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Blandford-Znajek process in quadratic gravity
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The Blandford-Znajek process, which uses a magnetized plasma to extract energy from a rotating black
hole, is one of the leading candidates for powering relativistic jets. In this work, we investigate the
Blandford-Znajek process in two well-motivated quadratic gravity theories: scalar Gauss-Bonnet and
dynamical Chern-Simons gravity. We solve analytically for a split-monopole magnetosphere to first order
in the small-coupling approximation and second relative order in the slow-rotation approximation. The
extracted power at fixed spin and magnetic flux is enhanced in scalar Gauss-Bonnet and reduced in
dynamical Chern-Simons gravity, compared to general relativity. We find that there is a degeneracy
between spin and the coupling constants of the theories at leading order in the slow rotation approximation

that is broken at higher orders.
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I. INTRODUCTION

Direct electromagnetic extraction of the rotational
energy of supermassive black holes (BHs) via the
Blandford-Znajek (BZ) process [1] is a plausible power
source for relativistic jets in many active galactic nuclei
(AGN) [2-5]. In the BZ process, the ergosphere of a
rotating BH is threaded by a poloidal magnetic field
embedded in a highly conducting plasma. As the mag-
netic field lines are frame dragged, a toroidal field
forms, and the work done by the BHs on the field lines
leads to the extraction of its rotational energy. This
theoretical framework for relativistic jets is supported
by the modeling of Event Horizon Telescope (EHT)
observations [6—8]. Comparison of models with EHT
observations of M87* favors those models in which
MS87’s jet originates in a low-density, magnetically
dominated region (the “funnel”) over the poles of the
black hole.

Over the past three decades, the BZ process has been
extensively studied in general relativity (GR). The analyti-
cal studies (e.g., [1,9-15]) compute the fields perturba-
tively, and the associated energy flux is therefore found,
under certain assumptions, to a particular order in the BH’s
spin. For example, [15] recently calculated the field
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configuration to third relative order in the spin parameter
using matched asymptotic expansions and abandoning the
assumption that the field variables are smooth in the BH’s
spin. GR magnetohydrodynamic (GRMHD) simulations
have also shown that, for slowly rotating BHs, the structure
of the time-averaged funnel magnetic field matches the
analytic solution of Blandford and Znajek [10,12,16-18].
Simulations also enable the study of rapidly rotating black
holes, but there are no analytical models to compare these
results, and they are computationally expensive [19].
Since the BZ process depends on astrophysics (through
the magnetosphere) and the theory of gravity (through the
exterior BH spacetime metric) [17,20,21], studying the
process and its observational consequences may probe
gravity in the strong-field regime. In modified gravity,
however, the BZ mechanism has been much less studied
than in GR, and when considered, it has been studied only

n this work, the term “relative order in spin” refers to the
scaling with spin, relative to the leading-order expression in a
slow-rotation expansion. For example, the third relative order
field configuration includes the poloidal magnetic field at the
third order (which is the leading-order contribution), plus both the
toroidal magnetic field at the fourth order, and the BZ power at
the fifth order.

© 2022 American Physical Society
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analytically. For instance, in [22-25], the BZ power was
computed to leading order in the BH’s spin, either for an
agnostic, parametrically deformed (“bumpy” [26]) BH
metric [22-24] or for a theory-specific (Kerr-Sen) BH
metric [25].

Moreover, previous studies in modified gravity have all
considered a magnetosphere in which the rotation frequency
of the electromagnetic (EM) field maximizes the power
output of the BZ process and followed the procedure devised
in [12] for the Kerr metric. Using a magnetosphere that
maximizes the BZ power is a good approximation for the
magnetosphere dynamics around Kerr BHs [9]. However, it
is unknown whether that assumption applies generically to
other spacetimes, and a careful investigation of magneto-
spheric structure in non-Kerr BH spacetimes is needed. In
this paper, we address these difficulties by studying in great
detail the BZ process in two quadratic gravity theories:
scalar Gauss-Bonnet (SGB) gravity [27-30] and dynamical
Chern-Simons (DCS) gravity [31-33]. Both theories are
well-motivated extensions of GR from the effective theory
standpoint [28] and arise in low-energy expansions of
quantum gravity theories [27,31,34-37].

We solve the governing equations of the magnetosphere
around BHs described by these quadratic theories analyti-
cally (to first order in the small-coupling approximation
and second relative order in the small-rotation approxima-
tion) by combining the solution strategies presented in
[1,10,15] for a split-monopole configuration. Our results
suggest that using a magnetosphere that maximizes the BZ
power remains a good approximation for the magneto-
sphere dynamics around modified gravity. We also find that
the power of energy extraction from the BH, compared to
the predictions of GR, is enhanced in SGB gravity and
quenched in DCS gravity. At leading order, we find that
there is a degeneracy between the BH’s parameters, namely
the spin and the parameter (coupling constant) that controls
the modification from GR. This degeneracy makes it
difficult to use the BZ mechanism to place limits on the
coupling parameters of the theory, even in the presence of
high-quality data. We then show that this degeneracy is
broken at higher orders in the perturbative scheme.

This paper is organized as follows: Sec. II reviews the
mathematical formulation of the BZ process. Section III
presents the solution to the BZ process in GR following a
simplified strategy based on [1,10,15] and discusses its
advantages and limitations. Section IV reviews the BH
solutions in SGB and DCS gravity, solves the BZ process
in these theories, compares the result with the prediction of
GR, and ends with a detailed explanation of the differences
found. Section V describes in detail a degeneracy between the
BH parameters that appears at leading order and discuss its
implications to future studies of the BZ process in modified
theories of gravity. Section VI summarizes and discusses
future work. Throughout the paper, we use geometric units
with Gy = 1 = ¢ and the metric signature (—, +, +, +).

II. THE BLANDFORD-ZNAJEK PROCESS

The BZ process assumes a stationary, axisymmetric
magnetosphere—composed of an electromagnetic field
and a highly conducting plasma—around a rotating BH
[1]. The EM field energy is large compared to the plasma
rest-mass density everywhere except close to the equatorial
plane, where matter accretes in a high-density disk. We
assume the split-monopole configuration, where the disk is
considered as a thin current sheet, and the magnetic field
lines are considered to be asymptotically radial as they
cross two-spheres far from the BH. Off the disk, the
dominance of the EM field implies the force-free condition
(e.g., see [38]):

F

uv

=0, (1)

where F,, is the Faraday tensor of the EM field, and J* =
V,F* is the four current. The disk appears as a disconti-
nuity to the EM field, and the magnetic field lines cross the
equatorial plane only through the central BH. This split-
monopole configuration in GR has been extensively used
for the analytical study of the BZ process [1,10-15], and its
analytic solution has been shown to agree with numerical
simulations [10,16,17]. In the following, we adopt Gralla
and Jacobson’s notation [39] as it can be easily applied to
theories beyond GR.

In Boyer-Lindquist (BL) coordinates (z,7,0,¢), a sta-
tionary and axisymmetric metric can be decomposed in the
following form

ds? = g, dx*dx’ = gl pdx*dxP + ¢f dx?dx®,  (2)

where ¢, is referred to as the “toroidal metric,” and g%, is
referred to as the “poloidal metric”; in other words, the
toroidal coordinates (f,¢) are indexed with uppercase
letters and the poloidal coordinates (r,8) with lowercase
letters. This particular decomposition is not unique to GR
and can be performed for rotating BHs in several theories of
gravity [40], including the quadratic gravity theories of
interest here. Gralla and Jacobson [39] showed that a
stationary, axisymmetric, and force-free EM field can
always be represented by

Ftr = _Frt = Qarl//9 (3)
Fig=—Fg = Q0py, 4)
Fr¢ = _F¢r = arw’ (5)
Fop = —F 49 = Ogy, (6)

1 gP
F.o=—-Fp =—|—=, 7
ro or o’ _gT ( )
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with all other components zero. Here y, I, and Q are
functions of (r, ), and g” and ¢ are the determinants of the
toroidal metric and the poloidal metric, respectively.
The quantities 27y and I measure the magnetic flux and
the electric current through a surface bounded by the loop of
revolution at (r, ), respectively, and Q (which is constant
along field lines) measures the rotation frequency of
magnetic field lines being dragged by the rotation of the
BH. We refer to y as the “poloidal flux function,” I as the
“poloidal current function,” and Q as the “rotation fre-
quency.” A similar description (e.g.,see [1,10,11,13]) canbe
made in terms of a toroidal vector potential A, and a toroidal
magnetic field By or B?, instead of the flux function y and
the current function /, respectively. These descriptions are
related by dy = dA, and I = 22B; = —2rg" BY.

