
Quantization of Random Distributions under KL
Divergence

Aviv Adler
EECS (MIT)

Cambridge, MA, USA

adlera@mit.edu

Jennifer Tang
EECS (MIT)

Cambridge, MA, USA

jstang@mit.edu

Yury Polyanskiy
EECS (MIT)

Cambridge, MA, USA

yp@mit.edu

Abstract—Consider the problem of representing a distribution
π on a large alphabet of size k up to fidelity ε in Kullback-Leibler
(KL) divergence. Heuristically, arguing as for quadratic loss in
high dimension, one expects that about (k/2) log (1/ε) bits would
be required. We show this intuition is correct by proving explicit
non-asymptotic bounds for the minimal average distortion when
π is randomly sampled from a symmetric Dirichlet prior on the
simplex. Our method is to reduce the single-sample problem to
the traditional setting of iid samples, but for a non-standard rate
distortion question with the novel distortion measure d(x, y) =
x log(x/y), which we call divergence distortion. Practically, our

results advocate using a x 7→ x2/3 compander (for small x)
followed by a uniform scalar quantizer for storing large-alphabet
distributions.

Index Terms—Compression, rate distortion, quantization,
Kullback-Leibler divergence, Shannon Lower Bound

I. INTRODUCTION AND MOTIVATION

Suppose one wants to compress iid data over a large

alphabet [k]
4
= {1, . . . , k} sampled from a distribution π.

The distribution is considered to be known to the compressor

(because it possesses a very large corpus of data) and unknown

to the decompressor. A natural two-step compression scheme

would be to first describe the distribution π and then use an

optimal (Huffman, arithmetic, etc) compressor for it. Since

π is to be represented with finitely many bits, only an

approximation π̂ can be conveyed to the decompressor. It is

well known that this incurs penalty DKL(π‖π̂) in compression

length [1, Ch 5]. This motivates the following definition:

Definition 1. Given a distribution W over the simplex

P([k])
4
= {π ∈ R

k : πj ≥ 0,
∑k

j=1 πj = 1},

M∗(W, ε)
4
= inf{|Q| : Eπ∼W [min

Q∈Q
DKL(π‖Q)] ≤ ε} .

Here Q is a finite set of distributions; each π is mapped

to the closest Q ∈ Q (in KL divergence), with the average

divergence at most ε. The quantity M∗(W, ε) is intimately

connected with Bayes risk or average redundancy (expressible

as mutual information) in the universal compression setting.

Proposition 1. Suppose that π ∼ W and Xn is generated iid

from π. Then for any n,

I(π;Xn) ≤ inf
ε
{nε+ logM∗(W, ε)} .

When n = 1, the above is equality.
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We omit the proof which is similar to [2], [3]. Known results

on I(π;Xn) imply lower bounds on M∗(W, ε) (discussed in

Section I-A). Our results can also be used for lossless two-

stage codes like those in the MDL literature [4]–[7].

Perhaps the most natural prior W to consider, in the absence

of other knowledge, is the uniform prior which belongs to the

family of symmetric Dirichlet distributions1 Dirk(α) (specifi-

cally it is the member with α = 1). Dirichlet distributions are

a popular choice for modeling unknown discrete distributions

in Bayesian statistics partly because they are the conjugate

priors to multinomial distributions; they are used in many

fields, including Dirichlet Processes [8] and other learning and

estimation problems, such as in [9]–[11].

Theorem 1. There exists a constant c1 > 0 such that for all

α, k and ε > 0,

logM∗(Dirk(α), ε) ≥
k

2
log

c1

ε+ 1
2αk

.

Furthermore, there exists a c2 > 0 such that for all ε > 0 and

all α, k such that αk > 1

logM∗(Dirk(α), ε) ≤
k

2
log

c2
ε(1− (αk)−1/3)2

.

A practically important consequence of our analysis is that

an almost optimal quantization of large-alphabet distributions

is obtained by companding πj 7→ f(sπj) (for some constant

s), followed by the uniform (scalar) quantizer and projection

back onto the simplex. For α = 1, our method recommends

f(x) =

{

c(x/τ)2/3 for x ≤ τ

(1− c)
(

1− exp(−(x− τ)/3)
)

+ c for x > τ

where τ = 2.954, c = 0.664.

Our approach is to reduce the problem of finding |Q| in Def-

inition 1, a quantization problem at heart, to a rate-distortion

problem. This turns a single-sample covering question into an

iid multi-sample covering question.

