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The Blandford-Znajek process, which uses a magnetized plasma to extract energy from a rotating black
hole, is one of the leading candidates for powering relativistic jets. In this work, we investigate the
Blandford-Znajek process in two well-motivated quadratic gravity theories: scalar Gauss-Bonnet and
dynamical Chern-Simons gravity. We solve analytically for a split-monopole magnetosphere to first order
in the small-coupling approximation and second relative order in the slow-rotation approximation. The
extracted power at fixed spin and magnetic flux is enhanced in scalar Gauss-Bonnet and reduced in
dynamical Chern-Simons gravity, compared to general relativity. We find that there is a degeneracy
between spin and the coupling constants of the theories at leading order in the slow rotation approximation
that is broken at higher orders.
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I. INTRODUCTION

Direct electromagnetic extraction of the rotational
energy of supermassive black holes (BHs) via the
Blandford-Znajek (BZ) process [1] is a plausible power
source for relativistic jets in many active galactic nuclei
(AGN) [2–5]. In the BZ process, the ergosphere of a
rotating BH is threaded by a poloidal magnetic field
embedded in a highly conducting plasma. As the mag-
netic field lines are frame dragged, a toroidal field
forms, and the work done by the BHs on the field lines
leads to the extraction of its rotational energy. This
theoretical framework for relativistic jets is supported
by the modeling of Event Horizon Telescope (EHT)
observations [6–8]. Comparison of models with EHT
observations of M87* favors those models in which
M87’s jet originates in a low-density, magnetically
dominated region (the “funnel”) over the poles of the
black hole.
Over the past three decades, the BZ process has been

extensively studied in general relativity (GR). The analyti-
cal studies (e.g., [1,9–15]) compute the fields perturba-
tively, and the associated energy flux is therefore found,
under certain assumptions, to a particular order in the BH’s
spin. For example, [15] recently calculated the field

configuration to third relative order1 in the spin parameter
using matched asymptotic expansions and abandoning the
assumption that the field variables are smooth in the BH’s
spin. GR magnetohydrodynamic (GRMHD) simulations
have also shown that, for slowly rotating BHs, the structure
of the time-averaged funnel magnetic field matches the
analytic solution of Blandford and Znajek [10,12,16–18].
Simulations also enable the study of rapidly rotating black
holes, but there are no analytical models to compare these
results, and they are computationally expensive [19].
Since the BZ process depends on astrophysics (through

the magnetosphere) and the theory of gravity (through the
exterior BH spacetime metric) [17,20,21], studying the
process and its observational consequences may probe
gravity in the strong-field regime. In modified gravity,
however, the BZ mechanism has been much less studied
than in GR, and when considered, it has been studied only

1In this work, the term “relative order in spin” refers to the
scaling with spin, relative to the leading-order expression in a
slow-rotation expansion. For example, the third relative order
field configuration includes the poloidal magnetic field at the
third order (which is the leading-order contribution), plus both the
toroidal magnetic field at the fourth order, and the BZ power at
the fifth order.
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analytically. For instance, in [22–25], the BZ power was
computed to leading order in the BH’s spin, either for an
agnostic, parametrically deformed (“bumpy” [26]) BH
metric [22–24] or for a theory-specific (Kerr-Sen) BH
metric [25].
Moreover, previous studies in modified gravity have all

considered a magnetosphere in which the rotation frequency
of the electromagnetic (EM) field maximizes the power
output of the BZ process and followed the procedure devised
in [12] for the Kerr metric. Using a magnetosphere that
maximizes the BZ power is a good approximation for the
magnetosphere dynamics around Kerr BHs [9]. However, it
is unknown whether that assumption applies generically to
other spacetimes, and a careful investigation of magneto-
spheric structure in non-Kerr BH spacetimes is needed. In
this paper, we address these difficulties by studying in great
detail the BZ process in two quadratic gravity theories:
scalar Gauss-Bonnet (SGB) gravity [27–30] and dynamical
Chern-Simons (DCS) gravity [31–33]. Both theories are
well-motivated extensions of GR from the effective theory
standpoint [28] and arise in low-energy expansions of
quantum gravity theories [27,31,34–37].
We solve the governing equations of the magnetosphere

around BHs described by these quadratic theories analyti-
cally (to first order in the small-coupling approximation
and second relative order in the small-rotation approxima-
tion) by combining the solution strategies presented in
[1,10,15] for a split-monopole configuration. Our results
suggest that using a magnetosphere that maximizes the BZ
power remains a good approximation for the magneto-
sphere dynamics around modified gravity. We also find that
the power of energy extraction from the BH, compared to
the predictions of GR, is enhanced in SGB gravity and
quenched in DCS gravity. At leading order, we find that
there is a degeneracy between the BH’s parameters, namely
the spin and the parameter (coupling constant) that controls
the modification from GR. This degeneracy makes it
difficult to use the BZ mechanism to place limits on the
coupling parameters of the theory, even in the presence of
high-quality data. We then show that this degeneracy is
broken at higher orders in the perturbative scheme.
This paper is organized as follows: Sec. II reviews the

mathematical formulation of the BZ process. Section III
presents the solution to the BZ process in GR following a
simplified strategy based on [1,10,15] and discusses its
advantages and limitations. Section IV reviews the BH
solutions in SGB and DCS gravity, solves the BZ process
in these theories, compares the result with the prediction of
GR, and ends with a detailed explanation of the differences
found. SectionVdescribes in detail a degeneracy between the
BH parameters that appears at leading order and discuss its
implications to future studies of the BZ process in modified
theories of gravity. Section VI summarizes and discusses
future work. Throughout the paper, we use geometric units
with GN ¼ 1 ¼ c and the metric signature ð−;þ;þ;þÞ.

II. THE BLANDFORD-ZNAJEK PROCESS

The BZ process assumes a stationary, axisymmetric
magnetosphere—composed of an electromagnetic field
and a highly conducting plasma—around a rotating BH
[1]. The EM field energy is large compared to the plasma
rest-mass density everywhere except close to the equatorial
plane, where matter accretes in a high-density disk. We
assume the split-monopole configuration, where the disk is
considered as a thin current sheet, and the magnetic field
lines are considered to be asymptotically radial as they
cross two-spheres far from the BH. Off the disk, the
dominance of the EM field implies the force-free condition
(e.g., see [38]):

FμνJν ¼ 0; ð1Þ

where Fμν is the Faraday tensor of the EM field, and Jν ¼
∇μFμν is the four current. The disk appears as a disconti-
nuity to the EM field, and the magnetic field lines cross the
equatorial plane only through the central BH. This split-
monopole configuration in GR has been extensively used
for the analytical study of the BZ process [1,10–15], and its
analytic solution has been shown to agree with numerical
simulations [10,16,17]. In the following, we adopt Gralla
and Jacobson’s notation [39] as it can be easily applied to
theories beyond GR.
In Boyer-Lindquist (BL) coordinates ðt; r; θ;ϕÞ, a sta-

tionary and axisymmetric metric can be decomposed in the
following form

ds2 ¼ gμνdxμdxν ¼ gTABdx
AdxB þ gPabdx

adxb; ð2Þ

where gTAB is referred to as the “toroidal metric,” and gPab is
referred to as the “poloidal metric”; in other words, the
toroidal coordinates ðt;ϕÞ are indexed with uppercase
letters and the poloidal coordinates ðr; θÞ with lowercase
letters. This particular decomposition is not unique to GR
and can be performed for rotating BHs in several theories of
gravity [40], including the quadratic gravity theories of
interest here. Gralla and Jacobson [39] showed that a
stationary, axisymmetric, and force-free EM field can
always be represented by

Ftr ¼ −Frt ¼ Ω∂rψ ; ð3Þ

Ftθ ¼ −Fθt ¼ Ω∂θψ ; ð4Þ

Frϕ ¼ −Fϕr ¼ ∂rψ ; ð5Þ

Fθϕ ¼ −Fϕθ ¼ ∂θψ ; ð6Þ

Frθ ¼ −Fθr ¼
I
2π

ffiffiffiffiffiffiffiffi
gP

−gT

s
; ð7Þ

JAMESON DONG et al. PHYS. REV. D 105, 044008 (2022)

044008-2



with all other components zero. Here ψ , I, and Ω are
functions of ðr; θÞ, and gT and gP are the determinants of the
toroidal metric and the poloidal metric, respectively.
The quantities 2πψ and I measure the magnetic flux and
the electric current through a surface bounded by the loop of
revolution at ðr; θÞ, respectively, and Ω (which is constant
along field lines) measures the rotation frequency of
magnetic field lines being dragged by the rotation of the
BH. We refer to ψ as the “poloidal flux function,” I as the
“poloidal current function,” and Ω as the “rotation fre-
quency.”A similar description (e.g., see [1,10,11,13]) can be
made in terms of a toroidal vector potentialAϕ and a toroidal
magnetic field BT or Bϕ, instead of the flux function ψ and
the current function I, respectively. These descriptions are
related by dψ ¼ dAϕ and I ¼ 2πBT ¼ −2πgTBϕ.
Inserting Eqs. (3)–(7) into the force-free condition of

Eq. (1), the t and ϕ components become

∂rI∂θψ ¼ ∂θI∂rψ ; ð8Þ

∂rΩ∂θψ ¼ ∂θΩ∂rψ ; ð9Þ

which may also be interpreted as I andΩ being functions of
ψ . On the other hand, the r and θ components of Eq. (1) can
be combined into the stream equation [39]:

∇μðjηj2∇μψÞ þ Ω0ðη · dtÞj∇ψ j2 − II0

4π2gT
¼ 0; ð10Þ

where the prime denotes a ψ derivative, and η≡ dϕ − Ωdt.
Due to parity, finding a solution in the northern hemisphere
(0 < θ < π=2) would be sufficient, as ψ , I, and Ω in
the southern hemisphere mirror the northern hemisphere
solution.
The total EM energy flux extracted from the BH, also

known as the BZ power, is [1,39]

P ¼ −
Z

IΩdψ ;

¼ 4π

Z
π=2

0

�
ΩðΩH − ΩÞð∂θψÞ2

ffiffiffiffiffiffiffi
gϕϕ
gθθ

r �����
r¼rH

dθ; ð11Þ

where rH is the horizon radius which can be found as the
outermost solution to gT ¼ 0, and

ΩH ≡ −
gtϕ
gϕϕ

����
r¼rH

ð12Þ

is the horizon angular frequency. The functional form of
Eq. (11) indicates that the energy flux is directed outward
on the horizon when 0 < Ω < ΩH, and it is sometimes
assumed that the field rotation frequency equals half of the
horizon angular frequency, i.e., Ω ¼ ΩH=2 (for instance,
see [12,41]). We will not make that assumption in this

work. The importance of not making this assumption will
become explicit when we study the BZ mechanism in SGB
and DCS gravity in Sec. IV.
Prescribing the boundary conditions for Eqs. (8)–(10)

turns out to be a delicate job. Here we adopt the boundary
conditions from a recent work by Armas et al. [15]:

