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Abstract—We investigate the problem of broadcasting a bit on
a 2D regular grid. Consider a directed acyclic graph with the
structure of a 2D regular grid, which has a single source vertex
X at layer 0, and k+ 1 vertices at distance of k ≥ 1 from X at
layer k. Every vertex has outdegree 2, the boundary vertices have
indegree 1, and the interior vertices have indegree 2. At time 0, X
is given a uniform random bit. At time k ≥ 1, each vertex in layer
k receives bits from its parents in layer k−1, where the bits pass
through binary symmetric channels with crossover probability
δ ∈

(

0, 1

2

)

. Each vertex with indegree 2 then combines its input
bits with a common Boolean processing function to produce its
output bit. The goal is to reconstruct X with probability of error
less than 1

2
from all vertices at layer k as k → ∞. Besides

their natural interpretation in communication networks, such
stochastic processes can be construed as 1D probabilistic cellular
automata (PCA) with boundary conditions on the number of
sites per layer. Inspired by the “positive rates conjecture” for
1D PCA, we establish that reconstruction of X is impossible for
any δ provided that either AND or XOR gates are employed as
the common processing function. Furthermore, we show that
if certain structured supermartingales exist, reconstruction is
impossible for any δ when a common NAND processing function
is used. We also provide numerical evidence for the existence of
these supermartingales using linear programming.

I. INTRODUCTION

The problem of reconstruction on two-dimensional (2D)

regular grids is a salient specialization of the general problem

of reconstruction on directed acyclic graphs (DAGs) [1]–[3].

In the general problem, we are given a bounded indegree

DAG with a unique source vertex at layer 0 such that all

vertices at layer k ≥ 1 (at a distance k from the source) only

have parents in layer k − 1. At time 0, the source is given a

uniform random bit. At time k ≥ 1, each vertex in layer k

receives noisy bits from its parents, which are corrupted by

binary symmetric channels (BSCs) with crossover probability

δ ∈
(

0, 1
2

)

. Moreover, vertices with indegree greater than 1
combine their noisy inputs by applying Boolean processing

functions. The broad objective is to determine conditions on

the graph topology, the noise level δ, and the choices of

processing functions that permit reconstruction of the source

bit from all vertices at layer k as k → ∞.
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To address this rather challenging goal, results in the litera-

ture analyze fixed classes of DAGs and processing functions.

For example, the classical version of the problem concerns

reconstruction on a rooted tree T (cf. [4]). Here, it is well-

known that the source bit is impossible to reconstruct (i.e., the

minimum probability of error converges to 1
2 as k → ∞) if

and only if (1−2δ)2 br(T ) ≤ 1, where br(T ) is the branching

number of T [4]–[6]. This key result and its generalizations,

cf. [7]–[15], precisely characterize when information about

the root bit vanishes completely in tree-structured topologies.

On the other hand, [1], [2] study reconstruction on randomly

constructed DAGs (which arguably better model real-world

communication or social networks since vertices often receive

multiple input signals in these scenarios). Specifically, [1], [2]

establish phase transition results for random DAGs with all

indegrees equal to d, and all majority (when d ≥ 3) or NAND

processing functions (when d = 2), where reconstruction is

possible if δ is less than a critical threshold and layer sizes

grow at least logarithmically in the depth, and impossible

otherwise. Hence, while layers must grow exponentially for

reconstruction to be possible in trees, these results demonstrate

the existence of DAGs with bounded indegree and logarithmi-

cally growing layer sizes that admit reconstruction. Further-

more, explicit constructions of such DAGs using expander

graphs are also provided in [1], [2].

In this paper, we consider reconstruction on 2D regular grids

where all “interior” vertices use the same processing function.

We further motivate this model in section I-A and formalize

it in section I-B. Our main contribution is to show that

reconstruction is impossible on 2D regular grids for various

choices of the common processing function regardless of the

noise level δ. In particular, we present our impossibility results

for AND and XOR processing functions in sections II and

III, respectively. Then, we delineate our partial impossibility

result and accompanying numerical simulations for NAND

processing functions in section IV. Together, these results

convey that reconstruction on 2D regular grids is essentially

impossible for all 8 symmetric processing functions (due to

symmetry in the 2D regular grid model). For brevity, many

technical details are deferred to the complete manuscript [16].