Inserting Egs. (3)—(7) into the force-free condition of
Eq. (1), the 7 and ¢ components become

0,109y = 0910,y (8)
0,Q0gy = 0,Q0,y, (9)

which may also be interpreted as I and €2 being functions of
. On the other hand, the r and @ components of Eq. (1) can
be combined into the stream equation [39]:

1r
Ax*g"

V. (In*Viy) + Q' (5 - d)|Vy|* — =0, (10)

where the prime denotes a y derivative, and n = d¢ — Qdt.
Due to parity, finding a solution in the northern hemisphere
(0 <0 < r/2) would be sufficient, as y, I, and Q in
the southern hemisphere mirror the northern hemisphere
solution.

The total EM energy flux extracted from the BH, also
known as the BZ power, is [1,39]

P:—/Ile//,

/2
—an [t - @)ow 2, 22
0 9oo

where ry is the horizon radius which can be found as the
outermost solution to g' = 0, and

do,  (11)

r=ry

_Yip
9o

Q= (12)

r=ry

is the horizon angular frequency. The functional form of
Eq. (11) indicates that the energy flux is directed outward
on the horizon when 0 < Q < Qp, and it is sometimes
assumed that the field rotation frequency equals half of the
horizon angular frequency, i.e., Q = Qy/2 (for instance,
see [12,41]). We will not make that assumption in this

work. The importance of not making this assumption will
become explicit when we study the BZ mechanism in SGB
and DCS gravity in Sec. IV.

Prescribing the boundary conditions for Egs. (8)—(10)
turns out to be a delicate job. Here we adopt the boundary
conditions from a recent work by Armas et al. [15]:

w=0, 6=0, (13)
w=yo. O=m/2 (14)
w finite, r=ry. (15)

I=27(Q - Q)0 222, r=ry.  (16)
Yoo

[ = =272Q0yy sin 0, r— oo, (17)

y finite, r— oo, (18)
where ) is a constant. The condition stipulated by Eq. (13)
is required by the physical interpretation of y: at the north
pole, the surface over which the magnetic flux is measured
shrinks to a zero size, so the flux function there should be
set to zero. The condition (14) is a restatement of the split-
monopole assumption that no magnetic field line crosses
the disk, and therefore v, determines the magnetic flux
through the horizon. Equations (15) and (16) come from the
requirement that the EM field strength, F s be finite when
measured by a timelike observer traveling across the
horizon.

Equation (16) is the Znajek condition [42], which is
equivalent to requiring a finite toroidal magnetic field, B?,
in horizon-penetrating coordinates [10]. Gralla and
Jacobson [39] have extended this condition so that it holds
as long as the horizon is a Killing horizon generated by
0; +Qud,. The Znajek condition mapped to null future
infinity becomes Eq. (17) [15,43]. There is no need to adapt
Eq. (17) to a generic metric since we are considering
spacetimes that are asymptotically flat. The conditions
given by Eqgs. (16) and (17) can be derived, up to a sign,
by directly solving Eq. (10) on the horizon and at the
infinity with the assumption that v, I, and Q are all finite
there. The sign is fixed by assuming that the energy flow is
outwardly directed on the horizon and at the infinity
[39,44,45]. Finally, Eq. (18) matches the field at infinity
with Michel’s flat-space monopole solution [46].

Together with these boundary conditions, Egs. (8)—(10),
first derived by Blandford and Znajek [1], are therefore all
one needs to solve for the fields (either analytically or
numerically). However, the only known exact solution to
these equations is a generalization of Michel’s monopole
solution [46] in the Schwarzschild spacetime [1], which
lacks astrophysical interest as no energy can be extracted.
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Therefore, perturbation methods are typically applied to
study this process analytically.

III. THE BLANDFORD-ZNAJEK PROCESS
IN GENERAL RELATIVITY

In this section, we revisit the BZ process in GR and
present a simplified self-contained rederivation of the
known solutions [1,15]. We start by writing the Kerr metric
in BL coordinates:

2Mr h
ds? =—(1- dfr +=dr? + Xd6>
K ( Z) —I—Ar—l—

1
+5 (7 + @) — @A sin’ 6] sin’ 0dg?

4Mar sin® 6

s dido. (19)

where A =12 = 2Mr + a%, £ = 1* + a?cos? 0, and a and
M denote the BH’s spin and mass, respectively. The event
horizon is located at

ru=M+ VM -d, (20)

where the angular frequency is

a

Q= .
H 2M}’H

(21)

The ergosphere is located at

Fergo = M + V M?* — a? cos? 6. (22)

Let us now consider a slowly rotating Kerr BH with
dimensionless spin parameter y = a/M < 1, and expand
the field variables in powers of y. Let us assume that the
field variables are smooth functions of y at y = 0, and the
following functional form for the expansions

w =y x0) + P (x.0)+ 04",  (23)
=410 (x,0) + 210 (x,0) + OF),  (24)
Q =Q(x,0) + QB (x,0) + O(®),  (25)

where we have introduced x = r/M as a dimensionless
radial coordinate.

Following [15], let us now define what we mean by
“relative order in spin” formally. When expanding in small
spins, some functions will have some y dependence to
leading order. A term of Nth relative spin order then means
a term that is "V smaller than the leading-order term. With
this in mind then, w(®, I, and Q) are zeroth relative
order (leading order); y"), I®, and Q® are first relative

order; and the terms shown in Egs. (23)—(25) are the field
expansion up to second relative order.
At leading order, the stream Eq. (10) reads

Ly =0, (26)

where L is a separable differential operator defined by [47]

0 2\ 0 sin@ 0 1 0
L—a)cKl‘x)a)c]*ﬁae(sineae)- @7)

Imposing the boundary conditions of Egs. (13)—(18), one
obtains

y© = (1 —cosd), (28)

which is the exact monopole solution in the northern
hemisphere. Note that here we imposed the horizon
condition of Eq. (15) at x = 2, instead of at x = ry/M.
Clearly, this will not affect the solution at O(y°) because
the difference between x = 2 and x = ry/M is of O(y?);
such correction will be accounted for when we study the
solution at higher order in y. In the following, we will
always impose the horizon conditions, i.e., Egs. (15) and
(16), at x = 2 instead of x = ry/M. By inserting Eq. (28)
into Egs. (8) and (9), one finds that /(") and Q") depend
solely on € and can be determined by the Znajek conditions
of Egs. (16) and (17) to obtain

1
1Y = “272,Q( sin 0 Q) =—_ (29
mp Q' sin” 6, a2
Note that when x — oo, Egs. (28)—(29) match Michel’s flat-
space solution [46].
Given that Qy = y/(4M) + O(y?) for Kerr BHs, by
comparing it to Eq. (29), one finds

Q:%QH+O(;(3). (30)

In fact, Q ~ Qy/2 is a common feature of the BZ process
around a slowly rotating Kerr BH [9,10,12,17,48]. As a
consequence, Tchekhovskoy er al. [12] suggested to take
Q = Qy/2 as the solution to the field rotation frequency at
leading order, and referred to it as the “energy argument,”
given that the BZ power is maximized by this rotation
frequency at leading order. Recent studies of the BZ
process in modified gravity theories (e.g., [23,25,41])
adopted this suggestion and gave estimates of the BZ
power in the slow-rotation limit without solving for the
fields. This treatment, however, is not justified since Q ~
Qpy/2 may not hold in general, i.e., for other theories of
gravity. In addition, if higher orders in the spin parameter
are considered, the approximation displayed in Eq. (30) is
insufficient, as we will show later.
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We now go to next order in the perturbative scheme.
Similar to the leading order treatment, the second relative
order stream Eq. (10) takes the form

2
Ly® = —y, % cos 0sin* 0, (31)

and by requiring that y satisfy Eqgs. (13)—(18), the solution
is simply

w? =y, f(x) cos@sin® 6, (32)

where [10]

)= éxz(z’f -3) [Liz G) + 1n<%) In <1 _gﬂ

1 2 1
+—(6x% = 3x — 1)1n<;> —6x2(x— 1)

12
11

L 33
MEZRET (33)

and Liy(x) = — [}(1/1)log(1 — xt)dt is the second poly-
logarithm function. At the boundaries,

=49+ 67> 1

72 ’ f(x)|x—>oo ~o (34)

1@ =

Solving Egs. (8)—(9) with the conditions given by
Egs. (16)—(17), we find

26
1% = 2y, sin®0 {Q@ +CZ]SW f(X)}, (35)
1 67 — 6x°
Qv = (1 +—3¢ % sin2 9>. (36)

As mentioned above, at this order Q deviates from Q/2.
Therefore, the assumption that the rotation frequency takes
the value which maximizes the power is not true at higher
order in spin. To second relative order, the BZ power,
Eq. (11), is

7(56 — 37?%) l//_%
1080  M?

2
R )

p=_—_7*0
24 2%

+0oW°).  (37)
which agrees with the results first presented in [11].
Blandford and Znajek [1] first solved the field variables
up to @, IV and Q)| and they evaluated the BZ power
to leading order. The next-to-leading-order BZ power was
obtained by Tanabe and Nagataki [11] without the solutions
for 1) and Q©), which were recently found by Armas
et al. [15].

