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Abstract—This paper considers benefits of coding techniques in
recommendation systems operating over wireless channels with
erasures. We identify scenarios where coded broadcasting can
increase the overall user satisfaction at a fixed channel utilization
level. Such opportunities arise both when user preferences are
unknown, and must be explored, and when they are known and
must be exploited to recommend optimally. We determine the
magnitude of the potential gains and show that coding is most
beneficial if users have heterogeneous preferences. Finally, we
provide inequalities that can be evaluated to determine whether
coding would be beneficial for a certain reward structure.

I. INTRODUCTION

Recommendation systems help make better choices for
users who do not have sufficient personal experience with the
alternatives [1]. For example, such systems allow for transfer
of experiences between similar users under the assumption that
their experience with the recommendations will be similar.
Before we can generalize from our users’ experiences, we
first need to learn what they are. This is done by interacting
with the users through Reinforcement Learning [2], a key
component in recommendation systems.

In this paper, we study interactions between recommen-
dation systems in a wireless medium and index coding [3],
[4] techniques. The wireless medium implies that messages
will be broadcast to several users, so for each transmission
we should make the recommendation that best satisfies all
recipients simultaneously. We assume that our system has
continual interaction with the same set of users, but each
transmission is not guaranteed to reach all users. Our goal is
to quantify the advantages that arise if a coded transmission
scheme is allowed in this setting. We make no assumption
that users have initial side information, but instead utilize
messages not received by all users as side information for
coded messages. We show that coding techniques can maintain
the same level of channel utilization while achieving a greater
user satisfaction in several scenarios.

To envision such a wireless recommendation system, you
may think of a shopping mall providing free WiFi to its
patrons. This network also distributes advertisements to the
visitors. To minimize the impact on the network, only enough
time to transmit a single advertisement is allocated at specific
intervals. Since users may move around inside the mall, they
may be unable to receive every transmission, which is modeled
as erasures. The recommendation system must aim to achieve
as high a satisfaction with the advertisements as possible under
the specified bandwidth constraints.
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A. Related work

The trade-off between bandwidth and user satisfaction in
wireless recommendation systems has only recently been
explored. The bandwidth-aware recommendation problem was
introduced in [5], where the problem was formulated with
just a single recommendation round. The server is presented
with a set of users who may have some side information
and must find the optimal message to broadcast, such that
the users achieve the highest possible level of satisfaction.
The authors show the connection to index coding [3] and
pliable index coding [6]. Like these problems, it is also NP-
hard [5]. The work in [7] studies the trade-off that occurs if
more bandwidth is allocated to transmit multiple messages at
each recommendation time. They show that the learning speed
is proportional to the square of the available bandwidth. The
joint design of learning and broadcasting in recommendation
systems is considered in [8], focusing on an online recommen-
dation strategy that first learns (explores) user preferences and
later recommends (exploits) based on the found preferences.

B. Contributions

We study potential advantages of coded broadcast transmis-
sions in recommendation systems. Contrary to prior work, we
include erasures in our broadcast channel model and utilize
them as a source of side information. In this setting, we:

« discuss when coding may benefit the exploration phase;

« characterize how much coding could change the gain in

the exploitation phase;

 determine which reward structure will benefit most from

coding in the exploitation phase;

» provide explicit checks to determine whether coding is

worthwhile in the exploitation phase.

II. PRELIMINARIES

A recommendation system must recommend content of K
types to N users. Users can have different preferences, so
a recommendation from content type k to user n results in
an (expected) reward u, x > 0. These define the preference
matrix g € RV*K, We assume that any amount of content
from each type can be generated, e.g., if users have a strong
preferences for content about shoes, we can keep generating
such advertisements. Each recommendation is considered a bi-
nary vector of [ bits, which can be transmitted in one time slot.
Coded messages will be the bitwise exclusive-or of messages.
This setup fits the multi-armed bandit framework [2], with the
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system operating in two stages: exploration and exploitation.
At each time slot, it chooses one message to broadcast and
observes the users’ reactions. In the exploration phase, the
system serves users messages from all the content types to
determine their preferences. When the system has obtained
a satisfactory estimate of the preferences, it switches to the
exploitation phase, where at each time slot it chooses the mes-
sage that maximizes the expected reward. We treat the phases
independently to determine the effects of coded broadcasting
on each. The system’s goal is to minimize the regret R over
T transmissions, defined as the difference between each user
always receiving their most preferred message and what is
achieved with (coded) broadcastinglz