A. Motivation

The problem of reconstruction on DAGs analyzes whether

the “wavefront of information” broadcasted by a source bit

decays irrecoverably as it propagates through the DAG. Be-

sides this canonical communication theoretic interpretation,



Fig. 1. Diagram of a 2D regular grid.

reconstruction on DAGs is a natural model of fault-tolerant

computation and storage, because it can be construed as

a noisy circuit (with faulty wires and perfect logic gates)

that has been constructed to remember a bit, cf. [17]–[22].

Furthermore, reconstruction on certain families of DAGs cor-

respond to well-known models in statistical physics, e.g., trees

correspond to studying the extremality of free boundary Gibbs

measures of ferromagnetic Ising models [4], and regular grids

are closely related to spin-flip systems such as probabilistic

cellular automata (PCA) [23]–[26]. Finally, other special cases

of the model represent information flow in biological networks

[27]–[30], play a crucial role in random constraint satisfaction

problems [31]–[34], and are useful in proving converse results

for community detection in stochastic block models [35].

While this discussion motivates the study of reconstruction

on DAGs in general, our work in this paper is particularly

inspired by the renowned positive rates conjecture for one-

dimensional (1D) PCA, cf. [26]. The positive rates conjecture

states that “relatively simple” 1D PCA with local interactions

and strictly positive noise probabilities are ergodic [26]. (Note

that known counter-examples either require a lot of states

[36] or are non-uniform in time and space [37].) Since

reconstruction on a 2D regular grid can be perceived as a 1D

PCA with boundary conditions that limit the layer sizes to be

k + 1, we conjecture that reconstruction is impossible for 2D

regular grids regardless of the noise level δ and the choice of

common processing function. We refer readers to [16, Section

I-A] for further elaboration of this conjecture. Our main results

in sections II, III, and IV make partial progress towards this

conjecture and provide strong evidence for it.

B. 2D Regular Grid Model

The 2D regular grid model consists of an infinite DAG

with vertices that are Bernoulli random variables and edges

that are independent BSCs. The source vertex of the grid is

X0,0 ∼ Bernoulli
(

1
2

)

, and we let Xk = (Xk,0, . . . , Xk,k)
be the vector of k + 1 vertex random variables at distance

k ∈ N , {0, 1, 2, . . . } from the source. Furthermore, the 2D

regular grid contains the directed edges Xk,j → Xk+1,j and

Xk,j → Xk+1,j+1 for every k ∈ N and every j ∈ {0, . . . , k}.

The underlying DAG of such a grid is shown in Figure 1.

To construct a Bayesian network on this 2D regular grid,

we fix some parameter δ ∈
(

0, 1
2

)

and a Boolean processing

function f : {0, 1}2 → {0, 1}. Then, for any k ∈ N\{0}, we

define Xk,0 = Xk−1,0⊕Zk,0,2 and Xk,k = Xk−1,k−1⊕Zk,k,1,

and for any k ∈ N\{0, 1} and j ∈ {1, . . . , k − 1}, we define

Xk,j = f(Xk−1,j−1 ⊕ Zk,j,1, Xk−1,j ⊕ Zk,j,2) , (1)

where ⊕ denotes addition modulo 2, and the binary random

variables {Zk,j,i : k ∈ N\{0}, j ∈ {0, . . . , k}, i ∈ {1, 2}} are

i.i.d. Bernoulli(δ) and independent of X0,0. This implies that

edges are BSCs with crossover probability δ, and characterizes

the conditional distribution of any Xk,j given its parents.

The sequence {Xk : k ∈ N} forms a Markov chain, and

our goal is to determine whether X0 can be decoded from

Xk as k → ∞. Given Xk for any fixed k ∈ N\{0}, inferring

the value of X0 is a binary hypothesis testing problem with

minimum achievable probability of error

P
(k)
ML , P

(

hk
ML(Xk) 6= X0

)

=
1

2

(

1−
∥

∥P+
Xk

− P−
Xk

∥

∥

TV

)

, (2)

where hk
ML : {0, 1}k+1 → {0, 1} is the maximum likelihood

decision rule at level k, P+
Xk

and P−
Xk

are the conditional

distributions of Xk given X0 = 1 and X0 = 0, respectively,

and ‖ · ‖TV denotes the total variation (TV) distance. Since

P
(k)
ML is non-decreasing in k (by the data processing inequality

for TV distance) and bounded above by 1
2 , its limit exists.

