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Abstract—Consider the problem of representing a distribution
7 on a large alphabet of size £ up to fidelity ¢ in Kullback-Leibler
(KL) divergence. Heuristically, arguing as for quadratic loss in
high dimension, one expects that about (k/2) log (1/¢) bits would
be required. We show this intuition is correct by proving explicit
non-asymptotic bounds for the minimal average distortion when
7 is randomly sampled from a symmetric Dirichlet prior on the
simplex. Our method is to reduce the single-sample problem to
the traditional setting of iid samples, but for a non-standard rate
distortion question with the novel distortion measure d(z,y) =
xzlog(x/y), which we call divergence distortion. Practically, our
results advocate using a © — z?/3 compander (for small x)
followed by a uniform scalar quantizer for storing large-alphabet
distributions.

Index Terms—Compression, rate distortion, quantization,
Kullback-Leibler divergence, Shannon Lower Bound

I. INTRODUCTION AND MOTIVATION

Suppose one wants to compress iid data over a large
alphabet [k] = {1,...,k} sampled from a distribution 7.
The distribution is considered to be known to the compressor
(because it possesses a very large corpus of data) and unknown
to the decompressor. A natural two-step compression scheme
would be to first describe the distribution 7 and then use an
optimal (Huffman, arithmetic, etc) compressor for it. Since
m is to be represented with finitely many bits, only an
approximation 7 can be conveyed to the decompressor. It is
well known that this incurs penalty Dy, (7||7) in compression
length [1, Ch 5]. This motivates the following definition:

Definition 1. Given a distribution W over the simplex
P([k]) = {r e R : m; >0, Z?:l m; =1},
M*(W,e) = inf{|Q| : B [min Do (7| Q)] < e} -

Here Q is a finite set of distributions; each 7 is mapped
to the closest @ € Q (in KL divergence), with the average
divergence at most . The quantity M*(W,¢) is intimately
connected with Bayes risk or average redundancy (expressible
as mutual information) in the universal compression setting.

Proposition 1. Suppose that m ~ W and X™ is generated iid
from m. Then for any n,

I(m; X™) < inf {ne +log M*(W,¢e)} .
g
When n = 1, the above is equality.

This work was supported, in part, by the USAF-MIT Al Accelerator and
the NSF under Grant No. CCF-17-17842.

We omit the proof which is similar to [2], [3]. Known results
on I(m; X™) imply lower bounds on M*(W,¢e) (discussed in
Section I-A). Our results can also be used for lossless two-
stage codes like those in the MDL literature [4]-[7].

Perhaps the most natural prior W to consider, in the absence
of other knowledge, is the uniform prior which belongs to the
family of symmetric Dirichlet distributions' Dirg(c) (specifi-
cally it is the member with a = 1). Dirichlet distributions are
a popular choice for modeling unknown discrete distributions
in Bayesian statistics partly because they are the conjugate
priors to multinomial distributions; they are used in many
fields, including Dirichlet Processes [8] and other learning and
estimation problems, such as in [9]-[11].

Theorem 1. There exists a constant ¢y > 0 such that for all
a, k and € > 0,

k C1
log M*(Dirg(«),e) > = log ———— .
g ( k( ) ) =9 g e+ ﬁ
Furthermore, there exists a co > 0 such that for all € > 0 and
all o, k such that ak > 1

e(1 — (ak)~1/3)2"

A practically important consequence of our analysis is that
an almost optimal quantization of large-alphabet distributions
is obtained by companding 7; — f(s7;) (for some constant
s), followed by the uniform (scalar) quantizer and projection
back onto the simplex. For o = 1, our method recommends

o fetay for v < 7
f(z) = {(1 —c)(l _exp(_(x—T)/?))) +c forxz>rT

where 7 = 2.954, ¢ = 0.664.

