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Development and Validation of the STEM Study 

Strategies Questionnaire for STEM College Students 
 
Abstract 
 
In this research-based paper, we discuss the development of a measure of Rice University 
students’ STEM study strategies and then explore the measure’s correlation with several 
important psychological outcomes in a sample of underprepared first-year STEM students 
(n=94). STEM attrition remains a pressing concern nationally, particularly for students who took 
less rigorous STEM courses in high school, a population that disproportionally comprises 
underrepresented minorities. The authors developed an 11-item measure of STEM-specific study 
strategies, termed the STEM Study Strategies Questionnaire. We explored STEM-specific 
identity, self-efficacy, and career aspirations, as well as perceived utility of attaining a STEM 
degree, using a model based on Eccles and Wigfield’s (2002) expectancy-value framework of 
achievement. An exploratory factor analysis found a four-factor solution to the newly developed 
scale: Group Work in STEM, Active STEM Learning, Interactions with STEM Professors, and 
STEM Exam Familiarity. The authors found significant moderate to strong correlations among 
all psychological variables, as well as with the Group Work and STEM Exam Familiarity factors. 
Next steps for this research are to develop further measure items to capture each of the four 
factors and to conduct confirmatory analyses on different samples of STEM students, both those 
who are relatively underprepared and appropriately prepared for college STEM coursework.  
 
Introduction 
 
STEM retention is an issue of national importance. Though there are undoubtedly systemic 
issues that pervade the STEM pipeline and hinder underrepresented groups in particular (and 
lead to higher attrition rates), weaker science and math preparation at the high school level also 
directly links to lower college STEM performance. High school STEM classes, particularly in 
lower-resourced schools, are designed to meet general state education standards rather than 
teaching STEM as a “scientific discipline” [1]. In particular, Black and Hispanic students are 
more likely to attend high schools that have fewer academic resources and advanced course 
options [2] and graduate from high school underprepared for college-level science and math [3]. 
Further, high-ability college students from less competitive high schools may have been unable 
to choose college-track courses, meaning that their courses may not have been challenging 
enough to engage in and develop in-depth STEM study skills [4]. When these students enter 
college, they may struggle to achieve high performance in their STEM classes for the first time.  
 
More effective study strategies, which are behaviors that may result from students’ beliefs and 
attitudes about themselves and STEM, may be needed to succeed in difficult college STEM 
coursework. Certain learning approaches consistently predict academic performance, including 
rehearsal of content, metacognitive strategies to evaluate self-learning, and self-regulation to 
persist in goal-directed learning behaviors [5]. However, many college students do not use the 
most effective study habits [6]. For example, Karpicke et al. [7] found that undergraduates 
studied most often by re-reading their textbooks and reviewing their class notes rather than 
actively testing their recall. Another study found that over half of college students studied for 



their exams in a single session [8], rather than spacing out their learning. Hora and Oleson [9] 
found in a qualitative study that almost half of STEM students reported “cramming” for their 
exams, meaning they began studying for an exam sometime from a few days before the exam to 
the night before it.  
 
In terms of STEM-specific studying requirements, STEM as a discipline is distinct in many ways 
from other college majors. It involves scientific inquiry, problem-solving (often collaboratively), 
creativity, and a broad understanding of interdisciplinary concepts and how they relate to each 
other [10]. In particular, math is known to be more cognitively challenging than many other 
traditional academic subjects [11] and requires effective planning for success, not just consistent 
effort [12]. Researchers have argued that STEM education should equip students to interact with 
knowledge and solve complex problems, seek relevant information, and think critically [13]. 
Therefore, unique study strategies beyond general learning techniques derived from broader 
educational research might be effective for STEM students. 
 
The findings on STEM study strategies suggest considerable variability in students’ study habits 
and their corresponding effectiveness, indicating that a study skills measure might be able to 
capture sufficient variability in STEM students’ learning behaviors in order to predict 
meaningful STEM outcomes. 
 
