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Abstract—Blockchain has been forming the central piece of
various types of vehicle-to-everything (V2X) network for trusted
data exchange. Recently, permissioned blockchains garner par-
ticular attention thanks to their improved scalability and diverse
needs from different organizations. One representative example
of permissioned blockchain is Hyperledger Fabric (“Fabric”).
Due to its unique execute-order procedure, there is a critical need
for a client to select an optimal number of peers. The interesting
problem that this paper targets to address is the tradeoff in the
number of peers: a too large number will degrade scalability
while a too small number will make the network vulnerable to
faulty nodes. This optimization issue gets especially challenging
in V2X networks due to mobility of nodes: a transaction must
be executed, and the associated block must be committed before
the vehicle leaves a network. To this end, this paper proposes
a mechanism for selecting an optimal set of peers based on
reinforcement learning (RL) to keep a Fabric-empowered V2X
network impervious to dynamicity due to mobility. We model
the RL as a contextual multi-armed bandit (MAB) problem. The
results demonstrate the outperformance of the proposed scheme.

Index Terms—Connected Vehicles; Blockchain; Hyperledger
Fabric; BFT; RL; MAB

I. INTRODUCTION
A. Background

Vehicle-to-everything (V2X) communications are acknowl-
edged to have a massive potential to significantly decrease the
number of vehicle crashes, thereby reducing the number of
associated fatalities [1]. Based on this benefit, the literature
perceives V2X communications as the central piece in consti-
tution of intelligent transportation system (ITS) for connected
and autonomous vehicles (CAVs).

Meanwhile, the blockchain technology has been gaining
widespread interest based on its capability of providing secure,
access-regulated interactions and transactions [2]. However,
to be applied in V2X networks, the key challenge lies in
keeping the performance of a consensus due to the networks’
dynamicity attributed to mobility [3]. In general, a consensus
algorithm is defined as a process to achieve agreement on
a single data among distributed nodes. That is, a consensus
algorithm is designed to achieve a certain degree of reliability
even in a network involving unreliable nodes [4].

Permissioned blockchains are getting popular as a means
to address this issue [5]. In many distributed blockchains,
such as Ethereum and Bitcoin, which are not permissioned
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(also known as “public”’), any node can participate in the
consensus process, wherein transactions are ordered and bun-
dled into blocks. Because of this characteristic, these systems
rely on probabilistic consensus algorithms, which eventually
guarantee consistency of a ledger. However, such a ledger
still remains susceptible to divergence of ledgers (also known
as a “fork”), where different participants in the network
have a different view of the accepted order of transactions.
Permissioned blockchains work differently. They aim at a
deterministic consensus among all the nodes in a validation.

B. Hyperledger Fabric

The Hyperledger Fabric (“Fabric” from now) has the widest
popularity these days owing to its design as modular consensus
protocols, which allows the system to be tailored to particular
use cases and trust models [6]. It features existence of an entity
called an orderer (also known as an “ordering node”) that
“commands” a consensus procedure for a transaction, which,
along with other orderer nodes, forms an ordering service.
Because Fabric’s design adopts the deterministic consensus,
any validated block is guaranteed to be final and correct.

Also, the Fabric features a unique execute-order architec-
ture, which requires all peers to execute every transaction
“before” the transaction is validated. Conversely, existing
blockchain systems employ the opposite “order-execute” ar-
chitecture: examples range from public blockchain such as
Ethereum to permissioned ones adopted by various enterprises
[7]. The limitation of the typical, order-execute architecture is
apparent: every peer executes every transaction and transac-
tions must be deterministic.

In a Fabric network, scalability is predominantly determined
by the complexity of its endorsement policy [8] and ordering
service where a consensus has to be reached [9]. Specifi-
cally, validation of endorsements on a transaction requires
evaluation of an endorsement policy expression against the
collected endorsements and checking for satisfiability [10],
which is usually achieved via a gossip protocol in a consensus
mechanism based on Byzantine fault tolerant (BFT). This is
the key bottleneck in accomplishing scalability [11]: a larger
number of peers participating in validation usually causes a
longer latency and hence a lower throughput.

Moreover, there is a pitfall in the Fabric’s execute-order
structure [6]. Since an application is executed before validation
of the associated transaction, the key drawback of this system
occurs when the transaction turns out invalid at the end. It in-
curs a security problem and also waste of resources executing
the application not complying the endorsement policy.

C. Reinforcement Learning for Performance Optimization

In this paper, we propose to apply reinforcement learning
(RL) to optimize the selection of an optimal set of peers
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performing a consensus for a given block transaction in a
Fabric network implemented in a V2X environment. However,
there still remain challenges to address. Specifically, the learn-
ing is extremely complicated due to the dynamicity, which
necessitates that the learning framework itself must be resilient
and flexible according to the environment.

This paper proposes a learning mechanism formulated as a
multi-armed bandit (MAB) problem, which enables a vehicle,
without any assistance from an external infrastructure, to
autonomously learn the environment and adapt its channel
access behavior according to the outcome of the learning.

The MAB simplifies a RL by removing the learning depen-
dency on state and thus providing evaluative feedback that de-
pends entirely on the actions. The actions usually are decided
upon in a greedy manner by updating the benefit estimates of
performing each action independently from other actions. To
consider the state in a bandit solution, contextual bandits may
be used [13]. In many cases, a bandit solution may perform as
well as a more complicated RL solution or even better. Many
bandit algorithms feature stronger theoretical guarantees on
their performance even under adversarial settings [14].