Therefore, we say that reconstruction (of X0) is impossible if

lim
k→∞

P
(k)
ML =

1

2
⇔ lim

k→∞

∥

∥P+
Xk

− P−
Xk

∥

∥

TV
= 0 (3)

(which follows from (2)), and possible otherwise.

II. AND PROCESSING FUNCTIONS

We first analyze the case where all vertices of the 2D regular

grid with two inputs use the AND gate, i.e., f(x1, x2) = x1∧
x2 in section I-B, where ∧ denotes the logical AND operation.

In this setting, our first main result conveys that reconstruction

is impossible for all δ ∈
(

0, 1
2

)

.

Theorem 1 (AND 2D Regular Grid). Consider a 2D regular

grid model with AND processing functions. Then, for all δ ∈
(

0, 1
2

)

, reconstruction is impossible in the sense of (3).

Proof Outline. We outline the proof here and refer readers

to [16, Section III] for details. We first construct a monotone

Markovian coupling of the Markov chains {X+
k : k ∈ N} and

{X−
k : k ∈ N}, which are versions of the Markov chain {Xk :

k ∈ N} initialized at X+
0 = 1 and X−

0 = 0, respectively.

Specifically, we couple these chains to run on the same 2D

regular grid with common BSCs; along any edge BSC, e.g.,

Xk,j → Xk+1,j , either X+
k,j and X−

k,j are both copied with

probability 1 − 2δ, or a shared independent Bernoulli
(

1
2

)

bit

is produced with probability 2δ (that is used by both X+
k+1,j

and X−
k+1,j). Since the AND gate is monotone non-decreasing,

this coupling is monotone, i.e., X+
k,j ≥ X−

k,j almost surely for

all k ∈ N and j ∈ {0, . . . , k}. For convenience, define the

alphabet set Y , {0c = (0, 0), 1u = (0, 1), 1c = (1, 1)} and

the coupled grid variables {Yk,j = (X−
k,j , X

+
k,j) ∈ Y : k ∈

N, j ∈ {0, . . . , k}}, where Y0,0 = 1u almost surely. Then, our

Markovian coupling of {X+
k : k ∈ N} and {X−

k : k ∈ N}
is the Markov chain {Yk = (Yk,0, . . . , Yk,k) : k ∈ N}. In



the sequel, we assume that the coupled grid variables index

vertices of the 2D regular grid.

We next observe using the maximal coupling characteriza-

tion of TV distance that
∥

∥P+
Xk

− P−
Xk

∥

∥

TV
≤ P

(

X+
k 6= X−

k

)

= 1− P
(

X+
k = X−

k

)

.

Since {X+
k = X−

k } ⊆ {X+
k+1 = X−

k+1} for all k ∈ N (due to

our Markovian coupling), we may let k → ∞ and obtain

lim
k→∞

∥

∥P+
Xk

− P−
Xk

∥

∥

TV
≤ 1− P(A) ,

where we define the event A , {∃k ∈ N, ∀j ∈ {0, . . . , k},
Yk,j ∈ {0c, 1c}}. Hence, it suffices to prove that P(A) = 1.

To prove this, we recall a well-known result on oriented

bond percolation in 2D lattices. Suppose we independently

keep each edge of the 2D regular grid “open” with some prob-

ability p ∈ [0, 1], and delete it with probability 1−p. Define the

event Ω∞ , {there is an infinite open path starting at Y0,0},

and for every level k ∈ N, define the random variables

Rk , sup{j ∈ {0, . . . , k} : ∃ open path from Y0,0 to Yk,j} ,

Lk , inf{j ∈ {0, . . . , k} : ∃ open path from Y0,0 to Yk,j} ,

which are the rightmost and leftmost vertices that are con-

nected to the source. It is proved in [38, Section 3] that the

occurrence of Ω∞ experiences a phase transition phenomenon.