Our approach is to reduce the problem of finding |Q| in Def-
inition 1, a quantization problem at heart, to a rate-distortion
problem. This turns a single-sample covering question into an
iid multi-sample covering question.

k
log M*(Dirg(a),e) < B log

Definition 2. For distribution Px over R>q and D > 0,
R(Px,D) = dnf {I(X;Y)

Y| X
E[Y] =E[X], E[d(X,Y)] < D,Y >0}, (D)
where d(z,y) = xlog(z/y) (for x > 0 and y > 0).

'Symmetric Dirichlet distributions only need one scalar parameter c.



We call d(z,y) the divergence distortion. While divergence
distortion is convex in both inputs and d(x,y) = 0 iff x = y,
it has the unusual property of being negative when x < y
(with minimum at z = y/e). However, from E[Y] = E[X]
and convexity we still get E[d(X,Y)] > 0.2

It turns out (Section V) that computing (1) with Px being
the Gamma distribution yields bounds on M* (W, ¢) with W =
Dirg(«) (and exponential Px corresponds to uniform W).

Other work on quantizing probabilities includes [12], where
they use the average L, norm, and [13]. Particularly relevant
is [14] which connects rate distortion to e-nets, inspiring
subsequent works on quantizing functions [15], [16].

A. Connection to Universal Compression

Much work has been done in the setting of universal com-
pression on the asymptotic Bayes risk or average redundancy
defined in [17], [18], mostly for the case where W is the
least-favorable prior, the Jeffreys’ prior (or W = Dirg(1/2)
for dlscrete alphabets) [19]. The dominant term of the Bayes
risk is =1 log n, where k—1 is the dimension of the parameter
space and n is the number of samples [5], [20]; the other terms
are constant or order o(1) in n [6], [19], [21]-[23].

Based on the above results on Jeffreys’ prior and Proposi-
tion 1, we conjecture that in general log M*(W,e) will have
a dominant term of % logé as € — 0. This is close to our
upper bound from Theorem 1, especially for large alphabets
(our bound behaves as %logé as ¢ — 0). An interesting
direction for future work would be to close the gap between
our upper and lower bound, using the conjectured asymptotic
rate as a guide. The advantage of our results, however, is in
yielding an explicit non-asymptotic upper bound on the Bayes
risk.

B. Rate Distortion Background

1) Shannon Lower Bound (SLB): Rate distortion functions
are difficult to compute in general. For many rate distortion
problems, the SLB is used for lower-bounding and even
approximating R(D). Asymptotically as the distortion D goes
to zero, the SLB can be tight [24]-[26].

2) Reconstruction Points: For rate distortion problems
which quantize X to Y, points in the support of Y are called
reconstruction points. The probabilities with which each X
maps to each Y are the transition probabilities. These are
optimal if they minimize I(X;Y"). Reconstruction points can
be continuous, though for squared-error distortion the optimal
reconstruction is discrete if X is not supported on the whole
real line [27] or if the SLB is not met [28].

3) Computing Upper Bounds: For large distortions, we
can numerically compute the rate distortion function using
[28] or [29]. For small distortions, while not optimal, scalar
quantization is useful for computing analytic upper bounds. In
particular, [30] showed that quantizing to intervals is asymp-
totically optimal for the squared-error distortion measure.

4) Related Work: In [31], the authors look at distortion
measures which are functions of the quotients X/Y. In [32]
and [33], the authors solve the rate distortion function for
d(z,y) = |x—y| and d(z,y) = |log(z) —log(y)| respectively.

2Note that without the constraint E[Y] = E[X], R(Px,
trivially by increasing Y without bound.

