a block from being generated

to being finally added to the chain. The dissemination latency

ranges from 6 to 12 slots depending on the given numbers of

peers±i.e., from 5 to 100.

To understand the result precisely, we analyze how a block

is disseminated throughout a network via a Gossip protocol.

Let n denote the total number of nodes. Also, by rt, we denote

the proportion of nodes that have received the block sent from

the source node after the execution of t rounds. Meanwhile,

xt gives the proportion of nodes that have not received the

block yet: i.e., xt = 1 − rt. We assume that in the first time

slot, i.e., t0, the master peer has a block to propagate, which is

given by x0 = 1/n and r0 = 1−1/n. Now, for the propagation,

we formulate the expectation of xt + 1 as a function of xt

as follows. Assuming uniform random selection of a node to

receive the propagation in the next time slot t, the expected

rate of reception of the block by the randomly selected node

can be written as [32]

E ∥rt+1∥ = xt (1 − 1

n
)
n(1−xt)

. (4)

We remind that each curve in Fig. 4 describes E ∥rt+1∥ versus

t for a value of n.

3) Convergence: To evaluate the time complexity, we

compute the average length of time taken for selection of

the optimal channel, depending on various values for Ttrain.

Based on the fact that we model the MAB problem as a

Bernoulli-bandit, we evaluate two representative algorithms

finding an optimal arm in a MAB problem: Fig. 5 compares

the convergence performance between ϵ-greedy and TS.

Fig. 5 shows the results of an experiment where a vehicle

learns on 10 channels. As an example, we set Channels 1,

2, and 3 as successful selections based on Definition 2, while

Channel 1 is the optimum yielding the largest reward based on

Eq. (2). Each of TS and ϵ-greedy were run for 105 iterations

to demonstrate an average convergence performance.

The results reveal the following observation about the

convergence of the learning algorithm. TS shows a better

concentration on the eligible channels, but remains with sub-

optimals (i.e., Channels 2 and 3) as well. Conversely, ϵ-greedy

still considers other irrelevant channels, yet it yields a higher

probability of landing on the optimal channel. Specifically,

while ϵ-greedy can focus on a proved arm at the rate of 90%

(since ϵ = 0.1), it showed inefficiency by wasting time by

still selecting irrelevant arms. On the other hand, TS is shown

to better focus on the three successful arms as the learning

progresses. In fact, TS has been evidenced to outperform

other alternatives such as ϵ-greedy and upper confidence bound

(UCB) [31].

(a) ϵ-greedy (With ϵ = 0.1)

(b) TS

Fig. 5: Convergence of the proposed RL algorithm (With 10

channels; For each subfigure: Upper: Selected channel at each

t, Lower: Probability of each channel selection over t)

4) Scalability: Figs. 6a and 6b show the scalability via the

latency and throughput versus the number of clients, as a result

of the proposed RL mechanism applied in the proposed Fabric

system framework for V2X. Notice of the definitions: latency

is the time taken from application sending the transaction

proposal to the transaction commit; and throughput is the rate

at which transactions are committed to ledger, i.e., the number

of transactions per second (TPS).

The key observation is that the proposed mechanism (shown

as finely dotted lines in Fig. 6) achieves a performance that

is far closer to the optimal than the current Fabric’s channel

selection mechanism. The rationale is the proposed RL scheme

enables a vehicle to select a channel that provides a close-

to-optimal number of peers, addressing the tradeoff that was

described in Section III-B2.

5) Regret: Fig. 7 demonstrates the average regret according

to the number of channels, the length of training period, and

the method of RLÐviz. ϵ-greedy or TS. Notice that we refer

to Eq. (3) for quantification of the regret. Comparing Figs. 7a

and 7b suggests that TS results in a smaller regret as compared

to ϵ-greedy. The reason is that TS wastes a smaller number of

trials for exploring arms with lower chances of winning than

ϵ-greedy does. Moreover, within each of Figs. 7a and 7b, it is
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Fig. 6: Scalability

apparent that the regret is elevated with (i) a shorter training

period and (ii) a larger number of channels to explore.

It is noteworthy that Ttrain was left unitless for the following

reason. We believe that the absolute length of Ttrain is of less

importance; rather, it has to be understood in reference to

the length of an entire latency. For instance, Ttrain = 1 sec

is a significant training burden when the entire blockchain

process completes by T = 2 sec; yet, the same Ttrain = 1 sec is

neglectable if the process takes T = 100 sec. This ªrelativityº

is the main reason that we suggest displaying Ttrain as a ratio

to the total latency T .

Regardless, we would also like to emphasize that one can

easily fathom the number of seconds for Ttrain whenever the

length T is known. Notice that we define T = Tdwell as evident

from Line 3 of Algorithm 1. Also note that in reference to Fig.

1b, Tdwell is a function of (i) the speed of a vehicle and (ii)

the communication range of a RSU. That is to say, Tdwell is

an easy quantity to measure whenever one wants to know the

value. It, in turn, makes Ttrain equally easy to infer.

V. RELATED WORK

1) V2X for ITS: Security in vehicular networks is one of

the most foremost aspects that have been pursued in the ITS

literature [33]. A critical challenge in achieving security in a

V2X network is the complexity and dynamicity attributed to
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Fig. 7: Average regret vs. train time length

mobility. A recent work in the literature proposed an optimal

decision algorithm that is able to maximize the chance of

making a correct decision on the message content, assuming

the prior knowledge of the percentage of malicious vehicles

in the network [34].