ψ ¼ 0; θ ¼ 0; ð13Þ

ψ ¼ ψ0; θ ¼ π=2; ð14Þ

ψ finite; r ¼ rH; ð15Þ

I ¼ 2πðΩ −ΩHÞ∂θψ

ffiffiffiffiffiffiffi
gϕϕ
gθθ

r
; r ¼ rH; ð16Þ

I ¼ −2πΩ∂θψ sin θ; r → ∞; ð17Þ

ψ finite; r → ∞; ð18Þ

where ψ0 is a constant. The condition stipulated by Eq. (13)
is required by the physical interpretation of ψ : at the north
pole, the surface over which the magnetic flux is measured
shrinks to a zero size, so the flux function there should be
set to zero. The condition (14) is a restatement of the split-
monopole assumption that no magnetic field line crosses
the disk, and therefore ψ0 determines the magnetic flux
through the horizon. Equations (15) and (16) come from the
requirement that the EM field strength, Fμν, be finite when
measured by a timelike observer traveling across the
horizon.
Equation (16) is the Znajek condition [42], which is

equivalent to requiring a finite toroidal magnetic field, Bϕ,
in horizon-penetrating coordinates [10]. Gralla and
Jacobson [39] have extended this condition so that it holds
as long as the horizon is a Killing horizon generated by
∂t þ ΩH∂ϕ. The Znajek condition mapped to null future
infinity becomes Eq. (17) [15,43]. There is no need to adapt
Eq. (17) to a generic metric since we are considering
spacetimes that are asymptotically flat. The conditions
given by Eqs. (16) and (17) can be derived, up to a sign,
by directly solving Eq. (10) on the horizon and at the
infinity with the assumption that ψ , I, and Ω are all finite
there. The sign is fixed by assuming that the energy flow is
outwardly directed on the horizon and at the infinity
[39,44,45]. Finally, Eq. (18) matches the field at infinity
with Michel’s flat-space monopole solution [46].
Together with these boundary conditions, Eqs. (8)–(10),

first derived by Blandford and Znajek [1], are therefore all
one needs to solve for the fields (either analytically or
numerically). However, the only known exact solution to
these equations is a generalization of Michel’s monopole
solution [46] in the Schwarzschild spacetime [1], which
lacks astrophysical interest as no energy can be extracted.
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Therefore, perturbation methods are typically applied to
study this process analytically.

III. THE BLANDFORD-ZNAJEK PROCESS
IN GENERAL RELATIVITY

In this section, we revisit the BZ process in GR and
present a simplified self-contained rederivation of the
known solutions [1,15]. We start by writing the Kerr metric
in BL coordinates:

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ 1

Σ
½ðr2 þ a2Þ2 − a2Δ sin2 θ� sin2 θdϕ2

−
4Mar sin2 θ

Σ
dtdϕ; ð19Þ

where Δ≡ r2 − 2Mrþ a2, Σ≡ r2 þ a2 cos2 θ, and a and
M denote the BH’s spin and mass, respectively. The event
horizon is located at

rH ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; ð20Þ

where the angular frequency is

ΩH ¼ a
2MrH

: ð21Þ

The ergosphere is located at

rergo ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2 cos2 θ

p
: ð22Þ

Let us now consider a slowly rotating Kerr BH with
dimensionless spin parameter χ ≡ a=M ≪ 1, and expand
the field variables in powers of χ. Let us assume that the
field variables are smooth functions of χ at χ ¼ 0, and the
following functional form for the expansions

ψ ¼ ψ ð0Þðx; θÞ þ χ2ψ ð2Þðx; θÞ þOðχ4Þ; ð23Þ

I ¼ χIð1Þðx; θÞ þ χ3Ið3Þðx; θÞ þOðχ5Þ; ð24Þ

Ω ¼ χΩð1Þðx; θÞ þ χ3Ωð3Þðx; θÞ þOðχ5Þ; ð25Þ

where we have introduced x≡ r=M as a dimensionless
radial coordinate.
Following [15], let us now define what we mean by

“relative order in spin” formally. When expanding in small
spins, some functions will have some χ dependence to
leading order. A term of Nth relative spin order then means
a term that is χN smaller than the leading-order term. With
this in mind then, ψ ð0Þ, Ið1Þ, and Ωð1Þ are zeroth relative
order (leading order); ψ ð1Þ, Ið2Þ, and Ωð2Þ are first relative

order; and the terms shown in Eqs. (23)–(25) are the field
expansion up to second relative order.
At leading order, the stream Eq. (10) reads

Lψ ð0Þ ¼ 0; ð26Þ

where L is a separable differential operator defined by [47]

L ¼ ∂
∂x

��
1 −

2

x

� ∂
∂x

�
þ sin θ

x2
∂
∂θ

�
1

sin θ
∂
∂θ

�
: ð27Þ

Imposing the boundary conditions of Eqs. (13)–(18), one
obtains

ψ ð0Þ ¼ ψ0ð1 − cos θÞ; ð28Þ

which is the exact monopole solution in the northern
hemisphere. Note that here we imposed the horizon
condition of Eq. (15) at x ¼ 2, instead of at x ¼ rH=M.
Clearly, this will not affect the solution at Oðχ0Þ because
the difference between x ¼ 2 and x ¼ rH=M is of Oðχ2Þ;
such correction will be accounted for when we study the
solution at higher order in χ. In the following, we will
always impose the horizon conditions, i.e., Eqs. (15) and
(16), at x ¼ 2 instead of x ¼ rH=M. By inserting Eq. (28)
into Eqs. (8) and (9), one finds that Ið1Þ and Ωð1Þ depend
solely on θ and can be determined by the Znajek conditions
of Eqs. (16) and (17) to obtain

Ið1Þ ¼ −2πψ0Ωð1Þ sin2 θ; Ωð1Þ ¼ 1

8M
: ð29Þ

Note that when x → ∞, Eqs. (28)–(29) match Michel’s flat-
space solution [46].
Given that ΩH ¼ χ=ð4MÞ þOðχ3Þ for Kerr BHs, by

comparing it to Eq. (29), one finds

Ω ¼ 1

2
ΩH þOðχ3Þ: ð30Þ

In fact, Ω ≈ΩH=2 is a common feature of the BZ process
around a slowly rotating Kerr BH [9,10,12,17,48]. As a
consequence, Tchekhovskoy et al. [12] suggested to take
Ω ¼ ΩH=2 as the solution to the field rotation frequency at
leading order, and referred to it as the “energy argument,”
given that the BZ power is maximized by this rotation
frequency at leading order. Recent studies of the BZ
process in modified gravity theories (e.g., [23,25,41])
adopted this suggestion and gave estimates of the BZ
power in the slow-rotation limit without solving for the
fields. This treatment, however, is not justified since Ω ≈
ΩH=2 may not hold in general, i.e., for other theories of
gravity. In addition, if higher orders in the spin parameter
are considered, the approximation displayed in Eq. (30) is
insufficient, as we will show later.
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We now go to next order in the perturbative scheme.
Similar to the leading order treatment, the second relative
order stream Eq. (10) takes the form

Lψ ð2Þ ¼ −ψ0

xþ 2

x4
cos θ sin2 θ; ð31Þ

and by requiring that ψ satisfy Eqs. (13)–(18), the solution
is simply

ψ ð2Þ ¼ ψ0fðxÞ cos θ sin2 θ; ð32Þ

where [10]

fðxÞ ¼ 1

8
x2ð2x − 3Þ

�
Li2

�
2

x

�
þ ln

�
2

x

�
ln

�
1 −

2

x

��

þ 1

12
ð6x2 − 3x − 1Þ ln

�
2

x

�
−
1

6
x2ðx − 1Þ

þ 11

72
þ 1

3x
; ð33Þ

and Li2ðxÞ≡ −
R
1
0 ð1=tÞ logð1 − xtÞdt is the second poly-

logarithm function. At the boundaries,

fð2Þ ¼ −49þ 6π2

72
; fðxÞjx→∞ ∼

1

4x
: ð34Þ

Solving Eqs. (8)–(9) with the conditions given by
Eqs. (16)–(17), we find

Ið3Þ ¼ −2πψ0 sin2θ

�
Ωð3Þ þ cos2θ

4M
fðxÞ

�
; ð35Þ

Ωð3Þ ¼ 1

32M

�
1þ 67 − 6π2

36
sin2 θ

�
: ð36Þ

As mentioned above, at this order Ω deviates from ΩH=2.
Therefore, the assumption that the rotation frequency takes
the value which maximizes the power is not true at higher
order in spin. To second relative order, the BZ power,
Eq. (11), is

P ¼ π

24

ψ2
0

M2
χ2 þ πð56 − 3π2Þ

1080

ψ2
0

M2
χ4 þOðχ6Þ; ð37Þ

which agrees with the results first presented in [11].
Blandford and Znajek [1] first solved the field variables
up to ψ ð2Þ, Ið1Þ, and Ωð1Þ, and they evaluated the BZ power
to leading order. The next-to-leading-order BZ power was
obtained by Tanabe and Nagataki [11] without the solutions
for Ið3Þ and Ωð3Þ, which were recently found by Armas
et al. [15].
The above perturbative procedure, however, cannot be

extended to higher orders. In particular, the Oðχ4Þ flux
function ψ ð4Þ will not satisfy the boundary condition in

Eq. (18), and, instead, it will diverge at large r [11]. In
addition, terms of the form Oðjχj3Þ and Oðχ4 log jχjÞ will
appear in the expansion of ψ [15], meaning that the field
will not be a smooth function of χ any longer. We will now
comment on these two issues.
A consistent treatment to the slowly rotating, split-

monopole BZ process was first attempted by Grignani et al.
[14] and was recently resolved by Armas et al. [15] using
three distinct slow-rotation expansions connected by
matched asymptotics. These expansions are referred to as
“near,” “mid,” and “far”with respect to distance between the
horizon andwhere the expansion applies. These regions also
represent the three spatial regimes separated by the inner and
outer light surfaces [17,49]. Under this scheme, the deriva-
tionwe presented earlier should be thought of as the solution
of the midexpansion, except that our boundary conditions
for the horizon and infinity should be imposed at the near
expansion and the far expansion, respectively. As a conse-
quence, the midexpansion no longer requires a finite field at
the boundaries, and the divergence of ψ ð4Þ at large r can now
be buffered by somewell-behaved term in the far expansion.
Regarding the problem of the smoothness of the fields,

Armas et al. suggested to consider all powers of χ in the
first place and check whether other forms of dependence
(e.g., χ4 log jχj) should be included every time the solution
at an order is found [15]. In GR, up to the second relative
order, Armas et al. found that the smoothness assumption
holds true, and the near and far solutions can be extended
from the mid solution by taking r ¼ rH and r → ∞,
respectively. In the next section, we will show that this
argument holds in quadratic gravity theories as well, such
that the derivation presented above holds, and it is not
necessary to use the procedure presented by Armas
et al. [15].
We have shown that including the boundary condition

