
Hybrid Workload Scheduling on HPC Systems

Yuping Fan, Zhiling Lan

Illinois Institute of Technology

Chicago, IL

yfan22@hawk.iit.edu, lan@iit.edu

Paul Rich, William Allcock

Argonne National Laboratory

Lemont, IL

{richp,allcock}@anl.gov

Michael E. Papka

Argonne National Laboratory

Northern Illinois University

papka@anl.gov

Abstract—Traditionally, on-demand, rigid, and malleable ap-
plications have been scheduled and executed on separate systems.
The ever-growing workload demands and rapidly developing
HPC infrastructure trigger the interest of converging these
applications on a single HPC system. Although allocating the
hybrid workloads within one system could potentially improve
system efficiency, it is difficult to balance the tradeoff between
the responsiveness of on-demand requests, incentive for malleable
jobs, and the performance of rigid applications. In this study,
we present several scheduling mechanisms to address the issues
involved in co-scheduling on-demand, rigid, and malleable jobs
on a single HPC system. We extensively evaluate and compare
their performance under various configurations and workloads.
Our experimental results show that our proposed mechanisms
are capable of serving on-demand workloads with minimal delay,
offering incentives for declaring malleability, and improving
system performance.

Index Terms—cluster scheduling, high-performance comput-
ing, on-demand jobs, rigid jobs, malleable jobs

I. INTRODUCTION

The tremendous compute power with high bandwidth mem-

ory and enormous storage capabilities makes high performance

computing (HPC) facilities ideal infrastructures for various

types of applications. The main tenant of HPC systems is

batch applications, which are tightly coupled parallel jobs

and are rigid in size. On-demand applications are time-critical

applications requiring quick response and thus are used to

running on their dedicated clusters. As the sizes of on-

demand applications are rapidly expanding in recent years, the

dedicated clusters cannot keep up with the rapid expansion in

on-demand applications. As a result, HPC system becomes a

more practical solution for on-demand applications. Malleable

applications are loosely coupled applications consisting of a

series of tasks and therefore they can adapt their sizes to

changes in hardware availability. Malleable applications are

typically running in datacenters. In recent years, an increas-

ing number of HPC systems are equipped with accelerators.

The superior computing power combined with the emerging

accelerators makes HPC systems an attractive alternative for

malleable applications [1], [2].

The production HPC cluster schedulers, such as Slurm,

Moab/TORQUE, PBS, and Cobalt [3]–[6], adopt the tradi-

tional batch job scheduling model, where users request a

fixed amount of resources for a specific amount of time,

while the scheduler decides when and where to run each job

based on job priority and system availability. A number of

studies attempt to address the hybrid workload scheduling on

a single HPC system. Research on co-scheduling rigid and

on-demand applications often aims at the high responsiveness

of on-demand jobs. The common strategies include predicting

on-demand jobs’ requests, reserving resources for on-demand

jobs, and preempting rigid jobs to make room for on-demand

jobs [7]–[11]. Other studies focus on co-scheduling malleable

jobs with rigid jobs on HPC systems [12]–[23]. Unfortunately,

these studies do not address the problem of co-scheduling all

three types of applications, i.e., on-demand jobs, rigid jobs,

and malleable jobs. Hence, the scheduling implications of co-

running these applications are unknown.

Cluster scheduling consists of two components: job sched-

uler and resource manager, where job scheduler determines

when and which user jobs should be allocated to system re-

sources, and resource manager monitors and manages resource

allocations. Executing hybrid workloads on a single HPC

system has several benefits, such as supporting ever-increasing

on-demand job sizes, reducing resource fragmentation, and

improving system utilization. However, this is a challenging

task at both job scheduling level and resource management

level. The job scheduler needs to maintain the delicate balance

between several conflicting objectives, i.e., quick response

to on-demand jobs, high system utilization, the incentive for

shrinking malleable jobs, and low impact on rigid jobs. The

resource manager has to execute the more complicated and

frequent operations from job scheduler, i.e., start, preemption,

shrink, and expansion of user jobs.

In this paper, we concentrate on addressing HPC hybrid

workloads problem from the job scheduling aspect. We present

six mechanisms for co-scheduling all three types of applica-

tions (i.e, batch, on-demand, and malleable applications). Our

design intends to meet the demands from different applica-

tions, while also maximizing system utilization. Our proposed

mechanisms are designed to be used in conjunction with

the existing site policy: while a site policy determines the

order of waiting jobs, our mechanisms manipulate running

jobs in order to provide timely service to on-demand jobs

with minimal negative impact on rigid and malleable jobs.

Our design is based on the fact that it is often possible for

on-demand jobs to determine their demand within a short

time (15-30 minutes) before their actual arrivals [7]. Upon

receiving on-demand job’s advance notice, we provide both

non-invasive and invasive mechanisms to reserve resources

for the on-demand job. Once an on-demand job arrives, we

provide several mechanisms to immediately vacate nodes

470

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/22/$31.00 ©2022 IEEE
DOI 10.1109/IPDPS53621.2022.00052

20
22

 IE
EE

 In
te

rn
at

io
na

l P
ar

al
le

l a
nd

 D
ist

rib
ut

ed
 P

ro
ce

ss
in

g
Sy

m
po

siu
m

 (I
PD

PS
) |

 9
78

-1
-6

65
4-

81
06

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IP
DP

S5
36

21
.2

02
2.

00
05

2

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 15,2022 at 04:53:29 UTC from IEEE Xplore. Restrictions apply.

from running malleable and rigid jobs. By combining the

mechanisms used at on-demand job’s advance notice and its

arrival, we propose six mechanisms to handle hybrid workload

scheduling problems.

Moreover, we conduct a series of trace-based simulations

using various workloads generated based on real workload

traces collected from Theta [24] at Argonne Leadership Com-

puting Facility (ALCF) and Cori [25] at National Energy Re-

search Scientific Computing (NERSC) . These experiments not

only allow us to extensively evaluate different co-scheduling

methods, but also help us gain valuable insights regarding co-

scheduling different workloads on HPC systems. The results

show that all of the proposed mechanisms achieve quick

responsiveness for on-demand jobs. Additionally, the results

reveal the impact of different mechanisms on system perfor-

mance and the performance on malleable and rigid jobs. More

importantly, we provide valuable insights for choosing these

mechanisms under different situations.

