
Improved Iteration Complexities for
Overconstrained p-Norm Regression

Arun Jambulapati

Stanford University

Stanford, USA

jmblpati@stanford.edu

Yang P. Liu

Stanford University

Stanford, USA

yangpliu@stanford.edu

Aaron Sidford

Stanford University

Stanford, USA

sidford@stanford.edu

ABSTRACT
In this paper we obtain improved iteration complexities for solving

ℓp regression. We provide methods which given any full-rank A ∈
Rn×d with n ≥ d , b ∈ Rn , and p ≥ 2 solve minx ∈Rd ∥Ax − b∥p

to high precision in time dominated by that of solving Õp (d
p−2
3p−2)1

linear systems in A⊤DA for positive diagonal matrices D. This

improves upon the previous best iteration complexity of Õp (n
p−2
3p−2)

(Adil, Kyng, Peng, Sachdeva 2019). As a corollary, we obtain an

Õ (d1/3ϵ−2/3) iteration complexity for approximate ℓ∞ regression.

Further, for q ∈ (1, 2] and dual norm q = p/(p − 1) we provide an

algorithm that solves ℓq regression in Õ (d
p−2
2p−2) iterations.

To obtain this result we analyze row reweightings (closely in-

spired by ℓp -norm Lewis weights) which allow a closer connection

between ℓ2 and ℓp regression. We provide adaptations of two differ-

ent iterative optimization frameworks which leverage this connec-

tion and yield our results. The first framework is based on iterative

refinement and multiplicative weights based width reduction and

the second framework is based on highly smooth acceleration. Both

approaches yield Õp (d
p−2
3p−2) iteration methods but the second has a

polynomial dependence on p (as opposed to the exponential depen-

dence of the first algorithm) and provides a new alternative to the

previous state-of-the-art methods for ℓp regression for large p.2

CCS CONCEPTS
• Theory of computation→ Convex optimization.

KEYWORDS
Regression, Lewis Weights, Acceleration

ACM Reference Format:
Arun Jambulapati, Yang P. Liu, and Aaron Sidford. 2022. Improved Iteration

Complexities for Overconstrained p-Norm Regression. In Proceedings of

the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC

1
We use Õp (·) to hide log

O (1) n factors and constants depending only on p . In this

work, our dependence on p is at most pO (p)
for all algorithms, and can in fact be

made polynomial in most cases.

2
Full version available at https://arxiv.org/pdf/2111.01848.pdf

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

STOC ’22, June 20–24, 2022, Rome, Italy

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9264-8/22/06. . . $15.00

https://doi.org/10.1145/3519935.3519971

’22), June 20–24, 2022, Rome, Italy. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3519935.3519971

1 INTRODUCTION
In this paper, we consider the problem of solving ℓp regression for

p ∈ (1,∞) to high precision.

Definition 1.1 (ℓp regression). Given a full-rank matrix
3 A ∈

Rn×d , a vector b ∈ Rn , and a scalar p ≥ 1 we say that an algorithm

solves ℓp regression to ε-accuracy if it outputs y ∈ Rn satisfying

Ay − bp ≤ (1 + ε) min

x ∈Rd
∥Ax − b∥p . (1)

We say that such an algorithm is high precision if the runtime depends

polynomially on log(1/ε).

Beyond possible applications and utility for data analysis (see

[52, 62] and references therein), the problem of ℓp regression is a

prominent testbed for new techniques in optimization and numeri-

cal analysis. Varying p causes (1) to smoothly interpolate between

least squares regression (p = 2), which can be solved with a sin-

gle linear system solve, and linear programming (p ∈ {1,∞}) [41],

which is only known to be solvable to high precision with Õ (
√
n)

linear systems via classical interior point methods (IPMs) [57], and

more recently Õ (
√
d) linear systems [42].

Interestingly, although [14] showed that IPMs do not directly

yield o(
√
n) iteration complexities for ℓp regression, there is a line

of work [1, 3–5, 14] which obtained improved iteration complexi-

ties via alternative methods; the current state-of-the-art iteration

complexity for p ≥ 2 is Õp (n
(p−2)/(3p−2)). These improvements touch

on a range of advanced optimization techniques including homo-

topy methods, iterative refinement, high-order acceleration, and

width-reduction. This line of work is closely related to work which

solves approximate ℓ∞ regression in Õ (n1/3ε−O (1)) iterations [20]
where again, improvements and simplifications have been achieved

through multiple techniques [18, 32, 33]. Additionally, work on ℓp
regression for structured graph incidence matrices A [1, 40] has

led to improved running times for unit capacity maxflow, bipartite

matching, and mincost flows [8, 38, 47].

Given this progress, a natural open problem is to bridge the gap

between the known iteration complexities for ℓp regression and the

Õ (
√
d) bound achievable by IPMs for ℓ1 and ℓ∞ regression [42] by

providing an iteration complexity for ℓp regression that depends on

d as opposed to n. Additionally, the relationship between various

techniques for achieving these iteration complexities, especially

acceleration and width-reduction, remains somewhat mysterious

3
We assume throughout that the matrix A is full-rank with n ≥ d throughout for

simplicity, and our results extend directly to the general case, for example by replacing

inverses with pseudoinverses.

https://arxiv.org/pdf/2111.01848.pdf
https://doi.org/10.1145/3519935.3519971
https://doi.org/10.1145/3519935.3519971

STOC ’22, June 20–24, 2022, Rome, Italy Arun Jambulapati, Yang P. Liu, and Aaron Sidford

(see [2] for further discussion on this relationship). Consequently,

understanding the complexity of ℓp regression is fundamental for

advancing and clarifying the power of various optimization tech-

niques.

In this paper we take steps to address these questions and im-

prove the complexity for solving ℓp regression. Our main result is

a pair of algorithms, based respectively on the iterative refinement

framework and width reduction techniques [3], and the Monteiro-

Svaiter/highly-smooth acceleration framework [15, 18], each of

which, for p ≥ 2 solve ℓp regression with Õp (d
(p−2)/(3p−2)) linear sys-

tem solves. This improves an n to a d in the iteration dependencies

for the state-of-the-art methods for ℓp regression.

The key notion used in ourmethods are reweightings ofA closely

related to Lewis weights [29, 44], which allow for a closer rela-

tionship between the ℓ2 and ℓp norms induced by A (Lemma 2.6).

We directly leverage this connection induced by ℓp -norm Lewis

weights in the context of the optimization frameworks discussed

previously to achieve our result, as opposed to previous works on

(approximate) ℓp regression that used ℓp Lewis weights to construct

ℓp -norm sparsifiers or subspace embeddings [22, 24, 25, 30, 51, 62].

As a result, these previous iteration complexities for ℓp regression

had iteration complexities of the form dΩ(p)
, while ours is always

Õ (d1/3), even for large p = Õ (1).

1.1 Our Results
Here we state the main results of our paper. As is the case with

several results on regression [3, 14, 18, 20, 33], the primary subrou-

tine used by our algorithms is a linear system solver for A⊤DA for

positive diagonal matrices D. We focus on bounding the number of

iterations or calls to such a linear system solver in our algorithms.

Accordingly, let TA denote the time for solving a linear system in

A⊤DA for positive diagonal matrices D.4 We also use “with high

probability" (whp.) throughout to mean with probability at least

1 − n−C for any constant C .
In this work, we focus on presenting iteration complexity im-

provements for ℓp regression problems. We choose to focus on

iteration complexity improvements in the work as opposed to run-

times for the sake of achieving a cleaner and simpler presentation.

We elaborate on this in the final paragraph in previous works (Sec-

tion 1.2).

Theorem 1 (High precision ℓp regression for p ≥ 2). There is

an algorithm that given any A ∈ Rn×d , b ∈ Rn , p ≥ 2 whp. returns

an ε-accuracy solution to ℓp regression in time Õp (d
p−2
3p−2 · TA).

Here the Õp (·) hides poly(logn, log(1/ε)) factors and constants

depending on p (at worst exponential). As a corollary we also obtain
high precision solvers for the Lagrange dual problemminA⊤x=b ∥x ∥q

for q = p/(p − 1) in Õp (d
p−2
3p−2 TA) time whp. This improves over the

Õp (n
p−2
3p−2) iteration complexity of [3] for any tall matrix A.

4
Throughout we assume that all solves to A⊤DA are exact. Typically it suffices to set

the solver error to be polynomially small in n, d and the largest entries of the input

vectors and matrix A. This increases the running time of the solver by polylogarithmic

factors.

Similar ideas as those used to show Theorem 1 can be used to

give improved iteration complexities for approximate ℓ∞ regression,

which we show in Appendix A.

Theorem 2 (Approximate ℓ∞ regression). There is an algo-

rithm that given any A ∈ Rn×d and b ∈ Rn , whp. computes an

ε-accurate solution to ℓ∞ regression in time Õ (d1/3ε−2/3 · TA).

This improves over theO (n1/3ε−O (1)) iteration bounds achieved

by [18, 20, 33].

We also obtain improved results for ℓq regression for q ≤ 2 for

sufficiently tall matrices A.

Theorem 3 (High precision ℓq regression for q ≤ 2). There is

an algorithm that given any A ∈ Rn×d , b ∈ Rn , and q ∈ (1, 2] whp.

returns an ε-accurate solution to ℓq regression in time Õp (d
p−2
2p−2 · TA)

for p = q/(q − 1).

As a corollary we also get high accuracy solvers for the Lagrange

dual problemminA⊤x=b ∥x ∥p forp = q/(q−1) in Õp (d
p−2
2p−2 TA) time

whp. This improves over the Õp (n
p−2
3p−2) iteration complexity of [3]

for any sufficiently tall matrix A with n = ω (d
3p−2
2p−2).

1.2 Previous Work
Here we briefly survey related work to the problems we consider

and the optimization and numerical methods we build upon.

Regression: Beyond the works mentioned earlier, there are sev-

eral results on ℓ1 or ℓ∞ regression in both the low precision (ε−O (1)

dependence) [23, 32, 56, 63], and high precision regimes correspond-

ing to linear programming [52]. Additionally the works [2, 18, 19]

study the more general problem of quasi-self-concordant optimiza-

tion, which captures ℓp regression as well as logistic regression

[9, 45]. There are several results on ℓp regression that are based on

sparsification or subspace embeddings using (variants of) ℓp Lewis

weights [22, 24, 25, 30, 51, 62]. While our result also uses a variant

of ℓp Lewis weights, we do not sparsify. This is key to achieving

our iteration complexities because sparsification of an ℓp norm

objective for p ≥ 2 requires at least Ω(dp/2) rows [29]. This leads

to iteration complexities of at least (dp/2) (p−2)/(3p−2) = d (p2−2p)/(6p−4)

and runtimes of Õ (nnz(A) + dΩ(p)), as was noted in [1, Theorem

2.6]. On the other hand, our iteration complexity is at most Õ (d1/3),

independent of p. This allows us to achieve a Õ (d1/3ε−2/3) iteration
complexity for ℓ∞-regression in Theorem 2, while the aforemen-

tioned works using sparsification are unable to. Very recently, [35]

achieved a O (nθ) runtime for ℓp norm regression on sufficiently

sparse matrices A for some θ < ω (the matrix multiplication expo-

nent). For p near 2, they improved this to Õ (nnz(A) + dθ).