D) would be 0

C. Summary

In Section II we show the following lower bound on (1) for
all continuous sources (i.e. described by density functions):

Theorem 2. For any X with density px(x), we have
1 1 1
R(px,D) > ilog (D) + h(X) — ilogE[X] +c

where h(-) is the differential entropy and c is a constant.®

In Section III we describe a certain method based on the
technique of [30], for upper-bounding (1), as well as lemmas
allowing easy manipulation of bounds using this method. In
Section IV, we use the tools from Section III to give upper
bounds for the following important sources:

Theorem 3. For a uniform source X ~ Unify, y,

1 1 (b—a)? 9
R(px,D) < S log (55 ) + 5 log (==
(px, D) < QOgD +5log (53
Theorem 4. For X ~ Exponential(1),

R(px,D) < %log (é) + %log (9) < 3 log (é) +1.1
,B) for any «, 3,
R(px,D) < log (D) +0(1)

The result for uniform sources is used to compute the result
for exponential and Gamma sources. For all of these, our
upper and lower bounds are tight up to an additive constant.
This shows that log (4) is the correct rate of growth for
these sources under divergence distortion. Equating D with
¢ approximately gives the size of M*(Diry(«a),e). We show
this precisely in Section V, where we use Theorem 2 and
Theorem 5 to derive Theorem 1.

Theorem 5. For source X ~ Gamma(x

II. LOWER BOUND

We first state a preliminary result showing properties of
the optimal reconstruction scheme for (1): a) it is discrete,
and b) the optimal reconstruction points y; are the conditional
expected value of the X’s mapping to them. Due to space
constraints we omit the proofs; our analysis of a) follows
a similar analysis in [28], and b) is a consequence of the
convexity of the distortion measure.

Proposition 2. For any source probability density px where
E[X] < oo, the optimal reconstruction for (1) is discrete, and

fPX qY|X(yz|9C)l‘d$
[ px(@)ay|x (yilz) dz

where gy |x (-|-) are the optimal transition probabilities for (1).

= E[X|X maps to y;] (2)

Our method for finding a lower bound to (1) is to use the
SLB. First, we simplify by combining the distortion measure
and expected value constraints into one inequality:

/y/gEQY(y)fIXw(ﬂcy) <x logg — ;v) drdy < D —E[Y]

3The —(1/2)log E[X] term might seem strange in light of the intuition
that scaling X up will make it harder to approximate with low distortion.
However, scaling X up increases h(X) and the net effect is positive.



Our new distortion for finding the SLB is dgig(z,y) =
xlog(x/y) — x . We use the following proposition, which is a
slight variation on a result by Berger in [34, Ch 4]:

Proposition 3. Let p(x) be a probability density on X and
d(-,) be a distortion measure. Let Ay be the set of all non-
negative functions «y(x,y) satisfying

ely) = / o (i, y)p(x)e @D dr < 1
0

for all y. For all D > 0, suppose B is the set of conditional
probabilities meeting E[d(X,Y)] < D. Then

R(p,D) > inf sup —AD

Iy |1xEB A\>0,a\ €A,
+//qy|x(y\x)p(w) log ax(x,y) dz dy
Yy T

We skip the proof, which is similar to the proof in [34].
Lemma 1. For any y > 0 and any \ > 0,
y 27 1

> —)\(wlogﬁ—m)d <§)\y
/Oe e TS s P W

where ¢ = 2log2 — 3/2.

We need a bound which holds as A — oco. We will use a
modified version of Laplace’s method.

Proof Sketch. Let f,(x) 2 e~ (#1°85-2) We will show the

bound (3) by splitting up the domain into three parts.
a) x € [0,2y): We use the Taylor expansion around y to

find ¢ which bounds zlog(z/y) — = by y + 3 (z=y) y) (1 —2c)
for x < 2y, and get f 2y —A(rlog z—fﬂ)dx < e)‘y 3 1226

b) x € [2y,3y): Since f,(x) decreases on (y,3y), the
integral of f,(z ) on [2y,3y] is at most the integral of f,(z)
on [y, 2g]. So [ e BT da < e [ 2

c) x € [3y,00): Since fy(ey) = 1, for z € [3y,00) C
[ey, 00), we have f,(z) < e *®=¥) (by checking deriva-

tives). Hence, fei/o e Melog $-2) g < [edgp=1. 0O

Proof of Theorem 2. We use Proposition 3 with dsip(z,y)
as the distortion measure. Let ((y,\) = Ce™ /T + 1 >
Jo e Msn(@¥)dy where we pick C appropriately usmg
Lemma 1. Fix some y and some A. We will choose a)(z,y) =
1/(px(x)C(y,A)). It follows from Lemma 1 that c(y) =
fooo ax(z,y)p(z)e s @YW dr <1, 50 ay € Ay.