Definition 2. For distribution PX over R≥0 and D > 0,

R(PX , D)
4
= inf

PY |X

{I(X;Y ) :

E[Y ] = E[X], E[d(X,Y )] ≤ D,Y > 0} , (1)

where d(x, y)
4
= x log(x/y) (for x ≥ 0 and y > 0).

1Symmetric Dirichlet distributions only need one scalar parameter α.



We call d(x, y) the divergence distortion. While divergence

distortion is convex in both inputs and d(x, y) = 0 iff x = y,

it has the unusual property of being negative when x < y
(with minimum at x = y/e). However, from E[Y ] = E[X]
and convexity we still get E[d(X,Y )] ≥ 0.2

It turns out (Section V) that computing (1) with PX being

the Gamma distribution yields bounds on M∗(W, ε) with W =
Dirk(α) (and exponential PX corresponds to uniform W ).

Other work on quantizing probabilities includes [12], where

they use the average Lp norm, and [13]. Particularly relevant

is [14] which connects rate distortion to ε-nets, inspiring

subsequent works on quantizing functions [15], [16].

A. Connection to Universal Compression

Much work has been done in the setting of universal com-

pression on the asymptotic Bayes risk or average redundancy

defined in [17], [18], mostly for the case where W is the

least-favorable prior, the Jeffreys’ prior (or W = Dirk(1/2)
for discrete alphabets) [19]. The dominant term of the Bayes

risk is k−1
2 log n, where k−1 is the dimension of the parameter

space and n is the number of samples [5], [20]; the other terms

are constant or order o(1) in n [6], [19], [21]–[23].
Based on the above results on Jeffreys’ prior and Proposi-

tion 1, we conjecture that in general logM∗(W, ε) will have

a dominant term of k−1
2 log 1

ε as ε → 0. This is close to our

upper bound from Theorem 1, especially for large alphabets

(our bound behaves as k
2 log

1
ε as ε → 0). An interesting

direction for future work would be to close the gap between

our upper and lower bound, using the conjectured asymptotic

rate as a guide. The advantage of our results, however, is in

yielding an explicit non-asymptotic upper bound on the Bayes

risk.

B. Rate Distortion Background

1) Shannon Lower Bound (SLB): Rate distortion functions

are difficult to compute in general. For many rate distortion

problems, the SLB is used for lower-bounding and even

approximating R(D). Asymptotically as the distortion D goes

to zero, the SLB can be tight [24]–[26].
2) Reconstruction Points: For rate distortion problems

which quantize X to Y , points in the support of Y are called

reconstruction points. The probabilities with which each X
maps to each Y are the transition probabilities. These are

optimal if they minimize I(X;Y ). Reconstruction points can

be continuous, though for squared-error distortion the optimal

reconstruction is discrete if X is not supported on the whole

real line [27] or if the SLB is not met [28].
3) Computing Upper Bounds: For large distortions, we

can numerically compute the rate distortion function using

[28] or [29]. For small distortions, while not optimal, scalar

quantization is useful for computing analytic upper bounds. In

particular, [30] showed that quantizing to intervals is asymp-

totically optimal for the squared-error distortion measure.
4) Related Work: In [31], the authors look at distortion

measures which are functions of the quotients X/Y . In [32]

and [33], the authors solve the rate distortion function for

d(x, y) = |x−y| and d(x, y) = | log(x)− log(y)| respectively.

2Note that without the constraint E[Y ] = E[X], R(PX , D) would be 0
trivially by increasing Y without bound.

C. Summary

In Section II we show the following lower bound on (1) for

all continuous sources (i.e. described by density functions):

Theorem 2. For any X with density pX(x), we have

R(pX , D) ≥
1

2
log

(

1

D

)

+ h(X)−
1

2
logE[X] + c

where h(·) is the differential entropy and c is a constant.3

In Section III we describe a certain method based on the

technique of [30], for upper-bounding (1), as well as lemmas

allowing easy manipulation of bounds using this method. In

Section IV, we use the tools from Section III to give upper

bounds for the following important sources:

Theorem 3. For a uniform source X ∼ Unif [a,b],

R(pX , D) ≤
1

2
log

( 1

D

)

+
1

2
log

( (b− a)2

b

9

32

)

Theorem 4. For X ∼ Exponential(1),

R(pX , D) ≤
1

2
log

(

1

D

)

+
1

2
log (9) ≤

1

2
log

(

1

D

)

+ 1.1

Theorem 5. For source X ∼ Gamma(α, β) for any α, β,

R(pX , D) ≤
1

2
log

( 1

D

)

+O(1)

The result for uniform sources is used to compute the result

for exponential and Gamma sources. For all of these, our

upper and lower bounds are tight up to an additive constant.