High-order acceleration: Our Monteiro-Svaiter acceleration algo-

rithm builds upon works pertaining to the acceleration of functions

with Lipschitz p-th order derivatives. For p = 1 this corresponds to

classic acceleration of smooth functions that attains error Õ (1/k2)
over k iterations [55]. A series of works [6, 7, 15, 17, 18, 34, 53, 54]

has shown that the optimal error bound is given by Õ (1/k (3p+1)/2)
over k iterations for functions with Lipschitz p-th order derivatives.

Improved Iteration Complexities for
Overconstrained p-Norm Regression STOC ’22, June 20–24, 2022, Rome, Italy

Our Monteiro-Svaiter acceleration algorithm for ℓp regression di-

rectly utilizes a generalized accelerated proximal-point framework

from [15]. Additionally, [16] has given an algorithm that achieves

an accelerated convergence rate for the more general problem of

minimizing structured convex quartics which captures ℓ4 regres-

sion but has an additional third order tensor term. It is interesting

to understand whether our methods extend to that setting.

Width reduction: In addition to its applications for regression

problems as described, similar width reduction techniques have

been applied to give improved runtimes for the maxflow problem

in both approximate regimes [21, 39] and in unit capacity graphs

[8, 28, 37, 46, 47, 49, 50]. Additionally, the Iteratively Reweighted

Least Squares (IRLS) algorithm of Ene-Vladu [33] gives an alternate

approach based on width reduction for achieving a Õ (n1/3ε−2/3)
iteration complexities for ℓ1 and ℓ∞ regression, matching the it-

eration complexity of [18]. We believe that applying ideas from

the analysis of [33] can potentially be used to simplify our width

reduction algorithm for ℓp regression given in Section 3.

Runtime improvements for regression problems. We briefly discuss

why we focus on presenting iteration complexity improvements

in this work, as opposed to runtimes for ℓp regression. In gen-

eral, obtaining improving runtimes for regression problems beyond

improving the iteration complexity has been through inverse main-

tenance techniques [41, 59, 60], and more recently heavy hitter and

iterate maintenance [10–13, 27, 43], to speed up the amortized time

to solve the linear systems inA⊤DA and implicitly maintain the iter-

ates. This direction has seen an explosion of work recently, with the

state-of-the-art runtimes for solving linear programs (eg. high pre-

cision ℓ1 regression) being some combination of the recent works

Õ (nmax{ω,2+1/18}) [36], Õ (nd+d2.5) [11], and Õ (nnz(A)d0.5+d2.5)
[41]. The authors believe that all our improved iteration complex-

ities in Theorems 1 to 3 can be combined with ideas from the

aforementioned works to achieve concrete runtime improvements

for ℓp regression. However, given the rapidly evolving progress in

inverse maintenance and relative complexity of the methods, we

choose to focus on iteration complexities in this work to give a

cleaner and simpler presentation of our ideas.

1.3 Our Approach
Here we focus on presenting our approach for p ≥ 2 (Theorem 1)

and briefly describe our approach for q ≤ 2 (Theorem 3). Both

of our algorithmic frameworks (width reduction and acceleration)

are based on leveraging properties of ℓp Lewis weights. While ℓp
Lewis weights have been used in several previous results on ℓp
regression (as described in Section 1.2), these works primarily used

Lewis weights to construct sparsifiers or subspace embeddings. We

take a different perspective, and instead leverage a key fact about

approximate ℓp Lewis weights that they provide an ellipse which

approximates the ∥Ax ∥p . This has appeared in [61, pg.115] and [22,

Lemma 3.6]. Precisely, if w ∈ Rn are the ℓp -Lewis weights for A
then

∥Ax ∥p ≤ ∥W
1

2
− 1

p Ax ∥2 ≤ ∥w ∥
1

2
− 1

p
1
∥Ax ∥p for all x ∈ Rn . (2)

The lower bound follows from the definition of ℓp Lewis weights,

which we give a self-contained proof of in Lemma 2.6, and the upper

bound follows from Hölder’s inequality. Because ∥w ∥1 = d for

the ℓp Lewis weights, the distortion between the lower and upper

bounds in (2) is d1/2−1/p , which leads to d-dependent iteration
complexities. While it is not known how to exactly compute the ℓp

Lewis weights for p ≥ 4 in Õ (TA) time we are still able to argue that

we can efficiently compute weightsw satisfying (2) but ∥w ∥1 ≤ 2d
(Lemma 2.5). This is done by mimicking an argument of [26] for

the p = ∞ case which corresponds to computing an approximate

John ellipse.

We show that it is possible to leverage our perspective on (2)

within either iterative refinement [3] or an acceleration framework

(based on the acceleration framework of [15]). While these frame-

works are largely compatible with (2), there are notable conceptual

differences which we now discuss. In the iterative refinement frame-

work, the problem of ℓp regression is reduced to approximately

minimize problems that are a combination of a linear term, ℓp norm

term, and ℓ2 regularization term (Problem 3.1). As in [3], we use a

width-reduced multiplicative weights update (MWU) to reduce the

iteration complexity. The main difference is that we show an energy

boosting lemma in the width-reduced MWU (Lemma 3.6) that al-

lows for resistances tomore than double (while still providing signif-

icant increase to the energy potential) by leveraging stability from

(2), while in standard energy boosting the energy does not increase

significantly beyond resistances increasing by a constant factor.

While the proof follows gracefully from low-rank update formulas,

we believe that this is an interesting conceptual point. Our second

acceleration-based algorithm repeatedly solves proximal subprob-

lems of the form minx ∥Ax − b∥
p
p + O (p)p x − y

p
A⊤W1−2/pA

: we

show that such regularized problems may be solved efficiently by

using stability given by (2). Interestingly, a more naïve application

of acceleration of ball-constrained Newton methods [18] leads to

an iteration complexity of Õp (d
1/3). However, our acceleration

method achieves an iteration complexity of Õp (d
(p−2)//(3p−2)) and

provides an acceleration-based alternative matching the iteration

complexities achieved by width-reduction for intermediate values

of p ∈ [2,∞).
For the case q ≤ 2 instead of solving minx ∈Rd ∥Ax − b∥q we

solve the dual problem

min

A⊤x=0,b⊤x=−1
∥x ∥p

where p = q/(q− 1) is the dual norm. In this setting we also wish to

use ℓq Lewis weights. However the presence of the ℓ2 regularizer

induced from iterative refinement or the acceleration framework

forces us to use a more complex regularized Lewis weight, defined

in Definition 5.2 (such a concept was also used in [11, Definition

4.4]). Unfortunately it seems that this type of regularized Lewis

weight is not immediately compatible with the width reduction or

acceleration type speedups, and we only achieve a Õp (d
(p−2)/(2p−2))

iteration complexity as a result. Consequently, we believe that

achieving a matching Õp (d
(p−2)/(3p−2)) complexity for the case q ≤ 2

is an important open problem.

1.4 Paper Organization
The remainder of the paper is structured as follows. In Section 2 we

give preliminaries for our algorithms, e.g. leverage scores, Lewis

STOC ’22, June 20–24, 2022, Rome, Italy Arun Jambulapati, Yang P. Liu, and Aaron Sidford

weights, and iterative refinement. In Section 3 we provide an it-

erative refinement and width reduction framework for showing

Theorem 1. In Section 4 we give an alternate approach for the previ-

ous result based on the high-order acceleration framework of [15].

In Section 5 we show Theorem 3 which achieves d-dependent (as
opposed to n-dependent) iteration complexities for ℓq regression

for q ≤ 2. Finally we show our result on approximate ℓ∞ regression

(Theorem 2) in Appendix A.

2 PRELIMINARIES
2.1 General Notation
We use lowercase for vectors, and capital boldface for matrices. We

let 0⃗, 1⃗ denote the all 0, 1 vectors respectively. Additionally, for a

vector the matrix with corresponding capital letter is the diagonal

matrix. Throughout we let w denote a weight vector, r denote a
positive vector, and W = diag (w) and R = diag (r). We say that

a matrix B ∈ Rn×n is positive semidefinite (PSD) if x⊤Bx ≥ 0 for

all x ∈ Rn .We say that matrices A ⪯ B if B − A is PSD. For PSD

matrices A,B we say that A ≈α B for α ≥ 1 if α−1B ⪯ A ⪯ αB. For
a PSD matrix B we define the seminorm induced by B as ∥x ∥B :=
√
x⊤Bx .

2.2 Lewis Weights
We start by defining the leverage scores and ℓp Lewis weights of a

matrix A. These are measures of importance of rows of a matrix A.

Definition 2.1 (Leverage scores). For a matrix A ∈ Rn×d

whose i-th row is the vector ai , the leverage scores are given by

σ (A)i := a⊤i (A
⊤A)−1ai for i ∈ [n].

It is known that

∑
i ∈[n] σ (A)i = rank(A). Further, the leverage

score of the i-th row of a matrix A is given by the maximum of

|(Ax)i | over all vectors x ∈ Rd satisfying ∥Ax ∥2 ≤ 1. This provides

a concrete way that the leverage scores are ℓ2 importance measures

of rows.

Fact 2.2 (Leverage scores as ℓ2 importance). For a matrix

A ∈ Rn×d the leverage score of row i ∈ [n] is given by

σ (A)i = max

x ∈Rd :Ax,0

(Ax)2i
∥Ax ∥2

2

.

Lewis weights are a generalization of leverage scores to ℓp norms

for p , 2.

Definition 2.3 (ℓp Lewis weights). For a matrixA ∈ Rn×d , the
ℓp Lewis weights are given by the unique vectorw ∈ Rn

≥0
satisfying

wi = σ (W1/2−1/pA)i for all i ∈ [n].

[29] proves the existence and uniqueness of ℓp Lewis weights

for all p ∈ (0,∞). Additionally, they provide an efficient contractive

procedure for approximately computing the ℓp Lewis weight for

p < 4. For our applications for p < 2, we use a regularized version

of these weights, and defer the full statement of the approximation

result needed until Lemma 5.3 in Section 5. For our applications for

p ≥ 4 we show that it is possible to compute weights satisfying the

weaker guarantee (2).

Definition 2.4 (ℓp Lewisweight overestimates). For amatrix

A ∈ Rn×d we say thatw ∈ Rn
≥0

are ℓp Lewis weight overestimates

if d ≤ ∥w ∥1 ≤ 2d andwi ≥ σ (W1/2−1/pA)i for all i ∈ [n].

The factor of 2 is somewhat arbitrary – any constant factor

suffices for our algorithms. We require the following lemma show-

ing that Lewis weight overestimates can be computed with a few

linear system solves. Its proof is deferred to the full version. Our

approach is an extension of that in [26] which provided a procedure

for approximately computing the John ellipse, i.e. the p = ∞ case.

Lemma 2.5 (Computing Lewis weight overestimates). There

is an algorithm ApproxLargeWeights(A,p) that given any A ∈
Rn×d and p ≥ 2 in Õ (TA) time computes ℓp Lewis weight overesti-

mates (Definition 2.4) whp.

We can show (2) holds for any ℓp Lewis weight overestimates.

Lemma 2.6. For a matrix A ∈ Rn×d and ℓp Lewis weight overesti-

matesw ∈ Rn>0 (Definition 2.4) we have that ∥Ax ∥p ≤ ∥W
1

2
− 1

p Ax ∥2
for all x ∈ Rn .