Eq. (17) correctly solves for the fields. Consider, for
example, the step we took from Eq. (28) to Eq. (29), where
the conditions given by Eqs. (16) and (17) were used to
determine Ið1Þ and Ωð1Þ. If Eq. (17) was not provided, then
one could only determine Ið1Þ as a function of Ωð1Þ (or the
opposite, i.e.,Ωð1Þ as a function of Ið1Þ). When going to next
order in the stream equation [Eq. (31)], one finds that the
source term would also be a function of Ωð1Þ. In general,
this new Eq. (31) would no longer be compatible with the
boundary condition of Eq. (18) unless some constraint was
put on the source term. Once this required constraint was
found, one could combine it with the requirement that Ω
and I be finite to solve Ωð1Þ and Ið1Þ, and eventually ψ ð2Þ.
The solution to higher orders would be similar, with the
feature of needing to determine ΩðnÞ and IðnÞ with the next
order stream equation, as presented in [10,11,13,14] for
example. Under such a scheme, since we work to the
second relative order, solving for Ið3Þ and Ωð3Þ would
require the problematic ψ ð4Þ.
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In the seminal derivation of this process [1], Blandford
and Znajek used Eq. (17) as a shortcut to match Michel’s
solution [46] at leading order in the spin expansion, without
necessarily implying that it would hold at all orders.
However, in subsequent works (e.g., [10,11,13,14]) the
condition that Ω and I are finite at infinity was used instead
of Eq. (17). Following [15] we adopted Eq. (17), as this
boundary condition is equivalent to requiring finite field
variables and no incoming energy from the infinity (i.e., an
isolated magnetosphere).
In quadratic gravity theories, not using the condition of

Eq. (17) would lead to the same issues that appear in GR.
As wewill explain later in Sec. IV C and with great detail in
Appendix B, for the quadratic theories considered in this
work, we cannot apply the scheme proposed by Armas
et al. [15]. Therefore, we choose to use the condition of
Eq. (17) to avoid these problems and keep our derivations
simple.

IV. THE BLANDFORD-ZNAJEK PROCESS IN
QUADRATIC GRAVITY

A. Rotating black holes in quadratic gravity

Perhaps themostwell-studied cases of theories that correct
GR through higher curvature terms are SGB gravity [50] and
DCS gravity [31,51]. Quadratic gravity theories result as
extensions of GR from the effective field theory standpoint
[28] and arise in the low-energy expansions of quantum
gravity theories, in which scalar fields and higher-order
curvature terms appear as corrections to GR [27,31,34–37].
In SGB and DCS gravity, a dynamical massless scalar

ϑSGB and pseudoscalar ϑDCS, respectively, are coupled to
the gravitational field through quadratic-in-curvature scalar
invariants. These theories are defined in vacuum by adding
to the Einstein-Hilbert action a scalar field coupled to the
metric as follows [52]:

SSGB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
ð∇μϑSGBÞð∇μϑSGBÞ

þ αSGBϑSGBðR2 − 4RμνRμν þ RμνρσRμνρσÞ
�
; ð38Þ

SDCS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
ð∇μϑDCSÞð∇μϑDCSÞ

−
αDCS
4

ϑDCS
�RμνρσRμνρσ

�
; ð39Þ

where the quadratic scalar invariants R2, RμνRμν, the
Kretschmann scalar RμνρσRμνρσ, and the Pontryagin density
�RμνρσRμνρσ, where �Rμνρσ ¼ 1

2
ϵαβρσRμναβ is the dual of the

Riemann, are coupled through the coupling constants αSGB
and αDCS, respectively. The most stringent constraints to
date from gravitational-wave observations are (to 90% con-
fidence): α1=2SGB ≤ 5.6 km [53] and α1=2DCS ≤ 8.5 km [54].

In SGB, the scalar field is coupled to a quadratic
curvature invariant, which is parity even, and therefore,
the spherical solutions in this theory are different from
Schwarzschild. On the other hand, in DCS, the curvature
invariant is parity odd, and therefore, any spherically
symmetric solution in GR is also a solution in DCS gravity,
e.g., the Schwarzschild solution [55].
Currently, exact closed-form solutions that represent

rotating BHs in SGB and DCS gravity do not exist.
Therefore, in this work, we use the small-coupling and
slow-rotation approximate solutions found in SGB
[28–30,56] and in DCS gravity [32,33,55,56]. The
small-coupling approximation treats the metric solutions
in both theories as deformed from the Kerr solution by
deviations proportional to the dimensionless coupling
parameter

ζq ≡ α2q
κM4

≪ 1; ð40Þ

where q ∈ fSGB;DCSg refers to either theory,
κ ¼ ð16πÞ−1, and M is the mass of the compact object.
We will use the approximate solutions up to Oðζq; χ5Þ,
which are presented in Appendix A 1 for completeness.2

We note that both solutions in BL coordinates follow the
decomposition presented in Eq. (2).
Now, let us summarize some of the BH characteristics in

these solutions that we will use later, up to Oðζq; χ3Þ. First,
the horizon radial locations are

rH;SGB ¼ rH;GR −
49

40
ζSGBM −

277

960
ζSGBχ

2M; ð41Þ

rH;DCS ¼ rH;GR −
915

28672
ζDCSχ

2M; ð42Þ

where rH;GR is the horizon radius of the Kerr metric as
given in Eq. (20). As in GR, the horizons are generated by
the Killing vector ∂t þΩH∂ϕ, where the horizon angular
frequencies are

ΩH;SGB ¼ ΩH;GR þ ζSGBχ

M

�
21

80
−

21103

201600
χ2
�
; ð43Þ

ΩH;DCS ¼ ΩH;GR −
ζSGBχ

M

�
709

28672
þ 169

24576
χ2
�
; ð44Þ

where ΩH;GR is the horizon angular frequency of the Kerr
metric as given in Eq. (21). Finally, the ergospheres are also
modified, with radii now given by

2These solutions are different from those in [33] because
that paper used Hartle-Thorne coordinates, and we use BL
coordinates.
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rergo;SGB ¼ rergo;GR −
49

40
ζSGBM

þ 277

960
ζSGBχ

2M

�
1 −

850

277
sin2θ

�
; ð45Þ

rergo;DCS ¼ rergo;GR

−
915

28672
ζDCSχ

2M

�
1þ 2836

915
sin2 θ

�
; ð46Þ

where rergo;GR is the ergosphere radius of the Kerr metric as
given in Eq. (22). Using the modified location of the
horizon and the ergosphere, we develop a resummed
version of the approximated metric solutions that recovers
the exact Kerr solution as ζq → 0 and shifts the coordinate
singularity to the respective value of the horizon. The
details are presented in Appendix A.

B. The Blandford-Znajek process in quadratic
gravity to leading order in spin

Let us consider the BZ process around BHs in SGB and
DCS gravity. As in GR, we solve the force-free conditions
in Eqs. (8)–(9) constrained by the boundary conditions of
Eqs. (13)–(18) and evaluate the BZ power using Eq. (11).
The field expansions are now

ψq ¼ ψ ð0;0Þ
q þ χ2ψ ð0;2Þ

q

þ ζqψ
ð1;0Þ
q þ ζqχ

2ψ ð1;2Þ
q þOðζ2q; χ4Þ; ð47Þ

Iq ¼ χIð0;1Þq þ χ3Ið0;3Þq

þ ζqχI
ð1;1Þ
q þ ζqχ

3Ið1;3Þq þOðζ2q; χ5Þ; ð48Þ

Ωq ¼ χΩð0;1Þ
q þ χ3Ωð0;3Þ

q

þ ζqχΩ
ð1;1Þ
q þ ζqχ

3Ωð1;3Þ
q þOðζ2q; χ5Þ; ð49Þ

where the integer pair ðm; nÞ stands for the mth order in
each coupling constant ζq and the nth order in the spin χ.

As GR is recovered when these couplings vanish, ψ ð0;nÞ
q ,

Ið0;nÞq , and Ωð0;nÞ
q are the same as ψ ðnÞ, IðnÞ, and ΩðnÞ in

Sec. III. Thus, we only need to solve for ψ ð1;nÞ
q , Ið1;nÞq , and

Ωð1;nÞ
q for each theory.
Let us first consider the solutions at leading order in spin.

The stream Eq. (10) reads

Lψ ð1;0Þ
q ¼ 0; ð50Þ

and by imposing the boundary conditions of Eqs. (13)–(15)
and (18), the solution is

ψ ð1;0Þ
q ¼ 0: ð51Þ

Note that although Eq. (50) is the same as the leading order
GR stream equation in Eq. (26), the resulting solution is

different. This is because the GR solution ψ ð0;0Þ
q has already

accounted for all the monopole charge ψ0, so the charge
condition Eq. (14) cancels any further corrections taking

the same form of ψ ð0;0Þ
q . From Eqs. (8) and (9), together

with the conditions in Eqs. (16) and (17), we obtain

Ið1;1ÞSGB ¼ −2πψ0Ω
ð1;1Þ
SGB sin2 θ; Ωð1;1Þ

SGB ¼ 21

160M
; ð52Þ

Ið1;1ÞDCS ¼−2πψ0Ω
ð1;1Þ
DCS sin

2 θ; Ωð1;1Þ
DCS ¼−

709

57344M
: ð53Þ

The corrections to the BZ power, according to Eq. (11), are
therefore

Pð1;2Þ
SGB ¼ 7π

80

ψ2
0

M2
; ð54Þ

Pð1;2Þ
DCS ¼ −

709π

86016

ψ2
0

M2
: ð55Þ

Combining Eqs. (29), (52)–(53), and (43)–(44), we
find that

Ωq ¼
1

2
ΩH;q þOðζ2q; χ3Þ: ð56Þ

This result is analogous to Eq. (30) but extended to
quadratic gravity, and it indicates that the field rotation
frequency takes the value that maximizes the BZ power
at leading order in spin, as in the GR case to the same
order. From Eqs. (54)–(55), together with Eqs. (37) and
(43)–(44), the BZ power can then be written as

Pq ¼
π

6
ψ2
0Ω2

H;q þOðζ2q; χ4Þ: ð57Þ

This expression coincides with the result presented in [24]
for the maximal BZ power when using generic parame-
trized BH metrics toOðΩ2

HÞ. The above derivation provides
a proof and shows that the value of the rotation frequency
does not have to be assumed, as it is a consequence of
the magnetosphere dynamics. Furthermore, as mentioned
in [24], from Eq. (57) and the corrections to the Kerr
horizon angular frequency, i.e., Eqs. (43)–(44), one can
phenomenologically infer the main contributions from the
metric coefficients to the BZ power.
The derivation shown above suggests that Eq. (30)

should hold as a consequence of the magnetosphere
dynamics in all modified theories of gravity that admit
BH solutions that can be described as continuous defor-
mations of the Schwarzschild metric. Generically, at lead-
ing order in spin the stream Eq. (10) should take the form of
Eq. (26):
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Lmodψ
ð0Þ
mod ¼ 0; ð58Þ

where the subscript mod stands for “modified theory,” and
the superscript (n) stands for a term ofOðχnÞ, following the
notation introduced in Sec. III. Both Lmod and ψ