This shows that 1
2 log

(

1
D

)

is the correct rate of growth for

these sources under divergence distortion. Equating D with

ε approximately gives the size of M∗(Dirk(α), ε). We show

this precisely in Section V, where we use Theorem 2 and

Theorem 5 to derive Theorem 1.

II. LOWER BOUND

We first state a preliminary result showing properties of

the optimal reconstruction scheme for (1): a) it is discrete,

and b) the optimal reconstruction points yi are the conditional

expected value of the X’s mapping to them. Due to space

constraints we omit the proofs; our analysis of a) follows

a similar analysis in [28], and b) is a consequence of the

convexity of the distortion measure.

Proposition 2. For any source probability density pX where

E[X] < ∞, the optimal reconstruction for (1) is discrete, and

yi =

∫

pX(x)qY |X(yi|x)x dx
∫

pX(x)qY |X(yi|x) dx
= E[X|X maps to yi] (2)

where qY |X(·|·) are the optimal transition probabilities for (1).

Our method for finding a lower bound to (1) is to use the

SLB. First, we simplify by combining the distortion measure

and expected value constraints into one inequality:
∫

y

∫

x

qY (y)qX|Y (x|y)

(

x log
x

y
− x

)

dx dy ≤ D − E[Y ]

3The −(1/2) logE[X] term might seem strange in light of the intuition
that scaling X up will make it harder to approximate with low distortion.
However, scaling X up increases h(X) and the net effect is positive.



Our new distortion for finding the SLB is dSLB(x, y) =
x log(x/y)−x . We use the following proposition, which is a

slight variation on a result by Berger in [34, Ch 4]:

Proposition 3. Let p(x) be a probability density on X and

d(·, ·) be a distortion measure. Let Aλ be the set of all non-

negative functions αλ(x, y) satisfying

c(y) =

∫ ∞

0

αλ(x, y)p(x)e
−λd(x,y)dx ≤ 1

for all y. For all D > 0, suppose B is the set of conditional

probabilities meeting E[d(X,Y )] ≤ D. Then

R(p,D) ≥ inf
qY |X∈B

sup
λ≥0,αλ∈Aλ

−λD

+

∫

y

∫

x

qY |X(y|x)p(x) logαλ(x, y) dx dy

We skip the proof, which is similar to the proof in [34].

Lemma 1. For any y > 0 and any λ > 0,
∫ ∞

0

e−λ(x log x
y−x)dx ≤

3

2
eλy

√

y

λ

2π

1− 2c
+

1

λ
(3)

where c = 2 log 2− 3/2.

We need a bound which holds as λ → ∞. We will use a

modified version of Laplace’s method.

Proof Sketch. Let fy(x)
4
= e−λ(x log x

y−x) . We will show the

bound (3) by splitting up the domain into three parts.
a) x ∈ [0, 2y): We use the Taylor expansion around y to

find c which bounds x log(x/y)− x by y + 1
2
(x−y)2

y (1− 2c)

for x ≤ 2y, and get
∫ 2y

0
e−λ(x log x

y−x)dx ≤ eλy
√

y
λ

2π
1−2c .

b) x ∈ [2y, 3y): Since fy(x) decreases on (y, 3y), the

integral of fy(x) on [2y, 3y] is at most the integral of fy(x)

on [y, 2y]. So
∫ 3y

0
e−λ(x log x

y−x)dx ≤ 3
2e

λy
√

y
λ

2π
1−2c .

c) x ∈ [3y,∞): Since fy(ey) = 1, for x ∈ [3y,∞) ⊂
[ey,∞), we have fy(x) ≤ e−λ(x−ey) (by checking deriva-

tives). Hence,
∫∞

ey
e−λ(x log x

y−x)dx ≤
∫∞

0
e−λxdx = 1

λ .