II. RELATED WORK AND CHALLENGES

A. HPC Application Types

Rigid job is the most common type of job in HPC envi-

ronments [26]. Rigid jobs have fixed resource requirements

throughout their life cycle. Most parallel applications, such as

extreme-scale scientific simulations and modeling, are rigid in

nature, requiring inter-process communication through mes-

sage passing, and checkpointing for fault tolerance. They are

tightly coupled applications that cannot be decomposed to a

series of small-sized tasks and are prone to failure due to their

sizes. In order to handle hardware failures, rigid applications

checkpoint regularly and restart from the latest checkpoint in

the event of an interruption.

On-demand job is a time-critical application needed to be

completed in the shortest time possible. An example of the on-

demand jobs is data analytical workloads after experiments [7].

Traditionally, to ensure high responsiveness, on-demand jobs

are running on dedicated small clusters. This leads to very low

cluster utilization. The rapid experimental expansion requires

increasingly large computing capabilities, which cannot be

fulfilled by small clusters. The use of large-scale HPC systems

becomes a viable solution for the ever-increasing on-demand

workloads.

Malleable job is another type of parallel job whose sizes

can adapt to the number of nodes assigned to them. A mal-

leable job specifies the minimum and the maximum number

of nodes. They can shrink down to the minimum sizes or

expand up to the maximum sizes based on resource avail-

ability. Typically, a malleable job consists of loosely coupled

small-sized tasks and the running tasks can be dynamically

adjusted based on the assigned nodes. In addition, preemption

of malleable jobs causes less overhead than rigid jobs, because

they can skip over the finished tasks and resume from the

interrupted tasks. The typical examples of malleable jobs are

high throughput jobs [27], multi-task workflows [14], machine

learning applications, and hyperparameter searches in deep

neural networks. While traditionally separated infrastructures

have been used for rigid jobs and malleable jobs [28], [29],

the next-generation HPC systems provide not only tremendous

compute power on a single node (CPU and GPU), but also

enormous high bandwidth memory, making them efficient

platforms for both types of workloads. As a result, malleable

applications are gaining increasing traction on HPC systems

in recent years.

B. Job Scheduling in HPC

HPC job scheduling is traditionally designed to manage

and assign rigid jobs to resources. The resource allocation

is commonly at the granularity of a node. Well-known HPC

schedulers include Slurm, Moab/TORQUE, PBS, and Cobalt

[3]–[6]. When submitting a job, a user is required to provide

job size and job runtime estimate. At each scheduling instance,

the scheduler orders the jobs in the queue according to site

policies and resource availability and executes jobs from the

head of the queue [30]. The most widely used HPC job

scheduling policy is First Come First Serve (FCFS) with

EASY backfilling [31]. FCFS sorts the jobs in the queue

according to their arrival times, while backfilling is often used

in conjunction with reservation to enhance system utilization.

Backfilling allows subsequent jobs in the queue to move

ahead under the condition that they do not delay the existing

reservations.

In the realm of executing on-demand jobs and rigid jobs

on HPC systems, several groups have proposed to statically

or dynamically reserve resources for on-demand requests.

Dynamical reservation was achieved by predicting the on-

demand request patterns [7], [8]. Another widely adopted

technique to ensure timeliness of on-demand jobs is to preempt

rigid jobs [9]–[11]. In terms of accommodating malleable jobs

and rigid jobs on HPC systems, several attempts have been

made to shrink malleable jobs in order to reduce resource

fragmentation problems [12], [15], [21], [22]. To the best of

our knowledge, this is the first attempt to co-schedule all three

types of jobs (i.e., rigid, on-demand, and malleable) on a single

HPC system.

Our work also differs from existing cloud resource man-

agers like Mesos and Kubernetes [32], [33]. Cloud resource

managers commonly allow jobs to share nodes. As a result,

solutions for addressing bursty on-demand requests often rely

on co-scheduling mixed workloads on a single node via

containers or virtual machines. This is very different from

HPC where a bare metal mode with exclusive node access

is used for running jobs.

Finally, some studies proposed cross-platform solutions. For

example, Ambati et al. optimized operating costs and reduced

wait time by pushing some workloads to cloud providers when

a HPC system was too busy to handle the bursty requests

[34]. However, these solutions are difficult to apply to HPC

workloads, especially rigid jobs, which are highly optimized

based on specific systems and configurations. Additionally, our

study focused on extracting the best performance from a fixed

amount of resources rather than seeking additional resources.

471

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 15,2022 at 04:53:29 UTC from IEEE Xplore. Restrictions apply.

C. Technical Challenges

Managing hybrid workloads on a single large-scale HPC

system offers several benefits, such as boosting system uti-

lization, mitigating system fragmentation, and reducing job

turnaround time. However, the hybrid workloads also pose new

challenges.

• Maximize instant start ratio of on-demand jobs. One of the

primary goals is to maximize the number of on-demand jobs

that can start instantly upon their arrival. By moving the

dedicated allocation of on-demand requests to a common

resource pool, other types of jobs can utilize these resources

and improve system utilization. However, the high system

utilization also makes it extremely difficult to achieve high

on-demand instant start ratio.

• Minimize resource waste. To accommodate the hybrid

workloads, a proper mechanism must take advantage of

job shrink, expansion, and checkpointing strategies. These

strategies come with overheads. For example, to make room

for time-critical on-demand requests, we could preempt

running rigid/malleable jobs and resume them from the latest

checkpoints. These preempted jobs will lose the computa-

tion after the checkpoints. Hence, an effective solution must

take the resource waste into consideration when choosing

running jobs for preemption.

• Incentive of being malleable. For those jobs that are capable

of being adjusted to different sizes, users can either declare

them as rigid jobs or malleable jobs. The designed strategies

need to provide incentives for users to declare them as

malleable jobs by guaranteeing better job performance, e.g.,

lower average job turnaround time. This could discourage

users from lying about their job types.

• Quick decision making. To fulfill time-critical on-demand

requests, the scheduler has to rapidly choose running jobs to

make room for on-demand jobs. Malleable jobs can either be

preempted or shrunk, which leads to additional complexity

and makes the problem non-trivial. A proper design must be

scalable and be capable of making high-quality decisions in

a short time (e.g., in seconds).

III. METHODOLOGY

In this section, we first formally define our hybrid work-

load scheduling problem in §III-A. We then present the six

scheduling mechanisms to solve this problem in §III-B.