Thompson sampling (TS) (also known as posterior sam-
pling) [27] provides a statistically efficient approach that
tackles the exploration-exploitation dilemma by maintaining
a posterior over models and choosing actions in proportion to
the probability that they are optimal [15]. We will show in this
paper that the endorsing peer selection problem can be solved
via Thompson sampling.

D. Contribution of This Paper

This paper proposes an endorser selection mechanism based
on RL that is performed autonomously by a client. Specifically,
this paper features the following contributions:

« It proposes an optimal channel selection protocol for
the Fabric when applied to connected vehicles. This
distinguishes our work from prior art, which mostly
remains at simply adopting the Fabric in V2X networks
without proposing a separate mechanism for performance
optimization.

o It (i) adopts RL for accomplishing the aforementioned
novel consensus protocol and (ii) models the optimization
as a contextual MAB problem as means to achieve RL.
Unlike the prior work such as [16] having provided only
little technical details on the RL, this paper takes a more
balanced view on both of the BFT and RL.

« It provides a spatiotemporal analysis framework for eval-
uating the performance of a blockchain system applied
to a V2X network. The framework has advantages on
several fronts: (i) the dynamics of vehicles are modeled
by using stochastic processes; (ii) the time effects on
the blockchain performance are evaluated; and (iii) the
performance of RL is evaluated as Bayesian statistics.

II. SYSTEM MODEL

A. Fabric-Based V2X Networking

1) Key Terminologies for Fabric: When “Fabric” is referred
to in this paper, the fourth box from the top (named “Fabric
network™) in Fig. 2 will aid the reader’s understanding.
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This paper’s system model implements three main compo-
nents forming a Fabric network: namely, peer nodes (“peers”
hereafter), channels and, organizations [7].

Peers are the key element of a Fabric network as they are the
entities participating in a consensus procedure for validation of
a block. One or a few of the peers are elected as the orderer(s)
who act(s) as the commander of an ordering service. As such,
a peer is the smallest unit of a member constituting a Fabric
network.

A channel is defined as a mechanism via which peers
interact with each other and with applications and exchange
transactions privately. We emphasize the importance of under-
standing the concept of a channel in relation to a peer, since a
channel is the object that the proposed mechanism targets to
optimize, as shall be presented in Eq. (1). As such, a channel
can be understood as a logical structure that is formed by a
collection of peers: hence, peers provide the control point for
access to, and management of, channels.

An organization is a party that has ownership and thus
control of a Fabric network. A Fabric network is constituted
of peers owned by the different organizations. For instance, a
certain network established in a physical area can be governed
by multiple parties: e.g., city, county, state, federal, and private
enterprise. The Fabric allows a set of physical resources shared
by multiple parties while each of the parties can maintain a
private network built upon the resources, i.e., an organization.

Further, it is also worth to note of the mechanism that Fabric
adopts to implement a consensus. The Raft is the protocol
that Fabric uses for the consensus in its ordering service.
Raft features a “leader and follower” model where a leader is
dynamically elected among the ordering nodes in a channel,
and that leader replicates messages to the follower nodes.
Raft is considered a step forward to BFT from Kafka, its
predecessor that was based on crash fault tolerant (CFT) [17].

2) This Paper’s Fabric-Based V2X Network Model: This
paper assumes a V2X network on which a permissioned
blockchain is formed based on the Fabric v2.0 [17]. Specif-
ically, the roadside units (RSUs) act as peers that participate
in endorsement and consensus (i.e., validation and commit)
in a Fabric network, while the onboard units (OBUs)—
i.e., vehicles—serve as clients. Applying the Fabric to this
architecture, the RSUs have the authority to validate and order
a block, which means that all the endorsing peers and orderers
are selected from the RSUs. Meanwhile, OBUs request the
execution and ordering services to RSUs.

By this architecture, we mean to make the blockchain sys-
tem operate stably despite the vehicles’ frequent entry into and
departure from the blockchain network. Also, this architecture
makes practical sense because a blockchain system will likely
be managed by a certain party such as a state or federal
organization or a private enterprise, through which vehicles
pass and some of them may generate blocks that should be
processed in the blockchain managed by such an organization.

As a significant remark, we remind that from v2.0, via an
ordering service named “Raft,” the Fabric started to provide
a BFT-based consensus for validation and commit of a block.
We emphasize that this also suits to address the dynamicity
of a V2X network, which is highly dynamic in the network
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topology and the member composition, which implies a far
higher possibility of malice or fault. As such, the employment
of Fabric is justified in both aspects of efficiency and security.

3) This Paper’s Goal: Channel Selection Optimization: As
shall be detailed in Section III, the key problem statement
of this paper is based on the tradeoff of channel selection.
By definition, channels partition a Fabric network in such a
way that only the stakeholders can view the transactions. In
this way, organizations are able to utilize the same network
while maintaining separation between multiple blockchains.
The mechanism works by delegating transactions to different
ledgers. Members of the particular channel can communicate
and transact privately, while other members of the network
cannot see the transactions on that channel. The Raft consen-
sus service allows an orderer to select a channel through which
it will serve the ordering service. As such, this paper focuses
on finding an optimal channel that minimizes the latency and
maximizes the throughput.