ð0Þ
mod contain

a GR part and a non-GR part that depends on the coupling
constants of the modified theory. Regardless of the details
of the modified theory, Lmod is of Oðχ0Þ, so the metric that
one uses to calculate it must be spherically symmetric. In
BL coordinates, such a metric is diagonal, and its angular
sector is just the metric of the two-sphere, i.e.,

gð0Þθθ;mod ¼ r2; gð0Þϕϕ;mod ¼ r2 sin2 θ: ð59Þ

Therefore, Eq. (58) should still be separable, and its angular
sector should still be the same as that of L in Eq. (27). As a
result, the leading order in spin stream equation should still
accept the solution

ψ ð0Þ
mod ¼ ψ0ð1 − cos θÞ: ð60Þ

As shown above, solving Eqs. (8) and (9), together with
the conditions in Eqs. (16) and (17), and inserting the
angular metric components in Eq. (59), one obtains

Ωð1Þ
mod ¼

1

2
ΩH;mod : ð61Þ

Thus,

Ωmod ¼
1

2
ΩH;mod þOðχ3Þ; ð62Þ

for a generic theory of gravity that describes continuous
deformations of the Schwarzschild metric. The argument
presented above, however, is not a proof because a rigorous
statement would require that we understand the behavior of
the metric in the near horizon and the far field, or
alternatively that we can develop a resummation of the
metric and show that this behavior is unimportant. Without
specifying a particular modified theory of gravity, it is not
clear how to establish those results, but this, in any case, is
outside the scope of this paper.
According to Eqs. (54)–(55) and (37), given a BH of

fixed mass and spin, the relative corrections to the BZ
power, with respect to GR, by SGB and DCS are

PSGB − PGR

PGR
≈ 2ζSGB; ð63Þ

PDCS − PGR

PGR
≈ −0.2ζDCS: ð64Þ

Thus, the correction is one order of magnitude larger in
SGB than in DCS gravity. In addition, there is a sign

difference so that the power is enhanced in SGB gravity and
quenched in DCS gravity, with respect to the prediction
of GR.
The difference in the corrections found, both in magni-

tude and in sign, can be traced back to the different
corrections to the BH metric in the vicinity of the horizon.
At leading order, the toroidal metric components of BHs in
both theories can be written as

gtt;q ¼ 1 − 2M=rþ ζqkqðr=MÞ þOðζ2q; χ2Þ; ð65Þ

gϕϕ;q ¼ r2 sin2 θ þOðζ2q; χ2Þ; ð66Þ

gtϕ;q ¼ −χ½2M=rþ ζqlqðr=MÞ� sin2 θ þOðζ2q; χ3Þ; ð67Þ

where kqðrÞ and lqðrÞ are different functions for SGB and
DCS that can be obtained by comparing Eqs. (65)–(67)
with the BH solutions provided in Appendix A 1. Given
that ΩH ≡ −gtϕ=gϕϕjr¼rH , and rH is the solution to gT ¼ 0,
we find

rH;q ¼ 2M½1 − ζqkqð2Þ� þOðζ2; χ2Þ; ð68Þ

ΩH;q ¼
χ

4M
½1þ 3ζqkqð2Þ þ ζqlqð2Þ� þOðζ2q; χ3Þ: ð69Þ

Then using Eq. (57), we can write

Pq − PGR

PGR
¼ 2ζq½3kqð2Þ þ lqð2Þ� þOðζ2q; χ2Þ: ð70Þ

To proceed, we need the values of kq and lq on the horizon.
According to Appendix A 1, they are

kSGBð2Þ ¼
49

80
≈ 0.6; lSGBð2Þ ¼ −

63

80
≈ −0.8; ð71Þ

kDCSð2Þ ¼ 0; lDCSð2Þ ¼ −
709

7168
≈ −0.1: ð72Þ

Thus, the difference in the magnitude of the relative
correction to the BZ power can be explained by the greater
correction to the BH metric in the vicinity of the horizon in
SGB than in DCS gravity. In fact, from Eqs. (70)–(72), one
recovers Eqs. (63)–(64).
With an expression of the BZ power in these quadratic

theories, i.e., Eq. (57), one may wonder if measurements
may be used to distinguish GR from these theories. As we
will see, ζq and χ are degenerate to this order, so it is
necessary to go to higher order, which we do next.

C. The Blandford-Znajek process in quadratic
gravity to second relative order in spin

We will now proceed to find the solution to the second
relative order in spin. To this order, the stream Eq. (10) now
takes the form
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Lψ ð1;2Þ
q ¼ ψ0sqðxÞ cos θ sin2 θ; ð73Þ

where sqðxÞ is the radial source function, which is different
for each theory. Considering the boundary conditions in
Eqs. (13)–(15) and (18), the solution then takes the form

ψ ð1;2Þ
q ¼ ψ0hqðxÞ cos θ sin2 θ; ð74Þ

where hqðxÞ is the solution to the following inhomo-
geneous radial equation:

d
dx

��
1 −

2

x

�
dhqðxÞ
dx

�
−
6hqðxÞ
x2

¼ sqðxÞ; ð75Þ

with the boundary conditions such that hqðxÞ is finite at
x ¼ 2 and when x → ∞. We have derived sqðxÞ and solved
for hqðxÞ in closed form. The expressions are rather long,
and not illustrative, so we present them in Appendix B [see
Eqs. (B71)–(B73)]. Here, we only summarize the behavior
of the radial functions at the boundaries:

hSGBð2Þ ¼ −
1865759261

9408000
þ 11497π2

960
þ 49π4

60
; ð76Þ

hDCSð2Þ ¼
5562399

40140800
−
709π2

86016
ð77Þ

and

hSGBðxÞjx→∞ ∼
21

80x
; ð78Þ

hDCSðxÞjx→∞ ∼ −
709

28672x
: ð79Þ

Solving Eqs. (8)–(9) with the conditions of Eqs. (16)–(17),
we find

Ið1;3Þq ¼ −2πψ0½Ωð1;3Þ
q sin2 θ þ Ωð1ÞhqðxÞ sin2 θ cos2 θ

þ Ωð1;1Þ
q fðxÞ sin2 θ cos2 θ�; ð80Þ

and

Ωð1;3Þ
SGB ¼ −

21103

403200M
þ
�
626184387

50176000

−
11581π2

15360
−
49π4

960

�
sin2θ
M

; ð81Þ

Ωð1;3Þ
DCS ¼ −

169

49152M
−
�

83313691

5780275200

−
709π2

688128

�
sin2 θ
M

: ð82Þ

The corrections to the BZ power of Eq. (11) at second
relative order in spin are therefore

Pð1;4Þ
SGB ¼ π

�
5652214483

846720000
−
2333π2

5760
−
49π4

1800

�
ψ2
0

M2
; ð83Þ

Pð1;4Þ
DCS ¼ −π

�
163742291

10838016000
−

709π2

860160

�
ψ2
0

M2
: ð84Þ

Collecting all results so far, we have

PSGB ¼
�
π

24
þ 7π

80
ζSGB

�
ψ2
0χ

2

M2
þ
�
πð56 − 3π2Þ

1080
þ π

�
5652214483

846720000
−
2333π2

5760
−
49π4

1800

�
ζSGB

�
ψ2
0χ

4

M2
þOðζ2SGB; χ6Þ; ð85Þ

PDCS ¼
�
π

24
−

709π

86016
ζDCS

�
ψ2
0χ

2

M2
þ
�
πð56 − 3π2Þ

1080
− π

�
163742291

10838016000
−

709π2

860160

�
ζDCS

�
ψ2
0χ

4

M2
þOðζ2DCS; χ6Þ: ð86Þ

For comparison, the horizon angular frequencies up to the same relative order are

ΩH;SGB ¼
�
1

4
þ 21

80
ζSGB

�
χ

M
þ
�
1

16
−

21103

201600
ζSGB

�
χ3

M
þOðζ2SGB; χ5Þ; ð87Þ

ΩH;DCS ¼
�
1

4
−

709

28672
ζDCS

�
χ

M
þ
�
1

16
−

169

24576
ζDCS

�
χ3

M
þOðζ2DCS; χ5Þ: ð88Þ

We see from these expressions that although Pq ∝ Ω2
H;q at

leading order in χ, this approximation breaks down at next-
to-leading order. This is true in GR and in both SGB and
DCS gravity.

Figure 1 shows the equatorial rotation frequency Ωeq ≡
Ωðθ ¼ π=2Þ and the BZ power P as functions of the BH
spin χ, up to second relative order. As found to leading
order in the previous section, the BZ power is enhanced in
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SGB and quenched in DCS, with respect to the prediction
of GR. As these solutions are only valid in the small-
coupling approximation, we have fixed the dimensionless
coupling constants ζq ¼ 0.2 to qualitatively show the
different behaviors of the BZ power.
As we have only considered solutions up to second

relative order in spin, it was unnecessary to follow the
procedure presented by Armas et al. [15], i.e., matched
asymptotics plus smoothness checks. Even though the
results presented in [15] were derived within GR, we
expected a similar behavior of the BZ solution in these
modified theories. However, as the BH metrics in SGB and
DCS gravity are only known in the midregion, a rigorous
proof of this behavior cannot be provided, as we explain in
detail in Appendix B. Despite that, we have applied the
method proposed by Armas et al. using resummed metrics
for SGB and DCS and found the field solutions in the near
and far expansions are trivial, and that the smoothness
assumption holds up to second relative order in the spin.
Since our resummation recovers the exact Kerr metric and
shifts the coordinate singularity to the modified horizon, we

argue that this resummation is likely to work in the entire
domain. A detailed presentation of these calculations is
presented in Appendix B.

V. ASTROPHYSICAL IMPLICATIONS

The BZ process has three free parameters3: the angular
velocity of the event horizon (ΩH, which only depends on
the BH’s parameters), the rotation frequency of magnetic
field lines (Ω, which is dictated by the dynamics of the
system), and the magnetic flux through the horizon (ψ0).
Therefore, measurements of only the jet power cannot be
used to learn about the underlying physics of the process.
Within GR, it is customary to assume Ω ¼ ΩH=2 or to
check for a square proportionality of the jet power with ΩH
when fitting data [3–5]. Even within GR, a clear observa-
tional signature of the BZ mechanism is still missing,
although it may be possible that future observations may
provide the quality and type of data necessary.
Pei et al. [23], assumingΩ ¼ ΩH=2, combined estimates

of the jet power with independent measurements of the
black hole spin and found that current data cannot place
informative constraints on the metric deformation param-
eters. However, in the presence of better measurements,
they conjectured that such types of tests may be possible.
Given this, let us now hypothesize about tests of gravity in
the future, i.e., if, for example, Ω can be measured and
independent high quality measurements of the BH’s spin
become possible. Would high quality data be able to
distinguish GR from other theories of gravity using the
BZ power? As we will show below, in addition to precise
future measurements, a magnetospheric solution that goes
beyond second order will also be required.
Let us assume Ω ≈ΩH=2 to write Eq. (57) as

Pqðζq; χÞ ¼
2π

3
ψ2
0½Ωqðζq; χÞ�2 þOðζ2q; χ4Þ: ð89Þ

From this expression, one can see that Pq is a function that
only depends on Ωq at leading order in spin. This implies
that, to this order, ζq and χ are degenerate. In other words,
we will not be able to determine both the coupling constant
ζq and the spin χ even if both the BZ power Pq and the field
rotation frequency Ωq are measured. Note that Eq. (89)
holds as long as the magnetosphere dynamics maximizes
the BZ power, and therefore, this degeneracy is a general
issue under such a condition.