Lemma 1 (Oriented Bond Percolation [38, Section 3]). For the

aforementioned bond percolation process on the 2D regular

grid, there exists a critical threshold δperc ∈
(

1
2 , 1

)

such that:

1) If p < δperc, then Pp(Ω∞) = 0, where Pp denotes the

probability measure defined by the percolation process.

2) If p > δperc, then Pp(Ω∞) > 0 and for some α = α(p) > 0,

Pp

(

lim
k→∞

Rk

k
=

1 + α

2
and lim

k→∞

Lk

k
=

1− α

2

∣

∣

∣

∣

Ω∞

)

= 1

where α(p) is defined in [38, Section 3, Equation (6)].

We now prove P(A) = 1 by considering two cases.

Case 1: Suppose 1− 2δ < δperc in our coupled 2D regular

grid. Consider a bond percolation process (as described above)

with p = 1 − 2δ, where each edge of the grid is open if and

only if the corresponding BSC copies its input. Then, by part

1 of Lemma 1, the event Ωc
∞ occurs almost surely. Moreover,

our Markovian coupling ensures that a 1u travels from level k

to level k + 1 only if one of its outgoing edges is open. So,

there exists k ∈ N such that none of the vertices at level k are

1u’s. Hence, Ωc
∞ ⊆ A and we have P(A) = 1, as desired.

Case 2: Suppose 1 − δ > δperc in our coupled 2D regular

grid. Consider a bond percolation process (as described above)

with p = 1 − δ, where each edge of the grid is open if

and only if the corresponding BSC either copies its input or

generates 0 as the new shared bit. For k ∈ N\{0}, let Bk be

the event that the BSC from Yk−1,0 to Yk,0 generates a new

bit which equals 0. Then, P(Bk) = δ and {Bk : k ∈ N\{0}}
are mutually independent. So, infinitely many of the events

Bk occur almost surely by the second Borel-Cantelli lemma.

Furthermore, Bk ⊆ {Yk,0 = 0c} for every k ∈ N\{0}.

For every k ∈ N, let Fk be the σ-algebra generated by all

BSCs before level k. Then, relative to the filtration {Fk : k ∈
N}, define the sequences of stopping times

Li , min{k ≥ Ti−1 + 1 : Bk occurs} ,

Ti , 1 + max

{

k ≥ Li :
∃j ∈ {0, . . . , k}, Yk,j connected

to YLi,0 by an open path

}

,

for all i ∈ N\{0}, where we set T0 , 0. Here, when Ti−1 =
∞, we let Li = ∞ almost surely, and when Li = ∞, we let

Ti = ∞ almost surely. (Note that when Li < ∞, Ti−Li−1 is

the length of the longest open path connected to YLi,0.) Now

observe that

P(∃k ≥ 1, Tk = ∞)

= P(T1 = ∞)+

∞
∑

m=2

P(∃k ≥ 2, Tk = ∞|T1 = m)P(T1 = m)

= P(T1 = ∞)+

∞
∑

m=2

P(∃k ≥ 1, Tk +m = ∞)P(T1 = m)

= P(T1 = ∞) + P(T1 < ∞)P(∃k ≥ 1, Tk = ∞) ,

where the second equality follows from the fact that for all

m ≥ 2, the random variables {(Li, Ti) : i ≥ 2} given T1 = m

have the same probability distribution as the random variables

{(Li +m,Ti +m) : i ≥ 1}. Rearranging this, we get

P(∃k ≥ 1, Tk = ∞)P(T1 = ∞) = P(T1 = ∞) .

Since P(T1 = ∞) = P(Ω∞) > 0 by part 2 of Lemma 1, we

have

P(∃k ≥ 1, Tk = ∞) = 1 . (4)

For every k ∈ N\{0}, define the events

Ωleft
k , {∃ infinite open path starting at Yk,0} ,

Ωright
k , {∃ infinite open path starting at Yk,k} .