Let B(D) be the set of conditional probabilities meeting
E[dsis(X,Y)] < D — E[Y]. For any gy|x € B(D), define

f £ -AD+XE)Y / [ vl oz o (o) do dy
_ _AD 4 AE[Y] 4+ h(X) — / gy () log C(y, \) dy
Yy
where gy (y f px (2)qy|x (ylr) dz.

Next, we use ((y, \) < 2max{Ce*\/y/\,1/\}. Define

1
K@mall - {y CeAy\/E < /\} 5 Psmall é / qy (y) dy
Y€ Ksman

Let Kjae be the complement of Kp,i. (These depend on A
and gy |x, though we don’t explicitly write it.) Then

2
f > —-AD + )\E[Y] + h(X) — Psmall 10g X

- / qy (y) log (206“’\[ ) dy
Y€ Karge

2
> —-\D + h(X) +C' - Psmall lOg X
1 1
- (1- psmall) log + — ~av(y)logydy.
A Y€ Kiurge 2
We can show — fyeKW Sav(y)logydy > — — Llog E[Y].

Select A = 1/D. Then, using Proposition 3,

1
inf R(D, > inf  h(X)+ pmanlog = +c

o by PP 2 ) PO P 08 5
+ (1= paman) o1 l—h E[Y]

Psmall 2 OgD og

1

> h(X 1 ——71 E[X
> h(X) + 5 5108 5 — 5 logE[X] +c
since E[Y] = E[X]. (We can compute that ¢ ~ —3.10). O

III. INTERVAL METHOD

We develop the Interval Method for upper-bounding (1),
which is an instance of scalar quantization, similar to the
technique of Gish and Pierce [30]. The Interval Method
partitions the support of X into n intervals I;. We set Y by
interval, i.e. (Y|X € I;) = y; = E[X|X € I;] (we refer to
y; as the center that X € I; maps to). Note that this assigns
Y from X in a deterministic way, i.e. Qy|x(-|-) € {0,1},
which is not necessarily optimal but simplifies the analysis.
The distortion of any such quantization must, of course, upper
bound the minimum possible distortion. We present some
lemmas; due to space constraints we omit the proofs here.

Definition 3. For an interval I C Rxq, let Fr be the set
of functlons p: I — Rsg such that f ;p(x)dr < oo and
[rp(@)zde < 00t

Definition 4. We define for p € Fr the values’

yh = Jip()e dz and D1 é/p(;}:)mlog L
I y(p,l)

pr

Note that when p is a probability distribution (i.e.
[p(z)dz = 1), this definition is equivalent to yP?) =
Ex.,[X|X € I]. Therefore the Interval Method automatically
satisfies y; = E[X|X maps to y;] and E[Y] = E[X] so we
will ignore this constraint moving forward.

Definition 5. The minimum distortion on intervals of density
p € Fr onto n centers is

n

inf D)

D(p,n =
(p,n) TRIRP

=1

4Since we will upper bound some probability density functions, it’s
important that this definition include functions that don’t integrate to 1.

SWe will write %/(p 1) and D®>1) even when p is defined outside of I as
well, to mean y(P D) and D®I1>1) where p|r is the restriction of p to I.



where the infimum is taken over I, ..., I, partitioning I.