FIG. 1. The rotation frequency of the EM field in the equatorial
plane, Ωeq, (top) and the BZ power, P, (bottom) as functions of
the BH spin χ for GR (solid line), SGB (dashed lines), and DCS
gravity (dotted lines), respectively. These quantities are computed
up to second relative order in the small rotation approximation,
i.e.,Oðχ3Þ for Ωeq andOðχ4Þ for P. In SGB and DCS gravity, the
coupling constants ζSGB and ζDCS are both set to 0.2 for
illustrative purposes, and their modifications to GR are consid-
ered to first order in their coupling constants. Deviations from the
GR result are larger in SGB than in DCS gravity, as expected.

3There will naturally be more degrees of freedom when
considering other configurations or symmetries of the disk and
jet than those considered in this work (for instance, see [1,45,57]).
For example, state-of-the-art GRMHD models can display a jet-
disk boundary layer that fluctuates strongly, and therefore more
parameters may be needed to describe the jet power [58].
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To higher order in spin, however, this is not the case. To
see whether the degeneracy breaks between ζq and χ, we
vary ζq → ζq þ δζq and χ → χ þ δχ and study the follow-
ing Jacobian determinant:

���� δ lnðP;ΩÞδ lnðζ; χÞ
����
q
≡
���� δ lnPq=δ ln ζqδ lnPq=δ ln χ

δ lnΩq=δ ln ζqδ lnΩq=δ ln χ

����: ð90Þ

Evaluating Eq. (90) with Pq andΩq to leading order in spin,
this Jacobian vanishes, and thus ζq and χ are degenerate at
leading order in spin as mentioned above. Now if we add
the corrections at second relative order in spin, as given in
Eqs. (36)–(37) and Eqs. (81)–(84), one finds

���� δ lnðP;ΩÞδ lnðζ; χÞ
����
SGB

¼
�
−
616991987

31360000
þ 11329π2

9600
þ 49π4

600

�

× ð3þ 5 cos 2θÞζSGBχ2
þOðζ2SGB; χ4Þ; ð91Þ

���� δ lnðP;ΩÞδ lnðζ; χÞ
����
DCS

¼
�
−

16442609

3612672000
þ 709π2

860160

�

× ð3þ 5 cos 2θÞζDCSχ2
þOðζ2DCS; χ4Þ: ð92Þ

Therefore the degeneracy between ζq and χ breaks when
the BZ power to second relative order in spin is considered.
Given that the degeneracy only breaks at higher orders in
the slow-rotation approximation, we expect that a deter-
mination of or constraint on ζq and χ by measuring Pq and
Ωq will only be possible for rapidly rotating BHs, provided
that both quantities are computed accurately.

VI. DISCUSSION

We have studied the BZ process in two well-motivated
quadratic gravity theories: SGB and DCS gravity. We
solved the BH magnetosphere analytically to first order
in the small-coupling approximation and to second relative
order in the slow-rotation approximation, assuming a split-
monopole configuration. We found that the power of
energy extraction from the BH, compared to the predictions
of GR, is enhanced in SGB gravity and quenched in DCS
gravity.
We have further shown that, for these quadratic BH

solutions, the strategy to solve for the fields proposed by
Armas et al. [15] cannot be applied, as the approximated
BH solutions do not fit into a matched asymptotics
framework. However, as shown by Armas et al. [15], in
GR, the inclusion of the condition in Eq. (17) is sufficient
for solving the BZ process up to second relative order in the
slow-rotation approximation, and the matched asymptotics
and the smoothness issue can be neglected. By studying a

resummed version of the quadratic gravity BH solutions,
we have argued that the same holds true in quadratic
gravity.
Previous studies of theBZmechanismoutsideGR[23–25]

have only been considered to first relative order in the small-
spin expansion, where a degeneracy occurs that hinders our
ability to use this mechanism to distinguish GR from other
theories of gravity. Furthermore, [23,24] have used para-
metrically deformed metrics with only one deformation
parameter. However, most of the known modified solutions
cannot be mapped to such metrics (with only one deforma-
tion parameter), and when multiple parameters are included
in the analyses of observables, the degeneracies between
the astrophysical and BH parameters are enhanced, making
theory-agnostic studies very challenging [59,60]. Therefore
studies of specific theories, as the one presented here or in
[25], should be seen as complementary.
Our results motivate further analytical and numerical

studies of the BZ process in modified theories of
gravity and continue to pave the road towards addressing
whether the phenomena related to the BZ mechanism can
be used to learn about fundamental physics from BH
observations.
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APPENDIX A: SLOW-ROTATION, SMALL-
COUPLING BLACK HOLE SOLUTIONS

IN QUADRATIC GRAVITY

This Appendix explicitly shows the transformation of
coordinates from Hartle-Thorne to Boyer-Lindquist coor-
dinates and the resummed metrics used in the main text.

1. Coordinate transformation from Hartle-Thorne
to Boyer-Lindquist coordinates

The BH solutions used in this work were derived in
Hartle-Thorne (HT) coordinates in [30,33] for SGB and
DCS gravity, respectively. Below we show explicitly, up to
Oðζq; χ5Þ, the transformation from HT coordinates, i.e.,
ðt; rHT; θHT;ϕÞ, to BL coordinates, i.e., ðt; r; θ;ϕÞ. The
transformation is assumed to be of the form

rHT;q ¼
Xn

ðrðnÞHT þ ζqr
ðnÞ
HT;q½rBL; θBL�Þχn; ðA1Þ

θHT;q ¼
Xn

ðθðnÞHT þ ζqθ
ðnÞ
HT;q½rBL; θBL�Þχn; ðA2Þ
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where the integer (n) stands for the nth order in the spin χ.
Using this ansatz, the transformation gBLμν ¼ Λα

μΛ
β
νgHTαβ , with

Λα
μ ¼ ∂xαHT=∂xμBL, is solved order by order. Starting with

the GR terms, the transformation requires only to solve
algebraic equations because the Kerr solution is known in
both coordinate systems. In particular, it is enough to
apply the transformation and simultaneously solve for

rðnÞHT½rBL; θBL� and θðnÞHT½rBL; θBL� in gBLtt − gHTtt ¼ 0 and
gBLϕϕ − gHTϕϕ ¼ 0, order by order.

This exact procedure also applies to both SGB and DCS,
but the equations start to be coupled partial differential
equations, instead of algebraic, for n ≥ 3, as the solutions
were only previously known in BL up to second order in
the spin [32,61]. Thus, one solves, order by order, for

rðnÞq;HT½rBL; θBL� and θðnÞq;HT½rBL; θBL� in the resulting coupled
partial differential equations. For simplicity, we require that
our transformation satisfies grθ ¼ 0. The explicit resulting
coordinate transformation we used in this work is

rHT;SGB ¼ rHT;GR − ζSGBχ
2
M4

12r3

�
1þ 4M

r
þ 61M2

3r2
þ 54M3

r3
þ 46M4

5r4
−
1696M5

15r5
−
368M6

r6

�
ð1þ 3 cos 2θÞ

þ ζSGBχ
4
M4

8r3

��
1þ 4M

r
þ 34606M2

2625r2
þ 19556M3

525r3
þ 8017663M4

55125r4
þ 322582M5

875r5
þ 194692M6

525r6

−
290140M7

441r7
−
515756M8

105r8
þ 4608M9

5r9
−
11552M10

r10

�
cos 2θ −

3019M2

1750r2

�
1þ 14220M

3019r
−
2811413M2

63399r2

−
101488M3

9057r3
þ 372990M4

3019r4
−
18494900M5

63399r5
−
639400M6

9057r6
−
10197600M7

3019r7
þ 25816000M8

3019r8

�
cos22θ

�
; ðA3Þ

θHT;SGB ¼ θHT;GR; ðA4Þ

and

rHT;DCS ¼ rHT;GR − ζDCSχ
4
661M6

43000r5

��
1þ 4005M

661r
þ 215826M2

4627r2
þ 175636M3

661r3
þ 343404M4

661r4
−
829404M5

4627r5

−
1532520M6

661r6
−
2467584M7

661r7

�
cos 2θ −

117

1322

�
1þ 5M

r
þ 143834M2

273r2
−
12676M3

39r3
−
78380M4

13r4

−
690876M5

91r5
þ 20952M6

13r6
þ 822528M7

13r7

�
cos22θ

�
; ðA5Þ

θHT;DCS ¼ θHT;GR; ðA6Þ

where the transformations in GR are given by

rHT;GR ¼ r − χ2
M2

4r

�
1þM

r
−
6M2

r2

�
cos 2θ − χ4

M4

8r3

�
1þ 3M

r
−
36M2

5r2
−
72M3

5r3
þ 8M4

5r4

− 2

�
1þ 3M

r
−
18M2

r2
−
42M3

r3
þ 36M4

r4

�
cos2θ þ

�
1þ 3M

r
−
28M2

r2
−
60M3

r3
þ 192M4

r4

�
cos4θ

�
; ðA7Þ

θHT;GR ¼ θ þ χ2
M2

4r2

�
1þ 2M

r

�
sin 2θ

− χ4
M4

8r4

��
1þ 4M

r
þ 5M2

r2
þ 6M3

r3

�
sin 2θ −

1

4

�
1þ 4M

r
þ 2M2

r2
−
12M3

r3

�
sin 4θ

�
: ðA8Þ

The resulting metric expressions in BL coordinates are available in a Mathematica notebook provided in the
Supplemental Material [62].
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2. Resummation of slow-rotation, small-coupling
black hole solutions

As discussed in the main text, it is suitable to reexpress
the metric solutions as a resummation such that analytic
calculations, like the one presented in Appendix B, can be
performed. In particular, our resummation will provide a
metric with the following properties:

(i) differs from the series-expanded metric only by
terms of Oðζ2q; χ6Þ,

(ii) recovers the exact Kerr metric when taking ζq → 0,
(iii) encodes the location of the corrected horizon r ¼

rH;q (not at r ¼ 2M) through a redefinition of the Δ
function of the Kerr metric,

(iv) encodes the location of the corrected ergosphere r ¼
rergo;q through a redefinition of the Σ function of the
Kerr metric,

(v) avoids introducing naked singularities or closed
timelike curves.