Proof of Theorem 2. We use Proposition 3 with dSLB(x, y)

as the distortion measure. Let ζ(y, λ)
4
= Ceλy

√

y
λ + 1

λ ≥
∫∞

0
e−λdSLB(x,y)dx where we pick C appropriately using

Lemma 1. Fix some y and some λ. We will choose αλ(x, y) =
1/(pX(x)ζ(y, λ)) . It follows from Lemma 1 that c(y) =
∫∞

0
αλ(x, y)p(x)e

−λdSLB(x,y)dx ≤ 1 , so αλ ∈ Aλ.

Let B(D) be the set of conditional probabilities meeting

E[dSLB(X,Y )] ≤ D − E[Y ]. For any qY |X ∈ B(D), define

f
4
= −λD + λE[Y ] +

∫

y

∫

x

qY |X(y|x)p(x) logαλ(x, y) dx dy

= −λD + λE[Y ] + h(X)−

∫

y

qY (y) log ζ(y, λ) dy

where qY (y) =
∫

x
pX(x)qY |X(y|x) dx.

Next, we use ζ(y, λ) ≤ 2max{Ceλy
√

y/λ, 1/λ} . Define

Ksmall
4
=

{

y : Ceλy
√

y

λ
<

1

λ

}

, ρsmall
4
=

∫

y∈Ksmall

qY (y) dy .

Let Klarge be the complement of Ksmall. (These depend on λ
and qY |X , though we don’t explicitly write it.) Then

f ≥ −λD + λE[Y ] + h(X)− ρsmall log
2

λ

−

∫

y∈Klarge

qY (y) log

(

2Ceλy
√

y

λ

)

dy

≥ −λD + h(X) + C ′ − ρsmall log
2

λ

− (1− ρsmall)
1

2
log

1

λ
−

∫

y∈Klarge

1

2
qY (y) log y dy .

We can show −
∫

y∈Klarge

1
2qY (y) log y dy ≥ − 1

2e−
1
2 logE[Y ] .

Select λ = 1/D. Then, using Proposition 3,

inf
qY |X∈B(D)

R(D, pX) ≥ inf
qY |X∈B(D)

h(X) + ρsmall log
1

D
+ c

+ (1− ρsmall)
1

2
log

1

D
−

1

2
logE[Y ]

≥ h(X) +
1

2
log

1

D
−

1

2
logE[X] + c

since E[Y ] = E[X]. (We can compute that c ≈ −3.10).

III. INTERVAL METHOD

We develop the Interval Method for upper-bounding (1),

which is an instance of scalar quantization, similar to the

technique of Gish and Pierce [30]. The Interval Method

partitions the support of X into n intervals Ij . We set Y by

interval, i.e. (Y |X ∈ Ij) = yj
4
= E[X|X ∈ Ij ] (we refer to

yj as the center that X ∈ Ij maps to). Note that this assigns

Y from X in a deterministic way, i.e. QY |X(·|·) ∈ {0, 1},

which is not necessarily optimal but simplifies the analysis.

The distortion of any such quantization must, of course, upper

bound the minimum possible distortion. We present some

lemmas; due to space constraints we omit the proofs here.

Definition 3. For an interval I ⊆ R≥0, let FI be the set

of functions p : I → R≥0 such that
∫

I
p(x) dx < ∞ and

∫

I
p(x)x dx < ∞.4

Definition 4. We define for p ∈ FI the values5

y(p,I)
4
=

∫

I
p(x)x dx

∫

I
p(x) dx

and D(p,I) 4
=

∫

I

p(x)x log

(

x

y(p,I)

)

dx.

Note that when p is a probability distribution (i.e.
∫

p(x)dx = 1), this definition is equivalent to y(p,I) =
EX∼p[X|X ∈ I]. Therefore the Interval Method automatically

satisfies yi = E[X|X maps to yi] and E[Y ] = E[X] so we

will ignore this constraint moving forward.

Definition 5. The minimum distortion on intervals of density

p ∈ FI onto n centers is

D(p, n)
4
= inf

{I1,...,In}

n
∑

j=1

D(p,Ij)

4Since we will upper bound some probability density functions, it’s
important that this definition include functions that don’t integrate to 1.

5We will write y(p,I) and D(p,I) even when p is defined outside of I as
well, to mean y(p|I ,I) and D(p|I ,I) where p|I is the restriction of p to I .



where the infimum is taken over I1, . . . , In partitioning I .

Lemma 2. For p ∈ FI and constant c > 0 (where cI and

I + c scale and shift I by c, respectively), let p×c and p+c be

p on cI and I+c with the input scaled or shifted accordingly:

• p×c : cI → [0,∞) such that p×c(x) = p(x/c)
• p+c : I + c → [0,∞) such that p+c(x) = p(x− c).