4) Assumptions: We assume that not all RSUs are con-
nected to each other. A RSU usually has no wired connection,
which causes that it only has a finite coverage [18]. Taking this
practical aspect into consideration, we assume that only a cer-
tain number of RSUs falling into each other’s communications
range are connected. Interestingly, the Fabric does already
consider this type of situation, which leads to employment
of a Gossip protocol in disseminating information to reach a
consensus during a block validation procedure.

It is also noteworthy that we consider a discrete time setting.
Specifically, in each period t = 1,---,T, where T € N is a finite
time horizon. It is a synchronous network [19], wherein all the
clients (i.e., vehicles) and peers (i.e., RSUs) refer to the same
discrete time t. As such, in the evaluation of this network’s
performance, we measure at any arbitrary node (i.e., a vehicle
or a RSU) the number of slots that are consumed to process
a transaction to append a block to the chain. We also remind
to assume the same length of t for all nodes.

B. Geometry

We reiterate that not all nodes are connected directly to each
other; however, every node is equipped with communications
functionality and hence is able to exchange a transaction or a
block to each other.

This paper adopts the stochastic geometry for characteriza-
tion of a V2X network on a space [20]-[23]. They commonly
rely on the fact that uniform distributions of nodes on X and
Y axes of a Cartesian-coordinate two-dimensional space yield
a Poisson point process (PPP) on the number of nodes in the
space. The distributions of RSUs and OBUs are modeled as
an independent homogeneous PPP ®,. and &, with the vehicle
density A, and A,.

A two-dimensional space R? is defined with the length
and width of [ and w meters (m), respectively. To capture a
more dynamic and realistic movement of nodes in a vehicular
network, this system model considers no separation of lanes.
Notice that such a generalized model enables the subsequent
analyses more widely applicable [3]. Furthermore, to consider
the most generic vehicle movement characteristic, this model
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assumes that every vehicle can move in any direction, which
enables the system to capture every possible movement sce-
nario including flight of unmanned aerial vehicles (UAVs),
lane changing, intersection, and pedestrian walking.

III. PROPOSED MECHANISM

As was introduced in Section I-D, this paper proposes to
enable a vehicle to (i) autonomously learn about a channel that
provides an optimal number of peers and (ii) hence minimize
the latency and maximize the throughput.

A. Improvement to the Fabric Architecture

The key improvement is to introduce an optimal channel
selection mechanism based on the RL. Fig. 1a demonstrates
the proposed RL-based execute-order mechanism. We remind
that in the proposed architecture, a vehicle becomes a client
and RSUs serve as peers (i.e., endorsers and an orderer). A
channel is formed among a certain subset of peers. There are
multiple channels, from which a client can make a selection.
Specifics of the procedure of the proposed RL-based consensus
protocol is as follows: (1) Each client has a training done
before the beginning of joining a network for RL; (2) When an
application invokes, the client sends a proposal to the number
of endorsers as a result of the RL; @ The endorsers send
the result of execution back to the client; @) The client sends
the endorsed transaction to an order; (5) the orderer puts the
transaction into a block along with other transactions and
multicasts the block to a set of endorsers that are directly
connected to it; (6) The endorsers use a gossip protocol
to disseminate the block to all among themselves; (7) The
endorsers compare their ledgers if they are all final and validate
the new block; Once the endorsers reach a consensus, they
append the block to the chain.

We emphasize that the proposed architecture is distin-
guished from the current Fabric’s execute-order mechanism
where a client works with only a certain subset of the peers
(i.e., not all of the peers) depending on the endorsement policy
in which the client operates [7]. Unless certain peers are
designated by the policy, the client randomly selects the peers
that will endorse its transaction. This is the part that this paper
targets to improve: we propose a mechanism in which a client
learns to optimize its selection of a channel.

B. RL for Channel Selection

1) Spatiotemporal Perspective: It is critical for a vehicle
to collect the prior distribution for each channel. Fig. 1b
illustrates a spatiotemporal view on a vehicle from its first
entry into a Fabric network to departure. Before entry, the
vehicle sends a Join Request (REQ) to the closest RSU, from
which it receives a Join Confirm (CFM) upon entry to the
network. The Join CFM message contains the information that
is necessary to train a newly entering vehicle into the network:
i.e., the minimum required number of endorsers and the latest
number of clients queued in each endorser.

It is required that the vehicle ¢ needs to obtain the prior
distribution, which will serve as the initial seed information
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Fig. 1: Proposed RL-based optimal channel selection mechanism

for a learning algorithm. However, a newly entering vehicle
has no prior information about the channels available in the
Fabric network. This explains the necessity of a dedicated time
period for a newly entering vehicle to train itself order to make
a decision that is close to an optimal. An arbitrary vehicle i is
designed to spend a certain length of time, 7i,, observe the
context c¢; and update the reward r;. After Ti.;, elapses, the
vehicle exploits the learned rewards among the arms.