Proof. By Fact 2.2 we know that

|(Ax)i | = w
− 1

2
+ 1

p
i |(W

1

2
− 1

p Ax)i |

≤ w
− 1

2
+ 1

p
i σ (W

1

2
− 1

p A)1/2i ∥W
1

2
− 1

p Ax ∥2

≤ w
1/p
i ∥W

1

2
− 1

p Ax ∥2.

Hence, we see that

∥Ax ∥pp =
∑
i ∈[n]

|(Ax)i |p

≤
∑
i ∈[n]

w
p−2
p

i ∥W
1

2
− 1

p Ax ∥p−2
2

(Ax)2i = ∥W
1

2
− 1

p Ax ∥p
2
.

Taking the p-th root of both sides gives us the result. □

2.3 Iterative refinement
At a high level, the iterative refinement framework for ℓp norms

introduced by [3] shows that the Bregman divergence of the ℓp
norm, i.e. the function f (x) = |x |p , can be efficiently approximated

by an ℓ2 and ℓp component. Using this, we can reduce solving high

accuracy ℓp -norm problems to solving approximate ℓ2-ℓp norm

problems.

Lemma 2.7 ([4, Lemma B.1]). For x ,∆ ∈ Rn and p ≥ 2, we have

for д, r ∈ Rn defined by дi = p |xi |
p−2xi and ri = |xi |

p−2
for i ∈ [n]

that

p

8

∑
i ∈[n]

ri∆
2

i + 2
−p−1∥∆∥

p
p ≤ ∥x + ∆∥

p
p − ∥x ∥

p
p − д

⊤∆ (3)

≤ 2p2
∑
i ∈[n]

ri∆
2

i + p
p ∥∆∥

p
p . (4)

There are several more restrictive variations of Lemma 2.7 for

positive scalars that we use whose proofs are deferred to the full

version.

Lemma 2.8. For all a,b ≥ 0 and k ≥ 2we have that (a+b)k −ak ≤
3kak−1b + 3kkbk .

Improved Iteration Complexities for
Overconstrained p-Norm Regression STOC ’22, June 20–24, 2022, Rome, Italy

The second corollary is useful in slightly different regimes of the

exponent k .

Lemma 2.9. For all a,b ≥ 0 and k ≥ 1we have that (a+b)k −ak ≤
4
k (ak−1b + bk).

Searching over the value of д⊤∆ reduces solving ℓp regression to

high accuracy to approximately solving constrained ℓ2-ℓp problems.

We call a procedure for approximately solving constrained ℓ2-ℓp
problems a γ -solver and provide this reduction, [4, Theorem 3.1]

below.

Definition 2.10 (γ -solver). We call an algorithm a γ -solver if
given ν ≥ 0, д ∈ Rn , and a positive diagonal matrix R ∈ Rn×n , it is
the case that for

OPT = min

C∆=0,д⊤∆=−ν
∆⊤A⊤RA∆ + ∥A∆∥pp ,

the algorithm returns a ∆̂ satisfying C∆̂ = 0, д⊤∆̂ = −ν , and

∆̂⊤A⊤RA∆̂ ≤ γOPT and ∥A∆̂∥pp ≤ γp−1OPT.

Lemma 2.11 ([4, Theorem 3.1]). Given U ∈ Rn1×d ,A ∈ Rn2×d

and b,v and p ≥ 2, we can compute an x ∈ Rd satisfying Ux = v
and

∥Ax − b∥p ≤ (1 + ε) min

Ux=v
∥Ax − b∥p

in O (p3.5γ log(m/ε)) calls to a γ -solver (Definition 2.10).

3 ENERGY BOOSTING ALGORITHM FOR
LARGE p

The goal of this section is to give an algorithm to show Theorem 1.

By Lemma 2.11 and scaling we may assume that ν = 1 andOPT = 1

[3, Lemma 5.4] throughout, and we use the following setup through-

out the section.

Problem 3.1 (Scaled residual). In the scaled residual problem

we are given A ∈ Rn×d , д ∈ Rd , and diagonal R ∈ Rn×n
≥0

such that

there exists x⋆ ∈ R
d
satisfying д⊤x⋆ = −1 with x⊤⋆A

⊤RAx⋆ ≤ 1

and ∥Ax⋆∥p ≤ 1. We cally anα-approximate solution to the problem

if д⊤y = −1, y⊤A⊤RAx⋆ ≤ α and ∥Ay∥p ≤ α .

In the notation of Problem 3.1, proving the following lemma

suffices to show Theorem 1.

Lemma 3.2. Algorithm Oracle(A,д,R,p) takes an instance of

Problem 3.1 and returns an O (p)p -approximate y in O (p)pd
p−2
3p−2 · TA

time whp.

Proof of Theorem 1. Clearly Lemma 3.2 satisfies the condi-

tions of Lemma 2.11 for γ = O (p)p . Each call to Lemma 3.2 re-

quiresO (p)pd
p−2
3p−2

calls to a solver to A⊤DA so the total number of

iterations is

γ · p3.5 ·O (p)pd
p−2
3p−2

log(m/ε) = O (p)pd
p−2
3p−2

log(m/ε).

□

To show Lemma 3.2 we use the following Line 11. It follows

the multiplicative weights and width reduction approach of [3, 21].

The algorithm solves ℓ2-norm problems in sequence. When the

ℓp norm of the resulting solution is small enough, i.e. ∥Az∥pp ≤ τ ,

Algorithm 1:Oracle(A,д,R,p). GivenA,R,д satisfying Prob-
lem 3.1, returns a y ∈ Rd with д⊤y = −1, y⊤A⊤RAy ≤ Op (1),

and ∥Ay∥p = Op (1) in Op (d
p−2
3p−2) iterations.

1 w ← ApproxLewis(A,p). ▷ Compute ℓp Lewis weight

overesimates of A via Lemma 2.5

2 y ← 0 and s ← w1/p
. ▷ Iterates

3 κ ← κpd
1/p

, α ← αpd
−
p2−5p+2
p (3p−2)

, τ ← τpd
(p−2) (p−1)

3p−2
. ▷ Constants

κp ,τp large, αp small
5

4 for t = 0, 1, . . . ,T
def

= ⌊α−1d1/p ⌋ do

5 z ← argminд⊤x=−1 x
⊤A⊤

(
d
1− 2

p R + Sp−2
)
Ax . ▷

S = diag (s)
6 while ∥Az∥pp ≥ τ do

7 S ← {i ∈ [n] : si ≤ 2
−

p
p−2κ |(Az)i |}. ▷ Boosting step.

8 si ←

(
s
p−2
i +

τ 2/p |(Az)i |p−2

4∥Az ∥pp

) 1

p−2
for i ∈ S .

9 z ← argminд⊤x=−1 x
⊤A⊤

(
d
1− 2

p R + Sp−2
)
Ax .

10 y ← y + αz and s ← s + α |Az |. ▷ Progress step.

11 return (αT)−1y.

the algorithm performs a progress step in line 10, and adds z to the

output. However, whenever the ℓp norm of the returned solution is

large, the algorithm performs a boosting step in line 8, and increases

the resistance of the large coordinates contributing significantly to

the ℓp norm ∥Az∥pp to force them to be smaller in future iterations.

To analyze Algorithm Oracle(A,д,R,p) in Line 11 and thereby

prove Lemma 3.2, we analyze two potential functions following

the approach and notation of [3]. The first is Φ(s)
def

= ∥s∥
p
p , and the

second is the energy (where S def

= diag (s))

E (s)
def

= min

д⊤x=−1
x⊤A⊤

(
d
1− 2

p R + Sp−2
)
Ax .

We show that a progress or boosting step doesn’t increase Φ by too

much, and that a boosting step significantly increases the energy.

Combining this with an energy upper bound completes the proof.

To reason about the energy increase we use the following alternate

characterization of the energy.

Lemma 3.3. For any symmetric positive definite matrix B and

vector д we have

argmin

д⊤x=−1
x⊤Bx = −

1

д⊤B−1д
B−1д and min

д⊤x=−1
x⊤Bx = (д⊤B−1д)−1 .

(5)

Proof. Let x∗ be the minimizer of (5). Note that д⊤x∗ = −1 by
assumption and Bx∗ = α∗д for some unknown α∗. Consequently,
x∗ = α∗B−1д and the claim follows from

−1 = д⊤x∗ = α∗д⊤B−1д.

The second claim follows by using this value to compute x∗⊤Bx∗.
□

STOC ’22, June 20–24, 2022, Rome, Italy Arun Jambulapati, Yang P. Liu, and Aaron Sidford

Lemma 3.4 (Energy upper bound). In Problem 3.1, for any vector

s satisfying s ≥ w1/p
coordinate-wise for ℓp Lewis weight overesti-

matesw (Definition 2.4), we have E (s) ≤ 2Φ(s)
1− 2

p .

Proof. Let x⋆ be as in Problem 3.1. By Hölder’s inequality we

have that

E (s) ≤ x⊤⋆A
⊤

(
d
1− 2

p R + Sp−2
)
Ax⋆ ≤ d

1− 2

p + ∥Ax⋆∥2p ∥s∥
p−2
p

≤ d
1− 2

p + ∥s∥
p−2
p = d

1− 2

p + Φ(s)
1− 2

p

≤ 2Φ(s)
1− 2

p ,

where the final inequality follows from Φ(s) ≥ ∥w ∥1 ≥ d . □

Lemma 3.5 (Progress step). Let snew = s + α |Az |, as defined in
line 10 of Line 11. Then we have that E (snew) ≥ E (s) and

Φ(snew) − Φ(s) ≤ 5pαΦ(s)
1− 1

p + 3ppαpτ . (6)

Proof. To bound E (snew), note that snew ≥ s ≥ 0⃗ entrywise.

Therefore, E (snew) ≥ E (s).
To bound Φ(snew) we compute

Φ(snew) − Φ(s) = ∥s + α |Az |∥pp − ∥s ∥
p
p

(i)
≤ 3pα

∑
i ∈[n]

s
p−1
i |(Az)i | + 3ppαp ∥Az∥

p
p

(ii)
≤ 3pα *.

,

∑
i ∈[n]

s
p
i
+/
-

1/2

*.
,

∑
i ∈[n]

s
p−2
i (Az)2i

+/
-

1/2

+ 3ppαpτ

(iii)
≤ 3pα

√
Φ(s)E (s) + 3ppαpτ

(iv)
≤ 5pαΦ(s)

1− 1

p + 3ppαpτ .

Here, (i) follows from Lemma 2.8 for k = p, (ii) follows from
the Cauchy-Schwarz inequality, (iii) follows from the fact that z
is the minimizer for E (s), and (iv) follows from Lemma 3.4 that

Φ(s) ≤ 2E (s)
1− 2

p . □

To analyze the boosting step we provide a general lemma about

energy increase under boosting edges. Interestingly, this allows

for resistances to increase by more than a constant factor, thereby

going beyond the standard energy boosting lemmas in [21, 49, 50].