If the event {∃k ≥ 1, Tk = ∞} occurs, we can choose the

smallest m ∈ N\{0} such that Tm = ∞, and for this m,

there is an infinite open path starting at YLm,0 = 0c (where

YLm,0 = 0c because BLm
occurs). Hence, using (4), we have

P
(

∃k ∈ N, {Yk,0 = 0c} ∩ Ωleft
k

)

= 1 ,

which, by symmetry, implies that

P
(

∃k,m ∈ N, {Yk,0 = Ym,m = 0c}∩ Ωleft
k ∩ Ωright

m

)

= 1. (5)

Finally, consider k,m ∈ N such that Yk,0 = Ym,m = 0c, and

suppose that Ωleft
k and Ωright

m both happen. For every integer

n > max{k,m}, define the random variables

R̂n , sup{j ∈ {0, . . . , n} : ∃ open path from Yk,0 to Yn,j} ,

L̂n , inf{j ∈ {0, . . . , n} : ∃ open path from Ym,m to Yn,j} ,

which are the rightmost and leftmost vertices at level n that

are connected to Yk,0 and Ym,m, respectively. Using part 2 of

Lemma 1, we know that almost surely,

lim
n→∞

R̂n

n
= lim

n→∞

R̂n

n− k
=

1 + α(1− δ)

2
,



lim
n→∞

L̂n

n
= lim

n→∞

L̂n −m

n−m
=

1− α(1− δ)

2
.

This implies that almost surely,

lim
n→∞

R̂n − L̂n

n
= α(1− δ) > 0 ,

which means that for some sufficiently large level n∗ >

max{k,m}, the rightmost open path from Yk,0 meets the

leftmost open path from Ym,m, i.e.,
∣

∣R̂n∗ − L̂n∗

∣

∣ ≤ 1.

To complete the proof, notice that by construction, all the

vertices in these two open paths are equal to 0c. Furthermore,

due to our Markovian coupling, all vertices at level n∗ that

are either to left of R̂n∗ or to the right of L̂n∗ take values in

{0c, 1c}. This shows that the event A occurs. Therefore, we

get P(A) = 1 using (5), which completes the proof. �

III. XOR PROCESSING FUNCTIONS

We next consider the case where all vertices of the 2D reg-

ular grid with two inputs use the XOR gate, i.e., f(x1, x2) =
x1 ⊕ x2 in section I-B. In this setting, our second main

result again conveys that reconstruction is impossible for all

δ ∈
(

0, 1
2

)

.

Theorem 2 (XOR 2D Regular Grid). Consider a 2D regular

grid model with XOR processing functions. Then, for all δ ∈
(

0, 1
2

)

, reconstruction is impossible in the sense of (3).

Theorem 2 is proved in [16, Section IV]. In the 2D regular

grid with XOR processing functions, every vertex at level k

can be written as a (binary) linear combination of the source

bit and all the BSC noise random variables in the grid before

level k (i.e., {Zm,j,i : m ∈ {1, . . . , k}, j ∈ {0, . . . ,m}, i ∈
{1, 2}}). This linear relationship can be captured by a binary

matrix. The main idea of the proof is to perceive this matrix

as a parity check matrix of a linear code. The problem

of inferring X0,0 from Xk turns out to be equivalent to

the problem of decoding the first bit of a codeword drawn

uniformly from this code after observing a noisy version of the

codeword. Known properties of bit-wise maximum likelihood

decoding of linear codes can then be exploited to complete

the proof, as shown in [16, Section IV].

IV. NAND PROCESSING FUNCTIONS

Finally, we present our partial impossibility result in the

setting where all vertices of the 2D regular grid with two inputs

use the NAND gate, i.e., f(x1, x2) = ¬(x1∧x2) in section I-B,

where ¬ is the logical NOT operation. In particular, inspired

by the potential function technique employed in the proof of

ergodicity of 1D PCA with noisy NOR gates in [39, Theorem

1], we delineate a sufficient condition for proving impossibility

of reconstruction in the 2D regular grid model with NAND

processing functions, and provide accompanying numerical

evidence that this sufficient condition is actually true.