The above perturbative procedure, however, cannot be
extended to higher orders. In particular, the O(y*) flux
function ™ will not satisfy the boundary condition in

Eq. (18), and, instead, it will diverge at large r [11]. In
addition, terms of the form O(|y|?) and O(y*log |y|) will
appear in the expansion of y [15], meaning that the field
will not be a smooth function of y any longer. We will now
comment on these two issues.

A consistent treatment to the slowly rotating, split-
monopole BZ process was first attempted by Grignani et al.
[14] and was recently resolved by Armas et al. [15] using
three distinct slow-rotation expansions connected by
matched asymptotics. These expansions are referred to as
“near,” “mid,” and “far” with respect to distance between the
horizon and where the expansion applies. These regions also
represent the three spatial regimes separated by the inner and
outer light surfaces [17,49]. Under this scheme, the deriva-
tion we presented earlier should be thought of as the solution
of the midexpansion, except that our boundary conditions
for the horizon and infinity should be imposed at the near
expansion and the far expansion, respectively. As a conse-
quence, the midexpansion no longer requires a finite field at
the boundaries, and the divergence of 1//(4) at large r can now
be buffered by some well-behaved term in the far expansion.

Regarding the problem of the smoothness of the fields,
Armas et al. suggested to consider all powers of y in the
first place and check whether other forms of dependence
(e.g., ¥*log |y|) should be included every time the solution
at an order is found [15]. In GR, up to the second relative
order, Armas et al. found that the smoothness assumption
holds true, and the near and far solutions can be extended
from the mid solution by taking r = ry and r — oo,
respectively. In the next section, we will show that this
argument holds in quadratic gravity theories as well, such
that the derivation presented above holds, and it is not
necessary to use the procedure presented by Armas
et al. [15].

We have shown that including the boundary condition
Eq. (17) correctly solves for the fields. Consider, for
example, the step we took from Eq. (28) to Eq. (29), where
the conditions given by Eqgs. (16) and (17) were used to
determine (V) and Q). If Eq. (17) was not provided, then
one could only determine IV as a function of Q) (or the
opposite, i.e., Q) as a function of /(). When going to next
order in the stream equation [Eq. (31)], one finds that the
source term would also be a function of Q(1). In general,
this new Eq. (31) would no longer be compatible with the
boundary condition of Eq. (18) unless some constraint was
put on the source term. Once this required constraint was
found, one could combine it with the requirement that Q
and I be finite to solve Q) and I(V), and eventually 2.
The solution to higher orders would be similar, with the
feature of needing to determine Q") and (") with the next
order stream equation, as presented in [10,11,13,14] for
example. Under such a scheme, since we work to the
second relative order, solving for /&) and Q® would
require the problematic y(*).
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In the seminal derivation of this process [1], Blandford
and Znajek used Eq. (17) as a shortcut to match Michel’s
solution [46] at leading order in the spin expansion, without
necessarily implying that it would hold at all orders.
However, in subsequent works (e.g., [10,11,13,14]) the
condition that € and 7 are finite at infinity was used instead
of Eq. (17). Following [15] we adopted Eq. (17), as this
boundary condition is equivalent to requiring finite field
variables and no incoming energy from the infinity (i.e., an
isolated magnetosphere).

In quadratic gravity theories, not using the condition of
Eq. (17) would lead to the same issues that appear in GR.
As we will explain later in Sec. IV C and with great detail in
Appendix B, for the quadratic theories considered in this
work, we cannot apply the scheme proposed by Armas
et al. [15]. Therefore, we choose to use the condition of
Eq. (17) to avoid these problems and keep our derivations
simple.

IV. THE BLANDFORD-ZNAJEK PROCESS IN
QUADRATIC GRAVITY

A. Rotating black holes in quadratic gravity

Perhaps the most well-studied cases of theories that correct
GR through higher curvature terms are SGB gravity [50] and
DCS gravity [31,51]. Quadratic gravity theories result as
extensions of GR from the effective field theory standpoint
[28] and arise in the low-energy expansions of quantum
gravity theories, in which scalar fields and higher-order
curvature terms appear as corrections to GR [27,31,34-37].

In SGB and DCS gravity, a dynamical massless scalar
dsge and pseudoscalar Ipcg, respectively, are coupled to
the gravitational field through quadratic-in-curvature scalar
invariants. These theories are defined in vacuum by adding
to the Einstein-Hilbert action a scalar field coupled to the
metric as follows [52]:

1
SsgB = / d“x\/ -9 [— ) (vu‘9SGB)(V”1()SGB)

+ aSGBSSGB( — 4R R’uy + R/“//) R}w/m):| B (38)

1
Spcs = /d“x\/ -9 [—5 (vu’(f)Dcs)(v’ligDcQ

pcs %
- 4 '9DCS R;w/mR” e :| (39)

where the quadratic scalar invariants R?, R, R", the
Kretschmann scalar Rﬂyp(,R””/"’ and the Pontryagin density
“R,psR*7°, where *R,,,, = €% R, is the dual of the
Rlemann are coupled through the coupling constants aggp
and apcg, respectively. The most stringent constraints to
date from gravitational wave observations are (to 90% con-

fidence): aSGB <5.6 km [53] and “Dcs < 8.5 km [54].

In SGB, the scalar field is coupled to a quadratic
curvature invariant, which is parity even, and therefore,
the spherical solutions in this theory are different from
Schwarzschild. On the other hand, in DCS, the curvature
invariant is parity odd, and therefore, any spherically
symmetric solution in GR is also a solution in DCS gravity,
e.g., the Schwarzschild solution [55].

Currently, exact closed-form solutions that represent
rotating BHs in SGB and DCS gravity do not exist.
Therefore, in this work, we use the small-coupling and
slow-rotation approximate solutions found in SGB
[28-30,56] and in DCS gravity [32,33,55,56]. The
small-coupling approximation treats the metric solutions
in both theories as deformed from the Kerr solution by
deviations proportional to the dimensionless coupling
parameter

a2
¢, = g = W <1, (40)
where ¢ € {SGB,DCS} refers to either theory,
k= (16x)7!, and M is the mass of the compact object.
We will use the approximate solutions up to O(¢,. x°),
which are presented in Appendix A 1 for completeness.2
We note that both solutions in BL coordinates follow the
decomposition presented in Eq. (2).
Now, let us summarize some of the BH characteristics in
these solutions that we will use later, up to O({,, x°). First,
the horizon radial locations are

49 277
TH,SGB = TH,GR _%§SGBM _%CSGBXZM’ (41)
915
"H,pCS = "H,GR — 28672 CDCS)( (42)

where rygr i the horizon radius of the Kerr metric as
given in Eq. (20). As in GR, the horizons are generated by
the Killing vector 9, + Qyd,, where the horizon angular
frequencies are

¢ 21 21103
Qpsgs = Lugr + SGBY

2
4
M \80 201600 > (43)

Csapr (709 169
O o — 44
nor = \ 28672 Toas76% )0 (Y

'Q'H.DCS =

where Qy gr is the horizon angular frequency of the Kerr
metric as given in Eq. (21). Finally, the ergospheres are also
modified, with radii now given by

*These solutions are different from those in [33] because
that paper used Hartle-Thorne coordinates, and we use BL
coordinates.
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49
Tergo,SGB = Tergo,GR — E {sgsM
277, 850
+%§SGB}( M(l —ﬁsln 9), (45)

Tergo.DCS = Tergo,GR
915

2836 .
- ngcssz <] + 781[12 6) . (46)

915

where rero0 gr 18 the ergosphere radius of the Kerr metric as
given in Eq. (22). Using the modified location of the
horizon and the ergosphere, we develop a resummed
version of the approximated metric solutions that recovers
the exact Kerr solution as ¢, — 0 and shifts the coordinate
singularity to the respective value of the horizon. The
details are presented in Appendix A.

B. The Blandford-Znajek process in quadratic
gravity to leading order in spin

Let us consider the BZ process around BHs in SGB and
DCS gravity. As in GR, we solve the force-free conditions
in Egs. (8)—(9) constrained by the boundary conditions of
Egs. (13)-(18) and evaluate the BZ power using Eq. (11).
The field expansions are now

0,0 0,2
v, =ui” + s

+ etV + CauP +02rY), (37)

0.1
Iy :)(IE] )

F e 1Y O x0), (48)

+ 17

0,1 0,3
Q, = 7" + Qg
+ QY 4 20 L 02,45, (49)

where the integer pair (m, n) stands for the mth order in
each coupling constant {, and the nth order in the spin y.