Lemma 3.6 (Energy increase). Letw ∈ Rn
≥0

be ℓp Lewis weight

overestimates for A ∈ Rn×d and D ⪰ W1− 2

p
be a diagonal matrix,

and v ∈ Rn
≥0

satisfy ∥v ∥ p
p−2
≤ 1. For E

def

= minд⊤x=−1 x
⊤A⊤DAx ,

Enew
def

= minд⊤x=−1 x
⊤A⊤ (D + V)Ax , and

y
def

= argminд⊤x=−1 x
⊤A⊤DAx the following holds

Enew − E ≥
1

2

∑
i ∈[n]

vi (Ay)2i .

Proof. By Lemma 3.3

E = (д⊤ (A⊤DA)−1д)−1 and y = −
1

д⊤ (A⊤DA)−1д
(A⊤DA)−1д.

By the Woodbury matrix identity we have that

E−1 − (Enew)−1 (7)

= д⊤ (A⊤DA)−1A⊤V
1

2 (I + P)−1V
1

2A(A⊤DA)−1д

=
1

E2
y⊤A⊤V

1

2 (I + P)−1V
1

2Ay (8)

where P def

= V
1

2A(A⊤DA)−1A⊤V
1

2 . We next claim that A⊤VA ⪯
A⊤DA. To show this, note that for any x ∈ Rn we have that

x⊤A⊤VAx =
∑
i ∈[n]

vi (Ax)2i
(i)
≤ ∥v ∥ p

p−2
∥Ax ∥2p

(ii)
≤ x⊤A⊤W1− 2

p Ax
(iii)
≤ x⊤A⊤DA,

where (i) follows from Hölder’s inequality’s inequality, and (ii)
from the condition ∥v ∥ p

p−2
≤ 1 and Lemma 2.6, and (iii) from

W1− 2

p ⪯ D. Note that this additionally implies that

P = V
1

2A(A⊤DA)−1A⊤V
1

2 ⪯ V
1

2A(A⊤VA)−1A⊤V
1

2 ⪯ I

where the last step follows because the matrix is an orthogonal

projection matrix.

Applying these bounds to (8) yields that

E−1 − (Enew)−1 ≥
1

2E2

∑
i ∈[n]

vi (Ay)2i .

Using that Enew ≥ E and rearranging yields that

Enew − E ≥
EnewE

2E2

∑
i ∈[n]

vi (Ay)2i ≥
1

2

∑
i ∈[n]

vi (Ay)2i .

□

Lemma 3.7 (Boosting step). Let s be at the start of a boosting step,
and snew be defined as after the operations of line 8 inOracle (Line 11).

If 2
pκ−(p−2)Φ(s)

1− 2

p ≤ τ/4 then Φ(snew) − Φ(s) ≤ 20κ2 (E (snew) −

E (s)) and E (snew) − E (s) ≥ τ 2/p/16.

Proof. For z as in line 5 of Algorithm 1∑
i ∈S
|(Az)i |p = ∥Az∥

p
p −

∑
i<S
|(Az)i |p (9)

(i)
≥ ∥Az∥pp −

(
2
−

p
p−2κ

)−(p−2) ∑
i<S

s
p−2
i (Az)2i (10)

(ii)
≥ ∥Az∥pp − 2

p+1κ−(p−2)Φ(s)
1− 2

p
(iii)
≥ ∥Az∥pp /2,

(11)

where (i) follows by the definition of S in line 7 in Oracle (Line 11),

(ii) follows from Lemma 3.4, and (iii) follows by the condition on

κ in the hypothesis and τ ≤ ∥Az∥pp by the condition of line 6 in

Oracle (Line 11).

Now we can lower bound E (snew) − E (s) using Lemma 3.6. Set

D = d
1− 2

p R + Sp−2 and vi = 0 for i < S and vi =
τ 2/p |(Az)i |p−2

4∥Az ∥pp
for i ∈ S . Note that ∥v ∥ p

p−2
≤ τ 2/p/∥Az∥2p ≤ 1 by the condition

Improved Iteration Complexities for
Overconstrained p-Norm Regression STOC ’22, June 20–24, 2022, Rome, Italy

τ ≤ ∥Az∥pp of line 6 in Oracle (Line 11). Thus Lemma 3.6 gives

E (snew) − E (s) ≥
1

2

∑
i ∈[n]

vi (Az)2i

=
1

2

·
τ 2/p

4∥Az∥pp

∑
i ∈S
|(Az)i |p ≥ τ 2/p/16

where we have used (11) above.

To bound Φ(snew) − Φ(s), we use Lemma 2.9 for k = p/(p − 2)

and a = s
p−2
i and b = vi to get

Φ(snew) − Φ(s) =
∑
i ∈[n]

(
(s
p−2
i +vi)

p
p−2 − s

p
i

)
≤ 4

p
p−2

∑
i ∈S

(
s2i vi +v

p
p−2
i

)
(i)
≤ 4

p
p−2

∑
i ∈S

(
4
−

p
p−2κ2vi (Az)2i +v

p
p−2
i

)
(ii)
≤ 2κ2 (E (snew) − E (s)) + 1.

Here, (i) uses si ≤ 2
−

p
p−2κ |(Az)i | for all i ∈ S by line 7 in Or-

acle (Line 11) and (ii) uses Lemma 3.6 and ∥v ∥ p
p−2
≤ 1/4. To

conclude, note that E (snew) − E (s) ≥ τ 2/p/16 ≥ 1/16, as τ ≥ 1.

Also, κ ≥ 1, so 2κ2 (E (snew) − E (s)) + 1 ≤ 20κ2 (E (snew) − E (s)).
This completes the proof. □

Nowwe can combine the bounds onΦ(s) and E (s) in Lemmas 3.5

and 3.7 to prove Lemma 3.2.

Proof of Lemma 3.2. We set τp = 40
p
. Choose αp = 1/(1000p)

so that ppαpτ ≤ pαd
1− 1

p
. Then ppαpτ ≤ pαΦ(s)

1− 1

p
as Φ(s) ≥ d

for all s ≥ w1/p
for a Lewis weight overestimatew . Let κp = p.

Let sfinal be the final value of s in a call to Oracle (Line 11). We

show by induction thatΦ(sfinal) ≤ (20κ)p and 2
pκ−(p−2)Φ(s)

1− 2

p ≤

τ/4 during a successful execution of Algorithm 1 always (so the con-

dition of Lemma 3.7 is satisfied). We start by bounding Φ(sfinal). As∑
i ∈[n]wi ≤ 2d by the definition of ℓp Lewis weight overestimates

(Definition 2.4), initially Φ(s) ≤ 2d . We calculate that

Φ(sfinal)
(i)
≤ 2d + α−1d1/p

(
5pαΦ(sfinal)

1− 1

p + 3ppαpτ
)
+ 20κ2E (sfinal)

(ii)
≤ 2d + α−1d1/p · 8pαΦ(sfinal)

1− 1

p + 40κ2Φ(sfinal)
1− 2

p

= 2d + 8pΦ(sfinal)
1− 1

p d1/p + 40κ2Φ(sfinal)
1− 2

p .

where (i) follows from Lemmas 3.5 and 3.7, and (ii) follows from

Lemma 3.4 and the bound ppαpτ ≤ pαΦ(s)
1− 1

p
from our choice of

τp and αp . If Φ(s
final) > (20κ)p then we get that

2dΦ(sfinal)−1 + 8pd1/pΦ(sfinal)
− 1

p + 40κ2Φ(sfinal)
− 2

p

<
1

20

+
8pd1/p

20κ
+

40κ2

400κ2
< 1,

contradicting the above equation. Hence Φ(sfinal) ≤ (20κ)p .

Now we check that 2
pκ−(p−2)Φ(sfinal)

1− 2

p ≤ τ/4 to complete

the induction. From the choice τp = 40
p
and τ ≥ τp , note that

2
pκ−(p−2)Φ(sfinal)

1− 2

p ≤ 2
pκ−(p−2) (20κ)p−2 ≤ 40

p/4 ≤ τ/4.

We now show that the returned vector x = (αT)−1y (for T
def

=

⌊α−1d1/p ⌋) satisfies ∥Ax ∥p ≤ O (p) and x⊤A⊤RAx ≤ O (p)p . Note

that (αT)−1 ≤ 2d−1/p . For the first of these note that

∥Ax ∥p ≤ 2d−1/p ∥Asfinal∥p = 2d−1/pΦ(sfinal)1/p ≤ 40κd−1/p ≤ 40p

by the choice of κp . For the latter, note that

z⊤A⊤RAz ≤ d
2

p −1E (s) ≤ 2d
2

p −1Φ(s)
1− 2

p = O (p)p

at each step – now apply the triangle inequality on the norm

∥R1/2Az∥2.
Finally we bound the number of progress and boosting steps.

The number of progress steps is bounded by α−1d1/p = O
(
pd

p−2
3p−2

)
by the choice of α . To bound the number of boosting steps, note

that E (s) increases by τ 2/p/16 per boosting step by Lemma 3.7,

and is increasing every progress step by Lemma 3.5. As E (sfinal) ≤

2Φ(s)
1− 2

p ≤ 2(20κ)p−2 at the end we get that the number of boost-

ing steps is bounded by

2(20κ)p−2

τ 2/p/16
≤ O (p)p · d

1− 2

p · d
−2(p−2) (p−1)
p (3p−2) = O (p)pd

p−2
3p−2 .

To compute the ℓp Lewis weights overestimates in line 1 in Or-

acle (Line 11) there are an additional Õ (1) solves to A⊤DA by

Lemma 2.5. Together, this gives the total iteration bound. □

4 MONTEIRO-SVAITER ACCELERATION
ALGORITHM FOR LARGE p

In Section 3, we gave an algorithm for ℓp regression for p ≥ 2

based on the iterative refinement framework of [3]. Here we give

an alternate scheme with an improved dependence on p based

on highly-smooth optimization. More specifically, we leverage an

optimization framework from [15], which reduces the task of min-

imizing a convex function f to approximately solving proximal

subproblems of the form

Prox(y) = min

x
f (x) +Cp x − y

p
M

for arbitrary positive semidefinite matrixM. Our result is a re-

finement of the O (p14/3n1/3) iteration complexity achieved in [18].

Our main technical ingredient is an improved Hessian stability

bound (Lemma 4.3) which works for all p ≥ 2 and allows us to

take steps bounded in the norm induced by a matrix M ⪯ A⊤A.
We leverage this to give an efficient algorithm for proximal sub-

problems, and combine with the acceleration framework of [15] to

obtain our result.

4.1 Hessian stability
In this section, we prove our Hessian stability bound Lemma 4.3.

We begin with a straightforward scalar inequality which we use in

our proof.

STOC ’22, June 20–24, 2022, Rome, Italy Arun Jambulapati, Yang P. Liu, and Aaron Sidford

Lemma 4.1. Let α , β ≥ 1 satisfy
1

α +
1

β = 1. For any n ≥ 0 and

any x ,y,
��x + y��n ≤ |αx |n + |βy |n .

Additionally,
��x + y��p−2 ≤ e |x |p−2 + pp−2 ��y��p−2 for p ≥ 2.

Proof. Observe

��x + y��n =
�����
αx

α
+

βy

β

�����

n
≤ ��max

{
|αx |, |βy |

}��n
= max

{
|αx |n , |βy |n

}
≤ |αx |n + |βy |n .