To frame our conceptualization of the interplay among STEM study strategies and psychological 
constructs of interest, we use the well-known expectancy-value achievement model by Eccles 
and Wigfield [14]. In this model, students’ self-schemata (which we frame in this study as STEM 
identity) predicts their expectations of success (which we frame as students’ self-efficacy), which 
predicts their achievement-related choices (which we frame as STEM career aspirations as well 
as STEM study strategies), as do the subjective values students assign a task (which we frame as 
perceived STEM degree utility). 
 
In this model, self-efficacy can be viewed as the extent to which students believe they are 
capable of learning and understanding academic topics, as well as successfully performing 
academic tasks to their own standards [15]. Career aspirations in STEM reflect the extent to 
which students believe a STEM degree will be necessary for their career goals. STEM identity is 
the extent to which people perceive themselves to have interest and ability in one or more STEM 
topics and have integrated this identity as part of their gender, race, and other cultural identities 
[16]. Finally, STEM utility is the extent to which students feel that a STEM degree will be 
helpful in helping them obtain their long-term career goals. See Figure 1 for our adapted model. 
 
 
 
 



 
 
 
Figure 1. Adapted model based on Eccles and Wigfield’s (2002) expectancy-value model of 
achievement.  
 
 
Current Study 
 
This study comprised a two-part process of 1) developing a measure of STEM study skills and 2) 
conducting an exploratory factor analysis (EFA) using a group of underprepared college STEM 
students as a sample. 
 
Psychological Variables 
 
Within this achievement framework, study strategies as achievement-related choices may be part 
of an interplay among student’s self-schemata (i.e. STEM identity), their expectations of success 
(i.e. self-efficacy), their subjective task value (i.e. STEM degree utility) and their other 
achievement-related choices (i.e. STEM career aspirations). 
 
STEM self-efficacy. We used the 8 self-efficacy items from the Motivated Strategies for Learning 
Questionnaire [17], altering the items to refer to STEM in particular, with options ranging from 1 
(strongly disagree) to 7 (strongly agree). Items include “I'm certain I can understand the ideas 
taught in my STEM courses” and “I am sure I can do an excellent job on the problems and tasks 
assigned for my STEM courses.” Cronbach’s alpha was .92. 
 
STEM career aspirations. This variable was assessed using 5 items from a Scientific Possible 
Selves measure [18] ranging from 1 (strongly disagree) to 5 (strongly agree). Items include “I 
expect to have a strong professional STEM career in the future” and “I have always hoped to 
have a STEM job one day.” Cronbach’s alpha was .80. 
 



STEM identity. Items were based on the Academic Self-Description Questionnaire II [19] and a 
STEM intrinsic value scale [20], resulting in a 10-item measure ranging from 1 (strongly 
disagree) to 5 (strongly agree). Items include “I consider myself to be a person who does well in 
STEM disciplines” and “I'm proud of my ability to do well in STEM courses.” Cronbach’s alpha 
was .92. 
 
Perceived utility of a STEM degree. STEM degree utility was measured with a 5-item scale [21] 
ranging from 1 (strongly disagree) to 5 (strongly agree). Items include “I need to do well in my 
STEM courses to be able to pursue my career goals” and “Getting a degree in a STEM discipline 
will be important for reaching my long term career goals.” Cronbach’s alpha was .93. 
 
Stage 1: Developing the STEM Study Strategies Questionnaire (SSSQ) 
 
Three subject matter experts (SMEs) at Rice University drew from their own experience 
personally instructing, advising, and in two cases designing new courses for college STEM 
students to rationally generate items they believed to be critical to success in STEM coursework. 
Key insights were provided by the literature on best studying practices, curricula of similar 
programs at analogous institutions, and students’ performance on individual exam questions in 
one gateway course. Two SMEs were STEM professors (one in mathematics and one in 
bioengineering) who contributed to the design of Rice’s STEM summer bridge program (the 
Rice Emerging Scholars Program), and the third was a director of Rice’s programming for less-
prepared STEM students. The mathematics professor, who has worked at Rice University since 
1988 and is past chair of the mathematics department, is also co-founder and faculty director of 
the university’s NSF-funded STEM four-year transition program. The bioengineering professor 
co-designed a first-year engineering class that emphasizes team learning and solving real-world 
problems. The program director has managed the STEM bridge program since its inception and 
provides academic advising to STEM students throughout the school year. All three SMEs have 
been actively involved with university efforts to improve the persistence and performance of 
undergraduate STEM students. 
 