T N N
R(T)=Ee| )| Y maxE [puilens = 3 Elpulens ||(D
t=1 \n=1 (n,k)€A;

where p,, x is the random variable for the reward from recom-
mending type k to user n and e, € {0, 1} indicates whether
user n experiences an erasure at time ¢ or not. A value of 1
means that the user hears the broadcast. A; captures the action
taken by the system at time 7. The regret can be split as

R(T) = R.(T) + Rpc(T), 2)

where Ry is the regret incurred due to the exploration stage
and Rpc is the regret due to broadcasting, which largely
depends on the rewards structure [7]. The best case is if all
users desire the same content, since then a single broadcast
transmission will achieve the maximum reward. On the other
hand, if each user has zero reward for all but one content type
and all users prefer different types, then the broadcast regret
is large, since each recommendation can satisfy only one user.

Our system will only count messages that can be immedi-
ately decoded by the recipients, we do not utilize undecodable
transmissions as side information: If a user receives a message
that cannot be decoded immediately, it is discarded. We do not
make restrictions to require fairness, so it is plausible that our
system could keep recommending from a single content type
due to the preferences of just one user, even if all other users
are not interested in this content. The system only seeks to
maximize the overall reward, not satisfy everyone equally.

For our channel model, we assume a broadcast erasure
channel (BEC) with symmetric erasure probabilities. Thus,
all users have probability 1 — & of receiving any broadcast
transmission and probability € of an erasure. Both the capacity
region and achievability schemes for this channel is known [9],
[10]>. We restate the capacity results here. Let 7 be any
permutation of the numbers from 1 to N, which we denote
by [N]. A rate tuple is defined as r = (r,r2,....*N,¥BC),
where we can select whichever content to recommend to user
i at rate 0 < r; < 1 messages per transmission. rgc is the rate
at which it is possible to broadcast common information to all
users. Any achievable rate tuple must satisfy N! inequalities,
each defined by a specific permutation x:

I This formulation is similar to [8], but averages over the erasure pattern.
2The capacity region is not known in general for non-symmetric erasures.

= 3)

Ry = r>0:1

The intersection of these N! regions define the capacity region,
cv= () Rn @)
VT[EPN

In particular, for two users the capacity region for the BEC
with symmetric erasure probabilities is [11]:

r r I'BC
=1 =0: + +
¢ {r_ - 1-&2 1-¢~ 7
1 r TBC
<1;. 5
1—82+1—8 l-g~ } )

This region is a polyhedron. For our use case, there are only
two interesting vertices to consider for optimal operation:

Vac = (r1,r2,r8c) = (0,0,1 —¢g), (6)
Ve = (r1,7r2,180) = (rc(2,8),7c(2,€),0), 7
where
Lo\
rc(2,8)2(1_8+m) . (8)

The remaining nonzero vertices, (1 —¢,0,0) and (0, 1 — ¢, 0),
have smaller throughputs than Vpc, since they target only one
user with the same rate. If a new message of the same content
type is broadcast at every time slot, we expect each user to
receive a fraction 1—¢ of the recommendations. Thus, Vgc can
be obtained without coding. This is not the case for V. This
vertex corresponds to transmitting at rate rc(2, €) to both users
simultaneously, where the content types may be different. This
requires coding. When transmitting at rate rc(2, ) of content
type k to user 1, we expect user 2 to overhear (1 —¢&)rc(2, €)
of these transmissions. These will both be stored for use as
side information and served to user 2, where they will also
generate a reward if the user has a positive preference for that
content type. One specific vertex is always associated with the
largest gain in throughput when targeting individual users with
independent information. For N users, it is the vertex where
each user receives information at rate

N -1

re.e) =Y —=| .

1-g&n

©)

n=1
7N, 7Bc) = (re(N, €),...,rc(N, €),0).

III. CODING IN THE EXPLORATION PHASE

ie., at (r,..

In this section we discuss opportunities for coding to
improve the exploration phase.