Meanwhile, the literature has also recognized blockchain

as a main technological component to promote trust among

vehicles. As an example, a privacy-improving blockchain

architecture for smart vehicles has been proposed [35]. The

mechanism features a blockchain mechanism enabling signa-

tures to be exchanged without revealing the sender’s identity,

as a means to improve privacy.

However, none of the prior work has adequately addressed

the key issue that this paper targets to discuss: the scalability

for blockchain applied to a V2X network.

2) Blockchain-Empowered V2X Network: We found a body

of prior work discussing blockchain applied on vehicular

networks. An example is a RL-based industrial internet of

things (IoT) [16]. Another RL-based performance optimization

framework for blockchain-enabled internet of vehicles (IoV)

was found, where transactional throughput is maximized while

guaranteeing the decentralization, latency and security of the

underlying blockchain system [36]. However, these existing

methods limit its own applicability by assuming that a vehicle

is able to select a certain consensus method. In practice, it
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is hard to switch the blockchain parameters in the middle of

operating a consensus procedure.

Meanwhile, permissioned blockchains such as Fabric gar-

nered considerable interest for application to ITS [7][37][38].

A key limitation from the literature is that no further details

were discussed about optimization of selection of voting peers.

Another proposal focused on the endorsement procedure of

Fabric [39]. It suggested an anonymity of endorsing peers

in order to prevent a bias since revealing identity of each

endorser among the peer nodes may not be suitable for

transactions in which the endorsing peers have different prefer-

ences. However, we argue that not every application is biased;

thus, it may incur unnecessary inefficiency if an application

does not need anonymity. More importantly, the proposal

limits its applicability to V2X since in many ITS applications

(especially safety-critical ones), it is inappropriate to assume

anonymous data exchange among vehicles.

In the current version of Fabric, a client can only guess in a

selection of endorsing peers for a transaction [7]. Furthermore,

the client application has no way of knowing which peers

have updated ledgers and which do not, so the client may

submit proposals to peers whose ledger data is not in sync

with the rest of the network, keeping the transaction from

being validated and thus committed.

As a remedy, the Fabric recently added the service discovery

[40]. But it comes at the cost of a higher complexity due to

the need for additional information that needs to be provided

by each client. A scalability issue is still anticipated with a

very large number of clients.

3) Consensus in V2X Network: The complexity of a BFT

consensus in a vehicular network has been studied [42].

There was a recent proposal for vehicle-to-infrastructure (V2I)

communications where the reputation is determined by the

distance that a vehicle traveled [44]. Yet, the scope limited to

the V2I channels, which has only little implication to a general

V2X environment.

Another latest proposal proposed a scheme achieving dis-

tributed fault-tolerant consensus among connected vehicles

[41]. However, our work features a RL-based algorithm finding

an optimal number of peers participating a BFT consensus.

Our algorithm is also sensitive to the latency of the algorithm

in consideration to the dynamicity of a V2X network.

A BFT consensus algorithm was proposed for autonomous

vehicles adopting the federated learning for privacy protection

[43]. As compared to this prior art, our singular contribution is

delving into the performance of a Fabric 2.0-empowered V2X

network, which as such presents deeper technical specifics.

Focusing more on the Raft consensus that the Fabric adopts,

albeit not many, there has been several latest proposals found

in the literature. Examples include a BFT ordering service on

top of a state machine replication/consensus library [45][46]

and a grouped structure of Raft for stronger verification

capability [47]. While they have relevant implication on how

to make the Raft BFT, these prior proposals lack clarity on the

applicability of the proposed methods to V2X environments.

4) RL in V2X: RL has been recently applied to wireless net-

works to provide a data-driven approach to solve traditionally

challenging problems. Latest examples found in the literature

include integration of networking, caching, and computing

for connected vehicles [48]; safety optimization of finding

trajectory for connected vehicles [49]; adaptive traffic signal

control [50]; offloading for distributed computing [51].

We claim that this present paper applies the RL in optimiza-

tion of the ordering service for a blockchain established among

connected vehicles. That is where this paper distinguishes

itself from the prior work.

VI. CONCLUSIONS

This paper proposed a RL-based channel selection frame-

work for the Fabric applied to V2X networks. We formulated

the machine learning as a contextual MAB problem with the

length of a vehicle’s dwelling time in a Fabric network as the

context. Specifically, we found that a tradeoff exists on the

number of peers in a channel: a procedure of endorsement

and consensus becomes (i) less scalable with too many peers

and (ii) susceptible to faults with too few peers. Also, since the

vehicle has no prior information of the peers’ probability of

fault upon joining a network, there is no way to anticipate the

performance of each channel until it has learned about it. As an

actual means to perform the learning, the proposed framework

enabled a vehicle to adopt ϵ-greedy and or TS. The results of

our experiments showed that the proposed RL mechanism led

to stable selection of channels fulfilling the success condition.

More precisely, the proposed algorithm showed the latency

and throughput close to the optimal.

This work is expected to have significant impact on future

applications across the technologies gaining high research

interest, namely Fabric and V2X. Despite advantages from

its unique structure including modularization and execute-

order procedure, the Fabric system still has many aspects to

prove before stable operation in a V2X environment. One

possible extension of this work is to incorporate the proposed

RL mechanism to incorporate other dynamic factors such as

network condition and evaluate the resulting performance im-

pacts. It will also be interesting to apply this paper’s structure

to study the feasibility of other Hyperledger blockchains for

V2X networks.
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