A. Problem Formulation

Suppose an HPC system has N identical nodes. Independent

jobs J1, J2, ..., Jn arrive and are scheduled in order. We

assume that jobs cannot share nodes and thus jobs must be

allocated an integral number of nodes. Jobs can be classified

into three categories:

• Rigid job: When submitting a rigid job, a user is required

to provide two pieces of information: the number of nodes

n and job runtime estimate testimate. A rigid job requires

a fixed number of nodes, which cannot be adjusted during

execution. Job’s actual runtime tactual cannot exceed the

job runtime estimate (tactual ≤ testimate); otherwise, the

job will be killed when reaching the runtime estimate [35].

At the beginning of job execution, a job needs some time

tsetup to set up communication and coordination. During

job execution, the job might take regular checkpoints at

frequency tf . In case of interruption, the resumed job will

first set up communication in tsetup time and then resume

from the latest checkpoint. As a result, the resumed job will

lose the computation between the latest checkpoint and the

preempted time.

• On-demand job: On-demand jobs are time-critical applica-

tions, which needed to start within a very short time after

submission. On-demand jobs are often possible to determine

their resource need within a short time (15-30 minutes)

before submission. Advance notice includes the following

information: the estimated job arrival time, job size, and job

runtime estimate. Based on the on-demand job’s estimated

arrival time and actual arrival time, on-demand jobs can

be categorized into four groups as shown in Figure 1, i.e.,

without advance notice, with accurate advance notice, arrive

early, and arrive late.

Fig. 1: Four types of on-demand jobs.

• Malleable job: When submitting a malleable job, a user

provides the following information: minimum job size nmin,

maximum job size nmax, job estimate runtime when running

at maximum job size testimate. Similar to rigid jobs, we

consider setup time at the beginning of the execution. A

malleable job is able to run on any integer nodes between

minimum job size and maximum job size (nmin ≤ n ≤
nmax). We assume the linear speedup in addition to the con-

stant setup overhead. Therefore, we can model job’s actual

runtime as: tactual = tsingle/n+ tsetup. Here, tsingle is the

application’s runtime on a single compute node. Note that

the size of malleable jobs can be adjusted before or during

execution according to scheduling policies, which is slightly

different from the well-adopted definition of malleable jobs

in [26]. A malleable job typically consists of small-sized

tasks and the overhead of changing job size is negligible,

and thus it is reasonable to assume no overhead involves in

job expansion or shrink. In case of preemption, We adopt

Amazon’s two minutes warning strategy on spot instance

[36]. The scheduler provides two minutes for malleable jobs

to make a checkpoint. The resumed malleable jobs will

first take tsetup to set up and then will resume from the

previous preempted time. Note that we take the different

checkpointing strategies for rigid jobs and malleable jobs.

This is because the checkpointing overhead of malleable

472

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 15,2022 at 04:53:29 UTC from IEEE Xplore. Restrictions apply.

jobs is, in general, much lower and more predictable than

that of rigid jobs. Two minutes is sufficient for a malleable

job to store its states to disk and thus it can avoid regular

checkpointing overheads.

The scheduling problem we study is to allocate resources

to on-demand jobs as soon as possible by reserving available

nodes and preempting or shrinking running jobs. We aim

to respond to on-demand jobs in a timely manner while

minimizing the negative impact on rigid and malleable jobs.

B. Mechanisms

We design our hybrid workloads scheduling problem as a

series of decisions triggered by four types of events of on-

demand jobs: advance notice, actual arrival, estimated arrival,

and completion. We propose different strategies to handle these

events accordingly.

1) Advance notice: The advance notice allows the sched-

uler to prepare resources for on-demand jobs before their

actual arrival. We propose three mechanisms to handle on-

demand jobs’ advance notice:

• Do nothing (N). This is the baseline strategy. The scheduler

ignores advance notice and will handle on-demand jobs later

when they actually arrive.

• Collect-until-actual-arrival (CUA). When receiving an on-

demand job’s advance notice, the scheduler first collects

the currently available nodes for this on-demand job. If

more nodes are needed, the scheduler will collect nodes

released by finished jobs until the requested number of nodes

is fulfilled or the on-demand job actually arrives. In case

of competition from multiple on-demand jobs, the released

nodes will be assigned to the on-demand job with the earliest

advance notice.

• Collect-until-predicted-arrival (CUP). Like collect-until-

actual-arrival method, this method first reserves the currently

available nodes for the on-demand job. If the on-demand

job needs more nodes, this method will try to prepare

sufficient nodes at its predicted arrival time. First, it will

collect the nodes that are expected to be released before the

on-demand predicted arrival time. Second, it will preempt

running jobs before the on-demand job’s predicted arrival

time. To preempt which running jobs is determined by pre-

emption overheads. To minimize the preemption overhead,

we try to preempt rigid jobs immediately after they make

a checkpoint. If the on-demand job arrives earlier than its

predicted arrival time, we stop the preparation and use the

strategies in the following subsection to collect more nodes.

Figure 2 uses an example to illustrate the differences

between CUA and CUP. To improve the system utilization,

the nodes reserved for on-demand jobs can be used to run

waiting jobs. First, we try to backfill the waiting jobs that are

expected to finish before the on-demand job’s estimated arrival

time. If some reserved nodes are still idle, malleable jobs will

be selected to run due to their low preemption overhead and

fast draining process. But once the on-demand job arrives, all

these jobs have to be preempted immediately.

2) On-demand job’s actual arrival: When an on-demand

job arrives, the scheduler first checks if there are sufficient

available nodes and reserved nodes to run this job. If that is the

case, the on-demand job can launch immediately. Otherwise,

we propose two strategies to find more nodes for the on-

demand job:

• Preempt-at-actual-arrival (PAA): This method lists all

currently running malleable and rigid jobs in ascending

order of their preemption overheads. For jobs with check-

points, preemption overhead includes re-computation cost

between the preemption and the latest checkpoint and the

setup cost. For jobs without checkpoints, preemption over-

head is the elapsed time from the job start time to the

preemption time. If the total number of the preemptable

nodes is not sufficient, we cannot start the on-demand job

instantly and have to put it to the front of the queue waiting

for additional available nodes. If the preemptable nodes are

sufficient, we preempt jobs from the front of the running

list until the on-demand request is satisfied. We update

the preempted jobs’ estimated runtime, keep their original

submit time, and automatically resubmit these jobs to the

wait queue. The priority of the preempted jobs is determined

by the scheduling policy. For example, FCFS might move

the preempted jobs to the front of the queue, because they

have early first submission times.