As GR is recovered when these couplings vanish, y/(om,

Ié&n)’ and Qgﬂﬁ) are the same as w™, I and Q" in

(1,n) I(Ln)

Sec. III. Thus, we only need to solve for y, ", I, and

Q" for each theory.
Let us first consider the solutions at leading order in spin.
The stream Eq. (10) reads

Lyl =0, (50)

and by imposing the boundary conditions of Eqgs. (13)—(15)
and (18), the solution is

vy =o0. (51)

Note that although Eq. (50) is the same as the leading order

GR stream equation in Eq. (26), the resulting solution is

different. This is because the GR solution y/éo‘o) has already

accounted for all the monopole charge v, so the charge
condition Eq. (14) cancels any further corrections taking
the same form of 1//5,0’()). From Eqgs. (8) and (9), together
with the conditions in Egs. (16) and (17), we obtain

) ay 21

11 IR
IéGB) = _2”WOQ(SGB sin” 6, SGB ~ 160M " (52)
11 11) . 11 709
11()Cs:) = —2”1//091()cs> sin” ), Ql()CS) = T534aM (53)

The corrections to the BZ power, according to Eq. (11), are
therefore

12 Tmyd
P = IR (54)
(1,2) 7097z l//(z)
P = - = 55
bes 86016 M? (53)

Combining Egs. (29), (52)—(53), and (43)-(44), we
find that

1

Q, :EQH,q+O( é,)ﬁ). (56)
This result is analogous to Eq. (30) but extended to
quadratic gravity, and it indicates that the field rotation
frequency takes the value that maximizes the BZ power
at leading order in spin, as in the GR case to the same
order. From Eqgs. (54)—(55), together with Eqgs. (37) and
(43)—(44), the BZ power can then be written as

T
Py =y, + 085 2%). (57)

6
This expression coincides with the result presented in [24]
for the maximal BZ power when using generic parame-
trized BH metrics to O(Q%). The above derivation provides
a proof and shows that the value of the rotation frequency
does not have to be assumed, as it is a consequence of
the magnetosphere dynamics. Furthermore, as mentioned
in [24], from Eq. (57) and the corrections to the Kerr
horizon angular frequency, i.e., Eqgs. (43)-(44), one can
phenomenologically infer the main contributions from the
metric coefficients to the BZ power.

The derivation shown above suggests that Eq. (30)
should hold as a consequence of the magnetosphere
dynamics in all modified theories of gravity that admit
BH solutions that can be described as continuous defor-
mations of the Schwarzschild metric. Generically, at lead-
ing order in spin the stream Eq. (10) should take the form of
Eq. (26):
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Lmodl//f-l(l)())d =0, (58)

where the subscript mod stands for “modified theory,” and
the superscript (n) stands for a term of O(y"), following the
notation introduced in Sec. III. Both L4 and l//f,l?())d contain
a GR part and a non-GR part that depends on the coupling
constants of the modified theory. Regardless of the details
of the modified theory, L4 is of O(y°), so the metric that
one uses to calculate it must be spherically symmetric. In
BL coordinates, such a metric is diagonal, and its angular
sector is just the metric of the two-sphere, i.e.,

0 0 .
Booa =1 g a=Psin?g. (59)

Therefore, Eq. (58) should still be separable, and its angular
sector should still be the same as that of L in Eq. (27). As a
result, the leading order in spin stream equation should still
accept the solution

Yina = vo(1 —cos0). (60)

As shown above, solving Egs. (8) and (9), together with
the conditions in Eqs. (16) and (17), and inserting the
angular metric components in Eq. (59), one obtains

1
Qo = 5 Ui - (61)
Thus,
1
Qmod = _QH,mod + 00(3)7 (62)

2

for a generic theory of gravity that describes continuous
deformations of the Schwarzschild metric. The argument
presented above, however, is not a proof because a rigorous
statement would require that we understand the behavior of
the metric in the near horizon and the far field, or
alternatively that we can develop a resummation of the
metric and show that this behavior is unimportant. Without
specifying a particular modified theory of gravity, it is not
clear how to establish those results, but this, in any case, is
outside the scope of this paper.

According to Egs. (54)—(55) and (37), given a BH of
fixed mass and spin, the relative corrections to the BZ
power, with respect to GR, by SGB and DCS are

Psp — P
_SGB " GR 2L sGR. (63)
Pgr
Ppes — P
“DES TR 0.2 pes. (64)
Pgr

Thus, the correction is one order of magnitude larger in
SGB than in DCS gravity. In addition, there is a sign

difference so that the power is enhanced in SGB gravity and
quenched in DCS gravity, with respect to the prediction
of GR.

The difference in the corrections found, both in magni-
tude and in sign, can be traced back to the different
corrections to the BH metric in the vicinity of the horizon.
At leading order, the toroidal metric components of BHs in
both theories can be written as

Girg = 1 =2M/r + {ky(r/M) + O3, %), (65)
Ipp.q = 1750”0+ O(L5. 1), (66)
Gipq = —X2M[r + {1, (r/M)] sin® 0 4 O( 57)(3), (67)

where k,(r) and /,(r) are different functions for SGB and
DCS that can be obtained by comparing Egs. (65)—(67)
with the BH solutions provided in Appendix A 1. Given
that Qy = —g,4/9pg|,—r,» and ry is the solution to g" =0,
we find

rag = 2M[1 =k, (2)] + O 7). (68)

X

o = 1y

[1+3¢,k,(2) + ¢, 0,(2)] + O2. 7). (69)

Then using Eq. (57), we can write

@ = 2,[3k,(2) + 1,(2)] + O(2. ). (70)
GR

To proceed, we need the values of k, and /, on the horizon.
According to Appendix A 1, they are

49 63

2)=—=0. 2)=—-——=~-0. 1

ksc(2) g0~ 0-6. lse(2) g0~ 08 (71)
709

kpcs(2) =0, Incs(2) = 7168 —0.1. (72)

Thus, the difference in the magnitude of the relative
correction to the BZ power can be explained by the greater
correction to the BH metric in the vicinity of the horizon in
SGB than in DCS gravity. In fact, from Egs. (70)—(72), one
recovers Egs. (63)—(64).

With an expression of the BZ power in these quadratic
theories, i.e., Eq. (57), one may wonder if measurements
may be used to distinguish GR from these theories. As we
will see, {, and y are degenerate to this order, so it is
necessary to go to higher order, which we do next.

C. The Blandford-Znajek process in quadratic
gravity to second relative order in spin

We will now proceed to find the solution to the second
relative order in spin. To this order, the stream Eq. (10) now
takes the form
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1,2
Ly

= wos,(x) cos Osin* 6, (73)
where s, (x) is the radial source function, which is different
for each theory. Considering the boundary conditions in

Egs. (13)—(15) and (18), the solution then takes the form

w12 = woh,(x) cos @'sin? 0,

(74)
where /,(x) is the solution to the following inhomo-
geneous radial equation:

d {(1 _ %) dhq(x)] B 6h,(x)

dx X dx x?
with the boundary conditions such that £, (x) is finite at
x = 2 and when x — co. We have derived s, (x) and solved
for h,(x) in closed form. The expressions are rather long,
and not illustrative, so we present them in Appendix B [see

Eqgs. (B71)—~(B73)]. Here, we only summarize the behavior
of the radial functions at the boundaries:

(75)

= sq(x),

1865759261  11497x> n 497

heop(2) = — . (76
sz (2) 9408000 960 60 (76)
5562399 70972
hpes(2) = - 77
pes(2) 40140800 86016 (77)
and
21
hscp (%) |12 ~ 0% (78)

709
28672x "

hDCS (x)|x—>oo ~ = (79)

Solving Egs. (8)—(9) with the conditions of Egs. (16)—(17),
we find

17 = 2y [Q)Y sin2 0 + QW (x) sin2 O cos? 0

+ QY f(x) sin? O cos? 4], (80)
and
ol _ 21103 626184387
SGB ™ 403200M 50176000
1158122 4974\ sin6 81)
15360 960 ) M °
ol _ _ 169 ( 83313691
DCS ™ 49152M  \ 5780275200
70972 \ sin 0
- ) 82
688128) M (82)

The corrections to the BZ power of Eq. (11) at second
relative order in spin are therefore

M2

Psgp = {24 + 35 CSGB:| 1080

wiy*  [x(56 —3x?%) 5652214483 2333z% 497* w%;(“
z soB

T
P DCS — |:

24 86016€DCS M? 1080

7097 } wii? n [n’(56 - 371'2) (

For comparison, the horizon angular frequencies up to the same relative order are

1 x Ve
Qy s = <4+ CSGB) + (16 2016OOCSGB> + O(L5gpo 1)

1 70

X
Qi pcs = <4 28672§DCS> + <

We see from these expressions that although P, o Q g at
leading order in y, this approximation breaks down at next-
to-leading order. This is true in GR and in both SGB and
DCS gravity.

pUA _ 5652214483 233372 497*\ yj (83)
SGB T\ 846720000 5760 1800/ M?’
(1.4) 163742291 70972° \ w2
Ppid = — - -0 (84
bes ”<10838016000 860160,/ M (84)
Collecting all results so far, we have
- 200, (85
846720000 5760 1800 M +O0lsep:2”). (85)
163742291  709x wir' ;.
10838016000 860160>CDC5] iz T Obes: ). (86)
21103
(87)
169 Ve » 5
= X 88
16 24576CDC5>M+O(CDCS x) (88)

Figure 1 shows the equatorial rotation frequency Q. =
Q(0 = x/2) and the BZ power P as functions of the BH
spin y, up to second relative order. As found to leading
order in the previous section, the BZ power is enhanced in
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FIG. 1. The rotation frequency of the EM field in the equatorial

plane, Q.,, (top) and the BZ power, P, (bottom) as functions of
the BH spin y for GR (solid line), SGB (dashed lines), and DCS
gravity (dotted lines), respectively. These quantities are computed
up to second relative order in the small rotation approximation,
i.e., O(y?) for Qeq and O(y*) for P. In SGB and DCS gravity, the
coupling constants {sgg and {pcg are both set to 0.2 for
illustrative purposes, and their modifications to GR are consid-
ered to first order in their coupling constants. Deviations from the
GR result are larger in SGB than in DCS gravity, as expected.