2) Problem Formulation: Now, we present technical details
of the MAB framework. Specifically, we characterize the
proposed framework as a contextual MAB problem with the
following details. That is, in time slot ¢, vehicle ¢ (i.e., a
client for a blockchain) becomes an agent that observes the
context and chooses an action based on the reward achieved
from the action. Since the vehicle ¢ does not know an optimal
action a priori, the vehicle needs to learn which action to
select according to the given context and hence become able
to optimize the transaction. In order to learn the policy, the
vehicle has to try out different arms (i.e., channels defined
in the current policy) for different contexts over time, which
forms a contextual MAB problem. As such, in the proposed
MAB problem, a newly entering vehicle (i.e., a client from
the blockchain’s point of views) is regarded a bandit, and each
channel is modeled as an arm of the bandit.

Here is a justification for a “contextual” MAB. By defini-
tion, a bandit problem is defined as a single state version of
a Markov decision process (MDP). However, in our proposed
system, an action taken by a vehicle is affected by a context in
which the vehicle lies in. Specifically, let us take the mobility,
the key factor in determination of the scalability performance
of the proposed mechanism. As described in Fig. 1b, our
system model formulates the mobility by using the variable
Tawen, the length of time that a vehicle takes while passing
through the Fabric network area. See Definition 1 for details
on formulation of the context.

Now, we formulate our proposed mechanism into an opti-
mization problem. Let z; ; € R' denote the context of vehicle
i at time t. Also, we denote by Y, ; € R? a vector of possible
actions. Notice that g;; € Y;; is an action selected by the
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policy W(yi’t|xi,t). Now, the goal is to train 7 in order to
maximize the reward r (ylt | xiyt) over a training period 7" via
a finite-horizon decision problem, aiming to find the optimal
7*, which yields an optimal action (yiﬂg)*. We formulate this
process of predicting the optimal 7*, which is formally written
as

(i) =7 (it | i) = avgmax 7 (yie | i) (1)

Yi,t€Yit

subject to ¢ (y | zit) < C

where ¢(-) denotes the cost and C gives the maximum
acceptable cost for operating action y; ; in context x; ;. Notice
that in this problem setting, we define the cost as the length
of time taken for a consensus, which is also called the latency
as shall be shown in Fig. 6a.

Remark 1 (0-1 knapsack problem). We notice that the prob-
lem presented in Eq. (1) is a 0-1 knapsack problem (KP) [24],
which aims to maximize the reward while keeping the cost
under a certain level. The key challenge is that a KP already
is a non-deterministic polynomial-time (NP )-complete problem
[25], which will make prediction of m cumbersome even with
input variable X in a low dimension. As a means to deal with
this challenge, we take a numerical approach to produce the
results, which will be presented in Section IV.

The key challenge in a MAB problem lies in solving the
exploration vs. exploitation dilemma, since all actions should
be explored sufficiently often to learn their rewards, but also
those actions which have already yielded high rewards should
be exploited [26]. Further, an additional challenge unique to
a “contextual” MAB problem is how to exploit historical
reward observations under similar contexts. More technically,
the problem of selecting an optimal channel comes from a
tradeoff described in the following lemma:

Lemma 1 (Tradeoff on the number of peers). Regarding the
constraint in Eq. (1), for a client, a tradeoff is formed in
selecting a channel through which a transaction is executed
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and committed. In particular, the latency and throughput
depend on “the number of peers.” If there are too many
peers, a higher latency will be caused for endorsement and
consensus; on the other hand, too few peers will more easily
cause a consensus failure when Byzantine faults occur.

3) Context: Minimizing the need for modification to the
current version of Fabric, we propose to design the context as
those can be defined within an endorsement policy.

Definition 1 (Context: Client’s dwelling time in a Fabric
network). A client (i.e., a bandit in the MAB) makes an action
based on its dwelling time in the Fabric blockchain network,
which is denoted by Tyyen. The geographic information (e.g.,
the estimated radius of the network’s boundary) is provided
Jrom the network via an endorsement policy in Join CFM upon
Jjoining of the network. Based on this information, each vehicle
estimates its Ty.en and uses it as the context to make the
selection on a channel. It is formally written as Tywen = 7/
where r gives the radius of a Fabric network and v denotes
the speed of the tagged vehicle.

4) Reward: We characterize this MAB as a “Beta-Bernoulli
bandit” where the reward measured by vehicle ¢ in time ¢, 7; 4,
is modeled to be either 1 (i.e., a success) or O (i.e., a failure).

Definition 2 (Reward: Beta-Bernoulli bandit). The reward for
an action by client i in time t is defined as

Tit = Tfi‘c n riftd 2)

where
e&c
Tit

rﬁftd =1 (Total latency shorter than T gyer)

=1 (Block executed and committed to the chain)

with 1 (-) denoting an indicator function.

As formulated above, the superscript “e&c” denotes an
event where a transaction gets through both execution and
commit, which means the transaction successfully completes
Steps (1) through (9) as described in Algorithm 1. Meanwhile,
the superscript “l<d” indicates an event where a transaction can
make it through Steps (1) through (9) with a latency shorter
than the vehicle’s dwelling time Tgyey Wwithin the area of a
Fabric network.

The regret of learning is defined as the difference between
the reward achieved by vehicle 7 in time slot ¢ and the optimal,
which is formulated as

3)

where 7, denotes the reward that can be achieved by an
optimal channel selection.

5) Algorithm: Now, we propose an online learning algo-
rithm implementing the proposed contextual MAB problem.
Notice that the algorithm is meant to run at each vehicle on
the fly as the vehicle passes through an area operating a Fabric-
based blockchain network. As described in Algorithm 1, the
proposed framework features a RL mechanism to decide a
channel, via which it sends a transaction proposal.