A. Potential for arbitrarily large gains

In this example, we see that the gains of employing coding
can be theoretically unbounded. An example exploration phase
for two users with two content types is shown in Table I, where
the rewards are exactly the expected values. The cumulative
reward for the four transmissions without coding is

total

Hpe =2p1,1 + 2000 + 12 + (2,1, (10)
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TABLE I

EXAMPLE OF EXPLORATION WITHOUT CODING (LEFT) AND WITH CODING (RIGHT). m

()

i

IS MESSAGE (RECOMMENDATION) j OF CONTENT TYPE i. AN

ERASURE PATTERN (2‘1 5 62) INDICATES THAT USER i RECEIVES THE MESSAGE IF ¢; = 1 AND IT WAS ERASED IF ¢; = (.

7 9 2 ? 7 9 2 2
Known r, r, ”}?’1 q ”}g’l /lz.,z #}7’1 Z;i Known '? 9 #}?,1 " #}?’1 ,uz.,z Z;: Z;i
Transmits mi” mi” miz) méz) Transmits mfl) mél) mfl) @ mgl) m,@ L= argmax; g g + o, j
Erasures | (1, 0) ©,1 ) M Erasures | (1,0) ©.0n T )]
Reward H1.1 H22 M11, M12 22, M2.1 Reward HM1,1 H22 M2.1, M12 HMiis M2

whereas with coding it is

total

He™ = Hig+ oo+ po + g+ max(u + p). (11

This means that the regret from not coding is

total total

R=pc™ — pgc

= mljax(/,n,i + M) = M1,1 — H2.2

=max{uz1 — 22, p12 - 1,1} (12)

Letting po,1 — o0 or w1, — oo, we see that the regret could
be arbitrarily large. This implies an unbounded gain, as

#l(?tal ~ R +ﬂ;§(t:al

total
Hpc

(13)
1
e

is also unbounded when pp; — oo or gy, — oo. Similar
examples exist for larger numbers of users and content types.

B. Exploring different content types for different users

Consider a preference matrix where the users’ preferences
are so different that each transmission can only satisfy one
user. For instance, we might have expected rewards

K1 0
H1 K 0
= [M : 14
K 0 oK+ (14
0 ok

so we need to determine which of the first K content types to
serve to user 1 and which of the following K content types
to serve to user 2 or, indeed, if the benefits are largest by
being unfair and just satisfying one of the users. Since rewards
may be random, we need to see several realizations to reliably
estimate the expected reward. We estimate that we need to see
i realizations of a user’s reward for each content type to have
a good enough approximation of the preference matrix. For
broadcasting, we expect to transmit i/(1 — &) times before a
user has received i messages. With K types for each of the N =
2 users, we thus need NKi/(1—¢) transmissions. With coding,
we can transmit at rate rc(N, €) to each user simultaneously,
giving us useful information at a rate of rc(N,¢) for each
user. As we need to get Ki messages to each of the users, this
means an expected Ki/rc(N, ) transmissions.

To put this in perspective, if € = 1/2, K =3, i =5, then
to see the required NKi = 30 realizations, we expect to
need 60 transmissions with pure broadcasting against 50 with
coding, saving an expected 10 broadcast transmissions. If
we need to distinguish more content types, the number of

saved transmissions is greater. Thus, the learning phase will
be shorter and an optimal recommendation strategy can be
identified sooner.

C. Equal exploration of all combinations

Consider a simple exploration strategy that requires seeing
at least i rewards for every content type for each of the users.
It is straightforward to start the exploration by broadcasting
uncoded content from each of the content types. Once any
single user n has received the i realizations required of a
particular content type, say type k, we may see opportunities
for coding, since we are no longer interested in serving type k
to user n, but we could still desire realizations of other users’
rewards for type k. Plain broadcasting could then lead to over-
exploration of type k at user n. In effect, the users’ exploration
preferences are now different, and an argument may be made
as in the previous section. However, if i is large, then we
can expect that the other users will already have received
close to i messages of type k with high probability, since the
erasure probability is the same for all users. This means that,
even in the best case, only few coded transmissions would
be beneficial near the end of the exploration phase, while the
majority of transmissions can be uncoded.