SGB and quenched in DCS, with respect to the prediction
of GR. As these solutions are only valid in the small-
coupling approximation, we have fixed the dimensionless
coupling constants ¢, = 0.2 to qualitatively show the
different behaviors of the BZ power.

As we have only considered solutions up to second
relative order in spin, it was unnecessary to follow the
procedure presented by Armas et al. [15], i.e., matched
asymptotics plus smoothness checks. Even though the
results presented in [15] were derived within GR, we
expected a similar behavior of the BZ solution in these
modified theories. However, as the BH metrics in SGB and
DCS gravity are only known in the midregion, a rigorous
proof of this behavior cannot be provided, as we explain in
detail in Appendix B. Despite that, we have applied the
method proposed by Armas ef al. using resummed metrics
for SGB and DCS and found the field solutions in the near
and far expansions are trivial, and that the smoothness
assumption holds up to second relative order in the spin.
Since our resummation recovers the exact Kerr metric and
shifts the coordinate singularity to the modified horizon, we

argue that this resummation is likely to work in the entire
domain. A detailed presentation of these calculations is
presented in Appendix B.

V. ASTROPHYSICAL IMPLICATIONS

The BZ process has three free parameters’: the angular
velocity of the event horizon (€, which only depends on
the BH’s parameters), the rotation frequency of magnetic
field lines (€2, which is dictated by the dynamics of the
system), and the magnetic flux through the horizon ().
Therefore, measurements of only the jet power cannot be
used to learn about the underlying physics of the process.
Within GR, it is customary to assume Q = Qy/2 or to
check for a square proportionality of the jet power with Qy
when fitting data [3-5]. Even within GR, a clear observa-
tional signature of the BZ mechanism is still missing,
although it may be possible that future observations may
provide the quality and type of data necessary.

Pei et al. [23], assuming Q = Qy;/2, combined estimates
of the jet power with independent measurements of the
black hole spin and found that current data cannot place
informative constraints on the metric deformation param-
eters. However, in the presence of better measurements,
they conjectured that such types of tests may be possible.
Given this, let us now hypothesize about tests of gravity in
the future, i.e., if, for example, € can be measured and
independent high quality measurements of the BH’s spin
become possible. Would high quality data be able to
distinguish GR from other theories of gravity using the
BZ power? As we will show below, in addition to precise
future measurements, a magnetospheric solution that goes
beyond second order will also be required.

Let us assume Q ~ Qy/2 to write Eq. (57) as

Py(Cy 1) = SRRy P + O 1), (89)

From this expression, one can see that P, is a function that
only depends on €, at leading order in spin. This implies
that, to this order, {, and y are degenerate. In other words,
we will not be able to determine both the coupling constant
¢, and the spin y even if both the BZ power P, and the field
rotation frequency Q, are measured. Note that Eq. (89)
holds as long as the magnetosphere dynamics maximizes
the BZ power, and therefore, this degeneracy is a general
issue under such a condition.

There will naturally be more degrees of freedom when
considering other configurations or symmetries of the disk and
jet than those considered in this work (for instance, see [1,45,57]).
For example, state-of-the-art GRMHD models can display a jet-
disk boundary layer that fluctuates strongly, and therefore more
parameters may be needed to describe the jet power [58].
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To higher order in spin, however, this is not the case. To
see whether the degeneracy breaks between ¢, and y, we
vary {, = {, +6(, and y — y + 5y and study the follow-
ing Jacobian determinant:

o6lnP,/6Ing,6InP,/5Iny

sIn(P.Q)| _ %0)
g, |6InQ,/6Ing 5InQ, /5lny |

oIn(¢,x)

Evaluating Eq. (90) with P, and €2, to leading order in spin,
this Jacobian vanishes, and thus ¢, and y are degenerate at
leading order in spin as mentioned above. Now if we add
the corrections at second relative order in spin, as given in
Egs. (36)—(37) and Eqgs. (81)-(84), one finds

SIn(P.Q)| [ 616991987 113297° +49ﬂ4
SIn(l,x) lsgg \ 31360000 = 9600 600
X (3 4 5¢0s20)¢scpx?
+ O3 2 (91)
16442609

‘ 5In(P, Q)
5In(¢. %)

__< +_709n2>
DCS 3612672000 ' 860160

X (3 + 5¢0820)pesy?
+O(hes 1) (92)

Therefore the degeneracy between ¢, and y breaks when
the BZ power to second relative order in spin is considered.
Given that the degeneracy only breaks at higher orders in
the slow-rotation approximation, we expect that a deter-
mination of or constraint on {, and y by measuring P, and
Q, will only be possible for rapidly rotating BHs, provided
that both quantities are computed accurately.

VI. DISCUSSION

We have studied the BZ process in two well-motivated
quadratic gravity theories: SGB and DCS gravity. We
solved the BH magnetosphere analytically to first order
in the small-coupling approximation and to second relative
order in the slow-rotation approximation, assuming a split-
monopole configuration. We found that the power of
energy extraction from the BH, compared to the predictions
of GR, is enhanced in SGB gravity and quenched in DCS
gravity.

We have further shown that, for these quadratic BH
solutions, the strategy to solve for the fields proposed by
Armas et al. [15] cannot be applied, as the approximated
BH solutions do not fit into a matched asymptotics
framework. However, as shown by Armas et al. [15], in
GR, the inclusion of the condition in Eq. (17) is sufficient
for solving the BZ process up to second relative order in the
slow-rotation approximation, and the matched asymptotics
and the smoothness issue can be neglected. By studying a

resummed version of the quadratic gravity BH solutions,
we have argued that the same holds true in quadratic
gravity.

Previous studies of the BZ mechanism outside GR [23-25]
have only been considered to first relative order in the small-
spin expansion, where a degeneracy occurs that hinders our
ability to use this mechanism to distinguish GR from other
theories of gravity. Furthermore, [23,24] have used para-
metrically deformed metrics with only one deformation
parameter. However, most of the known modified solutions
cannot be mapped to such metrics (with only one deforma-
tion parameter), and when multiple parameters are included
in the analyses of observables, the degeneracies between
the astrophysical and BH parameters are enhanced, making
theory-agnostic studies very challenging [59,60]. Therefore
studies of specific theories, as the one presented here or in
[25], should be seen as complementary.

Our results motivate further analytical and numerical
studies of the BZ process in modified theories of
gravity and continue to pave the road towards addressing
whether the phenomena related to the BZ mechanism can
be used to learn about fundamental physics from BH
observations.
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APPENDIX A: SLOW-ROTATION, SMALL-
COUPLING BLACK HOLE SOLUTIONS
IN QUADRATIC GRAVITY

This Appendix explicitly shows the transformation of
coordinates from Hartle-Thorne to Boyer-Lindquist coor-
dinates and the resummed metrics used in the main text.