Applying this inequality with α =
p−1
p−2 , β = p − 1, n = p − 2 yields

��x + y��p−2 ≤
(
1 +

1

p − 2

)p−2
|x |p−2 + ��(p − 1)y��p−2

≤ e |x |p−2 + pp−2 ��y��p−2

where the last inequality follows from

(
1 + 1

x

)x
< e for any x ≥ 0

and p − 1 ≤ p. □

With this scalar inequality, we define a matrix M we will repeat-

edly appeal to in this section.

Definition 4.2. Let A ∈ Rn×d be a matrix, and letw ∈ Rn be a

vector of overestimates of the ℓp -Lewis weights of A (Definition 2.4).

We set M def

= A⊤W1−2/pA.

With this, we prove our main Hessian stability fact Lemma 4.3:

Lemma 4.3. Let p ≥ 2, and define f (x) = ∥Ax − b∥pp . Let M =
A⊤W1−2/pA (Definition 4.2). For any y ∈ Rd , define fy (x) = f (x) +

Cp x − y
p
M and hy (x) = x − y2∇2f (y) + Cp x − y

p
M . Then if

Cp = e · pp , for any x

1

e
∇2hy (x) ⪯ ∇

2 fy (x) ⪯ e∇2hy (x).

Proof. We first note

∇2 f (x) = p (p − 1)A⊤diag (|Ax − b |)p−2 A.

For any vector z, we use Lemma 4.1 to get

z⊤∇2 f (x)z = p (p − 1)
∑
i ∈[n]

|Ax − b |p−2i (Az)2i

= p (p − 1)
∑
i ∈[n]

|Ay − b + A(x − y) |p−2i (Az)2i

≤
∑
i ∈[n]

(
ep (p − 1) |Ay − b |p−2i + pp |A(x − y) |p−2i

)
(Az)2i .

Now, by Hölder’s inequality and Lemma 2.6 we get∑
i ∈[n]

pp ��A(x − y)��
p−2
i (Az)2i ≤ pp

��A(x − y)��p−2
 p
p−2

(Az)
2 p

2

= pp A(x − y)
p−2
p ∥Az∥2p

≤ pp x − y
p−2
M ∥z∥2M .

Combining the above two inequalities yields

z⊤∇2 f (x)z ≤ ep (p − 1)z⊤A⊤diag
(
|Ay − b |p−2

)
Az (12)

+ pp x − y
p−2
M ∥z∥2M

= e ∥z∥2
∇2f (y) + p

p x − y
p−2
M ∥z∥2M . (13)

Define дy (x) = Cp x − y
p
M. We have

∇2дy (x) = pCp x − y
p−2
M M

+ p (p − 2)Cp x − y
p−4
M M(x − y) (x − y)⊤M

and thus

pCp x − y
p−2
M M ⪯ ∇2дy (x).

Combining the two inequalities yields

∇2 fy (x) = ∇
2 f (x) + ∇2дy (x)

⪯ e (∇2hy (x) − ∇
2дy (x)) +

1

ep
∇2дy (x) + ∇

2дy (x)

⪯ e∇2hy (x).

For the lower bound, we exchange x and y in Equation (13) and

obtain

z⊤∇2 f (x)z ≥
1

e
z⊤∇2 f (y)z −

pp

e
x − y

p−2
M ∥z∥2M .

Consequently,

∇2 fy (x) = ∇
2 f (x) + ∇2дy (x)

⪰
1

e
(∇2hy (x) − ∇

2дy (x)) −
1

ep
∇2дy (x) + ∇

2дy (x)

⪰
1

e
∇2hy (x).

□

4.2 Efficient implementation of proximal
subproblems

We now leverage Lemma 4.3 to give an efficient oracle for the

problem

Prox(y) = argmin

x
∥Ax − b∥pp + ep

p x − y
p
M .

Our algorithm is based on the relative smoothness framework from

[48]. We use the following:

Lemma 4.4 (Theorem 3.1 from [48]). Let f ,h be convex twice-

differentiable functions satisfying

µ∇2h(x) ⪯ ∇2 f (x) ⪯ L∇2h(x)

for all x . There is an algorithm which given a point x0 computes a

point x with

f (x) − argmin

y
f (y) ≤ ε *

,
f (x0) − argmin

y
f (y)+

-
in O (Lµ log(1/ε)) iterations, where each iteration requires computing

gradients of f and h at a point, O (n) additional work, and solving a
subproblem of the form

min

{〈
д,x

〉
+ Lh(x)

}
(14)

for vectors д.

Applying this to the p-norm regression objective yields the fol-

lowing result.

Improved Iteration Complexities for
Overconstrained p-Norm Regression STOC ’22, June 20–24, 2022, Rome, Italy

Lemma 4.5. LetA ∈ Rn×d ,b ∈ Rn be given. LetM = A⊤W1−2/pA
(Definition 4.2). There exists an algorithm which computes

argmin

x
∥Ax − b∥pp + ep

p x − y
p
M

to high accuracy using Õ (1) linear system solves on matrices A⊤DA
for D ⪰ 0, i.e. in Õ (TA) time.

Proof. For the function fy (x) = ∥Ax − b∥
p
p + ep

p x − y
p
M, we

define the regularizer hy (x) = x − y2∇2f (y) + ep
p x − y

p
M. We

observe by Lemma 4.3 that ∇2 fy (x) ≈O (1) ∇
2hy (x) for all x . Thus

Lemma 4.4 ensures we compute a minimizer to fy using Õ (1) calls
to an oracle which solves subproblems of the form

min

{〈
д,x − z

〉
+ 4

(
x − y2∇2f (y) + ep

p x − y
p
M

)}
.

To solve this problem, we employ the algebra fact that
1

s x
s =

maxy≥0 xy −
1

r y
r
for any x ≥ 0 and

1

s +
1

r = 1. Thus, we have

x − y
p
M =

p

2

·
2

p

(x − y2M)p/2
=
p

2

max

τ ≥0

{
τ x − y2M −

p − 2

p
τ

p
p−2

}
.

We may therefore write the subproblem as

min

x
max

τ ≥0

{ 〈
д,x − z

〉
+ 4 x − y2∇2f (y)

+ 2epp+1
(
τ x − y2M −

p − 2

p
τ

p
p−2

) }
.

This problem is convex in x and concave in τ : we may exchange

the min and max above. Further, this is a convex quadratic in x ,
and thus for any fixed τ we may compute the minimizing x with

a single linear system solve of the form ∇2 f (y) + CM = A⊤DA,
for some constant C ≥ 0 and D ⪰ 0. Further, for any C > 0 we

have ∇2 f (y) +CM ≻ 0: for any fixed τ > 0 the minimizing value

of x is unique. We conclude by binary searching for τ to high

accuracy. Thus, each proximal subproblem may be solved using

Õ (TA) time. □

We note that a high-accuracy solution to the proximal problem

in Lemma 4.5 gives an approximate stationary point (exactly the

condition later in Definition 4.6).

4.3 Putting it all together
We finish by using the above subroutine in the acceleration frame-

work of [15]. We summarize the main claim here:

Definition 4.6 (Approximate Proximal Step Oracle, Defini-

tion 5 [15]). We call Oprox an (α ,δ)-approximate proximal oracle

for convex f : Rd → R if, when queried at any x ∈ Rd it returns

y = Oprox (x) ∈ R
d
such that

∇f (y) + ep
p+1 y − x

p−2
M ·M(y − x)M−1 ≤ eαpp+1 x − y

p−1
M +δ

Theorem 4 (Theorem 7 from [15]). Let д : Rd → R be a convex

twice-differentiable function minimized at x⋆, and let x0 be a point

with ∥x0 − x⋆∥ ≤ R. For any parameter ε ≥ 0, there is an algorithm

which for all k computes x with

f (x) − f (x⋆) ≤ max

ε,
100pp · 40p−2Rp

k
3p−2
2

using ⌈k (6+log
2
[10

20Rp ·(105p)p+6ε−1])2⌉ = O (p2k log2 (pRε−1/p))

gradients of f and queries to an (1

128p2 ,δ)-approximate proximal

oracle, provided that both δ ≤ ε/[1020p2R] and ε ≤ 10
20ppγ 4Rp+1.

Proof. Define the convex function д(x) = f (M−1/2x), and
chooseω (x) = eppxp−2. The optimality conditions of Definition 4.6

are equivalent to those in Definition 5 of [15] after applying this

change of basis. Theorem 4 then follows from applying Theorem 7

in [15] to д with γ = p and α = 1

128p2 . □

Our application of this fact relies on a diameter-shrinking ar-

gument from [18]. We first recall a standar bound on the strong

convexity of ∥x ∥
p
p , which we cite from [3] for simplicity.

Lemma 4.7 (Lemma 4.5 from [3]). Let p ∈ (1,∞). Then for any

two vectors y,∆ ∈ Rn ,

y
p
p +v

⊤∆ +
p − 1

p2p
∥∆∥

p
p ≤

y + ∆
p
p

where vi = p |y |
p−2
i yi is the gradient of y

p
p .

We finally need the following lemma which allows us to convert

points which low function error into points with small distance to

the minimizer.

Corollary 4.8. Let A ∈ Rn×d ,b ∈ Rn be given. Let M =

A⊤W1−2/pA for ℓp Lewis weight overestimatesw (Definition 2.3). Let

f (x) = ∥Ax − b∥pp be minimized at x⋆. If x satisfies f (x) − f (x⋆) ≤

E, then ∥x − x⋆∥M ≤ 2
3/2d1/2−1/pE1/p .

Proof. Applying Lemma 4.7, we have

∥Ax − b∥pp = ∥Ax⋆ − b + A (x − x⋆)∥
p
p

≥ ∥Ax⋆ − b∥
p
p + ∇f (x⋆)

⊤ (x − x⋆) +
p − 1

p2p
∥A(x − x⋆)∥

p
p .

Note ∇f (x⋆) = 0 by optimality of x⋆. By Equation (2), we obtain

∥x − x⋆∥
2

M ≤ ∥w ∥
1−2/p
1

∥A(x − x⋆)∥2p .

byHölder’s inequality and the fact thatp ≥ 2. Recall that ∥w ∥
1
≤ 2d

by Lemma 2.5: this implies

∥x − x⋆∥
p
M ≤ (2d)p/2−1 ∥A(x − x⋆)∥

p
p .

Thus,

E ≥ f (x) − f (x⋆) ≥
p − 1

p2p
∥A(x − x⋆)∥

p
p

≥ 2
−p−1 (2d)1−p/2 ∥x − x⋆∥

p
M :

taking pth roots yields ∥x − x⋆∥M ≤ 2
3/2d1/2−1/pE1/p as desired.

□

We now prove the main decrease lemma which in turn shows

Theorem 1.

STOC ’22, June 20–24, 2022, Rome, Italy Arun Jambulapati, Yang P. Liu, and Aaron Sidford

Lemma 4.9. Let A,b be given, and let f (x) = ∥Ax − b∥pp have

minimizer x⋆. Let x0 be a point such that f (x0) − f (x⋆) ≤ E. There

is an algorithm which returns x ′ with f (x ′) − f (x⋆) ≤
E
2
using

Õ
(
p8/3d

p−2
3p−2 TA

)
time.