Indeed, item (i) must hold for any resummation procedure
(almost by definition of what we mean by resummation).
Items (ii)–(v), however, are additional requirements we
impose to refine our resummation procedure, but even then,
this scheme is still not unique.
Given a series-expanded solution to higher order than

Oðζq; χ5Þ, one can repeat this procedure to get more
accurate representations of the solution.
Let us first consider the coordinate singularity. Yagi et al.

[32] have proposed a resummation strategy that shifts the
coordinate singularity in the approximate DCS BH solution
from r ¼ 2M to r ¼ rH;DCS. This resummation strategy
works by taking Δ → ΔDCS in the Kerr piece of gDCSrr and
taking ðr − 2MÞ → ðr − rH;DCSÞ in the DCS modification
piece of grr. Here, ΔDCS deviates from Δ in a way such that
ΔDCS ¼ 0 occurs for r ¼ rH;DCS. Ayzenberg and Yunes
[63] (there is a typo in their expressions that we correct
here) have computed ΔDCS to Oðζq; χ5Þ:

ΔDCS ¼ ΔþM2ζDCS

�
915

14336
χ2 þ 131879

6881280
χ4
�
: ðA9Þ

Using this transformation, g̃DCSrr ≡ gDCSrr ΔDCS does not
become singular at r ¼ 2M when evaluated up to
OðζDCS; χ5Þ. Therefore, we can apply a simpler resumma-
tion strategy by just computing g̃DCSrr up to OðζDCS; χ5Þ and
replacing

gDCSrr → g̃DCSrr =ΔDCS: ðA10Þ
The same procedure also applies in SGB, and therefore

ΔSGB¼ΔþM2ζSGB

�
49

20
−
311

480
χ2−

813569

1612800
χ4
�
: ðA11Þ

The next step is to make sure that we recover the exact
Kerr metric when taking ζq → 0. Here, we consider

replacing terms that appear as 1=rnðn > 0Þ with
ðr=ΣqÞn, where Σq deviates from Σ in a way such that
Σq − 2Mr ¼ 0 gives the correct value of the ergosphere
rergo;qðθÞ. The results are

ΣSGB ¼ ΣþM2ζSGB

�
49

20
−
�
191

160
þ 131

240
cos2θ

�
χ2

þ
�
14370073

56448000
þ 4829219

1764000
cos2θ

−
16448333

4704000
cos4θ

�
χ4
�
; ðA12Þ

ΣDCS ¼ ΣþM2ζDCS

��
3751

14336
−

709

3584
cos2θ

�
χ2

−
�
1922747

48168960
þ 34351

150528
cos2θ

−
230637

802816
cos4θ

�
χ4
�
: ðA13Þ

We note that we do not replace all 1=rn terms at the same
time; otherwise, the exact Kerr metric cannot be recovered
in the GR sector. Instead, we order the replacement as
follows. Given a metric component gqμν in the original BH
solution, we calculate its Laurent expansion about r ¼ 0.
The result should take the following form:

gqμν ¼
XNþ

n¼0

Cnrn þ
XN−

n¼1

Dð0Þ
n =rn; ðA14Þ

where Nþ and N− are finite non-negative integers, and Cn

and Dn are precise up to Oðζq; χ5Þ. The first sum is
nondiverging, while the second sum contains all diverging
terms that has to be replaced. We first take

Dð0Þ
1 =r → Dð0Þ

1 r=Σq: ðA15Þ

Now Dð0Þ
1 r=Σq is nondiverging. We can then rewrite gqμν as

follows:

gqμν ¼
�XNþ

n¼0

Cnrn þDð0Þ
1 r=Σq

�
þ
XN−

n¼2

Dð1Þ
n =rn; ðA16Þ

where we have put all nondiverging terms in the bracket
and adjusted the diverging terms to keep gqμν precise up to
Oðζq; χ5Þ. At the ith step, we replace

Dði−1Þ
i =ri → Dði−1Þ

i ðr=ΣqÞi; ðA17Þ

and rewrite
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gqμν ¼
�XNþ

n¼0

Cnrn þ
Xi

n¼1

Dðn−1Þ
n ðr=ΣqÞn

�

þ
XN−

n¼iþ1

DðiÞ
n =rn; ðA18Þ

where each DðiÞ
n is adjusted from Dði−1Þ

n so that the above
expression holds up to Oðζq; χ5Þ. By the N−th step, there

should be nothing left for the diverging part, and the whole
replacement is completed. We have checked that the
obtained resummed metrics recover the exact Kerr metric
when taking ζq → 0, and they recover the series-expanded
metrics when replacing Δq and Σq using Eqs. (A9), (A11),
and (A12)–(A12) and reexpanding to Oðζq; χ5Þ.
The result of this procedure gives the following

resummed BH solutions, which we only show here up
to Oðζq; χ2Þ:

gSGBtt ¼
�
−1þ 2Mr

ΣSGB

��
1 − ζSGB

137M3r3

30Σ3
SGB

�
1þ 14Mr

137ΣSGB
−
104M2r2

137Σ2
SGB

−
400M3r3

137Σ3
SGB

��
; ðA19Þ

gSGBrr ¼ 1

ΔSGB

�
r2 þ χ2M2cos2θ þ ζSGB

29M2

20

�
1þ 38Mr

29ΣSGB
−
28M2r2

3Σ2
SGB

−
1744M3r3

87Σ3
SGB

−
3680M4r4

87Σ4
SGB

��
; ðA20Þ

gSGBθθ ¼ r2 þ χ2M2 cos2 θ; ðA21Þ

gSGBϕϕ ¼ r2 sin2 θ þ χ2M2

�
1þ 2Mr

ΣSGB
sin2 θ

�
sin2 θ; ðA22Þ

gSGBtϕ ¼ −χ
2Mr
ΣSGB

sin2θ − ζSGB
43M4r3

10Σ3
SGB

�
1 −

280Mr
129ΣSGB

−
60M2r2

43Σ2
SGB

−
96M3r3

43Σ3
SGB

þ 800M4r4

129Σ4
SGB

�
sin2θ: ðA23Þ

gDCStt ¼ −1þ 2Mr
ΣDCS

; ðA24Þ

gDCSrr ¼ 1

ΔDCS
ðr2 þ χ2M2 cos2 θÞ; ðA25Þ

gDCSθθ ¼ r2 þ χ2M2 cos2 θ; ðA26Þ

gDCSϕϕ ¼ r2 sin2 θ þ χ2M2

�
1þ 2Mr

ΣDCS
sin2 θ

�
sin2 θ; ðA27Þ

gDCStϕ ¼ −χ
2Mr
ΣDCS

sin2 θ þ ζDCSχ
5M5r4

Σ4
DCS

�
1þ 12Mr

7ΣDCS
þ 27M2r2

10Σ2
DCS

�
sin2 θ; ðA28Þ

The complete expressions of the resummed metric up to
Oðζq; χ5Þ are available in a Mathematica notebook pro-
vided in the Supplemental Material [62].

APPENDIX B: BLANDFORD-ZNAJEK
SOLUTION IN QUADRATIC GRAVITY
USING MATCHED ASYMPTOTICS

In Secs. IV B–IV C, we derived the BZ process follow-
ing a similar procedure as shown in, e.g., [1,10], but we
adopted the boundary conditions presented by Armas et al.
[15]. In this appendix, we present the solutions to the BZ
mechanism in quadratic gravity following the procedure

presented by Armas et al. [15] and show that the results
coincide.
We start by defining three distinctive slow-rotation

expansions, namely “near,” “mid,” and “far,” by their
length scales, Rnear ≪ Rmid ≪ Rfar, where

Rnear ¼ a2=M; ðB1Þ

Rmid ¼ M; ðB2Þ

Rfar ¼ M2=a: ðB3Þ
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The mass and the spin are, accordingly, now expressed as

M ¼ Rnearχ
−2 ¼ Rmid ¼ Rfarχ; ðB4Þ

a ¼ Rnearχ
−1 ¼ Rmidχ ¼ Rfarχ

2: ðB5Þ

Analogously, the r coordinate should also be replaced by
the following dimensionless radii:

y ¼ ðr − rHÞ=Rnear; ðB6Þ

x ¼ r=Rmid; ðB7Þ

x̄ ¼ r=Rfar: ðB8Þ

Let QnearðyÞ, QmidðxÞ, and Qfarðx̄Þ be some field variables
in the three different expansions. The boundary conditions
on the horizon and at infinity should apply to Qnearjy¼0 and
Qfarjx̄→∞, respectively. In addition, matched asymptotics
requires that

Qnearjy→∞ ∼Qmidjx̄→2; ðB9Þ

Qmidjx→∞ ∼Qfarjx̄→0: ðB10Þ

For example, consider a term in the midexpansion that has
the following dependence on x in the vicinity of x → ∞:

Qð4Þ
midjx→∞ ¼ Rmid

�
xþ 1

x

�
þ � � � ; ðB11Þ

where “� � �” means there could be other dependencies on x.
In the vicinity of x̄ → 0, using Rmid ¼ χRfar and x ¼ x̄=χ,
one finds that

Qð4Þ
far jx̄→0 ¼ Rfarx̄þ � � � ; ðB12Þ

Qð6Þ
far jx̄→0 ¼

Rfar

x̄
þ � � � : ðB13Þ

Given the characteristics of the three expansions in
Eqs. (B1)–(B8), we recognize that the midexpansion
coincides with the slow-rotation approximation presented
above. As expected, the quadratic gravity metric solutions
presented in Appendix A 1 are given as midexpansions. In
order to conduct the full procedure by Armas et al., we also
need the metric solutions in the near and far expansions.
We note that the far-expansion metric can be converted

from the midexpansion metric by replacing M → Rfarχ,
a → Rfarχ

2, and r → Rfarx̄. On the other hand, for the near
expansion, the same strategy is not guaranteed to work
because negative powers will be involved when taking
M → Rnearχ

−2 and a → Rnearχ
−1. In addition, the r → rH þ

Rneary replacement also requires the metric to be well
defined near the horizon. This is why we have resummed

the metric solutions in Appendix A such that the exact Kerr
solution is recovered when ζ → 0, and the coordinate
singularity at r ¼ 2M is shifted to the horizon radius rH;q.
Like in the main text, we consider up to second relative

order in spin. We start by writing the GR solution found in
[15]. To leading order, it is

ψ ð0Þ
near ¼ ψ ð0Þ

mid ¼ ψ ð0Þ
far ¼ ψ0ð1 − cos θÞ; ðB14Þ

χ3Ið3Þnear ¼ χIð1Þmid ¼ Ið0Þfar ¼ −
2πψ0a
M2

ω0 sin2 θ; ðB15Þ

χ3Ωð3Þ
near ¼ χΩð1Þ

mid ¼ Ωð0Þ
far ¼

a
M2

ω0; ðB16Þ

where

ω0 ¼
1

8
: ðB17Þ

Note that because I and Ω are proportional to a=M2, their
scaling behavior with respect to χ varies in different
expansions according to Eqs. (B4)–(B5).
At first relative order,