Then if p×c ∈ FcI and p+c ∈ FI+c:

i. D(cp,I) = cD(p,I);

ii. D(p×c,cI) = c2D(p,I);

iii. D(p+c,I+c) ≤ y(p,I)

y(p,I)+c
D(p,I)

Lemma 3. Let p1, p2 ∈ FI for an interval I ⊆ R≥0. Then

p1 ≤ p2 =⇒ D(p1,I) ≤ D(p2,I) .

The principal difficulty is that p1 and p2 can have differ-

ent averages y(p1,I), y(p2,I), but this can be overcome with

calculus of variations: given any p, z ∈ FI we show that
d
dξD

(p+ξz,I) ≥ 0 at ξ = 0. Thus, any smooth monotonic

deformation of p1 to p2 (e.g. adding ξ(p2 − p1)) never

decreases the distortion.

Lemma 4. If p1 ≤ p2 ∈ F[0,∞), then D(p1, n) ≤ D(p2, n) .

IV. UPPER BOUNDS

In this section we derive upper bounds for (1) when pX is

a) uniform and b) exponential, and use them to show upper

bounds for when pX is Gamma. Let the support of X be

[`, L] (typically [0, 1] or [0,∞)); we denote the intervals as

Ij = [aj−1, aj ] where ` = a0 ≤ a1 ≤ · · · ≤ an−1 ≤ an = L.

Let yj
4
= y(pX ,Ij) = E[X|X ∈ Ij ], and let rj

4
= aj − aj−1

(width of interval Ij).

A. Upper Bound for Uniform X

Since X is uniform, the computation of the centers is greatly

simplified: yj =
aj+aj−1

2 = aj −
1
2rj .

Lemma 5. When X ∼ Unif [0,1], the distortion on interval

Ij ⊆ [0, 1] is at most 1
12

r3j
yj

.

Proof. Since pX(x) = 1 in Ij , the distortion is

∫ yj+
rj
2

yj−
rj
2

x log
( x

yj

)

dx =

∫

rj
2

−
rj
2

(x+ yj) log
(

1 +
x

yj

)

dx

≤

∫

rj
2

−
rj
2

(x+ yj)
x

yj
dx =

1

12

r3j
yj

which uses that x > 0 and log is concave.

Theorem 6. For X ∼ Unif [0,1], D(pX , n) ≤ 9
32

1
n2 .

Proof. Using the Interval Method, we set the interval bound-

aries as aj = j3/2/n3/2. Then the width of each interval

is rj = j3/2−(j−1)3/2

n3/2 ≤ 3
2

(j− 1
2 )

1/2

n3/2 , and the midpoint is

yj = j3/2+(j−1)3/2

2n3/2 ≥
(j− 1

2 )
3/2

n3/2 (since j3/2 is convex but its

derivative (3/2)j1/2 is concave). Therefore, using Lemma 5

we can upper bound the total distortion on Ij by

1

12

r3j
yj

≤
1

12

(3/2)3(j − 1
2 )

3/2

(j − 1
2 )

3/2

1/n9/2

1/n3/2
=

9

32

1

n3
.

Since there are n intervals, the total distortion is bounded

above by 9
32

1
n2 , and we are done.6

We then use Lemma 2 with Theorem 6 to get Theorem 3.

B. Upper Bound for Exponential X

Proposition 4. For X ∼ Exponential(1), D(pX , n) ≤ 9
n2 .

Proof. We split the distribution into the regions x ≤ τ and

x > τ and use the results in Section III to bound the distortion

from each region separately. We will give n1 intervals to the

[0, τ ] region and n2 to the [τ,∞) region; thus, if n = n1+n2,

D(pX , n) ≤ D(pX |[0,τ ], n1) +D(pX |[τ,∞), n2).

We will discuss how to set n1, n2 and τ later.

For the [0, τ ] region, we use the upper bound pX(x) ≤ 1.

Therefore, by Lemmas 2 and 4 and Theorem 6,

D(pX |[0,τ ], n1) ≤ τ2
9

32

1

n2
1

.

For the [τ,∞) region, we use aj = 3 log
(

n2/(n2− j)
)

+τ as

our interval boundaries (noting that an2
= ∞, as it should).