D. Empowering exploration with coding

In essence, coding brings greater control over which content
types different users receive, which is useful when we want to
serve diverse content to the users. We expect that it is possible
to design a sophisticated transmission strategy that reduces
the regret of the exploration phase. In particular, it could be
relevant to explore preferences for a particular content type
unequally across users according to their relative magnitudes.
Thus, the exploration strategy should aim to dynamically
adapt, eliminating or reducing the exploration of certain user-
content pairs once they are determined to be suboptimal. While
coding does bring more control, we still cannot completely
stop exploring a content type only for a subset of the users.
This is due to the broadcast nature of the wireless channel: If
we explore a content type for one user, then it is inevitable
that other users will overhear some of the transmissions.

IV. CODING IN THE EXPLOITATION PHASE

For the analysis, we assume perfect knowledge of g, i.e.,
that we have successfully learned the preferences of users
similar to the current ones. If the users are the same as in
the exploration phase, then they may have accumulated some
useful side information that have not yet been utilized. This
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allows us to employ coding until all the side information is
depleted, which we will do if our knowledge of u indicates
that this will result in a lower regret. This could be considered
a separate state between exploration and exploitation, where
the left over side information is utilized. This section considers
steady state exploitation, i.e., when users do not start out with
side information, so coding operations are only possible if
some transmissions cause a subset of users to accumulate
side information that can be utilized for future transmissions.
We are now able to make a well-informed decision for every
broadcast transmission. In general, coding will be worthwhile
if the expected reward of coded broadcasting is greater than
the expected reward of uncoded broadcasting, i.e.,

total total

Hpc < Hc (15)

When broadcasting to N users, at least one content type will
be optimal. Transmitting a new message from this content type
at every opportunity results in a total expected reward of

N

total

Mpc = TBC mlaX Z HMn,i-
n=1

(16)
When transmitting coded messages, we are able to target each
user with messages of different content types. The first time
a message is recommended it is broadcast uncoded, since
no user can have it as side-information. When transmitting
content type i to user n with rate r,,, we expect all other users
to overhear the messages of type i with rate r, (1 — &), which
both generates rewards and can be used as side information.
Some users may have low rewards relative to the others, so it
may be better to focus all transmissions on a subset of size
N* < N of the users. Assuming, without loss of generality, that
the N* users with the greatest expected reward are users 1 to
N*, the expected total reward averaged over erasures becomes

N* N
total
) 2% :Zrnm?x ,un,i+(1_’9) Z Mj,i
n=1 Jj=1,j#n

N
> wpi|s a7

N
=rc(N*, &) Zmljax Uni+(1—¢)
n=1 j=1,j#n

when we use coding to operate at the vertex of the rate region
that enables the largest throughput to the N* users,

(18)
(19)

"rN*’rN*+1""7rN,rBC)
= (rC(N*’S)’---arC(N*78)70a---70’0)‘

(r,..

A. Analysis for 2 users

Without loss of generality, assume that 3 content types
are relevant in the exploitation phase. One is optimal when
transmitting to user 1, one optimal when transmitting to user
2, and one optimal when broadcasting. Their rewards are:

M= max (i + (1= &)pa) (20)
U max (u2,i + (1 = &)1 i) (21)
Hpc = max (u1,i + i) - (22)

We arrange these in the relevant preference matrix,

M1 H2,1
WE e 2|, (23)
H1.BC H2,BC
so if we want to transmit to user 1 only, we would transmit
from the type corresponding to the top row. If we want to
target both users with the broadcast, we should transmit from
the type corresponding to the bottom row. Rows are not
guaranteed to be unique, and may indeed correspond to the
same content type in practice.

Theorem 1. For two users and a BEC with symmetric erasure
probability g, coding is worthwhile if and only if the following
inequalities hold for the rewards:

py < (1+e)u)
Hy < (1+&)u

l+&
4 < 4 + 4
Hpc —2_'_8(,“1 ,Uz)

Proof. We formulate the following linear program (LP):

maximize riu} +raph + recpipe (24)
subject to (r1, ra, ch) e Cy (25)
The dual of this program is
maximize -A;— A2 (26)
A1,42,43, 44,45
. 1 1 ,
subject to A+ ——=A2— A3 =y} 27
-& 1-¢g2
1
A Ay — g = 11, 28
2t a=m (23)
1
Qe =4 2
et g2~ =Hpc (29
A; 20, Vie{l,2,3,4,5}. (30)