ψ ð1Þ
near ¼ ψ ð1Þ

mid ¼ ψ ð1Þ
far ¼ 0; ðB18Þ

χ3Ið4Þnear ¼ χIð2Þmid ¼ Ið1Þfar ¼ 0; ðB19Þ

χ3Ωð4Þ
near ¼ χΩð2Þ

mid ¼ Ωð1Þ
far ¼ 0; ðB20Þ

while to second relative order, the midexpansion is

ψ ð2Þ
mid ¼ ψ0fðxÞ sin2 θ cos θ; ðB21Þ

Ið3Þmid ¼ −
2πψ0

M
sin2θ

�
ω2ðθÞ þ

1

4
fðxÞcos2θ

�
; ðB22Þ

Ωð3Þ
mid ¼

1

M
ω2ðθÞ; ðB23Þ

where fðxÞ is the same as defined in Eq. (33), and

ω2ðθÞ ¼
1

32
−
4fð2Þ − 1

64
sin2 θ: ðB24Þ

Finally, the near and far expansions are

ψ ð2Þ
near ¼ ψ ð2Þ

midjx¼2; ψ ð2Þ
far ¼ ψ ð2Þ

midjx→∞; ðB25Þ

χ3Ið5Þnear ¼ χIð3Þmidjx¼2; Ið2Þfar ¼ χIð3Þmidjx→∞; ðB26Þ

χ3Ωð5Þ
near ¼ χΩð3Þ

midjx¼2; Ωð2Þ
far ¼ χΩð3Þ

midjx→∞: ðB27Þ
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Note that the first relative order solution vanishes, which
supports the argument that the field variables should be
smooth functions of χ. From Eqs. (B14)–(B27), it is clear
that the near solutions are nothing but the mid solutions
when taking x ¼ 2, as expected. Similarly, the far solutions
are nothing but the mid solutions when taking x → ∞.
Therefore, the near and far expansions appear to be trivial
up to the second relative order. In the following, we will
solve the quadratic gravity corrections to the field variables,
and we will show that the solutions have the same
qualitative behavior as in GR.

1. Leading order in spin

Let us first consider the midexpansion. The stream
Eq. (10) reads

Lψ ð1;0Þ
mid;q ¼ 0; ðB28Þ

where L has been defined in Eq. (27). We then require
Eqs. (13) and (14) as the boundary conditions in the angular
direction. In the radial direction, matching the near and far

expansions requires that ψ ð1;0Þ
mid be finite at both boundaries.

The reason is the following: suppose ψ ð1;0Þ
mid had some

diverging dependence on x as x → ∞ which, for example,
behaved like xnðn > 0Þ. Then due to x ¼ x̄=χ, there would

have to be a corresponding ψ ð1;−nÞ
far in the far expansion.

Given that ψ ¼ Oð1Þ, there is no such ψ ð1;−nÞ
far . Therefore,

ψ ð1;0Þ
mid must be finite as x → ∞. Similarly, one can also

argue that ψ ð1;0Þ
mid must be finite as x → 2. In the end, the

solution has to be

ψ ð1;0Þ
mid;q ¼ 0: ðB29Þ

The other two force-free conditions, Eqs. (8) and (9),
provide the following solutions:

Ið1;1Þmid;q ¼
ψ0

Rmid
i0;qðθÞ; ðB30Þ

Ωð1;1Þ
mid;q ¼

1

Rmid
ω0;qðθÞ; ðB31Þ

where i0;q and ω0;q are to be determined later.
Next, we consider the near expansion. The stream

Eq. (10) reads

Lnearψ
ð1;0Þ
near;q ¼ 0; ðB32Þ

where Lnear is defined as [15]

Lnear ¼ 16∂y þ ð−1þ cos 2θ þ 16yÞ∂2
y: ðB33Þ

The angular boundary conditions are again Eqs. (13)
and (14). On the horizon (i.e., y ¼ 0), the solution must
follow Eq. (15). As y → ∞, the solution must match the

midexpansion; consequently, ψ ð1;0Þ
near;q must be finite, and

therefore

ψ ð1;0Þ
near;q ¼ 0: ðB34Þ

Considering the other two force-free conditions, Eqs. (8)
and (9), together with the requirement that the solutions
match the midexpansion, we obtain

Ið1;3Þnear;q ¼ ψ0

Rnear
i0;qðθÞ; ðB35Þ

Ωð1;3Þ
near;q ¼ 1

Rnear
ω0;qðθÞ: ðB36Þ

We can now use the horizon Znajek condition and derive

i0;SGBðθÞ ¼ 2π

�
ω0;SGBðθÞ −

21

80

�
sin2θ; ðB37Þ

i0;DCSðθÞ ¼ 2π

�
ω0;DCSðθÞ þ

709

28672

�
sin2θ: ðB38Þ

Finally, we consider the far expansion. The stream
equation [Eq. (10)] reads

Lfarψ
ð1;0Þ
far;q −

1

32 sin θ
∂θðψ ð1;0Þ

far;q cos θÞ

¼ Rfar

16π sin θ
∂θðIð1;0Þfar;q þ 2πΩð1;0Þ

far;q sin
2θÞ; ðB39Þ

where Lfar is defined as [15]

Lfar ¼ sin θ∂θ

�
sin θ

�
1

x̄2sin2θ
−

1

64

�
∂θ

�

þ sin2θ∂ x̄

�
x̄2
�

1

x̄2sin2θ
−

1

64

�
∂ x̄

�

þ 1

32
ð2 − 3sin2θÞ: ðB40Þ

Because ψ far, Ifar, and Ωfar are coupled, it is not easy to
solve this equation directly. We propose the following
ansatz:

ψ ð1;0Þ
far;q ¼ 0; ðB41Þ

Ið1;0Þfar;q ¼ ψ0

Rfar
i0;qðθÞ; ðB42Þ

Ωð1;0Þ
far;q ¼ 1

Rfar
ω0;qðθÞ; ðB43Þ
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which satisfies the two force-free conditions Eqs. (8)–(9),
the boundary conditions Eqs. (13)–(14) and (18), and the
condition that they match with the midexpansion.
We are now left with Eq. (B39) and the condition given

by Eq. (17). The latter requires

i0;qðθÞ ¼ −2πω0;qðθÞ sin2 θ: ðB44Þ

Inserting Eqs. (B41)–(B44) into Eq. (B39), we find that
Eq. (B39) is also satisfied. Therefore, the proposed ansatz is
indeed the solution.
Now combining the conditions in Eqs. (B37)–(B38) and

(B44), we determine ω0:

ω0;SGBðθÞ ¼
21

160
; ðB45Þ

ω0;DCSðθÞ ¼ −
709

57344
: ðB46Þ

Then, i0 is given by Eq. (B44).
To summarize, at leading order in spin, we find

ψ ð1;0Þ
near;q ¼ ψ ð1;0Þ

mid;q ¼ ψ ð1;0Þ
far;q ¼ 0; ðB47Þ

χ3Ið1;3Þnear;q ¼ χIð1;1Þmid;q ¼ Ið1;0Þfar;q ¼ −
2πψ0a
M2

ω0;qðθÞ; ðB48Þ

χ3Ωð1;3Þ
near;q ¼ χΩð1;1Þ

mid;q ¼ Ωð1;0Þ
far;q ¼ a

M2
ω0;qðθÞ; ðB49Þ

where ω0 is given in Eqs. (B45) and (B46) in SGB and
DCS gravity, respectively.

2. First relative order in spin

We now go to next order. At first relative order, the
midexpansion stream equation [Eq. (10)] reads

Lψ ð1;1Þ
mid;q ¼ 0: ðB50Þ

We then require the boundary conditions in Eqs. (13)–(14)
and that they match with the other two expansions. The
resulting solution is

ψ ð1;1Þ
mid;q ¼ 0; ðB51Þ

while Eqs. (8) and (9) give

Ið1;2Þmid;q ¼
ψ0

Rmid
i1;qðθÞ; ðB52Þ

Ωð1;2Þ
mid;q ¼

1

Rmid
ω1;qðθÞ: ðB53Þ

The near-expansion stream equation [Eq. (10)] reads

Lnearψ
ð1;1Þ
near;q ¼ 0: ðB54Þ

By requiring the boundary conditions in Eqs. (13)–(15) and
that ψnear match with ψmid, we get

ψ ð1;1Þ
near;q ¼ 0; ðB55Þ

while Eqs. (8) and (9) give

Ið1;4Þnear;q ¼ ψ0

Rnear
i1;qðθÞ; ðB56Þ

Ωð1;4Þ
near;q ¼ 1

Rnear
ω1;qðθÞ: ðB57Þ

The condition in Eq. (16) can now be evaluated:

i1;qðθÞ ¼ 2πω1;qðθÞ sin2 θ: ðB58Þ
The far expansion can be computed by starting from

Eqs. (8) and (9). The solutions are

Ið1;1Þfar;q ¼ ψ0

Rfar
i1;q −

π

2Rfar
ψ ð1;1Þ
far;q cos θ; ðB59Þ

Ωð1;1Þ
far;q ¼ 1

Rfar
ω1;q: ðB60Þ

Then, the stream equation [Eq. (10)] reads

Lfarψ
ð1;1Þ
far;q ¼ ψ0

16π sin θ
∂θði1;q þ 2π sin2 θω1;qÞ: ðB61Þ

We propose the solution to be

ψ ð1;1Þ
far;q ¼ 0; ðB62Þ

such that the condition in Eq. (B44) becomes

i1;qðθÞ ¼ −2πω1;qðθÞ sin2 θ: ðB63Þ

Therefore, we can verify that Eq. (B61) is satisfied.
Combining Eqs. (B58) and (B63), we have

i1;qðθÞ ¼ 0 ¼ ω1;qðθÞ: ðB64Þ

To summarize, at first relative order we find

ψ ð1;1Þ
near;q ¼ ψ ð1;1Þ

mid;q ¼ ψ ð1;1Þ
far;q ¼ 0; ðB65Þ

Ið1;4Þnear;q ¼ Ið1;2Þmid;q ¼ Ið1;1Þfar;q ¼ 0; ðB66Þ

Ωð1;4Þ
near;q ¼ Ωð1;2Þ

mid;q ¼ Ωð1;1Þ
far;q ¼ 0: ðB67Þ
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As these quadratic gravity corrections vanish, the field variables are still smooth functions of χ up to second
relative order.