Fig. 2: CUA versus CUP. The solid rectangle is the time actually used by a job; the grid rectangle shows the time between

job’s actual and estimated finish time. CUA finds running jobs that actually finished before the on-demand job arrival. In this

example, the nodes released from J1 and J2 will be reserved. CUP finds running jobs that are estimated to be finished before

the on-demand job’s estimated arrival time. Hence, CUP first selects J1; since J2 is expected to finish later than the on-demand

job’s estimated arrival time, it will be preempted immediately after checkpointing (the green dashed line). J2’s unfinished

computation will be resubmitted and resumed later.

473

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 15,2022 at 04:53:29 UTC from IEEE Xplore. Restrictions apply.

• Shrink-preempt-at-actual-arrival (SPAA): This method

first finds all currently running malleable jobs and computes

the maximum number of nodes they can supply by shrinking

to their minimum sizes. If the supply can meet the on-

demand job’s request, the running malleable jobs will shrink

their sizes as evenly as possible. Once the shrink sizes are

determined, the scheduler will linearly adjust the estimated

runtime of the shrunk jobs. If the supply cannot meet, we

use PAA method to handle the on-demand request.

3) On-demand job’s estimated arrival: An on-demand job

may arrive late or even do not show up. To preempt deadlocks,

if an on-demand job has not arrived after a certain period of

time of its estimated arrival time, the scheduler will release

the reserved nodes.

4) Completion of on-demand job: For job fairness, once

an on-demand job is completed, the on-demand job will try

to return its nodes to the lenders. If a job was preempted

by this on-demand job and is still waiting in the queue, the

leased nodes will return to this job and this job will resume

immediately if possible. If a job was shrunk and is still

running, we will expand this job to its original size.

By combining three advance notice strategies with two

job arrival strategies, we obtain six mechanisms to schedule

hybrid workloads on a single HPC system: N&PAA, N&SPAA,

CUA&PAA, CUA&SPAA, CUP&PAA, CUP&SPAA. Current

HPC systems typically require a scheduler to respond in 10-30

seconds [30]. In our experiments, all six mechanisms take less

than 10 milliseconds to make a decision and thus are feasible

for practical deployment.

IV. EXPERIMENTAL SETUP

In this section, we first describe the real workload traces

collected from Theta and Cori, and how to generate traces

from the real traces to represent various scenarios (§IV-A). We

then introduce the baseline configuration for our experiments

(§IV-B) and our simulation environment (§IV-C). Finally, we

list the system- and user-centric metrics for evaluation (§IV-D).

A. Workloads

In our study, two real workload traces are used. Table I

summarizes the traces collected from two production systems,

and Figure 3 gives an overview of job size distributions on

these supercomputers. We select these traces as they represent

different workload profiles: (1) capability computing focusing

on solving large-sized problems, (2) capacity computing solv-

ing a mix of small-sized and large-sized problems. The first

workload is a two-year job log from Theta [24], a capability

computing system located at ALCF. The smallest job allowed

on Theta is 128-node [37]. The second trace is a four-month

job log from Cori [25], a capacity computing system deployed

at NERSC. A majority of its jobs consume one or several

nodes (Figure 3).

Since the traces do not include job type information, we

generate a series of workloads based on the real traces to

cover various job distributions. Studies have been shown that

users tend to submit a bunch of on-demand jobs in a short

TABLE I: Theta and Cori workloads.

Theta Cori

Location ALCF NERSC

Scheduler Cobalt Slurm

System Types Capability computing Capacity computing

Compute Nodes 4,392 12,076

Trace Period Jan. - Dec. 2019 Apr. - Jul. 2018

Number of Jobs 37,298 2,607,054

Max Job Length 1 day 7 days

Min Job Size 128 nodes 1 node

Fig. 3: Job characterization of Theta at ALCF and Cori at

NERSC. The outer circle shows the number of jobs in each

job size category. The inner circle presents the total core hours

consumed by each job size category.

Fig. 4: Job type statistics of the traces used in the experiments.

Fig. 5: The number of on-demand jobs submitted per week

of three randomly generated traces (denoted by blue, orange,

and green lines respectively) on Theta and Cori.

period of time [7]. In order to mimic the bursty on-demand

job submission pattern, we group jobs by their project names

and assume that all jobs belonging to one project have the

same job type. We randomly assign that 10% of projects

submit on-demand jobs, 60% of projects submit rigid jobs

and the rest of projects submit malleable jobs. We made

this assumption because rigid jobs are the main tenant and

malleable jobs are emerging in HPC systems. HPC systems

can support limited amounts of on-demand requests to ensure

their quick response. Figure 4 presents the job type statistics

of the randomly generated traces used in our experiments.

474

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 15,2022 at 04:53:29 UTC from IEEE Xplore. Restrictions apply.

We observe that the job distributions differ significantly on

different traces because different projects have significant

differences in the number of jobs. Cori log contains 76% of

single-node jobs, which cannot change their job sizes. For

those single-node jobs be originally assigned as malleable

jobs, we randomly re-assign them as either rigid or on-demand

jobs. As a result, Cori has a higher percentage of rigid jobs

and a lower percentage of malleable jobs compared to Theta.

Additionally, Cori’s malleable jobs are, on average, larger in

size than rigid and malleable jobs. Figure 5 shows the number

of on-demand jobs submitted per week of three randomly

generated traces. The submission patterns of the different

traces vary significantly and all traces show the bursty on-

demand job submission pattern. This enables us to extensively

evaluate our mechanisms under various scenarios.

B. Configuration

In this section, we present the default configurations for

different types of jobs. By default, jobs are scheduled by FCFS

with EASY backfilling without hardware or software failures.

In terms of rigid jobs, their setup overhead is assigned to be

5%-10% of their runtimes. We assume rigid jobs make regular

checkpoints at the optimum frequency defined by Daly [38].

Based on our experience and the current literature [39]–[41],

we set each checkpointing overhead to 600 seconds if job size

is less than 1K nodes; otherwise, we set it to 1200 seconds.

If the optimum checkpointing interval is longer than the job

runtime, we assume that the job does not make checkpoints.

In terms of on-demand jobs, we equally distribute them into

the following categories: without advance notice, with accurate

advance notice, arrive early, and arrive late. If an on-demand

job arrives early, its arrival time is a random number between

its advance notice and estimated arrival time. If an on-demand

job arrives late, its arrival time is a random number within 30

minutes after its estimated arrival time. We set the threshold to

release the reserved nodes to 10 minutes after the on-demand

job’s estimated arrival time.