Proof. Applying Corollary 4.8 yields

R ≡ ∥x0 − x⋆∥M ≤ 2
3/2d1/2−1/pE1/p

for M = A⊤W1−2/pA. Note that log(pRE−1/p) = O (logd). We

now apply Theorem 4 to f (x) with ε = E
2
: in Õ (p2k) gradient

computations and proximal oracle calls we compute x with

f (x) − f (x⋆) ≤ max

1

2

E,
100pp · 40p−2Rp

k
3p−2
2

≤ max

1

2

E,
100(120p)pdp/2−1E

k
3p−2
2

.

For k = O (p2/3d
p−2
3p−2), this bound is

1

2
E as desired. We additionally

require Õ (p2k) = Õ (p8/3d
p−2
3p−2) gradient computations and calls to

a proximal oracle for f – these proximal oracle calls can each be

implemented in Õ (TA) time by Lemma 4.5. □

Proof of Theorem 1. Let x⋆ = argminy ∥Ay−b∥
p
p andOPT =

∥Ax⋆ − b∥
p
p . We may initialize E = n

p−2
2 OPT in Lemma 4.9 by

setting x = argminx ∥Ay − b∥
p
2
instead, and noting that

∥Ay−b∥pp ≤ ∥Ay−b∥
p
2
≤ ∥Ax⋆−b∥

p
2
≤ n

p−2
2 ∥Ax⋆−b∥

p
p = n

p−2
2 OPT.

Now Theorem 1 follows from running log(n
p−2
2) = Õ (p) iterations

of Lemma 4.9. □

Discussion on numerical stability. Throughout the section (eg.

in the application of Lemmas 4.4 and 4.5), we have assumed that

high accuracy solutions to problems lead to exact or high accu-

racy stationary points, i.e. the KKT conditions are satisfied. There

are several ways to make this rigorous. In particular, if one as-

sumes that all parameters, including the condition number of A,
are quasipolynomially bounded (i.e. at most exp(poly logm)), then
one can add a small strongly-convex regularizer (eg. δ ∥x ∥2A for

δ ≤ exp(−poly logm)ε) which barely affects the optimal value.

Strong convexity allows us to get an approximate stationary point

from approximate minimizers, which suffices for the all our appli-

cations (including the proof of [48]).

5 ALGORITHM FOR SMALL q
In this section, we provide an algorithm to showTheorem 3. Because

there isn’t a clean version of iterative refinement for the objective

∥Ax − b∥q for q < 2, we instead work with the dual problem.

Precisely, we can use Sion’sminimax theorem to get forp = q/(q−1)

min

x ∈Rd
∥Ax − b∥q = min

x ∈Rd
max

∥y ∥p ≤1
y⊤ (Ax − b)

= max

∥y ∥p ≤1
min

x ∈Rd
y⊤ (Ax − b)

= − min

∥y ∥p ≤1
A⊤y=0

b⊤y =

(
min

A⊤y=0,b⊤y=1
∥y∥p

)−1
. (15)

Using an high precision solution y to (15), we can return a high

precisionminimizer tominx ∈Rd ∥Ax−b∥q . In particular for the true
optimum y∗, by KKT conditions (that ∇∥y∗∥

p
p = psign(y

∗) |y∗ |p−2

is in the kernel of

[
A b

]⊤
) we know that there exists a vector

x ∈ Rd satisfying λsign(y∗) |y∗ |p−2 = Ax−b .We return this x . If we
have a high precision minimizer y instead of the true optimum y∗,
we can instead return an ℓ2-projection, i.e. x = argminx ∈Rd ∥Ax −
b − λsign(y) |y |p−2∥2 for the proper scaling λ.

We use Lemma 2.11 (for A = I and b = 0 in the lemma statement)

to solve the problem in (15), where we assume ν = 1 and OPT = 1

by scaling. This leads to the following optimization problem for

some д ∈ Rn and R = diag (r) for r ∈ Rn>0:

min

A⊤x=0,b⊤x=1,д⊤x=−1
x⊤Rx + ∥x ∥pp .

Let U =
[
A b д

]
and v =

[
0 1 −1

]⊤
. Through these reduc-

tions and Lemma 2.11 it suffices to show the following.

Lemma 5.1. For matrix U ∈ Rn×d and v ∈ Rn , assume there

is x ∈ Rn satisfying U⊤x = v , x⊤Rx ≤ 1 and ∥x ∥
p
p ≤ 1. Then

there is an algorithm that in time Õ (TU) outputs a y ∈ R
n
satisfying

U⊤y = v , y⊤Ry = O (1), and ∥y∥p ≤ O (d
p−2
2p−2).

We remark that we could also instead get a result which achieves

a y⊤Ry = Op (1) and ∥y∥
p
p = Op (1) in time Õp (TUd

p−2
2p−2) via a mul-

tiplicative weights style algorithm as done in Section 3 algorithm

Oracle (Line 11). However since both runtimes would be the same

(up to logarithmic factors), we choose to present this simpler single

iteration algorithm. Combining this multiplicative weights style

algorithm with energy boosting as in the analysis in Section 3 to

achieve a Op (d
p−2
3p−2) iteration bound remains an interesting open

problem.

Proof of Theorem 3. Lemma 5.1 satisfies Lemma 2.11 for γ =

O (d
p−2
2p−2). Each call to Lemma 5.1 requires Õ (1) calls to a solver for

U⊤DU. Also, a solver for U⊤DU can be implemented using O (1)
calls to a solver for A⊤DA for diagonal matrices D, andO (1) solves
on O (1) ×O (1) matrices by computing the inverse via the Schur

complement onto the 2×2 block of U⊤DU corresponding to the b,д

vectors. Thus the total number of iterations is Õ (p3.5γ log(m/ε)) =

Õp (d
p−2
2p−2

log(m/ε)) as desired. □

An algorithm to show a weaker version of Lemma 5.1 with the

bound ∥y∥p ≤ O
(
n

p−2
2p−2

)
was given in [4, Lemma 3.3], by simply

returning

y = argmin

U⊤x=v
x⊤

(
n
1− 2

p R + I
)
x .

Improved Iteration Complexities for
Overconstrained p-Norm Regression STOC ’22, June 20–24, 2022, Rome, Italy

Our approach to improve this dependence to O (d
p−2
2p−2) uses a ver-

sion of ℓq Lewis weights to replace the identity matrix I in the

above. To handle the presence of the resistance term R we require

a regularized version of Lewis weights.

Definition 5.2 (Regularized ℓq Lewis weights). For a matrix

A ∈ Rn×d , 1 ≤ q ≤ 2, and vector c ∈ Rn
≥0
, the c-regularized ℓq

Lewis weightsw are defined as the solution to

wi = σ
(
(C +W)

1

2
− 1

q A
)
i

for all i ∈ [n].

We show that these weights can be computed approximately

in Õ (1) iterations of a contractive map. Each iteration requires

the computation of approximate leverage scores. The proof of the

following lemma is deferred to the full version.

Lemma 5.3. Given a matrix A ∈ Rn×d , 1 ≤ q ≤ 2, and vector

c ∈ Rn
≥0
, let w be the c-regularized ℓq Lewis weights. There is an

algorithmApproxRegLewis(A, c,q) that whp. computes a vector ŵ ∈

Rn
≥0

satisfying ŵi/wi ∈ [0.9, 1.1] for all i ∈ [n] in Õ (TA) time.

We can now give our algorithm to show Lemma 5.1. We can

Algorithm 2: OracleSmall(U,v, r ,q). Given matrix U ∈

Rn×d ,v ∈ Rn , r ∈ Rn ,q ≤ 2, such that there exists x with

U⊤x = v and x⊤Rx ≤ 1 and ∥x ∥
p
p ≤ 1, returns y satisfying

U⊤y = v , y⊤Ry = O (1) and ∥y∥p = O (d
p−2
2p−2).

1 ŵ ← ApproxRegLewis(U,dr
p
p−2 ,q). ▷ Lemma 5.3

2 Return y ← argminU⊤x=v x⊤
(
d
1− 2

p R + Ŵ1− 2

p
)
x .

now show Lemma 5.1.

Proof of Lemma 5.1. Let x satisfy U⊤x = v and x⊤Rx ≤ 1 and

∥x ∥p ≤ 1. By the definition of y in line 2 in OracleSmall (Algo-

rithm 2), we know that

y⊤
(
d
1− 2

p R + Ŵ1− 2

p
)
y ≤ x⊤

(
d
1− 2

p R + Ŵ1− 2

p
)
x

≤ d
1− 2

p + ∥w ∥
1− 2

p
1
∥x ∥2p ≤ 3d

1− 2

p

where we have used Hölder’s inequality and ∥ŵ ∥1 ≤ 1.1d by

Lemma 5.3. In particular, this gives us d
1− 2

p y⊤Ry ≤ 3d
1− 2

p
so

y⊤Ry ≤ 3. Now we bound ∥y∥
p
p . Note that by the optimality condi-

tions fory (that the gradient of the objective of line 2 of Algorithm 2

is in the kernel of U⊤), there must exist a vector z ∈ Rd such that

y =
(
d
1− 2

p R + Ŵ1− 2

p
)−1

Uz.

Define ŷ =
(
d
1− 2

p R + Ŵ1− 2

p
)−1/2

Uz, so that

∥ŷ∥2
2
= y⊤

(
d
1− 2

p R + Ŵ1− 2

p
)
y ≤ 3d

1− 2

p .

Now we get that

∥y∥
p
p =

∑
i ∈[n]

(
d
1− 2

p ri + ŵ
1− 2

p
i

)−p
|(Uz)i |p

=
∑
i ∈[n]

(
d
1− 2

p ri + ŵ
1− 2

p
i

)−p (
dr

p
p−2
i + ŵi

) (p−2)2

2p
· (16)

������
*
,

(
dR

p
p−2 + Ŵ

) 1

2
− 1

q
Uz+

-i

������

p−2

(Uz)2i

(i)
≤

∑
i ∈[n]

(
d
1− 2

p ri + ŵ
1− 2

p
i

)−1
ŵ
−
p−2
2

i · (17)

������
*
,

(
dR

p
p−2 + Ŵ

) 1

2
− 1

q
Uz+

-i

������

p−2

(Uz)2i

(ii)
≤

(
dR

p
p−2 + Ŵ

) 1

2
− 1

q
Uz

p−2
2

2

· (18)

∑
i ∈[n]

(
d
1− 2

p ri + ŵ
1− 2

p
i

)−1
ŵ
−
p−2
2

i σ *
,

(
dR

p
p−2 + Ŵ

) 1

2
− 1

q
U+
-

p−2
2

i
(Uz)2i

(19)

(iii)
≤ 2

p−2
2

(
dR

p
p−2 + Ŵ

) 1

2
− 1

q
Uz

p−2
2

2

· (20)

∑
i ∈[n]

(
d
1− 2

p ri + ŵ
1− 2

p
i

)−1
(Uz)2i

(iv)
≤ 4

p−2
2 ∥ŷ∥

p
2
≤ 4

p−2
2

(
3d

1− 2

p
) p

2

(21)

≤ 4
pd

p
2
−1. (22)

Here, (i) follows from the inequality a1−2/p +b1−2/p ≥ (a+b)1−2/p ,

which holds for all a,b ≥ 0, for a = dir
p
p−2
i and b = ŵi , and the

trivial bound (
d
1− 2

p ri + ŵ
1− 2

p
i

)−p/2
≤ ŵ

−
p−2
2

i .