1. Coordinate transformation from Hartle-Thorne
to Boyer-Lindquist coordinates

The BH solutions used in this work were derived in
Hartle-Thorne (HT) coordinates in [30,33] for SGB and
DCS gravity, respectively. Below we show explicitly, up to
O, x°), the transformation from HT coordinates, i.e.,
(1, rur, Ours @), to BL coordinates, i.e., (¢,7,0,¢). The
transformation is assumed to be of the form

n

g = 3 (Mg + Cortitglren. e, (A1)
q

Ourg = Z(QST) + Cq‘gng).q[rBL, Os )y,  (A2)
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where the integer (n) stands for the nth order in the spin y.
Using this ansatz, the transformation b = A,‘ZA/,f Guy » With
A% = Ox{ip/Oxp . is solved order by order. Starting with
the GR terms, the transformation requires only to solve
algebraic equations because the Kerr solution is known in
both coordinate systems. In particular, it is enough to
apply the transformation and simultaneously solve for
’"ST)[VBD OpL] and QSLT)[”BL, OpL] in g~ —gii' =0 and
ggf’; - g% = 0, order by order.

|

This exact procedure also applies to both SGB and DCS,
but the equations start to be coupled partial differential
equations, instead of algebraic, for n > 3, as the solutions
were only previously known in BL up to second order in
the spin [32,61]. Thus, one solves, order by order, for

r;f'l){T[rBL, 0p1] and H;f'l){T[rBL, 0] in the resulting coupled
partial differential equations. For simplicity, we require that
our transformation satisfies g, = 0. The explicit resulting
coordinate transformation we used in this work is

Coons m* 1+4M+61M2 54M3  46M*  1696M°  368M° (1 + 3 c0s20)
’ —r _ i — — cos
HT.SGB HT.GR SGBX 127 3,2 i 5,4 157 /6
L 4%4 1 +4_M 34606M?% 19556M° 8017663M* 322582M°  194692M°
SGBY g3 262512 52513 55125/ 875r° 525/
290140M7 515756M%  4608M° 11552M'° 0820 3019M? 4 14220M  2811413M?
44177 10578 579 ri0 175072 3019r 6339972
101488M3  372990M*  18494900M° 639400M° 10197600M7 25816000M°8 )
- 3 TR = = 7 g cos“26|, (A3)
9057r 3019r 63399r 9057F 3019r 3019~
OursgB = OuT.GR: (A4)
and
¢ 4 661M° - 4005M  215826M?* 175636M°  343404M*  829404M°
r = - — -
HT.DCS = THT.GR ™ DCSY 43000, 661r | 46277 66173 6617 46271
1532520M°  2467584M’ 0 117 14 5M N 143834M?  12676M3  78380M*
- - c0s20 — —— — - -
6617° 6617’ 1322 r 27372 393 1374
690876M°  20952M°¢  822528M’
- < - — |cos?26), (A5)
91r 137 13r
Our.pcs = Our.Grs (A6)
where the transformations in GR are given by
2M2 - M 6M? 0820 — 7 M* 14 3M  36M> T2M°  8M*
1A =V — _— —_——_——_— _ —_— _— —_
HT.GR X 4r r 2 x 83 r 572 513 5r
3M 18M?  42M°?  36M* 3M  28M* 60M3 192M*
2 1+———F——+—F—Jeos?0+ (1 + — - —5——— — |cos*d|, (A7)
r r r r r r r- r
M? 2M
QHTGR =0 +){2_2 <1 +_> sin 26
’ 4r r
M AM 5M* 6MP\ | 1 4M - 2M*  12MP)
X\ 1+—+—F+—F5)sin20—— (1 + — +—5———5— ] sin40]. (A8)
8rt r r? I& 4 r r P

The resulting metric expressions in BL coordinates are available in a Mathematica notebook provided in the

Supplemental Material [62].
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2. Resummation of slow-rotation, small-coupling
black hole solutions

As discussed in the main text, it is suitable to reexpress
the metric solutions as a resummation such that analytic
calculations, like the one presented in Appendix B, can be
performed. In particular, our resummation will provide a
metric with the following properties:

(1) differs from the series-expanded metric only by

terms of O(£2, %),

(ii) recovers the exact Kerr metric when taking ¢, — 0,

(iii) encodes the location of the corrected horizon r =
1,4 (not at r = 2M) through a redefinition of the A
function of the Kerr metric,

(iv) encodes the location of the corrected ergosphere r =

Tergo,g through a redefinition of the X function of the
Kerr metric,
(v) avoids introducing naked singularities or closed
timelike curves.
Indeed, item (i) must hold for any resummation procedure
(almost by definition of what we mean by resummation).
Items (ii)—(v), however, are additional requirements we
impose to refine our resummation procedure, but even then,
this scheme is still not unique.

Given a series-expanded solution to higher order than
0(¢,, ), one can repeat this procedure to get more
accurate representations of the solution.

Let us first consider the coordinate singularity. Yagi et al.
[32] have proposed a resummation strategy that shifts the
coordinate singularity in the approximate DCS BH solution
from r =2M to r = rypcs. This resummation strategy
works by taking A — Apcg in the Kerr piece of g2 and
taking (r —2M) — (r — rypcs) in the DCS modification
piece of g,.. Here, Apcg deviates from A in a way such that
Apcs = 0 occurs for r = rypcs. Ayzenberg and Yunes
[63] (there is a typo in their expressions that we correct
here) have computed Apcs to O(&,. x°):

915
14336%

131879,
. (A
68812807 ) (A9)

Using this transformation, §P¢S = ¢gPSApcg does not
become singular at r =2M when evaluated up to
O(¢pes. x°). Therefore, we can apply a simpler resumma-

Apcs = A+ M*¢pes <

tion strategy by just computing 25 up to O({pes. x> ) and
replacing
9% = 373/ Apcs. (A10)

The same procedure also applies in SGB, and therefore

9 311, 813569,
S 4. (Al
20 480° ~ 1612800° ) (All)

The next step is to make sure that we recover the exact
Kerr metric when taking ¢ P 0. Here, we consider

Asp = A+ M*{scp <

replacing terms that appear as 1/r"(n>0) with
(r/Z,)", where X, deviates from X in a way such that
%, —2Mr =0 gives the correct value of the ergosphere
Tergo,q(0). The results are

49 191 131
ZSGB —Z+M CSGB |:20 (160 mCOS29>)(2

<14370073 4829219
0s-0

56448000 ' 1764000

os49>)(4} ,

3751 709 .
14336 3584

16448333

T 4704000 © (Al12)

Epes = Z + M*pes K

1922747 n 34351 .
48168960 150528

cos“H) )(4] )

We note that we do not replace all 1/r" terms at the same
time; otherwise, the exact Kerr metric cannot be recovered
in the GR sector. Instead, we order the replacement as
follows. Given a metric component g, in the original BH
solution, we calculate its Laurent expansion about r = 0.
The result should take the following form:

os29> 7

0s26

230637
802816

(A13)

(A14)

N, N_
g = C+ 3 DY/,
n=0 n=1

where N, and N_ are finite non-negative integers, and C,
and D, are precise up to O(¢,.x°). The first sum is
nondiverging, while the second sum contains all diverging
terms that has to be replaced. We first take

pO/r - D"r/x,. (A15)

Now DEO) r/Z, is nondiverging. We can then rewrite gy as
follows:

N, N_
gl = [Z Car' + Dﬁo)r/zc,] +3 D/ (Ale)
n=0 n=2

where we have put all nondiverging terms in the bracket
and adjusted the diverging terms to keep g, precise up to
O(¢,. 7). At the ith step, we replace

/r —>D

Vir/z,), (A17)

and rewrite
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N, i
Giw = [Z Cor" + Y fo"”(r/zq)"]
n=0 n=1

N_ .
+ > D/,

n=i+1

(A18)

where each Dg,i) is adjusted from D so that the above
expression holds up to O(¢,.x’). By the N_th step, there

(i=1)

n

should be nothing left for the diverging part, and the whole
replacement is completed. We have checked that the
obtained resummed metrics recover the exact Kerr metric
when taking ¢, — 0, and they recover the series-expanded
metrics when replacing A, and X, using Egs. (A9), (A11),
and (A12)-(A12) and reexpanding to O({,. 7).

The result of this procedure gives the following
resummed BH solutions, which we only show here up
to O(L,. 1%):

458 — (_1 N 2Mr> [1 e 137M3 73 (1 N 14Mr 104M3? 72 _400M3r3)] (A19)
S 3053 137%sgs 137525 137%30g
1 29M? 38Mr  28M?*r*  1744M3r 3680M*r*
soB 1 {r2—|—)(2M200529+CSGB— (1 o T T )] (A20)
ASGB 20 2925(}3 3ZSGB 87ZSGB 87ZSGB
BB = r* + y*M? cos® 0, (A21)
2M
G558 = 12 sin? 0 + 5 2M> (1 + = in? 9) sin2 6, (A22)
ZsGB
2M 43M* 3 280M 60M?r>  96M3r  800M*r*
G =~ L sin20 — {SGB o3 : <1 - L - 5 T 3 r I r >Sin2«9. (A23)
ZSGB IOZSGB 129250]3 4325GB 43XSGB ] 2925GB
2M
g = -1 - (A24)
Z
DCS
gt = (r? + y*M? cos* 0), (A25)
Apcs
oS = 12 + y*M? cos? 0, (A26)
2M
ghg’ = r¥sin? 0 + y*M? (1 + 2 sin? 0) sin 0, (A27)
DCS
2Mr S5M3r? 12Mr  27TM?*r?
DCS -2 .2
9> ==X sin” 6 4 {pcsy <1+ + >sm 0, A28
& Zpes P T s TEpcs  10Zpcs (A28)

The complete expressions of the resummed metric up to
O(¢,.x°) are available in a Mathematica notebook pro-
vided in the Supplemental Material [62].