In terms of malleable jobs, we set their maximum job size

to be their original requested job size and their minimum job

size to be 20% of their maximum size. The setup overhead is

a random number between 0%-5% of their runtimes. Note

that these configurations are based on our discussion with

experienced system managers and administrators at ALCF.

C. Trace-based Simulation

We compare different scheduling mechanisms through

trace-based simulation. Specifically, a trace-based, event-

driven scheduling simulator called CQSim is used in our

experiments [42]. CQSim contains a queue manager and a

scheduler that can plug in different scheduling policies. It

emulates the actual scheduling environment. A real system

takes jobs from user submission, while CQSim takes jobs by

reading the job arrival information in the trace. Rather than

executing jobs on system, CQSim simulates the execution by

advancing the simulation clock according to the job runtime

information in the trace.

D. Evaluation Metrics

We evaluate the performance of different mechanisms using

several user-level and system-level metrics.

1) Job turnaround time is a user-level metric. It measures

the interval between job submission and completion time.

2) On-demand jobs’ instant start ratio is a user-level metric,

which is calculated as the ratio between the number of

on-demand jobs started instantly and the total number of

on-demand jobs. Note that we do not consider the time to

preempt/shrink nodes upon the arrival of on-demand jobs.

3) Preemption ratio is a user-level metric to measure the

percentage of rigid or malleable jobs being preempted.

4) System utilization is a system-level metric that measures

the ratio of node-hours used for useful job execution to

the total elapsed node-hours. Note that system utilization

excludes wasted computation due to preemption.

V. EVALUATION

To comprehensively evaluate the six proposed mechanisms,

we conduct a series of experiments to compare their per-

formance under various situations/configurations, including

different advance notice settings (§V-B), different checkpoint

settings (§V-C), different malleable job size range settings

(§V-D), and different setup overhead settings (§V-E).

A. Overall Performance

We compare the performance of the five workloads shown

in Table II under different on-demand request accuracies in

Figure 6 (Theta) and Figure 7 (Cori). In this subsection, we

make several interesting observations on overall performance.

In the next subsection, we will analyze the impact of advance

notice accuracies using these figures.

TABLE II: Distribution of on-demand jobs of different work-

loads. Take W1 as an example: 70% of on-demand jobs arrive

without advance notice; 10% of on-demand jobs arrive with

accurate advance notice; 10% of on-demand jobs arrive early;

the rest 10% of on-demand jobs arrive late.

No Notice Accurate Notice Arrive Early Arrive Late

W1 70% 10% 10% 10%

W2 10% 70% 10% 10%

W3 10% 10% 70% 10%

W4 10% 10% 10% 70%

W5 25% 25% 25% 25%

Observation 1. Compared with FCFS/EASY, the proposed

methods boost system utilization and on-demand jobs’ instant

start ratio, while slightly increasing average job turnaround

time.

The proposed methods improve system utilization by more

than 5% on both systems. The on-demand jobs’ instant start

ratio dramatically increases from 22% to 98% on Theta and

from 19% to 99% on Cori. The average jobs turnaround time

slightly increases from 15 to 22 hours on Theta and from 2

to 2.5 hours on Cori, due to job preemption and shrink.

Observation 2. N&PAA has the worst overall performance.

475

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 15,2022 at 04:53:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Scheduling performance on Theta under different advance notice accuracies (shown in Table II). To show the performance

under various situations, we repeat the experiment on ten randomly generated traces and the results in this section are averaged.

Fig. 7: Scheduling performance on Cori under different advance notice accuracies (shown in Table II).

TABLE III: Baseline performance. Baseline algorithm is

FCFS/EASY backfilling without special treatments on on-

demand, rigid, and malleable jobs.

Avg. Turnaround System Utilization On-demand Jobs’ Instant Start Ratio

Theta 15.6 hours 83.93% 22.69%

Cori 1.97 hours 80.27% 18.94%

N&PAA obtains the worst results on average job turnaround

time and system utilization. Additionally, its malleable jobs’

preemption ratio is noticeably higher than other mechanisms.

The long average job turnaround time is caused by job star-

vation. Here, starvation means that jobs were preempted, but

could not resume for a long period of time after preemption.

Although on-demand jobs return their leased nodes to the

lenders, the lenders might not resume immediately, because

those on-demand jobs might need a portion of the preempted

nodes and the rest are moved to the common resource pool.

When the on-demand job is finished, the preempted job can

only reclaim the nodes from the on-demand job and it has to

wait until more nodes are available.

Observation 3. To achieve higher system utilization and lower

malleable jobs’ preemption ratio, SPAA is preferred over PAA.

All three SPAA methods largely reduce malleable jobs’

preemption ratio, while slightly increasing the rigid jobs’

preemption ratio. This is because SPAA attempts to find

shrink options, which reduces malleable jobs’ preemption

ratio. Shrink, in general, has lower overhead and leads to

fewer wasted computation cycles and therefore higher system

utilization.

Observation 4. To obtain lower average job turnaround time

and lower rigid jobs’ preemption ratio, PAA methods are

recommended than SPAA methods, except N&PAA method.

SPAA methods tend to prolong average job turnaround

time, especially malleable jobs, because it reduces all running

malleable jobs’ sizes and prolongs their execution time. On the

other hand, PAA affects fewer running jobs and the preempted

jobs might resume when the on-demand job finishes. However,

N&PAA is an exception. This is because CUA and CUP

prepare some nodes for on-demand jobs before their arrival

and PAA only needs to preempt small-sized running jobs upon

on-demand job arrival. On the other hand, N&PAA is more

likely to preempt large-sized running jobs, which are more

difficult to reclaim their preempted nodes.

It is interesting to notice that PAA methods lead to slightly

lower rigid jobs’ preemption ratio than SPAA methods. Since

476

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 15,2022 at 04:53:29 UTC from IEEE Xplore. Restrictions apply.

SPAA methods first try to shrink malleable jobs, the job

sizes of running jobs are, on average, smaller than that of

PAA methods. When the shrink option is not possible, SPAA

methods need to preempt more running jobs, which causes

slight increases in the rigid jobs’ preemption ratio.

Observation 5. CUA methods, in most cases, perform better

than CUP methods.

CUA methods achieve slightly lower average job turnaround

time and slightly higher system utilization in most cases. CUA

methods passively collect released nodes, while CUP methods

proactively preempt some running jobs before on-demand job

arrival. Therefore, CUA methods trigger fewer preemptions,

leading to less resource waste and higher system utilization.