To this end, we begin with some necessary setup. As before

in section II, we couple the Markov chains {X+
k : k ∈ N}

and {X−
k : k ∈ N} to run on the same 2D regular grid

with common BSCs. This produces the Markovian coupling

{Yk = (Yk,0, . . . , Yk,k) : k ∈ N} with coupled grid variables

{Yk,j = (X−
k,j , X

+
k,j) ∈ Y : k ∈ N, j ∈ {0, . . . , k}}, where

the extended alphabet Y , {0, 1, u} is slightly different to

that in section II. Here, X−
k,j = X+

k,j = 0 if Yk,j = 0 and

X−
k,j = X+

k,j = 1 if Yk,j = 1, but Yk,j = u means that it is

unknown whether X−
k,j = X+

k,j . A more detailed explanation

of this Markovian coupling can be found in [16, Section V-

A], e.g., the NAND gate can be modified to account for u’s.

As before, the key takeaway is that to establish impossibility

of reconstruction, it suffices to show that the number of u’s

per layer vanishes at deeper levels of the 2D regular grid.

To verify this latter condition, we introduce the class of cyclic

potential functions (inspired by [39]), a partial order over these

potential functions, and a pertinent linear operator on the space

of potential functions in the next definition.

Definition 1 (Cyclic Potential Functions and Related Notions).

Given any strings v1, . . . , vm ∈ Y∗ = ∪k∈N\{0}Y
k and any

coefficients α1, . . . , αm ∈ R, we may define a corresponding

cyclic potential function w : Y∗ → R via the formal sum

w =

m
∑

j=1

αj{vj} ,

where curly braces are used to distinguish a string v ∈ Y∗ from

its associated potential function {v} : Y∗ → R. In particular,

for every k ∈ N\{0} and every string y = (y0 · · · yk−1) ∈ Yk,

the cyclic potential function w is evaluated as follows:

w[y] ,
∑

1≤j≤m:
sj≤k

αj

k−1
∑

i=0

1
{(

y(i)k · · · y(i+sj−1)k

)

= vj
}

where sj denotes the length of vj ∈ Ysj , 1{·} is the indicator

function, and (i)k ≡ i (mod k) for every i ∈ N. Furthermore,

we say that w is u-only if the strings v1, . . . , vm all contain a

u. For any fixed r ∈ N\{0}, we may also define a partial order

�c over the set of all cyclic potential functions for which the

lengths of the underlying strings (with non-zero coefficients)

are bounded by r. Specifically, for any pair of such cyclic

potential functions w1 : Y∗ → R and w2 : Y∗ → R, we have

w1 �c w2 ⇔ ∀y ∈
⋃

k≥r

Yk, w1[y] ≥ w2[y] .

Finally, we define the conditional expectation operator E on

the space of cyclic potential functions as follows. For any input

cyclic potential function w (defined by the formal sum above),

E outputs the cyclic potential function with formal sum

E(w),

m
∑

j=1

αj

∑

z∈Ysj+1

P
(

(Ysj+1,1, . . . , Ysj+1,sj )=vj
∣

∣Ysj =z
)

{z}

where the probabilities are determined by the aforementioned

Markovian coupling {Yk : k ∈ N}.

Using the concepts shown in Definition 1, our final main

result presents a sufficient condition for the impossibility

of reconstruction on a 2D regular grid model with NAND

processing functions.



TABLE I
LP SOLUTIONS α∗(δ) ∈ R

27 FOR r = 4

δ = 0.001 δ = 0.01 δ = 0.05 δ = 0.1
(000)
(001)
(00u)
(010)
(011)
(01u)
(0u0)
(0u1)
(0uu)
(100)
(101)
(10u)
(110)
(111)
(11u)
(1u0)
(1u1)
(1uu)
(u00)
(u01)
(u0u)
(u10)
(u11)
(u1u)
(uu0)
(uu1)
(uuu)





























































































0
0

0.0000
0
0

1.9908
0.0040
1.9904
1.9864

0
0

0.0020
0
0

0.9884
1.0047
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Theorem 3 (NAND 2D Regular Grid). For any δ ∈
(

0, 1
2

)

,

suppose there exists r ≥ 2, and a cyclic potential function

wδ : Y∗ → R whose formal sum is constructed with strings

(with non-zero coefficients) of length at most r− 1, such that:

1) wδ is u-only,

2) wδ �c E(wδ),
3) wδ �c {u},

where �c is defined using r (as in Definition 1), and {u} :
Y∗ → R is the cyclic potential function consisting of a single

string (u) ∈ Y . Then, reconstruction is impossible on the 2D

regular grid model with NAND processing functions in the

sense of (3).