APPENDIX B: BLANDFORD-ZNAJEK
SOLUTION IN QUADRATIC GRAVITY
USING MATCHED ASYMPTOTICS

In Secs. IV B-IV C, we derived the BZ process follow-
ing a similar procedure as shown in, e.g., [1,10], but we
adopted the boundary conditions presented by Armas et al.
[15]. In this appendix, we present the solutions to the BZ
mechanism in quadratic gravity following the procedure

|
presented by Armas et al. [15] and show that the results
coincide.

We start by defining three distinctive slow-rotation
expansions, namely ‘“near,” “mid,” and “far,” by their
length scales, R, c.r < Rpiq < Rpyr, Where

Rocar = az/M» (Bl)
Rynia =M, (B2)
Rfar = Mz/a. (B3)
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The mass and the spin are, accordingly, now expressed as

M= Rnear)(_2 = Ruid = Reac, (B4)

a = RneaI)(_l = Ryia¥ = Rfarﬂfz' <B5)
Analogously, the r coordinate should also be replaced by

the following dimensionless radii:

y = (I" - rH)/Rnearv <B6)
x = r/Ruiq; (B7)
X = r/Rfar' (BS)

Let Qpear(¥)s Omia(x), and Oy, (%) be some field variables
in the three different expansions. The boundary conditions
on the horizon and at infinity should apply to Qycu|,—o and
Ofar|z000» Tespectively. In addition, matched asymptotics
requires that

(B9)

Qnear |y—>oo ~ Qmid |)_C—>2 ’

Qmid|x—>oo ~ Qf‘dI‘X—»O' (Blo)
For example, consider a term in the midexpansion that has

the following dependence on x in the vicinity of x — oo:

1
Qx(jl)d X—»oo:led<x+;> +7 (Bll)

where - - -” means there could be other dependencies on x.
In the vicinity of X — 0, using Riq = ¥Rp and x = X/y,
one finds that

Ol = ReX+ -+ (B12)
R
Qfa_r|x—>0 %* (B13)

Given the characteristics of the three expansions in
Egs. (B1)—~(B8), we recognize that the midexpansion
coincides with the slow-rotation approximation presented
above. As expected, the quadratic gravity metric solutions
presented in Appendix A 1 are given as midexpansions. In
order to conduct the full procedure by Armas et al., we also
need the metric solutions in the near and far expansions.

We note that the far-expansion metric can be converted
from the midexpansion metric by replacing M — Ry,
a — Ry.y?, and r — Ry, x. On the other hand, for the near
expansion, the same strategy is not guaranteed to work
because negative powers will be involved when taking
M = R,y > and a = Ry~ In addition, the r — ryy +
R,...y replacement also requires the metric to be well
defined near the horizon. This is why we have resummed

the metric solutions in Appendix A such that the exact Kerr
solution is recovered when { — 0, and the coordinate
singularity at r = 2M is shifted to the horizon radius ry .

Like in the main text, we consider up to second relative
order in spin. We start by writing the GR solution found in
[15]. To leading order, it is

(0) (0) (0)

l//neaI = ll/mid = l//far = Wo(l — COS 9)’ <B14)
2
P =) =10 = —%wo sin?0,  (B15)
0 a
39‘(162“ - ml)d - Ear) = M2 o, (B16)
where
1

Note that because 7 and Q are proportional to a/M?, their
scaling behavior with respect to y varies in different
expansions according to Egs. (B4)—(B5).

At first relative order,

l//t(llegr = l//inl)d Wgar = 0 (BIS)
Plin =yl = Ity =0, (B19)
foll = ol —al =0, ()

while to second relative order, the midexpansion is

l//fii)d = yof (x) sin® @ cos 6, (B21)
[0 _ 2o ool 6) + -~ f( )cos?d|,  (B22)
mid = T g 2
Q= iwz(@), (B23)
‘mid M

where f(x) is the same as defined in Eq. (33), and

w,(0) = 3i2 _Y (2_ Lainzo (B24)

Finally, the near and far expansions are
l//r@ar = Widl =25 Wgr) = Wmidlrooor  (B25)
Pl = )(Ifﬁiﬁlx:z, Igr) = gl o (B26)
7 =@l ) =1l (B27)

044008-15



JAMESON DONG et al.

PHYS. REV. D 105, 044008 (2022)

Note that the first relative order solution vanishes, which
supports the argument that the field variables should be
smooth functions of y. From Eqgs. (B14)—-(B27), it is clear
that the near solutions are nothing but the mid solutions
when taking x = 2, as expected. Similarly, the far solutions
are nothing but the mid solutions when taking x — oo.
Therefore, the near and far expansions appear to be trivial
up to the second relative order. In the following, we will
solve the quadratic gravity corrections to the field variables,
and we will show that the solutions have the same
qualitative behavior as in GR.

1. Leading order in spin

Let us first consider the midexpansion. The stream
Eq. (10) reads

Lyiay = 0. (B28)
where L has been defined in Eq. (27). We then require
Eqgs. (13) and (14) as the boundary conditions in the angular

direction. In the radial direction, matching the near and far

expansions requires that wfﬁ{g ) be finite at both boundaries.

The reason is the following: suppose ng’((i)) had some

diverging dependence on x as x — oo which, for example,
behaved like x"*(n > 0). Then due to x = X/, there would
(1.-n)

have to be a corresponding y,/

in the far expansion.
(1.-n)

Given that y = O(1), there is no such y, . Therefore,

y/f;i'g) must be finite as x — oo. Similarly, one can also
argue that ’//1&]1{3) must be finite as x — 2. In the end, the
solution has to be

yhii = 0. (B29)

The other two force-free conditions, Eqs. (8) and (9),
provide the following solutions:

Ly _ Yo .

Imid,q - Rmid lO,q(9>7 (B3O)
any _ 1

Uity = 7 04(0) (B31)

where iy, and @, are to be determined later.
Next, we consider the near expansion. The stream
Eq. (10) reads

(1,0)

LicarWrearq = 0, (B32)
where L, is defined as [15]
Lyear = 160, + (—1 4 cos 20 + 16y)d7.  (B33)

The angular boundary conditions are again Egs. (13)
and (14). On the horizon (i.e., y = 0), the solution must

follow Eq. (15). As y — oo, the solution must match the

midexpansion; consequently, y/flleio?q must be finite, and

therefore

Wfll:fr?q =0.

(B34)

Considering the other two force-free conditions, Egs. (8)
and (9), together with the requirement that the solutions
match the midexpansion, we obtain

1,3 Vo .
Iﬁlear),q = Rn:m lO.q(9)7 (B35)
ol ! 0 B36
near,q — Ewo.q( ) ( )

We can now use the horizon Znajek condition and derive

21

{0.SGB (5’) =2r |:wO,SGB (‘9> - %

] sin?0,  (B37)

. 9 1.
lO,DCS (9) =2 |:a)0’DCS (9) + m} Sln2t9. (B38)

Finally, we consider the far expansion. The stream
equation [Eq. (10)] reads

(10) 1 (10)
farl//far,q - 32¢in 0 89(wfar,q cos 9)

_ R (10) (10).: o
- mae(lfar,q + 27Qy,; sin*0), (B39)
where L, is defined as [15]
= sin sinf —— — —
o ¢ 2sin20 64) ¢
1 1
in200- |72 —— —— ) 0-
+ sin“00; {x ()'czsin29 64> x}
1

Because vy, 1, and Qg are coupled, it is not easy to
solve this equation directly. We propose the following
ansatz:

1.0
) =0, (B41)
(1,00 _ Yo .
Ifar.q - Elo,q(a)’ (B42)
1
1.0
E‘ar.q) = Ewo,q (‘9)7 <B43)
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which satisfies the two force-free conditions Egs. (8)—(9),
the boundary conditions Eqs. (13)—(14) and (18), and the
condition that they match with the midexpansion.

We are now left with Eq. (B39) and the condition given
by Eq. (17). The latter requires

ip4(0) = —27mw, 4(0) sin? 6. (B44)

Inserting Eqgs. (B41)—-(B44) into Eq. (B39), we find that
Eq. (B39) is also satisfied. Therefore, the proposed ansatz is
indeed the solution.

Now combining the conditions in Egs. (B37)—(B38) and
(B44), we determine wy:

21

wysce(0) = 160" (B45)
709
@y pcs(0) = ~ 57344 (B46)

Then, ij is given by Eq. (B44).
To summarize, at leading order in spin, we find

(1,0) (1,0) _

1,0
l//near,q = l//mid,q - gar,q) = 0’ (B47)
13 11 1,0 2rnyoa
Pl = xlisy = 130 = =% w0,(0).  (B48)
1.3 1,1 1,0 a
)(391(16&?61 :)(-Qr(nid.)q = ngar.q) = Wwo,q(g)v (B49)

where w, is given in Eqs. (B45) and (B46) in SGB and
DCS gravity, respectively.

2. First relative order in spin

We now go to next order. At first relative order, the
midexpansion stream equation [Eq. (10)] reads

1.1
ngnid?q =0.