Observation 6. CUA&PAA, CUA&SPAA, CUP&PAA, and

CUP&SPAA encourage users to honestly declare their mal-

leable jobs.

Compared to rigid jobs, malleable jobs’ turnaround time of

these four methods is noticeably lower on Theta and slightly

lower on Cori. For SPAA methods, although malleable jobs

might need to shrink their sizes upon arrival of on-demand

jobs, they are guaranteed to expand to their original sizes

by reclaiming their released nodes when the on-demand job

finishes. The malleability feature increases the chances of

malleable jobs being chosen to execute, leading to lower

average turnaround time compared to rigid jobs. The better

job performance on malleable jobs discourages users from

declaring malleable jobs as rigid jobs.

Observation 7. N&SPAA method is a good option when rigid

jobs need to achieve low average turnaround time.

N&SPAA achieves the lowest rigid jobs’ average turnaround

time among the six methods. More importantly, rigid jobs yield

similar or even lower average turnaround time compared to

malleable jobs. When an on-demand job arrives, N&SPAA

method first attempts to find shrink options. If there are viable

shrink options, the selected malleable jobs will be shrunk

and prolonged, while running rigid jobs are not impacted.

Upon on-demand job arrival, N&SPAA requests more nodes

than CUA&SPAA and CUP&SPAA. Therefore, N&SPAA has

more noticeable adverse effects on malleable jobs than the

other SPAA methods. Although N&SPAA does not provide

strong incentives for malleable jobs, it is a good option for

system administrators when rigid jobs have higher priority than

malleable jobs.

Observation 8. Malleable jobs’ preemption ratio is noticeably

higher than rigid jobs’ preemption ratio.

This is due to the fact that the preemption overheads of

malleable jobs are lower than rigid jobs. In order to minimize

wasted computation cycles caused by preemption, the running

jobs are preempted in ascending order of their preemption

overheads. Malleable jobs only waste their setup times. On

the other hand, rigid jobs not only waste their setup times

but also lose the computation after the latest checkpoints.

It is interesting to notice that despite the higher preemption

ratio, malleable jobs achieve lower average turnaround times

because they are more likely to run by shrinking their sizes.

Observation 9. All methods achieve extremely high on-

demand jobs’ instant start ratio.

On-demand jobs represent 3%-15% of total capacity. On

average, more than 98% of on-demand jobs start instantly.

There is no significant difference in on-demand jobs’ instant

start ratio between the different methods. On-demand jobs

fail to start immediately because the nodes used by running

on-demand jobs plus this on-demand job exceed the system

capacity. This metric is related to the on-demand jobs’ submis-

sion pattern. Bursty on-demand job submission pattern could

negatively affect their instant start ratio.

Observation 10. Preemption has greater impact on workloads

with large-sized jobs (e.g., Theta).

Compared with FCFS/EASY, our proposed methods in-

crease the average turnaround time by 30% on Theta work-

loads and 17% on Cori workloads. The main difference

between Theta and Cori workloads is that the majority of Cori

jobs are single-node jobs, while the most of Theta jobs are

large-sized jobs. Small-sized jobs, especially single-node jobs,

are more likely to resume after preemption and therefore have

less impact on their turnaround times. On the other hand, large

jobs tend to starve after preemption causing long turnaround

times. On Theta, N&PAA tends to preempt large-sized jobs

upon on-demand job arrival, which leads to extremely longer

average turnaround time than other methods.

B. Impact of Accuracy of Advance Notice

Observation 11. The performance of CUP methods highly

relies on accuracy of advance notice. The more accurate

advance notice, the better performance.

CUP&PAA and CUP&SPAA methods achieve their best

performance on W2, i.e., the workloads with the highest

percentage of on-demand jobs with accurate advance notice.

The accurate advance notice reduces the preemption ratio on

both rigid and malleable jobs and therefore reduces wasted

cycles and improves system utilization. The accurate advance

notice also reduces average job turnaround time due to fewer

interruptions during execution.

Observation 12. The earlier the advance notice, the better

the performance of CUA methods.

CUA methods obtain the lowest average job turnaround time

on W4, i.e., the workloads with the majority of on-demand

jobs arrived late. W4 provides a longer period of time between

advance notice and job actual arrival. As a result, CUA

methods are more likely to collect nodes before the actual

arrival of on-demand jobs, and thus decrease the chances of

preempting or shrinking running jobs upon arrival of the on-

demand jobs. In addition, by preparing more nodes for on-

demand jobs before their arrival, it also slightly improves on-

demand jobs’ instant start ratio.

477

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 15,2022 at 04:53:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Impact of rigid jobs’ checkpointing frequency and failures on scheduling performance on Theta. For each metric, the left

subfigure presents the results on the failure rate of MTBF = 5h and the right subfigure presents the results on MTBF = 50h.

For each subfigure, the x-axis presents the checkpoint interval relative to the optimum checkpoint interval. For example, 50%

means rigid jobs make checkpoints twice as frequent as the optimum checkpoint frequency.

C. Impact of Checkpointing Frequency

Checkpointing is a technique providing fault tolerance for

HPC systems. Different checkpointing frequencies not only

impact the performance of hybrid workload scheduling, but

also affect system’s fault tolerance capability. In order to

comprehensively evaluate the impact of checkpoints, we inject

failures and conduct sensitive study on failures in this subsec-

tion. Mean time between failures (MTBF) and mean time to

repair (MTTR) are two widely used metrics to describe HPC

failures. MTBF measures the average time between failures,

while MTTR is the average time to repair a failure on a

HPC system. Based on the literature [43]–[45], production

HPC systems’ MTBF is typically between 5 and 50 hours

and MTTR is approximately 6 hours. We conduct two sets

of experiments with two levels of MTBF, i.e., 5 hours and

50 hours. Take MTBF = 5h for example: node failures are

randomly injected to simulated systems at the average rate of

5 hours per failure. After a failure, a node will be down for a

period of time Td to simulate the repair time. Td is a randomly

generated number with the mean time of 6 hours. The job

running on failed node needs to either resume from the latest

checkpoint or restart from the beginning if no checkpoint had

been made. Figure 8 presents the scheduling results on Theta

under different checkpointing frequencies and MTBF. Cori

results lead to similar observations. Due to space limitation,

we only present Theta results in the rest of this section.

Observation 13. To achieve better rigid job performance

and system performance, we suggest that rigid jobs take

more frequent checkpoints than the optimum checkpointing

frequency.