Also, (ii) is shown using Fact 2.2, and (iii) uses the definition of

c-regularized Lewis weights (Definition 5.2) for c = dr
p
p−2

as cho-

sen in line 1 of OracleSmall (Algorithm 2) and that ŵ are 1.1-

approximate weights by Lemma 5.3. Finally, (iv) uses the definition
of ŷ and

(dr
p
p−2
i + ŵi)

1− 2

q = (dr
p
p−2
i + ŵi)

2

p −1

≤ max

(
d
1− 2

p ri , ŵ
1− 2

p
i

)−1
≤ 2

(
d
1− 2

p ri + ŵ
1− 2

p
i

)−1
.

Taking p-th roots of (22) shows that ∥y∥p ≤ O (d
p−2
2p−2) as desired.

To bound the cost, note that line 1 and 2 of OracleSmall (Al-

gorithm 2) call Õ (1) solves to U⊤DU for diagonal matrices D by

Lemma 5.3. □

STOC ’22, June 20–24, 2022, Rome, Italy Arun Jambulapati, Yang P. Liu, and Aaron Sidford

ACKNOWLEDGEMENTS
We thank Michael B. Cohen, Yair Carmon, Qijia Jiang, Yujia Jin, Yin

Tat Lee, Kevin Tian, and Richard Peng for helpful discussions. We

also would like to thank anonymous reviewers for several helpful

comments in improving the presentation of the paper.

Aaron Sidford was supported in part by a Microsoft Research

Faculty Fellowship, NSF CAREER Award CCF-1844855, NSF Grant

CCF-1955039, a PayPal research award, and a Sloan Research Fel-

lowship. Yang P. Liu was supported by the Department of Defense

(DoD) through the National Defense Science and Engineering Grad-

uate Fellowship, and NSF CAREER Award CCF-1844855 and NSF

Grant CCF-1955039.

REFERENCES
[1] Deeksha Adil, Brian Bullins, Rasmus Kyng, and Sushant Sachdeva. 2021. Almost-

Linear-Time Weighted ℓp -Norm Solvers in Slightly Dense Graphs via Sparsi-

fication. In ICALP (LIPIcs, Vol. 198). Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 9:1–9:15.

[2] Deeksha Adil, Brian Bullins, and Sushant Sachdeva. 2021. Unifying Width-

Reduced Methods for Quasi-Self-Concordant Optimization. arXiv preprint

arXiv:2107.02432 (2021).

[3] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. 2019. Iterative

Refinement for ℓp -norm Regression. In Proceedings of the Thirtieth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,

January 6-9, 2019. 1405–1424.

[4] Deeksha Adil, Richard Peng, and Sushant Sachdeva. 2019. Fast, Provably conver-

gent IRLS Algorithm for p-norm Linear Regression. In Advances in Neural Infor-

mation Processing Systems 32: Annual Conference on Neural Information Processing

Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, Hanna M.

Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.

Fox, and Roman Garnett (Eds.). 14166–14177. http://papers.nips.cc/paper/9565-

fast-provably-convergent-irls-algorithm-for-p-norm-linear-regression

[5] Deeksha Adil and Sushant Sachdeva. 2020. Faster p-norm minimizing flows, via

smoothed q-norm problems. In Proceedings of the 2020 ACM-SIAM Symposium

on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020.

892–910.

[6] Naman Agarwal and Elad Hazan. 2018. Lower bounds for higher-order convex

optimization. In Conference On Learning Theory. PMLR, 774–792.

[7] Yossi Arjevani, Ohad Shamir, and Ron Shiff. 2019. Oracle complexity of second-

order methods for smooth convex optimization. Mathematical Programming 178,

1 (2019), 327–360.

[8] Kyriakos Axiotis, Aleksander Mądry, and Adrian Vladu. 2020. Circulation Control

for Faster Minimum Cost Flow in Unit-Capacity Graphs. In 61st IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA,

November 16-19, 2020. 93–104.

[9] Francis Bach. 2010. Self-concordant analysis for logistic regression. Electronic

Journal of Statistics 4 (2010), 384–414.

[10] Jan van den Brand. 2020. A deterministic linear program solver in current

matrix multiplication time. In Proceedings of the Fourteenth Annual ACM-SIAM

Symposium on Discrete Algorithms. SIAM, 259–278.

[11] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron

Sidford, Zhao Song, and Di Wang. 2021. Minimum cost flows, MDPs, and ℓ1-
regression in nearly linear time for dense instances. In STOC ’21: 53rd Annual

ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,

2021. 859–869.

[12] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol

Saranurak, Aaron Sidford, Zhao Song, and Di Wang. 2020. Bipartite Matching in

Nearly-linear Time on Moderately Dense Graphs. In 61st IEEE Annual Symposium

on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November

16-19, 2020. 919–930. https://doi.org/10.1109/FOCS46700.2020.00090 Available at

https://arxiv.org/pdf/2101.05719.pdf.

[13] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. 2020. Solving

Tall Dense Linear Programs in Nearly Linear Time. In STOC. https://arxiv.org/

pdf/2002.02304.pdf.

[14] Sébastien Bubeck, Michael B. Cohen, Yin Tat Lee, and Yuanzhi Li. 2018. An

homotopy method for ℓp regression provably beyond self-concordance and in

input-sparsity time. In Proceedings of the 50th Annual ACM SIGACT Symposium

on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018.

1130–1137.

[15] Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and Aaron Sidford. 2019.

Complexity of Highly Parallel Non-Smooth Convex Optimization. In Advances

in Neural Information Processing Systems 32: Annual Conference on Neural Infor-

mation Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,

BC, Canada, Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence

d’Alché-Buc, Emily B. Fox, and Roman Garnett (Eds.). 13900–13909.

[16] Brian Bullins. 2018. Fast minimization of structured convex quartics. arXiv

preprint arXiv:1812.10349 (2018).

[17] Brian Bullins and Richard Peng. 2019. Higher-order accelerated methods for

faster non-smooth optimization. arXiv preprint arXiv:1906.01621 (2019).

[18] Yair Carmon, Arun Jambulapati, Qijia Jiang, Yujia Jin, Yin Tat Lee, Aaron Sidford,

and Kevin Tian. 2020. Acceleration with a Ball Optimization Oracle. In Ad-

vances in Neural Information Processing Systems 33: Annual Conference on Neural

Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

[19] Yair Carmon, Arun Jambulapati, Yujia Jin, and Aaron Sidford. 2021. Thinking

inside the ball: Near-optimal minimization of the maximal loss. arXiv preprint

arXiv:2105.01778 (2021).

[20] Hui Han Chin, Aleksander Mądry, Gary L. Miller, and Richard Peng. 2013. Run-

time guarantees for regression problems. In Innovations in Theoretical Computer

Science, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, Robert D. Kleinberg (Ed.).

ACM, 269–282. https://doi.org/10.1145/2422436.2422469

[21] Paul Christiano, Jonathan A. Kelner, Aleksander Mądry, Daniel A. Spielman,

and Shang-Hua Teng. 2011. Electrical flows, laplacian systems, and faster ap-

proximation of maximum flow in undirected graphs. In Proceedings of the 43rd

ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8

June 2011, Lance Fortnow and Salil P. Vadhan (Eds.). ACM, 273–282. https:

//doi.org/10.1145/1993636.1993674

[22] Kenneth Clarkson, Ruosong Wang, and David Woodruff. 2019. Dimensionality

reduction for tukey regression. In International Conference on Machine Learning.

PMLR, 1262–1271.

[23] Kenneth L Clarkson. 2005. Subgradient and sampling algorithms for l 1 regres-

sion.

[24] Kenneth L Clarkson, Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney,

Xiangrui Meng, and David P Woodruff. 2016. The fast cauchy transform and

faster robust linear regression. SIAM J. Comput. 45, 3 (2016), 763–810.

[25] Kenneth L. Clarkson and David P. Woodruff. 2013. Low rank approximation and

regression in input sparsity time. In STOC. ACM, 81–90.

[26] Michael B. Cohen, Ben Cousins, Yin Tat Lee, and Xin Yang. 2019. A near-optimal

algorithm for approximating the John Ellipsoid. In Conference on Learning Theory,

COLT 2019, 25-28 June 2019, Phoenix, AZ, USA. 849–873.

[27] Michael B Cohen, Yin Tat Lee, and Zhao Song. 2019. Solving Linear Programs

in the Current Matrix Multiplication Time. In STOC. https://arxiv.org/pdf/1810.

07896.

[28] Michael B Cohen, Aleksander Mądry, Piotr Sankowski, and Adrian Vladu. 2017.

Negative-Weight Shortest Paths and Unit Capacity Minimum Cost Flow in

O (m10/7
logW) Time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA). SIAM, 752–771.

[29] Michael B. Cohen and Richard Peng. 2015. ℓp Row Sampling by Lewis Weights.

In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of

Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, Rocco A. Servedio and

Ronitt Rubinfeld (Eds.). ACM, 183–192. https://doi.org/10.1145/2746539.2746567

[30] Anirban Dasgupta, Petros Drineas, Boulos Harb, Ravi Kumar, and Michael W

Mahoney. 2009. Sampling algorithms and coresets for ℓp regression. SIAM J.

Comput. 38, 5 (2009), 2060–2078.

[31] Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P.

Woodruff. 2012. Fast approximation of matrix coherence and statistical leverage. J.

Mach. Learn. Res. 13 (2012), 3475–3506. http://dl.acm.org/citation.cfm?id=2503352

[32] David Durfee, Kevin A. Lai, and Saurabh Sawlani. 2018. ℓ1 Regression using

Lewis Weights Preconditioning and Stochastic Gradient Descent. In Conference

On Learning Theory, COLT 2018, Stockholm, Sweden, 6-9 July 2018 (Proceedings

of Machine Learning Research, Vol. 75), Sébastien Bubeck, Vianney Perchet, and

Philippe Rigollet (Eds.). PMLR, 1626–1656. http://proceedings.mlr.press/v75/

durfee18a.html

[33] Alina Ene and Adrian Vladu. 2019. Improved Convergence for ℓ1 and ℓ∞ Re-

gression via Iteratively Reweighted Least Squares. In International Conference on

Machine Learning. PMLR, 1794–1801.

[34] Alexander V. Gasnikov, Pavel E. Dvurechensky, Eduard A. Gorbunov, Evgeniya A.

Vorontsova, Daniil Selikhanovych, César A. Uribe, Bo Jiang, Haoyue Wang,

Shuzhong Zhang, Sébastien Bubeck, Qijia Jiang, Yin Tat Lee, Yuanzhi Li, and

Aaron Sidford. 2019. Near Optimal Methods for Minimizing Convex Functions

with Lipschitz p-th Derivatives. In Conference on Learning Theory, COLT 2019,

25-28 June 2019, Phoenix, AZ, USA (Proceedings of Machine Learning Research,

Vol. 99), Alina Beygelzimer and Daniel Hsu (Eds.). PMLR, 1392–1393.

[35] Mehrdad Ghadiri, Richard Peng, and Santosh S Vempala. 2021. Sparse Regression

Faster than dω . arXiv preprint arXiv:2109.11537 (2021).

[36] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. 2021. A faster

algorithm for solving general LPs. In STOC ’21: 53rd Annual ACM SIGACT Sym-

posium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021. 823–832.