(B50)
We then require the boundary conditions in Egs. (13)—(14)
and that they match with the other two expansions. The
resulting solution is

Wiy = 0. (BS1)
while Egs. (8) and (9) give
(12) _ Yo .
Imid_q = R ll,q(e)’ (B52)
qu2 1 0 B53
mid,q — Rmidwl'q( ) ( )

The near-expansion stream equation [Eq. (10)] reads

Lnearllll('lle’alr?q =0. (B54)

By requiring the boundary conditions in Egs. (13)—(15) and
that ., match with y .4, we get

Whearq = 0, (BSS)
while Egs. (8) and (9) give
Iy = 1,4 (0). (BS6)
near
(1.4) !
'Q'near,q - R—wl,q (0) (B57)
near
The condition in Eq. (16) can now be evaluated:
i14(0) = 2rw; 4(0) sin? 6. (B58)

The far expansion can be computed by starting from
Egs. (8) and (9). The solutions are

(L) _ Yo . (1)
L) =i, — = V; 0, B59
far,q Rfar ll,q 2Rfar l//fdr,q cos ( )
an _ 1
g = R W) 4 (B60)
Then, the stream equation [Eq. (10)] reads
(L.1) Yo . .
LaWrog = mag(ll‘q + 2zsin? Ow; ). (B61)
We propose the solution to be
1,1
g = 0. (B62)
such that the condition in Eq. (B44) becomes
i14(0) = =2nw, 4(0) sin 6. (B63)

Therefore, we can verify that Eq. (B61) is satisfied.
Combining Egs. (B58) and (B63), we have

i14(0) =0=w 4(0). (B64)
To summarize, at first relative order we find
Wheirs = Yy = Ving = 0 (BO5)
I = Iniay = Tirg = 0. (B66)
Qneirg = ity = iy =0 (B67)

044008-17



JAMESON DONG et al. PHYS. REV. D 105, 044008 (2022)

As these quadratic gravity corrections vanish, the field variables are still smooth functions of y up to second
relative order.

3. Second relative order in spin

At second relative order, the midexpansion stream equation [Eq. (10)] reads

Ll//gi’?q = ws,(x) cos O sin* 6. (B68)

Considering the boundary conditions in Egs. (13)—(14) and the matches with the other two expansions, the result takes the
form

l//l(;lj)q woh,(x) cos @ sin® 6, (B69)

where /,(x) is the solution to the radial equation

wl0-2) dhﬁix)} D) (B70)

with the boundary conditions such that ,(x) is finite at x = 2 and when x — oco. The results are

(x) 3 1+1 44+34+16+976 448 Li 2 41 2 (1 2
Sqgp(x) = —— — i n -=
SGB 4x x  3x2 5x% 35 x© 2 X X

3 ( 2 49 80 5296 15808 7092 80096 3424) In (2)

T2a—2P\ X 32 T P a5 T ase 5 a5 o x
L3 6 301 484756 764041 | 50442368 44345362
2x(x = 2) 5x 18x2 ' 7875x%  23625x% | 165375x5  55125x°

1993576 688420 70712 13856 3520)

- - B71
33075x7 + 1323x%  35x° + 3x10 K (B71)

8389x2 9649x 74099 12017 5331127 541351 2652689 125249 451

h _ - - -
sas(x) 60 60 | 2160 ' 720x _ 1008000x7 75600x° 176400 ' 36750x°  270x°
73 32 40 1 52143 1036
e (352338x — 986685x + 488285x + 120416 + -
M7 5830 T 2520(x—2) ( * o T * T2

- — (1 — 352477 + 1011 120 + ——
5 i = + 540 | 16778%% 352472 + 10110x + 3120 + ——+ —

+$—1i¥> [—Li2<1 —%) +%T —7(6x* =3x—1) [Liz (%) In G) — 2Lis G) + 22(3)}

e {1 o 1)) (1o

w(1=2) w3 (1-2)] 3 2) oG -]

+1In (%) {Li3<1 —%) - 22(3)] + [L14 (%) L14<1 2) + Liy (22)] } (B72)

® 709 709 71 303 3301 1539 32763 10341 270
Spes(X) = - - - - - -,
bes 7168x3 ' 3584x*  256x5 448x0 3136x7 | 112x%  1568x° 224x10 I

10438 69804 10272> In <2) 1 ( 1020 474

><

=

(B73)
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709x>  709x 7799 709

221699

147149 2261 7857

pcs (X)

1557

= 14336 14336 516096  21504x | 4300800:2

n n 3921 n 27 41 2
n J—
1792x0  3136x7 1648 X

709x3

1612800x* ~ 15360x* = 31360x>

709x2  709x 709 )

14336 + 28672 + 86016

o) o)) (2

where Li, (x) = Y% x*/k" is the polylogarithm function
of order n, and Z(x) = %, 1/k* is the Riemann zeta
function. At the boundaries,

1865759261 11497x* 49x*
h 2)=— , B75
sas (2) 9208000 960 60’ (BT
5562399  709z2
h 2) = - , B76
pes(2) 40140800 86016 (B76)
and
21
hsce (x)|x—>oo ~ 80’ (B77)
709
hoes (%) [roeo ~ = 28672x " (B78)
Having wgﬁ) solved, Eqgs. (8) and (9) then give
I gi‘ij = Rwéd [i2,,(0) — 4mawoh,(x) sin® 6 cos? O
— 4wy . f (x) sin® O cos? 6], (B79)
o _ 1 0 B8O
‘mid,qg ﬁwlq( )’ ( )

where wg = 1/8 as given in Eq. (B17), and w, has been
solved in Eqgs. (B45)—(B46).
The near-expansion stream equation [Eq. (10)] reads

(1.2)

LearWnear,y = 0. (B81)

Requiring as boundary conditions Egs. (13)—(15) and the
match with the midexpansion, we get

l//r(llza.Zr)q = woh,(2) cos O sin* 0, (B82)
while Egs. (8) and (9) give
Ir(li'angB = Rl//_o [i2.,(0) — 47wyh,(2) sin® 6 cos? O
— 4nwy . f (2) sin? 6 cos? ], (B83)
s _ 1
Qneeu',q = R—a)z‘q (9) (B84)
near

(B74)

21272
57344 )’

The horizon Znajek condition can now be evaluated:

21103

I>SGB = 277{602,503 + 301600

49 | .
+ () |:hSGB (2) - E8:| sm29

+ wosGB {f(Z) - ﬂ sinze}sinzé’. (B85)

, 169 .
rpcs = 27 {a’z,Dcs + 34576 + wohpes (2)sin*0

+ @y pes {f(Z) - ﬂ sinze}sinze. (B86)

In the far expansion, solutions to Egs. (8) and (9) are

(12) _ Yo . T (1.2)

Ifa.r.q = E lz,q — %U/far’q COS 0, (B87)
-1, (B8S)
farg — Rfar 2.q*
Then, the stream Eq. (10) reads
12 Yo . .
Lfarlllﬁa_r’; = mag(lz’q + 27[602,51 Sln2 9) (B89)
We may guess that the solution is
12
i = 0. (B90)
This way the condition (B44) becomes
i, = —27w,, sin* 6. (B91)

Therefore, we can verify that Eq. (B89) is satisfied.
Combining Egs. (B85)—(B86) and (B91), we have

21103 1 49
W) SGB — —m - Ewo hSGB(Z) - ES

1 11 .
- EwO.SGB [f (2) - 4_1] sin®6,

] sin%6

(B92)
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169 1 )
Wy pcs = — 29152 EthDCS(z)szg

1

1 .
— =Wy pcs [f (2) - 4} sin6),

5 (B93)

Then, i, is given by Eq. (B91).
To summarize, at second relative order, we have

l//f,ii'i)q = woh,(x) cos Osin* 6, (B94)
, Yo . .
1 Sig,)q = MO [i2,,(0) — 4mwgh,(x)sin?Ocos?0
— 4wy ,f (x)sin?Ocos?6]., (B95)
ol = Lo, 0 BY6
midg — sz.q( ). ( )

in the midexpansion, where w, is given in Egs. (B92)—
(B93), and i, is related to w, by Eq. (B91).
The solutions in the near and far expansions are just

1,2 1,2 1,2 1,2
'I’r(lear).q = WEnid,)q|x=2’ Wga.r,q) = 'I/Enid,)q|x—>oov (B97)

1,5 1.3 1,2 1.3
)(2][(1ear?q = Ir(nid,)q‘x:% Ii‘ar,; = Ir(nid,)q‘x—wo’ (ng)

1,5 1,3 1,2 1,3
ngl(war?q = anid,)q|x=2’ QEa.rq) = Qfnid,)q|x—>oo' (B99)

Therefore, the near and far solutions are nothing but the
mid solutions when taking x = 2 and x — oo, respectively.
Therefore, the near and far expansions are still trivial up to
second relative order, allowing us to use the simpler method
described in the main text to second relative order. The
solutions presented in this appendix for the midexpansion
coincide with the solutions presented in Sec. IV B-IV C.
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