All methods benefit from the more frequent checkpoint-

ing frequency. More frequent checkpoints can reduce rigid

jobs’ turnaround time and also improve system utilization.

Daly’s optimum checkpointing frequency is designed for fault

tolerance [38]. However, the interruptions caused by failures

are obviously much less frequent than the preemption caused

by draining nodes for on-demand jobs. Therefore, increasing

checkpointing frequency reduces rigid jobs’ lost computation

and thus reduces their turnaround time. This also helps im-

prove system utilization by reducing preemption overheads.

Observation 14. Failures have negative impact on system

utilization, on-demand jobs instant start ratio, jobs preemption

ratio and rigid jobs average turnaround time. More frequent

checkpoints can mitigate negative effects on rigid jobs.

When reducing MTBF from 50 to 5 hours, we observe

increases in rigid jobs’ average turnaround time and jobs

preemption ratio. We also observe decreases in on-demand

jobs’ instant start ratio and system utilization. Failures on

running rigid or malleable jobs cause higher preemption ratio,

while failures on running on-demand jobs lead to lower

instant start ratio. More job preemptions also lead to higher

preemption overheads and thus lower system utilization. When

nodes running rigid or on-demand jobs fail, these jobs cannot

reduce their sizes by using the remaining functional nodes

leading to prolonged turnaround times. More frequent check-

points can mitigate the negative effects on rigid jobs’ average

turnaround time, because the failed rigid jobs need to do less

re-computation.

D. Impact of Malleable Job Sizes

Figure 9 presents the scheduling results on Theta under

different malleable job size ranges.

Observation 15. Reducing the job size range of malleable

jobs has adverse effects on both system-level and user-level

scheduling performance, especially on SPAA methods.

478

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 15,2022 at 04:53:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Impact of malleable job sizes on scheduling performance on Theta. 20% means malleable job’s minimum size is twenty

percent of its maximum size. The larger the minimum size is, the less flexible the malleable job is.

Fig. 10: Impact of rigid jobs’ setup overheads on scheduling performance on Theta. 0%-5% means rigid job’s overhead is

randomly chosen between 0% to 5% of its runtime.

The increases in the minimum malleable job sizes reduce

the malleable jobs’ size range, causing decreased chances of

shrinking malleable jobs. Therefore, it increases the preemp-

tion ratio of both malleable and rigid jobs, which leads to

slight decreases in system utilization. The changes in minimum

malleable job sizes have a greater impact on SPAA methods,

because SPAA cannot shrink malleable jobs to smaller sizes

for on-demand jobs.

E. Impact of Setup Overheads

Figure 10 presents the scheduling results on Theta under

different rigid jobs’ setup overheads.

Observation 16. The lower the setup overhead is, the better

the scheduling performance is.

When a preempted job resumes, it takes some time to set

up. Therefore, the higher setup overhead means the higher pre-

emption overhead and thus the higher average job turnaround

time. Additionally, higher setup overhead decreases system

utilization by wasting more computation cycles for setup.

Observation 17. If rigid jobs’ setup overheads reduce to the

amount which is similar to malleable jobs’ setup overhead,

the rigid jobs’ preemption ratio will largely increase.

In our experiments, malleable jobs’ setup overhead is set to

0%-5%. If rigid jobs’ setup overhead is reduced to 0%-5%,

we notice the obvious increases in rigid jobs’ preemption ratio

and decreases in malleable jobs’ preemption ratio, especially

on PAA methods. This is because we order running jobs

based on their preemption overheads. If we preempt rigid jobs

immediately after their checkpoints, their preemption overhead

is similar to the overhead of preempting malleable jobs. As a

result, rigid jobs’ preemption ratio is increased.

479

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 15,2022 at 04:53:29 UTC from IEEE Xplore. Restrictions apply.

VI. CONCLUSION

In this paper, we have defined and modeled HPC hybrid

workload scheduling problem on a single HPC system. We

have proposed six mechanisms to reconcile the demands

from on-demand, rigid, and malleable applications. We have

thoroughly evaluated our mechanisms based on two production

HPC system traces. By exploring how different mechanisms

behave under various configurations and workloads, we have

found that it is feasible to accommodate rigid, malleable, and

on-demand jobs on a single HPC system via co-scheduling

mechanisms. Additionally, we have provided several key in-

sights on the mechanisms. In particular, these mechanisms sig-

nificantly improve system utilization. In terms of on-demand

jobs, the mechanisms boost their instant start ratio. Users wait

less time by declaring their jobs as malleable jobs. Although

preemptions slightly increase rigid jobs’ turnaround time, more

frequent checkpoints can mitigate the negative impact due to

lower preemption overhead. To the best of our knowledge, this

co-scheduling study is the first of its kind. We believe that our

findings will be useful in understanding the trade-offs of co-

scheduling these three types of jobs under various situations.

ACKNOWLEDGMENT

This work is supported in part by US National Science

Foundation grants CCF-2109316, CNS-1717763, and CCF-

2119294 and U.S. Department of Energy, Office of Science,

under contract DE-AC02-06CH11357. Job logs from the Cori

system were provided by the National Energy Research Sci-

entific Computing Center operated under Contract No. DE-

AC02-05CH11231.

REFERENCES

[1] Aurora. https://www.alcf.anl.gov/aurora/.
[2] Summit. https://www.olcf.ornl.gov/summit/.
[3] M. Jette, A. Yoo, and M. Grondona. SLURM: Simple Linux Utility for

Resource Management. In JSSPP, 2003.
[4] Moab. http://www.adaptivecomputing.com/ products/hpc-

products/moab-hpc-basic-edition/.
[5] PBS Professional. http://www.pbsworks.com/.
[6] Cobalt. https://www.alcf.anl.gov/cobalt-scheduler.
[7] F. Liu, K. Keahey, P. Riteau, and J. Weissman. Dynamically Negotiating

Capacity between On-Demand and Batch Clusters. SC, 2018.
[8] A. Maurya, B. Nicolae, I. Guliani, and M. Rafique. CoSim: A Simulator

for Co-Scheduling of Batch and On-Demand Jobs in HPC Datacenters.
In DS-RT, 2020.

[9] P. Beckman, S. Nadella, N. Trebon, and I. Beschastnikh. Spruce: A
system for supporting urgent high-performance computing. International

Federation for Information Processing, 2007.
[10] M. Agung, Y. Watanabe, H. Weber, R. Egawa, and H. Takizawa.