First, we consider the infinite interval In2
= [an2−1, an2

) =
[3 log(n2) + τ,∞). By Lemma 2 parts (i) and (iii) and the

memorylessness property of the exponential distribution,
∫ ∞

3 log(n2)+τ

e−xx log

(

x

yn2

)

dx

≤
1

3 log(n2) + τ + 1

e−τ

n3
2

∫ ∞

0

e−xx log(x) dx

=
(1− γ)e−τ

(3 log(n2) + τ + 1)

1

n3
2

≤ 18
e−τ

τ

1

n3
2

where γ is the Euler-Mascheroni constant. The last inequality

is meant to match it to our bound for the other intervals.

For the other intervals Ij , since pX(x) = e−x is decreasing,

pX(x) ≤ e−aj−1 = e−τ
(

n2−j+1
n2

)3
over Ij . Also,

rj = 3 log

(

n2

n2 − j

)

+ τ − 3 log

(

n2

n2 − j + 1

)

− τ

= 3 (log(n2 − j + 1)− log(n2 − j)) ≤ 3
1

n2 − j
.

Therefore, by Lemmas 2, 3 and 5 we get, for all j,

D(pX ,Ij) ≤ D(e−τ (
n2−j+1

n2
)3,Ij)

≤
1

12
e−τ

(

n2 − j + 1

n2

)3 r3j
yj

≤ 18
e−τ

τ

1

n3
2

since yj ≥ τ and
(

n2−j+1
n2−j

)3
≤ 8 (a very loose bound for

most j). Summing gives D(pX |[τ,∞), n2) ≤ 18 e−τ

τ
1
n2
2

.

Therefore, we have our bound over [0,∞) for n = n1+n2:

D(pX , n) ≤ τ2
9

32

1

n2
1

+ 18
e−τ

τ

1

n2
2

.

6Upper bounds of O(1/n2) are achievable with interval boundaries aj =
jb/nb for any b > 1, though b = 3/2 gives the simplest proof and the best
constant with our method. When b = 1, the intervals are uniform and decay
rate becomes Θ

(

log(n)/n2
)

.



Let n1 = cn and n2 = (1− c)n; we know c = j/n for some

j ∈ [n− 1], but for now let’s require only c ∈ (0, 1). Thus,

D(pX , n) ≤
(

τ2
9

32

1

c2
+ 18

e−τ

τ

1

(1− c)2

) 1

n2
.

Numerical optimization gives a minimum at τ ≈ 2.954 and

c ≈ 0.664, giving a constant of 8.4.

Now we bring back the c = j/n condition. We note that any

c ∈ [0.614, 0.714] (and τ = 2.954) gives D(pX , n) ≤ 9
n2 ; so

this holds for all n ≥ 10. For n < 10, we can solve each case

separately. Therefore, D(pX , n) ≤ 9
n2 as we wanted.7

C. Upper Bound for Gamma X

Lemma 6. There exists c such that for any −1 < s, if pX(x) =
(1 + s)xs on [0, 1] (and 0 elsewhere), D(pX , n) ≤ c/n2.

Proof Sketch. Let β = 3/(2 + s) and let aj = jβ/nβ . Then,

D(pX ,I1) ≤ 1/n3, and Lemma 3 and Lemma 5 then give

D(pX ,Ij) ≤ c′/n3, and take the sum over the n intervals.

Proposition 5. For X ∼ Gamma(α, β), D(pX , n) = O
(

1
n2

)

.

Proof Sketch. We consider two cases: a) α < 1 and b) α > 1
(α = 1 is the exponential distribution). For the α < 1 case,

we upper bound the portion [0, 1] using Lemma 6 and the tail

portion (1,∞) by an exponential density and use Proposition 4

and Lemma 4. For the α > 1 case, for some b, we upper bound

the [0, b] portion by a uniform density and the [b,∞) portion

by an exponential density and use Lemma 4.

V. EXPECTED DIVERGENCE RESULTS

Finally, we connect divergence rate distortion on Gamma

sources to quantizing P([k]) with symmetric Dirichlet prior.

Fact 1. Let Xi
iid
∼ Gamma(α, β) for i ∈ [k] (giving random

vector Xk) and let S
4
=

∑k
i=1 Xi. Then P

4
= Xk/S ∼

Dirk(α) and S and P are independent. (The division above

treats P and Xk as k-length vectors.)

Lemma 7. For S ∼ Gamma(α, α), E[S logS] ≤ 1/(2α).