We are interested in determining whether coding is worth-
while. If this is the case, we must operate at the vertex where
rio = 0, r1 = rp # 0. Thus, at this vertex A3 = A4 = 0
by complementary slackness [12]. Thus, we can solve the
following three equations in three unknowns and check if
A0 € {1,2,5} are non-negative:

, A A2

L TP S
A1 A
! = + 32
A I (32)
A Ao
he = + - As. 33
MBC -+ 1-=2 5 (33)
Therefore, to have A1, A2, 45 > 0, we must have:
i< (1+8)f (34)
ph < (1+ ) (35)
, l+¢e ,
Hpc < m(lﬁ + 1) (36)

When these inequalities are satisfied, we will have A; > 0, Vi,
i.e., a proof of optimality for the LP, which is a necessary and
sufficient condition for the coding vertex to be optimal. O
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From the equations of Theorem 1, we can gain some insight
about when coding is worthwhile. The first two equations
requires balance between the value of transmitting to each
user. The third equation concerns the relationship between the
best broadcasting and individual preferences. If one of the
inequalities does not hold, then plain broadcasting can achieve
at least the same reward as with coding.

Theorem 2. Using coding to transmit at the coding vertex for
two users, V¢, can change the reward by at most

l1+e¢

£ _ TIM] + o
T 1+g/2’

e rBC,uéC

9 _
re(2,€) 1=

Proof. By definition, we must have

=1+ (L=e)pzy 2 mipe+ (1 -&uape  (37)
wy=pap+ (1 =&)uip > pope+ (1 -&)uipe, (38)
so we can lower bound the change as:
r 4 +7r !
el Wi (39)
I'BCHpCc
r +(l-¢ +r +(l-¢
L (1,8 + ( )H2,BC) ,2 (12,8c + ( )H1,BC) 40)
'BCHpe
rc(2,e)(2-¢ +
_re2,€)( )(,llll,BC H2,BC) “n
FBCHpC
2,8)(2-
_re2e)2-e) W)
'BC
(2-¢)
=re(2, . 43
rc(2,€) 12 (43)

The upper bound is obtained by noting that rgc > r;, i € {1,2}
and applying (36). Indeed,

rIM + 124 - rBCHM] + TBCH)

- - (44)
"BCHpc TBCHpc
M (45)
e
< Tre/2° (46)
concluding the proof. O

Theorem 3. For 2 users and a symmetric BEC, coding
provides the greatest benefits when the users’ preferences
are as different as possible, i.e., the rewards form a (scaled)
identity matrix.

Proof. We formulate an optimization problem to maximize the
gain of coding. We know that we have at most three relevant
content types to broadcast, one for targeting each of the users
and one to use when broadcasting, as collected in y’, so

max}lmize re(2,8) (U] + 15) — recipe 47)
subject to w1 Bc + M2,BC = H1,1 + M2,1 (48)
H1,BC + H2,BC = 12+ (22 (49)
0<pm; <1, ije{l,2}. (50)

First note that at least one of the two first constraints must hold
with equality, since otherwise the objective could be improved
by reducing the value of the broadcast message. Thus, the
broadcast-preferred message must have the same reward as
broadcasting one of the two content types. We assume without
loss of generality that this is content type 1. This allows us to
optimize over a 2 X 2 matrix only, as the third row will be a
copy of the first. This simplifies the problem to

max}lmize rc(2,8) (u] + p5) — rec(pin +p2,1) (51
subject to  py1 +po 1 2 M1+ M2 (52)
Hij 20, i,j€ {1,2} (53)
/Jl',j < 1, la.] € {1’2} (54)

from where it is easy to arrive at the equivalent dual problem,

(55)
—rc(2,&)+rgc—A1— A2 +16=0 (56)
—(1-&)rc(2,e)+rgc—A1 —A3+A7=0 (57)

maximize -Ag— A7 —Ag— Ag
A

subject to

—(l—s)rc(2,8)+/l1 —A+A3=0 (58)
—rc(2,8) + A1 —As+ A9 =0 (59)
A 20, Vi. (60)