The items the SMEs designed reflected the strategies needed for STEM students to succeed in 
Rice’s traditional lower-level STEM sequence, which includes calculus, chemistry, physics, and 
engineering, and persist in lower-level STEM coursework that may be challenging and 
potentially discouraging to freshman students, especially those entering the university from 
weaker academic backgrounds. 
 
This item generation process resulted in an 11-item measure using a 7-point Likert scale ranging 
from “Strongly Disagree” to “Strongly Agree” (the scale’s format was chosen to match the well-
established Motivated Strategies for Learning Questionnaire’s 7-point scale, including its use of 
an agreement rather than a frequency scale) that we have termed the STEM Study Strategies 
Questionnaire (SSSQ). The items are included in Table 1.  
 
 
 
 
 



Stage 2: Scale Administration and EFA 
 

Participants 
 

Participants (n=94) were first-year Rice STEM students in the 2016 or 2017 matriculating class 
who were identified as relatively underprepared for STEM coursework by university 
administrators based on students’ high school records, including their STEM AP and IB credits, 
an internal rating system the university uses to evaluate the rigor of a high school’s course 
offerings and quality of education, as well as low scores on a math and science diagnostic exam 
required of all matriculating STEM students at the university. However, these students, who 
were primarily underrepresented minorities, were selected for full admission into Rice, which is 
a highly selective university (the median Math SAT score for incoming STEM majors is 
approximately 770), meaning that their overall academic aptitude was strong (i.e. their high 
school GPAs were high, as were their standardized test scores).  
 
For this study, STEM students were characterized as those originally matriculating in 
mathematics, engineering, or natural sciences. Social sciences and humanities majors were 
excluded, as were kinesiology majors, who do not have the same core major requirements as 
other STEM majors at the university. 
 
Statistical methods 

 
Exploratory factor analyses were conducted in SPSS. Based on Tinsley and Tinsley’s [22] 
recommendation of 5-10 participants per item in a factor analysis, this sample of 94 students 
appears to be appropriate, as it represents approximately 8.5 students per item in this 11-item 
scale. Correlational and item analyses were also conducted in SPSS. 

 
Procedure 
 
During students’ first two weeks of classes their first semester (Fall 2016 or Fall 2017), we 
administered the SSSQ as part of a larger questionnaire administered to STEM students via 
Qualtrics. The survey was optional, and students received $20 for completing the survey. The 
response rate was approximately 59%. We also captured four STEM psychological constructs of 
interest in this study: STEM identity, STEM self-efficacy, STEM career aspirations, and 
perceived utility of a STEM degree. 
 
Results 

 
Exploratory factor analysis 
 
We ran an exploratory factor analysis on the administration of the SSSQ using principal factors 
analysis and varimax rotation. We found evidence for a four-factor solution using the criteria of 
an Eigenvalue greater than 1 and a review of the scree plot. See Table 1 for the results of this 
analysis. 
 
 



Table 1. Matrix of SSSQ Exploratory Factor Analysis 
 
Factors and Items 1 2 3 4 
Factor 1: Group Work in STEM 

    

1 I talk to other students in my study group to ensure I 
understand major concepts. 

.889 .045 .123 .033 

2 I work on class assignments in groups. .784 .284 .075 .061 
3 I help others in my study group understand concepts and 

solve homework problems. 
.764 -.123 .302 .143 

Factor 2: Active STEM Learning Strategies 
    

4 I rework group assignments on my own to be sure I 
understand them. 

.210 .781 -.017 .118 

5 I rework homework problems before tests to make sure I 
can still do them. 

.129 .717 -.036 .155 

6 I complete any required reading before class to ensure I 
understand the major concepts. 

-.171 .566 .214 .078 

7 I have a structured plan to solve word problems on 
homework and tests. 

.233 .497 .470 -.507 

Factor 3: Interactions with STEM Professors 
    

8 I ask my instructors questions during or after class. .149 -.080 .844 .177 
9 I go over my completed tests and assignments with the 

instructor. 
.201 .186 .789 .040 

Factor 4: STEM Exam Familiarity 
    

10 I pick up my previous tests and rework problems I got 
wrong. 

.088 .357 .371 .733 

11 I take timed practice tests. .429 .297 .071 .587 
 
The SSSQ factors broadly referred to items representing 1) Group Work in STEM (items 1, 2, 3); 
2) Active STEM Learning Strategies (items 4, 5, 6, 7); 3) Interactions with STEM Professors 
(items 8, 9); and 4) STEM Exam Familiarity (items 10, 11). 
 