Proposition 6. Let pZ be the probability density of Z ∼
Gamma(α, α). Then, for k > 0,

k ·R (pZ , D + 1/(2αk)) ≤ logM∗(Dirk(α), D).

Proof. Let random vector Xk = (X1, ..., Xk) be such that

each Xi ∼ Gamma(α, αk). Let S =
∑k

i=1 Xi . Then, S ∼
Gamma(αk, αk) and E[S] = 1.

From Fact 1, we know that Xk/S ∼ Dirk(α). Also S is

independent of Xk/S and therefore it is also independent of

minj DKL((X
k/S)||Q(j)). Fixing J as the argmin, we denote

the components of Q(J) as (Y1, . . . , Yk). Using Lemma 7,

k
∑

i=1

E

[

Xi log
Xi

Yi

]

= E

[

k
∑

i=1

S
Xi

S
log

Xi

SYi
+Xi logS

]

= E[S]E[DKL((X
k/S)||Q(J))] + E[S logS] ≤ D +

1

2αk
.

7Some of the bounds we used were loose, so more detailed analysis
(omitted) can improve the constant, though not the decay rate.

Since we showed that a k-ary quantizer with the given

average distortion exists, the standard single-letter lower bound

from rate-distortion implies the bound [35, Ch 25]. If pX is

the density of each Xi, then by scaling R(pX , D+1/(2αk)
k ) =

R(pZ , D + 1/(2αk)) where Z ∼ Gamma(α, α).

Proposition 7. For any α, k such that αk > 1, there exist

centers Q(1), . . . , Q(m) such that

m =
( c

D(1− (αk)−1/3)2

)k/2

and EP∼Dirk(α) minj DKL(P ||Q(j)) ≤ D .

Proof. Let S ∼ Gamma(αk, β) (we will determine β later)

and P = (p1, ..., pk) ∼ Dirk(α). Let Xi = Spi so Xi ∼
Gamma(α, β). Setting E[d(Xi, Yi)] ≤ D′/k gives

D′ ≥

k
∑

i=1

E[d(Xi, Yi)] = E

[

k
∑

i=1

Xi log
Xi

Yi

]

= E

[

S

k
∑

i=1

Xi

S
log

Xi/S

Yi/
∑k

i=1 Yi

+ S log
S

∑k
i=1 Yi

]

≥ E [SDKL(P ||Q)] .

The log-sum inequality shows that E [S log(S/
∑n

i=1 Yi)] ≥ 0.

With Proposition 5, this shows that (c/D′)k/2 centers produces

EP,S

[

SDKL(P ||Q)
]

≤ D′ . Note that Q depends on S and

P . If Z1, Z2 ≥ 0 are random variables then for any σ > 0,

E[Z2] ≤
E[Z1Z2]
σP[Z1≥σ] . Therefore, for any σ > 0,

EDKL(P ||Q) ≤
E[SDKL(P ||Q)]

σP[S ≥ σ]
≤

D′

σP[S ≥ σ]
.

We can then fix s to minimize E[DKL(P ||Q) |S = s] to get

min
s

E[DKL(P ||Q) |S = s] ≤
D′

σP[S ≥ σ]
.

We then want to set σ (and the rate parameter β) to maximize

σP[S ≥ σ]. We use β = αk; then E[S] = αk/β = 1
and Var[S] = αk/β2 = 1

αk . Thus, defining t = 1 − σ
(assuming σ ≤ 1), applying Chebyshev’s inequality, and

setting t = (αk)−1/3 gives P[S ≥ 1− t] ≥ 1− 1/(αkt2):

EDKL(P ||Q) ≤
D′

(1− t)
(

1− 1
(αkt2)

) ≤
D′

(1− (αk)−1/3)2

(here the expectation is only over P , and use fixed S = s).

We can then define our coding of P ∈ P([k]) to a center

Q ∈ {Q(j)}mj=1 to be the result of the following procedure:

P → Xk → Y k → Q where Xk = sP , Y k is the encoding

of Xk using Proposition 5, and Q = Y k/
∑k

i=1 Yi.

Recall that each Xk maps to one of m = (c/D′)k/2 centers.

Thus, letting D = D′

(1−(αk)−1/3)2
, we get a coding scheme on

m centers where E[DKL(P ||Q)] ≤ D, giving the result.

Finally, we can put these together to prove Theorem 1:

Proof of Theorem 1. The first part follows from Proposition 6

and Theorem 2, and the second from Proposition 7.
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