If the reward matrix is the identity, we have equality in the
first primal constraint as well as the constraints y; ; = 1 for
i=jand y;; =0 for i # j, while the remaining constraints
remains inactive. Thus, our dual must have A; = 0 for i €
{2,5,7,8} by complementary slackness. We now look for a
certificate of optimality. The following configuration satisfies
all the constraints for any &:

A =rc(2,¢) (61)
A3 =rpc — (2-&)rc(2, ) (62)
Ay =erc(2,¢) (63)
/l(, = 2rc(2, 8) — I'BC (64)
Ao =0 (65)

so it can serve as a proof of optimality for the vertex corre-
sponding to the identity reward matrix. Thus, we conclude that
this reward structure achieves the largest gain from coding. O

B. N users

We now turn our attention to recommendation systems that
are broadcasting to more than two users simultaneously. First
we note that, although we did not prove it here, Theorem 3
can be extended to the case of N users.

Theorem 4. A coding-based transmission scheme can reduce
the regret per transmission of the plain broadcasting by as
much as a factor of 1/(1 — &).

Proof. We know from Theorem 3 that the greatest difference
between broadcasting with and without coding is when we
have an identity reward matrix for two users. This result can
be extended to N users. Let N’ be the value such that £V ~ 0
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with the approximation as good as desired. We can find the
greatest reduction in regret as the number of users grows large:

N
Z”C(N,S),U;, = Nrc(N,g) (66)
n=1 N | -1
=N 67
n=1 L-en ( )
N | N’ ! -1
=N Zl—sn+zl—e" (68)
n=N"’ n=1
N N -1
~ N 1 6
2T (69)
n=N’ n=1
N’ | -1
=N|N-N’
)T (70)
n=1
N N —oc0
= 1, 71
N+C(N,e) 7

where C(N’, ) collects the terms not changing with N. For
broadcasting, the reward obtained with an identity reward
matrix is 1 — &, no matter which content type is chosen.
Thus, the largest possible gain for coding instead of plain
broadcasting is 1/(1 — &) for each transmission. This factor
remains the same if the rewards are scaled. ]

Conceptually, it is clear that the gain depends on the erasure
probability: more erasures provide greater opportunity for
users to overhear messages, which can be utilized as side
information. Theorem 4 implies that the regret over 7 time
slots can be improved by at most T¢ for the identity reward
matrix, increasing the cumulative reward from 7(1 — &) to T.

A concrete way to check whether coding will improve the
exploitation phase for N users for a particular preference struc-
ture unfortunately does not have as concise a representation
as the two-user case of Theorem 1. Our best option is to go
back to Eq. (15). It is always easy to find the best value
of plain broadcasting, ,ut];"c'“‘l, by checking what the expected
reward would be for each content type. On the other hand,
since nothing requires the recommendation system to be fair,
it has no incentive to code to serve information to all N
users. Indeed, it might be the case that it is better to ignore
some users and simply generate recommendations that only is
intended to satisfy a subset of the users. To determine whether
coding is worthwhile or not, we first determine the value of
targeting each user. That is, we find the value

N
p = max| i + (1 - 8) Z Hji (72)

j=1,j#n

for each user. We then sort the N users according to this,
and use the top N* < N of these to calculate the expected
reward of targeting N* users according to Eq. (17). If any
choice of N* results in u > 9 then we may conclude
that coding is beneficial and should be done targeting the

N* = argmax . u‘c"ml users with highest expected rewards.

V. CONCLUSION

In this paper, we have explored the interaction between cod-
ing techniques and recommendation systems using reinforce-
ment learning over wireless broadcast channels with erasures.
In particular, we have shown that coding can provide gains
in both the exploration and exploitation phase, but this is not
certain to be the case for all systems. These opportunities arise
because coding enables the recommendation system to operate
in more of the broadcast erasure channel’s capacity region. We
have presented methods for analyzing the preference matrix of
a particular recommendation system to assess whether coding
is worthwhile or not, in form of a closed form expression for
recommendations to two users and a procedure for an arbitrary
number of users. We have also shown that coding improves
the exploitation phase the most when users’ preferences are as
different as possible, which is also when the broadcast regret is
greatest. In theory, the improvements could be arbitrarily large
in the exploration phase, but are limited in the exploitation
phase. We leave system designers to determine whether the
advantages will be worth the added complexity of coding.
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