Lemma 2. For p € F; and constant ¢ > 0 (where cI and
I + c scale and shift I by c, respectively), let px. and p. be
p on cl and I+ c with the input scaled or shifted accordingly:

o Dyxc:cl = [0,00) such that px.(x) = p(z/c)

e Dic: I+ c—[0,00) such that py.(z) = p(x — c).
Then ifpxc € ‘FCI and P4c € -/—"I-l-c:

i Dep D) — cp.1).

i DWPxecl) — CQD(PJ)

iti. DP+eIte) < y(P D
., D)4

D@D
Lemma 3. Let py,ps € Fr for an interval I C Rxq. Then
pr < py = D) < Dw2.1)

The principal difficulty is that p; and ps can have differ-
ent averages y@uD) y(P2.1)  put this can be overcome with
calculus of variations: given any p,z € JF; we show that
d—dED(p*&Z’I) > 0 at & = 0. Thus, any smooth monotonic
deformation of p; to po (e.g. adding £(p2 — p1)) never
decreases the distortion.

Lemma 4. If py < p2 € Flo,), then D(p1,n) < D(p2,n).

IV. UPPER BOUNDS

In this section we derive upper bounds for (1) when px is
a) uniform and b) exponential, and use them to show upper
bounds for when px is Gamma. Let the support of X be
[¢, L] (typically [0,1] or [0,00)); we denote the intervals as
I; =[aj_1,a;] where { = ap < a1 <--- < apn—1 <a, =L
Let y; = y®x5) = E[X|X € [;], and let r; = a; — a;_1
(width of interval I;).

A. Upper Bound for Uniform X
Since X is uniform, the computation of the centers is greatly
: : . ajtaj 1 1,..
simplified: y; = ~—5"=— = a; — 57;.
Lemma 5. When X ~ Unlf[o 1), the distortion on interval

I; C[0,1] is at most ﬁy—

Proof. Since px(x) =1 in I;, the distortion is

rj

/yfr 2
-

Yi— 3

J

xlog (yﬁ)dx = /7
5 _

(x +y;)log (1 + )dx

% 1 'r'
x
< / (z +y;) —dx
3 "y T 12 y]
which uses that > 0 and log is concave. O

Theorem 6. For X ~ Unif( 1, D(px,n) < 55 -5.

Proof. Using the Interval Method, we set the interval bound-
aries as a; = j°/2/n3/2. Then the width of each interval

. i3/2_(5_1)3/2 i 1y1/2 . . .

is r; = % 3(37:3/)2 , and the midpoint is
3/2 _1)3/2 . 13y3/2 . . . .

y; = 2 ‘;(LJS T > U — 2) " (since j%/2 is convex but its

derivative (3/2)j'/2 is concave). Therefore, using Lemma 5
we can upper bound the total distortion on I; by

L) 1 (3/2°( -5 1/m2 91

12y, ~ 12 (j-L)37 1/nd32 " 3203

Since there are n intervals, the total distortion is bounded
above by 35 n2’ and we are done.® O

We then use Lemma 2 with Theorem 6 to get Theorem 3.

B. Upper Bound for Exponential X
Proposition 4. For X ~ Exponential(1), D(px,n) < .

Proof. We split the distribution into the regions x < 7 and
x > 7 and use the results in Section III to bound the distortion
from each region separately. We will give n; intervals to the
[0, 7] region and ng to the [7, 00) region; thus, if n = nq +nq,

D(ann) < D(pX|[0,T]5n1) + D(pX|[T,oc)an2)-

We will discuss how to set n1,ny and 7 later.
For the [0, 7] region, we use the upper bound px (z) < 1.
Therefore, by Lemmas 2 and 4 and Theorem 6,
29 1
D T|» < 90 2
(px 10,7}, 1) 2 3202
For the [7,00) region, we use a; = 3log (na/(ny —j)) +7 as
our interval boundaries (noting that a,, = oo, as it should).
First, we consider the infinite interval I,, = [ap,—1, Gn,) =
[3log(ng) + 7,00). By Lemma 2 parts (i) and (iii) and the
memorylessness property of the exponential distribution,