As shown in Line 4, a vehicle 7 is recognized by a Fabric
network upon its entrance to the network, which is certified

Pit =

*
Tit =Tt
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Algorithm 1: Proposed RL-based execution-order al-
gorithm for a vehicle sending a block in Fabric-
empowered V2X network

1 Input: Tipin;

Output: 7;; and (g, Bx)

2 Initialize: r;,y;
3fort =1, Tyey do

N-IE-CREEN B NY

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52 end

Send Join REQ and receive Join CFM;
if ¢t < T}y then

90— Training —%
Yi <— Yits
ry <— Ttk
where Tik ~Beta (Oék, ﬁk) <« (Oék, ﬁk)t
Vke {1, Nym};

else

%— Step (D: Channel selection —%
if e-greedy then
if rand < € then

9% Explore
ki,t = U(Npeer, min; Npeer, max )}
else
% Exploit
ki = argmax,, Ti’k|1,2.---,t—1;
end '
else

90— Thompson sampling —%

0;+ ~ Beta (ag, Bx) for k=1, Nygm;
km <— Inaxyg éi,t;

end

%— Steps (2) and 3) —%

Send a transaction to the peers in channel I%i,t;

Receive endorsement result from the peers in
channel 12:,'7t;

if Endorsement successful then

% Step (4)

Request order;

(Steps (5)-(8) by orderers and endorsers)

if Validation successful then
e&c

‘ Tit
else
e&c
‘ Tit
end

~—1;

~—0;

else
e&c
‘ Tit

end
90— Latency examination —%

if Latency < Ty, then
‘ T‘l-<d
2,
else
‘ rftd «—0;
end

% Reward

Tip <— rfft‘c n rftd;
% Step (9)

(ks Br) <— (ks Br); + Tt

~—0;

~—1;

end
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TABLE I: Parameters used for simulations

[ Parameter | Setting ]
V2X networking DSRC
Blockchain system Hyperledger Fabric v2.0
Consensus mechanism BFT

Block dissemination for consensus | Gossip protocol

# channels
# peers per channel Random ~ Uniform(5,10)
RL scheme {e-greedy, TS}

by receiving a Join CFM message from the network admin
server.

As described in Line 6, the vehicle should start a training pe-
riod for T, slots upon new entry to a network. At time ¢, the
vehicle ¢ observes context c; ; As a consequence, the vehicle
collects the history of reward r; to update the prior distribution
for the reward from channel k. Specifically, after Ty, elapses,
for each arm k, the vehicle piles successes and failures to the
prior, which is characterized as 7; j ~Beta (o, B ).

From Line 11, now the vehicle ¢ starts to utilize the learned
prior distribution to select a channel l;:” when it needs to
execute a transaction. As shown in Lines 13-23, a vehicle
chooses between two representative strategies. In e-greedy, the
vehicle still explores at the rate of ¢ and select channel lAci,t
at random. At the other rate of 1 — ¢, it selects the k£ having
the greatest mean reward so far. Meanwhile, TS performs a
sampling for each of the N, arms and selects channel f%,t
as k showing the largest sample. We compare the prediction
performance between the two learning schemes in Section IV.

Line 27 implements that upon selection of a channel I%i,t, the
vehicle 7 is allowed to send a proposal to peers belonging to
the channel. We remind that the proposal contains information
about a new transaction that is generated by an application that
the vehicle performs. In a Fabric network, the peers execute
the application and simulates the transaction if it is valid as per
the endorsement policy. If valid, each peer sends the vehicle
an endorsement as shown in Line 28.

Upon collection of a sufficient number of endorsements,
the vehicle now requests validation of the transaction to the
orderer, which Line 31 describes. The next step is to examine
whether the execution and commit have been successful, i.e.,
whether rfi‘“ =1, which is executed as in Lines 33 through 39.
(We remind that this algorithm is designed to run on a vehicle;
the tasks for orderers and endorsers—i.e., Tasks (5)-(8)—are
written in parentheses in Line 32.)

Now, as Lines 41 through 46 show, the vehicle examines if
it has been able to receive a reply from the order confirming
commit of the transaction while it still dwells in the network,
the vehicle sets r}%' = 1, or 0 otherwise. It is grave to notice
that the condition in Line 42 is where the spatiotemporal
analysis is taken into account. As reminded from Fig. 1b,
Tawen measures how fast a vehicle passes through an orderer’s
communication range, which translates a spatial measure to a
temporal one. We claim that this is how the algorithm holds
the foundation for a spatiotemporal analysis, which therefore
makes it capture the dynamicity of a V2X network.

Finally, the reward r;; is computed and updated to the
prior for each channel k, which are performed as Lines 47
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Fig. 2: The simulation software structure (An example with
two channels, three organizations, and 9 peers)

through 50 in Algorithm 1. As evident from Lines 47-50 of the
algorithm, the direct output upon completion of the algorithm
consists of (i) a reward at vehicle 4 as of time ¢, r;;, and
(ii) a cumulated pair of successes and failures for channel k,
(o, Br). We recall that o, and (5; denote a success and a
failure from a commit/execution, respectively, which form the
shape parameters of a beta distribution. We remind that this
(ag, Br) is ultimately used to identify the optimal channel.