3. Second relative order in spin

At second relative order, the midexpansion stream equation [Eq. (10)] reads

Lψ ð1;2Þ
mid;q ¼ ψ0sqðxÞ cos θ sin2 θ: ðB68Þ

Considering the boundary conditions in Eqs. (13)–(14) and the matches with the other two expansions, the result takes the
form

ψ ð1;2Þ
mid;q ¼ ψ0hqðxÞ cos θ sin2 θ; ðB69Þ

where hqðxÞ is the solution to the radial equation

d
dx

��
1 −

2

x

�
dhqðxÞ
dx

�
−
6hqðxÞ
x2

¼ sqðxÞ; ðB70Þ

with the boundary conditions such that hqðxÞ is finite at x ¼ 2 and when x → ∞. The results are

sSGBðxÞ ¼ −
3

4x

�
1þ 1

x
−

44

3x2
þ 34

x3
þ 16

5x4
þ 976

3x5
−
448

x6

��
Li2

�
2

x

�
þ ln

�
2

x

�
ln

�
1 −

2

x

��

−
3

2ðx − 2Þ2
�
1 −

2

x
−

49

3x2
þ 80

x3
−
5296

45x4
þ 15808

45x5
−
7092

5x6
þ 80096

45x7
−
3424

9x8

�
ln

�
2

x

�

þ 3

2xðx − 2Þ
�
1 −

6

5x
−

301

18x2
þ 484756

7875x3
−

764041

23625x4
þ 50442368

165375x5
−
44345362

55125x6

þ 1993576

33075x7
þ 688420

1323x8
−
70712

35x9
þ 13856

3x10
−
3520

x11

�
; ðB71Þ

hSGBðxÞ ¼ −
8389x2

60
þ 9649x

60
þ 74099

2160
þ 12017

720x
−

5331127

1008000x2
−

541351

75600x3
−

2652689

176400x4
þ 125249

36750x5
þ 451

270x6

−
73

441x7
þ 32

5x8
−

40

3x9
þ 1

2520ðx − 2Þ
�
352338x3 − 986685x2 þ 488285xþ 129416þ 52143

x
þ 1036

x2

þ 10438

x3
−
69804

x4
þ 10272

x5

�
ln
�
2

x

�
þ 1

240

�
16778x3 − 35247x2 þ 10110xþ 3120þ 1020

x
þ 474

x2

þ 1168

x3
−
1680

x4

��
−Li2

�
1 −

2

x

�
þ π2

6

�
− 7ð6x2 − 3x − 1Þ

�
Li2

�
2

x

�
ln

�
2

x

�
− 2Li3

�
2

x

�
þ 2Zð3Þ

�

þ 21x2ð2x − 3Þ
�
π4

90
þ π2

12
ln

�
1 −

2

x

��
ln

�
1 −

2

x

�
− 2 ln

�
2

x

��
þ 1

24
ln2

�
1 −

2

x

��
6ln2

�
2

x

�

þ ln2
�
1 −

2

x

�
− 4 ln

�
2

x

�
ln

�
1 −

2

x

��
þ 1

4

�
Li2

�
2

x

�
þ ln

�
2

x

�
ln

�
1 −

2

x

��
2

þ ln

�
2

x

��
Li3

�
1 −

2

x

�
− 2Zð3Þ

�
þ
�
Li4

�
2

x

�
− Li4

�
1 −

2

x

�
þ Li4

�
2

2 − x

��	
; ðB72Þ

sDCSðxÞ ¼
709

7168x3
þ 709

3584x4
− 71

256x5
− 303

448x6
− 3301

3136x7
þ 1539

112x8
− 32763

1568x9
− 10341

224x10
− 270

x11
; ðB73Þ
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hDCSðxÞ ¼
709x2

14336
−

709x
14336

−
7799

516096
−

709

21504x
þ 221699

4300800x2
þ 147149

1612800x3
þ 2261

15360x4
þ 7857

31360x5

þ 1557

1792x6
þ 3921

3136x7
þ 27

16x8
þ ln

�
2

x

��
−
709x2

14336
þ 709x
28672

þ 709

86016

�

þ
�
Li2

�
2

x

�
þ ln

�
2

x

�
ln

�
x − 2

x

���
−
709x3

28672
þ 2127x2

57344

�
; ðB74Þ

where LinðxÞ≡P∞
k¼1 x

k=kn is the polylogarithm function
of order n, and ZðxÞ≡P∞

k¼1 1=k
x is the Riemann zeta

function. At the boundaries,

hSGBð2Þ ¼ −
1865759261

9408000
þ 11497π2

960
þ 49π4

60
; ðB75Þ

hDCSð2Þ ¼
5562399

40140800
−
709π2

86016
; ðB76Þ

and

hSGBðxÞjx→∞ ∼
21

80x
; ðB77Þ

hDCSðxÞjx→∞ ∼ −
709

28672x
: ðB78Þ

Having ψ ð1;2Þ
mid solved, Eqs. (8) and (9) then give

Ið1;3Þmid;q ¼
ψ0

Rmid
½i2;qðθÞ − 4πω0hqðxÞ sin2 θ cos2 θ

− 4πω0;qfðxÞ sin2 θ cos2 θ�; ðB79Þ

Ωð1;3Þ
mid;q ¼

1

Rmid
ω2;qðθÞ; ðB80Þ

where ω0 ¼ 1=8 as given in Eq. (B17), and ω0 has been
solved in Eqs. (B45)–(B46).

The near-expansion stream equation [Eq. (10)] reads

Lnearψ
ð1;2Þ
near;q ¼ 0: ðB81Þ

Requiring as boundary conditions Eqs. (13)–(15) and the
match with the midexpansion, we get

ψ ð1;2Þ
near;q ¼ ψ0hqð2Þ cos θ sin2 θ; ðB82Þ

while Eqs. (8) and (9) give

Ið1;5Þnear;GB ¼ ψ0

Rnear
½i2;qðθÞ − 4πω0hqð2Þ sin2 θ cos2 θ

− 4πω0;qfð2Þ sin2 θ cos2 θ�; ðB83Þ

Ωð1;5Þ
near;q ¼ 1

Rnear
ω2;qðθÞ: ðB84Þ

The horizon Znajek condition can now be evaluated:

i2;SGB ¼ 2π

�
ω2;SGB þ 21103

201600

þ ω0

�
hSGBð2Þ −

49

128

�
sin2θ

þ ω0;SGB

�
fð2Þ − 1

4

�
sin2θ

	
sin2θ: ðB85Þ

i2;DCS ¼ 2π

�
ω2;DCS þ

169

24576
þ ω0hDCSð2Þsin2θ

þ ω0;DCS

�
fð2Þ − 1

4

�
sin2θ

	
sin2θ: ðB86Þ

In the far expansion, solutions to Eqs. (8) and (9) are

Ið1;2Þfar;q ¼ ψ0

Rfar
i2;q −

π

2Rfar
ψ ð1;2Þ
far;q cos θ; ðB87Þ

Ωð1;2Þ
far;q ¼ 1

Rfar
ω2;q: ðB88Þ

Then, the stream Eq. (10) reads

Lfarψ
ð1;2Þ
far;q ¼ ψ0

16π sin θ
∂θði2;q þ 2πω2;q sin2 θÞ: ðB89Þ

We may guess that the solution is

ψ ð1;2Þ
far;q ¼ 0: ðB90Þ

This way the condition (B44) becomes

i2;q ¼ −2πω2;q sin2 θ: ðB91Þ

Therefore, we can verify that Eq. (B89) is satisfied.
Combining Eqs. (B85)–(B86) and (B91), we have

ω2;SGB ¼ −
21103

403200
−
1

2
ω0

�
hSGBð2Þ −

49

128

�
sin2θ

−
1

2
ω0;SGB

�
fð2Þ − 1

4

�
sin2θ; ðB92Þ
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ω2;DCS ¼ −
169

49152
−
1

2
ω0hDCSð2Þsin2θ

−
1

2
ω0;DCS

�
fð2Þ − 1

4

�
sin2θ; ðB93Þ

Then, i2 is given by Eq. (B91).
To summarize, at second relative order, we have

ψ ð1;2Þ
mid;q ¼ ψ0hqðxÞ cos θ sin2 θ; ðB94Þ

Ið1;3Þmid;q ¼
ψ0

M
½i2;qðθÞ − 4πω0hqðxÞsin2θcos2θ

− 4πω0;qfðxÞsin2θcos2θ�; ðB95Þ

Ωð1;3Þ
mid;q ¼

1

M
ω2;qðθÞ; ðB96Þ

in the midexpansion, where ω2 is given in Eqs. (B92)–
(B93), and i2 is related to ω2 by Eq. (B91).
The solutions in the near and far expansions are just

ψ ð1;2Þ
near;q ¼ ψ ð1;2Þ

mid;qjx¼2; ψ ð1;2Þ
far;q ¼ ψ ð1;2Þ

mid;qjx→∞; ðB97Þ

χ2Ið1;5Þnear;q ¼ Ið1;3Þmid;qjx¼2; Ið1;2Þfar;q ¼ χIð1;3Þmid;qjx→∞; ðB98Þ

χ2Ωð1;5Þ
near;q ¼ Ωð1;3Þ

mid;qjx¼2; Ωð1;2Þ
far;q ¼ χΩð1;3Þ

mid;qjx→∞: ðB99Þ

Therefore, the near and far solutions are nothing but the
mid solutions when taking x ¼ 2 and x → ∞, respectively.
Therefore, the near and far expansions are still trivial up to
second relative order, allowing us to use the simpler method
described in the main text to second relative order. The
solutions presented in this appendix for the midexpansion
coincide with the solutions presented in Sec. IV B–IV C.

[1] R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron.
Soc. 179, 433 (1977).

[2] R. Narayan and J. E. McClintock, Mon. Not. R. Astron. Soc.
419, L69 (2012).

[3] J. F. Steiner, J. E. McClintock, and R. Narayan, Astrophys.
J. 762, 104 (2013).

[4] R. Blandford, D. Meier, and A. Readhead, Annu. Rev.
Astron. Astrophys. 57, 467 (2019).

[5] Y. Chen et al., Astrophys. J. 913, 93 (2021).
[6] K. Akiyama et al. (Event Horizon Telescope Collaboration),

Astrophys. J. Lett. 875, L5 (2019).
[7] K. Akiyama et al. (Event Horizon Telescope Collaboration),

Astrophys. J. Lett. 910, L13 (2021).
[8] J.-Y. Kim et al. (Event Horizon Telescope Collaboration),

Astron. Astrophys. 640, A69 (2020).
[9] V. S. Beskin and I. V. Kuznetsova, Nuovo Cimento B 115,

795 (2000).
[10] J. C. McKinney and C. F. Gammie, Astrophys. J. 611, 977

(2004).
[11] K. Tanabe and S. Nagataki, Phys. Rev. D 78, 024004

(2008).
[12] A. Tchekhovskoy, R. Narayan, and J. C. McKinney,

Astrophys. J. 711, 50 (2010).
[13] Z. Pan and C. Yu, Phys. Rev. D 91, 064067 (2015).
[14] G. Grignani, T. Harmark, and M. Orselli, Phys. Rev. D 98,

084056 (2018).
[15] J. Armas, Y. Cai, G. Compére, D. Garfinkle, and S. E.
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