Theorem 3 is systematically established in [16, Section V].

Intuitively, the first two conditions in the theorem statement

ensure that {wδ(Yk) : k ∈ N} is a supermartingale, and the

third condition ensures that this supermartingale upper bounds

the total number of uncoupled grid variables at successive

levels. Then, using a martingale convergence argument along

with some careful analysis of the stochastic dynamics of the

coupled 2D regular grid, we can deduce that the number of

uncoupled grid variables converges to zero almost surely. Akin

to section II, this implies that reconstruction is impossible.

Furthermore, we demonstrate in [16, Section V-E] that for

fixed values of δ and r, the problem of finding wδ satisfying

the conditions of Theorem 3 can be posed as a linear program

(LP). We present some representative MATLAB simulation

results in Table I that numerically solve such LPs to construct

the cyclic potential functions w∗
δ of Theorem 3 when r = 4.

Specifically, for different values of δ, Table I displays vectors

of coefficients α∗(δ) ∈ R
27 (rounded to 4 decimal places, and

indexed by Y3) that define w∗
δ via formal sums over all strings

in Y3; the formal sum is constructed by scaling each index

in Y3 with the corresponding value in α∗(δ). For example,

the second column of Table I states that when δ = 0.01, the

cyclic potential function, w∗
δ = 0.0171{00u}+1.9223{01u}+

· · ·+1.9535{uu1}+1.9499{uuu}, satisfies the conditions of

Theorem 3 with r = 4.

We close this section with three further remarks. Firstly, one

can verify the first and third conditions of Theorem 3 from

Table I by reading all entries corresponding to indices with

either no u’s or beginning with a u. Secondly, Table I only

presents a small subset of our simulation results for brevity; we

have solved LPs for numerous values of δ ∈
(

0, 1
2

)

. Thirdly,

it is worth mentioning that reconstruction is impossible for

all choices of processing functions (which may vary between

vertices) when δ > 0.146446 . . . [20, Lemma 2]. (So, there is

no need to present LP results for δ larger than this threshold.)

Hence, our simulations provide strong computational evidence

that reconstruction is impossible on the 2D regular grid with

NAND processing functions for all δ ∈
(

0, 1
2

)

. We again refer

readers to [16, Sections II-B and V] for a detailed exposition of

the ideas discussed in this section, which can also be extended

to prove impossibility of reconstruction on 2D regular grids

with other processing functions and ergodicity of 1D PCA.

V. CONCLUSION

To conclude, we emphasize that Theorems 1, 2, and 3 (along

with our simulations) make substantial progress towards our

conjecture in section I-A that reconstruction is impossible on

2D regular grids for all 16 possible common 2-input Boolean

processing functions. To see this, notice that reconstruction is

impossible for the two constant functions that always output

0 or 1, because only vertices at the boundary can carry useful

information, but these vertices form ergodic Markov chains.

The four 2-input processing functions that actually have one

input, namely, the identity maps and NOT gates for the first

or second input, yield 2D regular grids that are trees. These

trees have branching number 1, and hence, reconstruction is

impossible [4] (see section I). The six remaining symmetric

processing functions are AND, NAND, OR, NOR, XOR, and

XNOR. Due to the symmetry of 0’s and 1’s in our model, we

only need to prove the impossibility of reconstruction for three

cases: AND, XOR, and NAND. This leaves four asymmetric

2-input processing functions. Once again, due to the symmetry

of 0’s and 1’s, we only need to consider two of these functions.

Moreover, due to the symmetry of the edge configuration of

our 2D regular grid construction, it suffices to only consider

one of these remaining two functions. For example, we may

consider the asymmetric 2-input Boolean function defined

by the truth table for the implication relation, denoted IMP.

Therefore, to prove our conjecture in section I-A, we only

have to analyze four nontrivial processing functions: AND,

XOR, NAND, and IMP. Clearly, Theorems 1 and 2 address the

first two cases and Theorem 3 (and our simulations) partially

address the third case. So, the two natural future directions are

to completely resolve the third and fourth cases.
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