Loadings ranged from a low of .497 (item 7 in the Active STEM Learning Strategies Factor) to a 
high of .889 (item 1 in the Group Work in STEM factor). In the social sciences, items with 
loadings of .400 or higher, although representing low to moderate correlations in absolute terms, 
are generally accepted as appropriate to include within a single factor [23]. 
 
Internal consistency 
 
Cronbach’s alpha for the sample was .84 for the Group Work factor, .67 for the Active STEM 
Learning Strategies factor, .74 for the Interactions with STEM Professors factor, and .63 for the 
STEM Exam Familiarity factor. Cronbach’s alpha for the full 11-item measure was .79.  
 
 
 



Correlations 
 
We examined correlations between the four scale factors and the psychological variables of 
interest. Though the SSSQ and MSLQ are on a 7-point scale and the other measures in this study 
are on a 5-point scale, correlation coefficients are independent of scale intervals, and 
standardization is not necessary when conducting intraindividual correlational analyses [24].  
 
In this analysis, all correlations among the psychological variables were significant and moderate 
to large. The STEM Group Work Factor correlated moderately with all psychological constructs 
(ranging from r=.34 to r=.49), and the STEM Exam Familiarity factor had significant small to 
moderate correlations with all psychological constructs (ranging from r=.24 to r =.51). The 
Active STEM Learning Strategies factor had a small correlation with STEM Identity (r =.22), as 
did the Interactions with STEM Professors factor (r =.29).  
 
The SSSQ composite scale had moderate correlations with all psychological variables (ranging 
from r=.34 to r=.44). Additionally, some of the scale factors correlated with each other. The 
Group Work factor correlated significantly with the other three factors, as did the STEM Exam 
Familiarity Factor. The Active STEM Learning Strategies factor also correlated with the 
Interactions with STEM Professors factor (r = .29). More data will be necessary in the future to 
further examine the psychometric properties of the SSSQ and its four subscales. 
 
See Table 2 below for the full correlation matrix. 
 
 
Table 2. Correlation Matrix of STEM Psychological Constructs and SSSQ Factors 
 

  1 2 3 4 5 6 7 8 9 
1 STEM Identity [.92] 

    
    

2 STEM Self-Efficacy .59** [.92] 
   

    
3 Perceived Utility of 

STEM Degree 
.51** .53** [.93] 

  
    

4 STEM Career 
Aspirations 

.60** .60** .70** [.80] 
 

    

5 SSSQ Group Work .48** .49** .36** .37** [.84]     
6 SSSQ Active STEM 

Learning Strategies 
.22* .09 .14 .18 .38** [.67]    

7 SSSQ Interactions with 
Professors 

.29** .21 .15 .17 .28** .29** [.74]   

8 SSSQ Exam Familiarity .24* .24* .37** .38** .51** .43** .45** [.63]  
9 SSSQ Composite .44** .37** .34** .37** .75**a .68**a .73**a .78**a [.79] 

 
Note: Cronbach’s alpha on diagonal in brackets; * p < .05, ** p < .01; a part-whole correlations 
 
 
 



Discussion 
 
We found a four-factor solution of the SSSQ using exploratory factor analysis. Our four factors 
were named Group Work in STEM, Active STEM Learning Strategies, Interactions with STEM 
Instructors, and Test Familiarity. These factors align well with several major learning theories. 
 