[37] Tarun Kathuria. 2020. A Potential Reduction Inspired Algorithm for Exact Max

Flow in Almost Õ (m4/3) Time. arXiv preprint arXiv:2009.03260 (2020).

http://papers.nips.cc/paper/9565-fast-provably-convergent-irls-algorithm-for-p-norm-linear-regression
http://papers.nips.cc/paper/9565-fast-provably-convergent-irls-algorithm-for-p-norm-linear-regression
https://doi.org/10.1109/FOCS46700.2020.00090
https://arxiv.org/pdf/2101.05719.pdf
https://arxiv.org/pdf/2002.02304.pdf
https://arxiv.org/pdf/2002.02304.pdf
https://doi.org/10.1145/2422436.2422469
https://doi.org/10.1145/1993636.1993674
https://doi.org/10.1145/1993636.1993674
https://arxiv.org/pdf/1810.07896
https://arxiv.org/pdf/1810.07896
https://doi.org/10.1145/2746539.2746567
http://dl.acm.org/citation.cfm?id=2503352
http://proceedings.mlr.press/v75/durfee18a.html
http://proceedings.mlr.press/v75/durfee18a.html

Improved Iteration Complexities for
Overconstrained p-Norm Regression STOC ’22, June 20–24, 2022, Rome, Italy

[38] Tarun Kathuria, Yang P Liu, and Aaron Sidford. 2020. Unit Capacity Maxflow in

Almost O (m4/3) Time. In 2020 IEEE 61st Annual Symposium on Foundations of

Computer Science (FOCS). IEEE, 119–130.

[39] Jonathan A. Kelner, Gary L. Miller, and Richard Peng. 2012. Faster approximate

multicommodity flow using quadratically coupled flows. In Proceedings of the

44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,

USA, May 19 - 22, 2012. 1–18.

[40] Rasmus Kyng, Richard Peng, Sushant Sachdeva, and Di Wang. 2019. Flows in

almost linear time via adaptive preconditioning. In Proceedings of the 51st Annual

ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA,

June 23-26, 2019. 902–913.

[41] Yin Tat Lee and Aaron Sidford. 2015. Efficient Inverse Maintenance and Faster

Algorithms for Linear Programming. In IEEE 56th Annual Symposium on Foun-

dations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015.

230–249.

[42] Yin Tat Lee and Aaron Sidford. 2019. Solving linear programs with Sqrt (rank)

linear system solves. arXiv preprint arXiv:1910.08033 (2019).

[43] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. 2019. Solving Empirical Risk Mini-

mization in the Current Matrix Multiplication Time. In COLT. https://arxiv.org/

pdf/1905.04447.

[44] D. Lewis. 1978. Finite dimensional subspaces of Lp . Studia Mathematica 63, 2

(1978), 207–212. http://eudml.org/doc/218208

[45] Chih-Jen Lin, Ruby C Weng, and S Sathiya Keerthi. 2008. Trust region Newton

method for large-scale logistic regression. Journal of Machine Learning Research

9, 4 (2008).

[46] Yang P Liu and Aaron Sidford. 2020. Faster divergence maximization for faster

maximum flow. arXiv preprint arXiv:2003.08929 (2020).

[47] Yang P. Liu and Aaron Sidford. 2020. Faster energy maximization for faster

maximum flow. In Proccedings of the 52nd Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020. 803–814.

[48] Haihao Lu, Robert M. Freund, and Yurii E. Nesterov. 2018. Relatively Smooth

Convex Optimization by First-Order Methods, and Applications. SIAM J. Optim.

28, 1 (2018), 333–354.

[49] Aleksander Mądry. 2013. Navigating Central Path with Electrical Flows: From

Flows to Matchings, and Back. In 54th Annual IEEE Symposium on Foundations

of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA. IEEE

Computer Society, 253–262. https://doi.org/10.1109/FOCS.2013.35

[50] Aleksander Mądry. 2016. Computing Maximum Flow with Augmenting Electrical

Flows. In IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS

2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, Irit Dinur

(Ed.). IEEE Computer Society, 593–602. https://doi.org/10.1109/FOCS.2016.70

[51] Xiangrui Meng and Michael W. Mahoney. 2013. Low-distortion subspace em-

beddings in input-sparsity time and applications to robust linear regression. In

STOC. ACM, 91–100.

[52] Xiangrui Meng andMichaelW.Mahoney. 2013. Robust Regression onMapReduce.

In Proceedings of the 30th International Conference onMachine Learning, ICML 2013,

Atlanta, GA, USA, 16-21 June 2013 (JMLR Workshop and Conference Proceedings,

Vol. 28). JMLR.org, 888–896. http://proceedings.mlr.press/v28/meng13b.html

[53] Renato DCMonteiro and Benar Fux Svaiter. 2013. An accelerated hybrid proximal

extragradient method for convex optimization and its implications to second-

order methods. SIAM Journal on Optimization 23, 2 (2013), 1092–1125.

[54] Yurii Nesterov. 2019. Implementable tensor methods in unconstrained convex

optimization. Mathematical Programming (2019), 1–27.

[55] Yurii E Nesterov. 1983. A method for solving the convex programming problem

with convergence rate O (1/k2). In Dokl. akad. nauk Sssr, Vol. 269. 543–547.

[56] Yurii E. Nesterov. 2009. Unconstrained Convex Minimization in Relative Scale.

Math. Oper. Res. 34, 1 (2009), 180–193. https://doi.org/10.1287/moor.1080.0348

[57] James Renegar. 1988. A polynomial-time algorithm, based on Newton’s method,

for linear programming. Math. Program. 40, 1-3 (1988), 59–93.

[58] Daniel A. Spielman and Nikhil Srivastava. 2011. Graph Sparsification by Effective

Resistances. SIAM J. Comput. 40, 6 (2011), 1913–1926.

[59] Pravin M. Vaidya. 1989. Speeding-Up Linear Programming Using Fast Matrix

Multiplication (Extended Abstract). In 30th IEEE Annual Symposium on Founda-

tions of Computer Science, FOCS 1989, Research Triangle Park, NC, USA, October

30 - November 1, 1989. IEEE Computer Society, 332–337. https://doi.org/10.1109/

SFCS.1989.63499

[60] Pravin M Vaidya. 1990. An algorithm for linear programming which requires

O (((m +n)n2 + (m +n)1.5n)L) arithmetic operations. Mathematical Program-

ming 47, 1-3 (1990), 175–201.

[61] Przemyslaw Wojtaszczyk. 1996. Banach spaces for analysts. Number 25. Cam-

bridge University Press.

[62] David P. Woodruff and Qin Zhang. 2013. Subspace Embeddings and ℓp -
Regression Using Exponential Random Variables. In COLT 2013 - The 26th Annual

Conference on Learning Theory, June 12-14, 2013, Princeton University, NJ, USA.

546–567.

[63] Jiyan Yang, Yinlam Chow, Christopher Ré, and Michael W. Mahoney. 2016.

Weighted SGD for ℓp Regression with Randomized Preconditioning. In Proceed-

ings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2016, Arlington, VA, USA, January 10-12, 2016, Robert Krauthgamer (Ed.).

SIAM, 558–569. https://doi.org/10.1137/1.9781611974331.ch41

A LEWIS WEIGHTS FOR ℓ∞ REGRESSION
Here, we argue that using ℓ∞ Lewis weight overestimates (Def-

inition 2.4) along with the computations and framework of [18]

directly give an algorithm for ℓ∞-regression, proving Theorem 2.

We use the notion of quasi-self-concordance from [18, Definition

10].

Lemma A.1. Define lset : R
n → R as

lset (x) = t log *.
,

∑
i ∈[n]

exp(xi/t)
+/
-
.

Ifw ∈ Rn
≥0

are ℓ∞ Lewis weight overestimates (Definition 2.4) then

lset (x) is 1/t-smooth and 2/t-quasi-self-concordant in the norm ∥ ·

∥A⊤WA.

Proof. By scaling, it suffices to show the result for t = 1. The

computations in the proof of [18, Lemma 14] in [18, Appendix G.1]

shows that u⊤∇2lse(x)u ≤ ∥u∥2∞. Now by Lemma 2.6 for p = ∞
we get ∥u∥∞ ≤ ∥u∥A⊤WA which implies the smoothness claim.

To show quasi-self-concordance, we use the computations in the

proof of [18, Lemma 14] in [18, Appendix G.1] to get

���∇
3
lse(x)[u,u,h]��� ≤ ∥u∥

2

∇2lse(x) ∥h∥∞.

The proof follows from the fact that ∥h∥∞ ≤ ∥h∥A⊤WA by Lemma 2.6

with p = ∞. □

We can plug this bound into [18, Corollary 12] to show Theo-

rem 2.

Proof of Theorem 2. Define x⋆ = argminx ∥Ax − b∥∞ and

OPT = ∥Ax⋆−b∥∞.We assume that we start at a point x ∈ Rn with

∥Ax−b∥∞ ≤ 2OPT. Otherwise, the same proof shows that given any

upper bound onOPT, the algorithm allows us to reduce the error by

a constant factor. We can initialize with polynomial error by solving

the ℓ2 problemminx ∈Rd ∥Ax−b∥∞.We set t = εOPT
20 logn (which loses

εOPT/2 additive function accuracy) and minimize lset (Ax − b) to
εOPT/2 accuracy. In [18, Corollary 12] we set M = A⊤WA and

M = 2/t = O
(
20 logn
εOPT

)
by Lemma A.1.

We show we can set R = O (OPT
√
d). Indeed note that ∥A(x −

x∗)∥∞ ≤ ∥Ax − b∥∞ + ∥Ax⋆ − b∥∞ ≤ 3OPT. Thus we get

R2 = ∥x − x⋆∥
2

A⊤WA ≤
∑
i ∈[n]

wi (A(x − x⋆))2i

≤ 9OPT2
∑
i ∈[n]

wi ≤ 18dOPT2

as ∥w ∥1 ≤ 2d by the construction in Lemma 2.5. Pluggin in this

value of R,M into [18, Corollary 12] gives an iteration bound of

Õ ((RM)2/3) = Õ *
,

(
OPT
√
d ·

20 logn

εOPT

)
2/3

+
-
= Õ (d1/3ε−2/3).

□

https://arxiv.org/pdf/1905.04447
https://arxiv.org/pdf/1905.04447
http://eudml.org/doc/218208
https://doi.org/10.1109/FOCS.2013.35
https://doi.org/10.1109/FOCS.2016.70
http://proceedings.mlr.press/v28/meng13b.html
https://doi.org/10.1287/moor.1080.0348
https://doi.org/10.1109/SFCS.1989.63499
https://doi.org/10.1109/SFCS.1989.63499
https://doi.org/10.1137/1.9781611974331.ch41

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Previous Work
	1.3 Our Approach
	1.4 Paper Organization

	2 Preliminaries
	2.1 General Notation
	2.2 Lewis Weights
	2.3 Iterative refinement

	3 Energy Boosting Algorithm for Large p
	4 Monteiro-Svaiter Acceleration Algorithm for Large p
	4.1 Hessian stability
	4.2 Efficient implementation of proximal subproblems
	4.3 Putting it all together

	5 Algorithm for Small q
	References
	A Lewis Weights for Regression