IV. PERFORMANCE EVALUATION

This section presents the results of numerical evaluation of
the proposed framework, which are displayed in five metrics:
namely, latency, block dissemination rate, convergence, scala-
bility, and regret.

A. Simulation Setting and Structure

For evaluating the performance, we constructed simulations
for a Fabric-based V2X network on MATLAB. Table I summa-
rizes the parameters and their settings. Our test Fabric network
consists of three organizations, each of which is with 5-10
endorsing peers for a total of 100 peer nodes. We experimented
on different numbers of channels: i.e., {10, 20, 30} channels
on different subsets of peers are tested. There is one orderer
node operating in Raft [28].

Fig. 2 illustrates key components consisting of the simu-
lation software and their structure. On the top, we generate
vehicles on a square-shaped two-dimensional space R? with
the length and width of [ and w m, respectively, as has
been mentioned in Section II-B. The vehicles “dropped” on
R? operate based on the DSRC networking principles: i.e.,
10 basic safety messages (BSMs) per second and listen-
before-talk multiple access. The V2X network runs the Fabric
overlaid on it and adopts the proposed RL-based algorithm to
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optimize the performance of the Fabric network. As shown
in the fourth block from the top, our simulation software
implements several key components for a Fabric network: viz.,
organization, peer, channel, and orderer. Specifically, for each
channel, we execute a Gossip protocol so the peers on the
channel achieve a BFT-based consensus. The last block from
the top shows an example of having Channel 1 selected, which
is constituted by Peers {1, 2} belonging to Organization 1,
Peer 5 belonging to Organization 2, and Peer 9 belonging to
Organization 3.

B. Justification of Methodology

We found that simulation would accomplish the best effi-
ciency as the main method to evaluate the performance of the
proposed mechanism, based on several advantages [4].

First, as shall be presented through Figs. 3 through 6, the
parameters defining and operating the proposed mechanism are
quite diverse in types and values, which makes it challenging
to explore the parameters’ dynamic orchestration in concert.
A simulation provides a relatively easier control over such a
large space composed of various parameters with wide ranges
of values. It gives an obvious advantage over mathematical
derivations and testbed implementations. An example is eval-
uation of a consensus process depending on the size of a
channel. As presented in Table I, we intend to vary the number
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of channels in the range of Ng, ={10, 20, 30} with a different
combination of peers for each channel every time a simulation
is run. One can easily anticipate a high degree of complexity
in changing the setting every time a new round of simulation
is executed, while a large number of iterations is inevitable to
present a statistically stable result in such a complex setting.
As an effort to deal with the complexity, we adopt simulation
as the main methodology, which, as shall be presented in this
section, did efficiently evaluate the proposed system in a wide
diversity of parameter settings.

Second, simulations enable computations without being
caught up with restrictions or errors caused by computing
environmental factors including hardware, compiler, language,
etc. Accounting all the available options for all of those factors
will complex the performance evaluation to a too high degree,
which, thus, will make it hard to precisely identify the factors
determining the key performance. In fact, existing literature
has mentioned possible inaccuracy that could be caused by
selection of a certain hardware [29]. As such, a software suite
can provide a higher consistency than a real road test can do
[30]. To wit, a simulation running on a computer provides an
identical traffic scenario for multiple driver participants, which
would likely be very costly and inaccurate in a road test due
to the extreme variety in traffic situations including speed of
other cars, road conditions, weather, etc.

With the above two advantages considered, we claim that
when it comes to assessing the performance of a connected
vehicle network, simulation is found to provide a more effi-
cient approach compared to on-road experiment. We reiterate
that a simulation can provide a lower-cost, easier-to-maneuver
option to focus on a certain set of variables while keeping other
variables controlled. Hence, the results that will be presented
in this section are generated from simulations.

C. Results and Discussions

Via Figs. 3 through 7, we demonstrate the results of
the performance evaluation. In what follows, we discuss the
implications of the results.

1) Latency: Fig. 3 shows the average latency versus (i) the
number of peers in a channel, Nper, and (ii) the probability
of fault, py, at each peer in a consensus procedure. Notice
that the latency is defined as the total length of time that
is taken for processing steps (1) through (9) of the proposed
mechanism. The degree of latency is expressed as the intensity
on a “heatmap,” as shown in the legend placed on the right-
hand side of the heatmap.

To discuss what the result implies, it is obvious from the
figure that a higher py at each peer incurs a higher latency.
The relationship is attributed to the fact that too many faulty
peers can induce a delay in a consensus, which takes up a
major part in the entire block validation process.

Conversely, it is interesting to observe that the dependency
of the latency on Npee, is not monotonic. That is, a larger Npeer
may incur a shorter latency, which suggests that an optimal
Npeer yielding the smallest latency exists. The reason for this
relationship is the tradeoff that was described in Lemma 1. To
wit, too many peers take a longer time to achieve a consensus,
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while too few peers draw a higher chance of ending up with
a consensus failure. In particular, if the latter is the case, it
likely ends up with an even higher latency due to the need to
start over the entire consensus process from the beginning.

2) Block Dissemination Rate: Figs. 4 shows the rate of
dissemination of a block within a group of peers via a channel.
Each curve indicates the length of time taken for propagation
of a block from the master peer to all the other nodes. It
is critical to recall that a consensus consumes the largest
proportion in the latency for a block from being generated
to being finally added to the chain. The dissemination latency
ranges from 6 to 12 slots depending on the given numbers of
peers—i.e., from 5 to 100.