Both the Group Work in STEM and STEM Exam Familiarity factors had small to moderate 
correlations with all other psychological variables. The Group Work factor may reflect 
cooperative learning theory, which addresses how students construct knowledge collectively. It 
is linked to the effectiveness of group work by increasing both learning and positive attitudes 
toward the subject being learned [25]. When completing group assignments, group members use 
each other as resources and depend on each other to achieve the highest success. The STEM 
Exam Familiarity factor may reflect findings on the effectiveness of practice testing and test 
familiarity, which have been linked to STEM performance. For example, Talley and Scherer [26] 
found that practice testing improved college students’ exam performance on a complex 
neurology topic, and Dunlosky and colleagues [27] cite practice testing in general as one of the 
most effective study techniques. Both factors support the study’s adapted model, in that these 
study strategies are the result of the other psychological variables in the model and therefore 
should correlate with them. 
 
Conversely, the Active STEM Learning Strategies and Interactions with STEM Instructors 
factors both demonstrated small correlations with STEM identity and no significant relationships 
with the other psychological constructs. The Active STEM Learning factor, which includes items 
relevant to reworking assignments and planning how to solve difficult problems, may capture a 
combination of behavioral learning and information processing strategies. Behavioral learning 
theory emphasizes learning and retention acquired through exposure to and practice of material 
[28], and information processing theory describes how learners incorporate new knowledge into 
their existing knowledge set and increase their ability to retain new information [29]. The 
Interactions with STEM Instructors factor, which includes asking instructors questions and 
reviewing exams with instructors, may reflect a combination of behavioral learning and 
initiative-taking strategies. Students who exhibit initiative-taking behavior, such as asking 
questions in class and using professors as resources, have higher academic engagement in 
introductory STEM classes [30]. Behavioral learning theory has also linked direct instruction to 
retention [31], which may capture the actions of students who seek further explanations from 
their STEM instructors. Because both factors only correlated with the first stage of the 
expectancy-value model of achievement (the student’s goals and self-schemata), the influences 
of these factors may impact identity formation, but they do not seem to persist into the later, 
more behaviorally-focused outcomes in the model. 
 
Some of the items in the SSSQ may also be implicitly capturing distributed practice, in that the 
described behavior would be difficult to implement immediately before taking an exam (for 
example, asking an instructor questions before or after class, or consistently completing required 
reading before class). “Distributed practice,” or spreading out the studying process over a certain 
time period, has been consistently linked to better long-term recall [32]. 
 



Correlations among all psychological constructs were moderate to large, and the composite 
SSSQ scale demonstrated moderate correlations with all psychological constructs. Overall, our 
findings demonstrate that STEM-specific study behaviors may be assessed on a new scale and 
load onto distinct factors that correlate with psychological variables relevant to STEM 
achievement. 
 
There are several notable limitations to this study. First, the type of sample is a limitation. This is 
a targeted sample of high-achieving but academically underprepared STEM students. This 
measure would need to be validated on different samples to determine whether scale correlations 
change for different groups. Whether effective strategies differ by STEM class (an engineering 
versus calculus course, for instance) is also an area for future research. Further, as with all 
correlational studies, we cannot assume causal relationships between study strategies and STEM 
psychological outcomes. 
 
Future Directions and Conclusion 
 
This study is a first step in the development of a study skills assessment. Our next steps include 
conducting a confirmatory factor analysis on a separate sample of STEM students, as well as 
generating items to ensure that each factor captures at least the generally recommended three 
items per subscale [33] and refining scale items to further increase the reliability of the four 
factors. We also plan to explore whether there are differences in the most effective learning 
strategies for different types of STEM classes, as well as for classes that emphasize STEM 
technical skills. 
 
As the students in this study proceed into their second and third years at the university, we also 
plan to explore the SSSQ’s predictive validity for objective STEM outcomes, including STEM 
retention and STEM GPA. Group work, for example, may increase students’ persistence in 
STEM through both exposure to STEM topics and exposure to students who are also persisting 
as STEM majors. Additionally, group studying may increase individual learning, which may in 
turn increase STEM grades. Finally, we will also determine whether the scale has predictive 
validity over longer time periods on the psychological variables assessed in this study.  
 
We are optimistic about the potential to develop a reliable measure of STEM study strategies, as 
well as explore whether intervening to change students’ study behaviors can improve important 
STEM outcomes. 
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