Preemptive parallel job scheduling for heterogeneous systems supporting
urgent computing. IEEE Access, 2021.

[11] S. H. Leong and D. Kranzlmuller. A case study - cost of preemption
for urgent computing on supermuc. In HiPC, 2015.

[12] P. Lemarinier, K. Hasanov, S. Venugopal, and K. Katrinis. Architecting
malleable mpi applications for priority-driven adaptive scheduling. Proc.

of the European MPI Users’ Group Meeting, 2016.
[13] M. Anderson, S. Smith, N. Sundaram, M. Capotă, Z. Zhao, S. Dulloor,

N. Satish, and T. Willke. Bridging the Gap between HPC and Big Data
Frameworks. Proc. VLDB Endow, 2017.

[14] M. Salim, T.Uram, T. Childers, Balaprakash P, V. Vishwanath, and
M. Papka. Balsam: Automated Scheduling and Execution of Dynamic,
Data-Intensive HPC Workflows, 2019.

[15] T. Carroll and D. Grosu. Incentive Compatible Online Scheduling of
Malleable Parallel Jobs with Individual Deadlines. In International

Conference on Parallel Processing, 2010.

[16] H. Sun, Y. Cao, and W. Hsu. Fair and Efficient Online Adaptive
Scheduling for Multiple Sets of Parallel Applications. In IEEE 17th

International Conference on Parallel and Distributed Systems, 2011.
[17] A. Souza, M. Rezaei, E. Laure, and J. Tordsson. Hybrid Resource

Management for HPC and Data Intensive Workloads. In CCGRID, 2019.
[18] M. Chadha, J. John, and M. Gerndt. Extending SLURM for Dynamic

Resource-Aware Adaptive Batch Scheduling. In HiPC, 2020.
[19] J. Uisson, O. Sonmez, H. Mohamed, W. Lammers, and D. Epema.

Scheduling Malleable Applications in Multicluster Systems. In IEEE

International Conference on Cluster Computing, 2007.
[20] D. Kumar, Z. Shae, and H. Jamjoom. Scheduling Batch and Heteroge-

neous Jobs with Runtime Elasticity in a Parallel Processing Environment.
In IPDPS PhD Forum, 2012.

[21] J. Hungershofer. On the combined scheduling of malleable and rigid
jobs. In 16th Symposium on Computer Architecture and High Perfor-

mance Computing, 2004.
[22] S. Prabhakaran, M. Neumann, S. Rinke, F. Wolf, A. Gupta, and L. Kale.

A Batch System with Efficient Adaptive Scheduling for Malleable and
Evolving Applications. In IPDPS, 2015.

[23] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao, and
I. Stoica. True Elasticity in Multi-Tenant Data-Intensive Compute
Clusters. In SoCC, 2012.

[24] Theta. https://www.alcf.anl.gov/theta.
[25] Cori. https://docs.nersc.gov/systems/cori/.
[26] D. Feitelson and L. Rudolph. Towards Convergence in Job Schedulers

for Parallel Supercomputers. IPPS, 1996.
[27] I. Raicu, Zhao Zhang, M. Wilde, I. Foster, P. Beckman, K. Iskra,

and B. Clifford. Toward Loosely Coupled Programming on Petascale
Systems. In SC, 2008.

[28] I. Sadooghi, J. H. Martin, T. Li, K. Brandstatter, K. Maheshwari,
T. Ruivo, G. Garzoglio, S. Timm, Y. Zhao, and I. Raicu. Understand-
ing the Performance and Potential of Cloud Computing for Scientific
Applications. IEEE Transactions on Cloud Computing, 2017.

[29] Q. He, S. Zhou, B. Kobler, D. Duffy, and T. McGlynn. Case Study for
Running HPC Applications in Public Clouds. HPDC, 2010.

[30] W. Allcock, P. Rich, Y. Fan, and Z. Lan. Experience and Practice of
Batch Scheduling on Leadership Supercomputers at Argonne. In JSSPP,
2017.

[31] A. Mu’alem and D. Feitelson. Utilization, Predictability, Workloads, and
User Runtime Estimates in Scheduling the IBM SP2 with Backfilling.
TPDS, 2001.

[32] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. Joseph, R. Katz,
S. Shenker, and I. Stoica. Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center. NSDI, 2011.

[33] Kubernetes. https://kubernetes.io/.
[34] P. Ambati, N. Bashir, D. Irwin, and P. Shenoy. Waiting Game: Optimally

Provisioning Fixed Resources for Cloud-Enabled Schedulers. SC, 2020.
[35] Y. Fan, P. Rich, W. Allcock, M. Papka, and Z. Lan. Trade-Off

Between Prediction Accuracy and Underestimation Rate in Job Runtime
Estimates. In CLUSTER, 2017.

[36] AWS Spot Instance interruptions. https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/spot-interruptions.html.

[37] Job Scheduling Policy for Theta. https://www.alcf.anl.gov/support-
center/theta/job-scheduling-policy-theta.

[38] J. Daly. A Higher Order Estimate of the Optimum Checkpoint Interval
for Restart. Future Generation Computer Systems, 2006.

[39] A. Moody, G. Bronevetsky, K. Mohror, and B. Supinski. Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System. SC, 2010.

[40] S. Di, M. Bouguerra, L.A. Bautista-Gomez, and F. Cappello. Optimiza-
tion of Multilevel Checkpoint Model for Large Scale HPC Applications.
IPDPS, 2014.

[41] L. Yu, Z. Zhou, Y. Fan, M. Papka, and Z. Lan. System-wide Trade-off
Modeling of Performance, Power, and Resilience on Petascale Systems.
In The Journal of Supercomputing, 2018.

[42] CQSim Github Repository. https://github.com/SPEAR-IIT/CQSim.
[43] D. Tiwari, S. Gupta, and S. S. Vazhkudai. Lazy Checkpointing:

Exploiting Temporal Locality in Failures to Mitigate Checkpointing
Overheads on Extreme-Scale Systems. In DSN, 2014.

[44] B. Schroeder and G. A. Gibson. A Large-Scale Study of Failures in
High-Performance Computing Systems. TDSC, 2010.

[45] T. J. Hacker, F. Romero, and C. D. Carothers. An Analysis of Clustered
Failures on Large Supercomputing Systems. JPDC, 2009.

480

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on August 15,2022 at 04:53:29 UTC from IEEE Xplore. Restrictions apply.