To understand the result precisely, we analyze how a block
is disseminated throughout a network via a Gossip protocol.
Let n denote the total number of nodes. Also, by r;, we denote
the proportion of nodes that have received the block sent from
the source node after the execution of ¢ rounds. Meanwhile,
x; gives the proportion of nodes that have not received the
block yet: i.e., x; = 1 —r,. We assume that in the first time
slot, i.e., o, the master peer has a block to propagate, which is
given by zg = 1/n and r¢ = 1-1/n. Now, for the propagation,
we formulate the expectation of x; + 1 as a function of x
as follows. Assuming uniform random selection of a node to
receive the propagation in the next time slot ¢, the expected
rate of reception of the block by the randomly selected node
can be written as [32]

n(l-z)
1
) : 4)

E [Tt+1] =Tt (1 - —

n

We remind that each curve in Fig. 4 describes E [r;,1] versus
t for a value of n.

3) Convergence: To evaluate the time complexity, we
compute the average length of time taken for selection of
the optimal channel, depending on various values for Tiu;,.
Based on the fact that we model the MAB problem as a
Bernoulli-bandit, we evaluate two representative algorithms
finding an optimal arm in a MAB problem: Fig. 5 compares
the convergence performance between e-greedy and TS.

Fig. 5 shows the results of an experiment where a vehicle
learns on 10 channels. As an example, we set Channels 1,
2, and 3 as successful selections based on Definition 2, while
Channel 1 is the optimum yielding the largest reward based on
Eq. (2). Each of TS and e-greedy were run for 10° iterations
to demonstrate an average convergence performance.

The results reveal the following observation about the
convergence of the learning algorithm. TS shows a better
concentration on the eligible channels, but remains with sub-
optimals (i.e., Channels 2 and 3) as well. Conversely, e-greedy
still considers other irrelevant channels, yet it yields a higher
probability of landing on the optimal channel. Specifically,
while e-greedy can focus on a proved arm at the rate of 90%
(since € = 0.1), it showed inefficiency by wasting time by
still selecting irrelevant arms. On the other hand, TS is shown
to better focus on the three successful arms as the learning
progresses. In fact, TS has been evidenced to outperform
other alternatives such as e-greedy and upper confidence bound
(UCB) [31].
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4) Scalability: Figs. 6a and 6b show the scalability via the
latency and throughput versus the number of clients, as a result
of the proposed RL mechanism applied in the proposed Fabric
system framework for V2X. Notice of the definitions: latency
is the time taken from application sending the transaction
proposal to the transaction commit; and throughput is the rate
at which transactions are committed to ledger, i.e., the number
of transactions per second (TPS).

The key observation is that the proposed mechanism (shown
as finely dotted lines in Fig. 6) achieves a performance that
is far closer to the optimal than the current Fabric’s channel
selection mechanism. The rationale is the proposed RL scheme
enables a vehicle to select a channel that provides a close-
to-optimal number of peers, addressing the tradeoff that was
described in Section I1I-B2.

5) Regret: Fig. 7 demonstrates the average regret according
to the number of channels, the length of training period, and
the method of RL—viz. e-greedy or TS. Notice that we refer
to Eq. (3) for quantification of the regret. Comparing Figs. 7a
and 7b suggests that TS results in a smaller regret as compared
to e-greedy. The reason is that TS wastes a smaller number of
trials for exploring arms with lower chances of winning than
e-greedy does. Moreover, within each of Figs. 7a and 7b, it is
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Fig. 6: Scalability

apparent that the regret is elevated with (i) a shorter training
period and (ii) a larger number of channels to explore.

It is noteworthy that Ti,;, was left unitless for the following
reason. We believe that the absolute length of T, is of less
importance; rather, it has to be understood in reference to
the length of an entire latency. For instance, T = 1 sec
is a significant training burden when the entire blockchain
process completes by 1" = 2 sec; yet, the same Ty, = 1 sec is
neglectable if the process takes 7' = 100 sec. This “relativity”
is the main reason that we suggest displaying Ti..i, as a ratio
to the total latency T'.

Regardless, we would also like to emphasize that one can
easily fathom the number of seconds for Ti.i, whenever the
length 7" is known. Notice that we define T' = Ty as evident
from Line 3 of Algorithm 1. Also note that in reference to Fig.
1b, Tywen is a function of (i) the speed of a vehicle and (ii)
the communication range of a RSU. That is to say, Tiyyen 1S
an easy quantity to measure whenever one wants to know the
value. It, in turn, makes Ti.i, equally easy to infer.

V. RELATED WORK

1) V2X for ITS: Security in vehicular networks is one of
the most foremost aspects that have been pursued in the ITS
literature [33]. A critical challenge in achieving security in a
V2X network is the complexity and dynamicity attributed to
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mobility. A recent work in the literature proposed an optimal
decision algorithm that is able to maximize the chance of
making a correct decision on the message content, assuming
the prior knowledge of the percentage of malicious vehicles
in the network [34].

Meanwhile, the literature has also recognized blockchain
as a main technological component to promote trust among
vehicles. As an example, a privacy-improving blockchain
architecture for smart vehicles has been proposed [35]. The
mechanism features a blockchain mechanism enabling signa-
tures to be exchanged without revealing the sender’s identity,
as a means to improve privacy.

However, none of the prior work has adequately addressed
the key issue that this paper targets to discuss: the scalability
for blockchain applied to a V2X network.

2) Blockchain-Empowered V2X Network: We found a body
of prior work discussing blockchain applied on vehicular
networks. An example is a RL-based industrial internet of
things (IoT) [16]. Another RL-based performance optimization
framework for blockchain-enabled internet of vehicles (IoV)
was found, where transactional throughput is maximized while
guaranteeing the decentralization, latency and security of the
underlying blockchain system [36]. However, these existing
methods limit its own applicability by assuming that a vehicle
is able to select a certain consensus method. In practice, it
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is hard to switch the blockchain parameters in the middle of
operating a consensus procedure.

Meanwhile, permissioned blockchains such as Fabric gar-
nered considerable interest for application to ITS [7][37][38].
A key limitation from the literature is that no further details
were discussed about optimization of selection of voting peers.

Another proposal focused on the endorsement procedure of
Fabric [39]. It suggested an anonymity of endorsing peers
in order to prevent a bias since revealing identity of each
endorser among the peer nodes may not be suitable for
transactions in which the endorsing peers have different prefer-
ences. However, we argue that not every application is biased;
thus, it may incur unnecessary inefficiency if an application
does not need anonymity. More importantly, the proposal
limits its applicability to V2X since in many ITS applications
(especially safety-critical ones), it is inappropriate to assume
anonymous data exchange among vehicles.

In the current version of Fabric, a client can only guess in a
selection of endorsing peers for a transaction [7]. Furthermore,
the client application has no way of knowing which peers
have updated ledgers and which do not, so the client may
submit proposals to peers whose ledger data is not in sync
with the rest of the network, keeping the transaction from
being validated and thus committed.

As a remedy, the Fabric recently added the service discovery
[40]. But it comes at the cost of a higher complexity due to
the need for additional information that needs to be provided
by each client. A scalability issue is still anticipated with a
very large number of clients.

3) Consensus in V2X Network: The complexity of a BFT
consensus in a vehicular network has been studied [42].
There was a recent proposal for vehicle-to-infrastructure (V2I)
communications where the reputation is determined by the
distance that a vehicle traveled [44]. Yet, the scope limited to
the V2I channels, which has only little implication to a general
V2X environment.

Another latest proposal proposed a scheme achieving dis-
tributed fault-tolerant consensus among connected vehicles
[41]. However, our work features a RL-based algorithm finding
an optimal number of peers participating a BFT consensus.
Our algorithm is also sensitive to the latency of the algorithm
in consideration to the dynamicity of a V2X network.

A BFT consensus algorithm was proposed for autonomous
vehicles adopting the federated learning for privacy protection
[43]. As compared to this prior art, our singular contribution is
delving into the performance of a Fabric 2.0-empowered V2X
network, which as such presents deeper technical specifics.

Focusing more on the Raft consensus that the Fabric adopts,
albeit not many, there has been several latest proposals found
in the literature. Examples include a BFT ordering service on
top of a state machine replication/consensus library [45][46]
and a grouped structure of Raft for stronger verification
capability [47]. While they have relevant implication on how
to make the Raft BFT, these prior proposals lack clarity on the
applicability of the proposed methods to V2X environments.

4) RL in V2X: RL has been recently applied to wireless net-
works to provide a data-driven approach to solve traditionally
challenging problems. Latest examples found in the literature
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include integration of networking, caching, and computing
for connected vehicles [48]; safety optimization of finding
trajectory for connected vehicles [49]; adaptive traffic signal
control [50]; offloading for distributed computing [51].

We claim that this present paper applies the RL in optimiza-
tion of the ordering service for a blockchain established among
connected vehicles. That is where this paper distinguishes
itself from the prior work.

VI. CONCLUSIONS

This paper proposed a RL-based channel selection frame-
work for the Fabric applied to V2X networks. We formulated
the machine learning as a contextual MAB problem with the
length of a vehicle’s dwelling time in a Fabric network as the
context. Specifically, we found that a tradeoff exists on the
number of peers in a channel: a procedure of endorsement
and consensus becomes (i) less scalable with too many peers
and (ii) susceptible to faults with too few peers. Also, since the
vehicle has no prior information of the peers’ probability of
fault upon joining a network, there is no way to anticipate the
performance of each channel until it has learned about it. As an
actual means to perform the learning, the proposed framework
enabled a vehicle to adopt e-greedy and or TS. The results of
our experiments showed that the proposed RL mechanism led
to stable selection of channels fulfilling the success condition.
More precisely, the proposed algorithm showed the latency
and throughput close to the optimal.

This work is expected to have significant impact on future
applications across the technologies gaining high research
interest, namely Fabric and V2X. Despite advantages from
its unique structure including modularization and execute-
order procedure, the Fabric system still has many aspects to
prove before stable operation in a V2X environment. One
possible extension of this work is to incorporate the proposed
RL mechanism to incorporate other dynamic factors such as
network condition and evaluate the resulting performance im-
pacts. It will also be interesting to apply this paper’s structure
to study the feasibility of other Hyperledger blockchains for
V2X networks.
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