/ Txlog < > dx
3 log(n2)+‘r Yna

1 e
‘€ / e *xlog(z) dx
0

<

~3log(ng) +7+1 n3
R T
~ (Blog(na) +7+1)nd — 7 nd

where « is the Euler-Mascheroni constant. The last inequality
is meant to match it to our bound for the other intervals.
For the other intervals I, since p x () = e~ * is decreasing,

px(z) <e % —e‘T(mnng) over I;. Also,

no n2
- +7—-3log| —— | —
o) e ()
1
—log(ne — 7)) <3 -,
g(nz —j)) < p—
Therefore, by Lemmas 2, 3 and 5 we get, for all j,

r; = 3log<

=3 (log(nz —j +1)

(R

DPx,15) < D(e

< Lor(r2zitl —J§1867 ig
12 T2 Yj T Ny

na—j+1
na—j
most j). Summing gives D(px |ir,o0), N2) <

since y; > 7 and ( )3 < 8 (a very loose bound for

2 .

Therefore, we have our bound over [0, 00) for n = nj +mns:
29 1 e 71
D <7"—=— 4+ 18— —.
(an ) 72 391 2 + - n%

6Upper bounds of O(1/n?) are achievable with interval boundaries a; =

4% /nb for any b > 1, though b = 3/2 gives the simplest proof and the best

constant with our method. When b = 1, the intervals are uniform and decay
rate becomes © (log(n)/n?).



Let ny = cn and ny = (1 — ¢)n; we know ¢ = j/n for some
J € [n — 1], but for now let’s require only ¢ € (0,1). Thus,

1L et 1yt
32 2 T (1-¢)2/n?

Numerical optimization gives a minimum at 7 ~
c =~ 0.664, giving a constant of 8.4.

Now we bring back the ¢ = j/n condition. We note that any
c € [0.614,0.714] (and T = 2.954) gives D(px,n) < 5; so
this holds for all n > 10. For n < 10, we can solve each case
separately. Therefore, D(px,n) < % as we wanted.’ O

D(px,n) < (72

2.954 and

C. Upper Bound for Gamma X

Lemma 6. There exists ¢ such that for any —1 < s, if px (z) =
(1+ s)x* on [0,1] (and 0 elsewhere), D(px,n) < c/n?.

Proof Sketch. Let 3 = 3/(2+ s) and let a; = j°/n”. Then,
DPx.11) < 1/n3, and Lemma 3 and Lemma 5 then give
Dwx:15) < ¢/ /n3, and take the sum over the n intervals. []

D(px,n) = O(%).

Proof Sketch. We consider two cases: a) a« < 1 and b) a > 1
(v = 1 is the exponential distribution). For the o < 1 case,
we upper bound the portion [0, 1] using Lemma 6 and the tail
portion (1, c0) by an exponential density and use Proposition 4
and Lemma 4. For the a > 1 case, for some b, we upper bound
the [0, b] portion by a uniform density and the [b, c0) portion
by an exponential density and use Lemma 4.

Proposition 5. For X ~ Gamma(a, ),

V. EXPECTED DIVERGENCE RESULTS
Finally, we connect divergence rate distortion on Gamma
sources to quantizing P([k]) with symmetric Dirichlet prior.

Fact 1. Let X; '~ Gamma( ﬁ) for i € [k] (giving random
vector X*) and let S = Zi:l X;. Then P = X¥/S ~
Dirg(«) and S and P are independent. (The division above
treats P and X* as k-length vectors.)

E[Slog S| < 1/(2a).

Proposition 6. Let py be the probability density of Z ~
Gamma(a, «). Then, for k > 0,

k-R(pz,D+1/(2ak)) <log M*(Dirg (), D).

Lemma 7. For S ~ Gamma(a, @),

Proof. Let random vector X* = (Xi,..., X}) be such that
each X; ~ Gamma(a, ak). Let S = ZleXi. Then, S ~
Gamma(ak, ak) and E[S] =

From Fact 1, we know that X¥/S ~ Dirg(a). Also S is
independent of X*/S and therefore it is also independent of
min; Dy ((X*/9)||Q(5)). Fixing J as the argmin, we denote
the components of Q(J) as (Y1,...,Ys). Using Lemma 7,

k

k
Xi Xi Xi

= E[S]E[Dw (X*/)[|Q(]))] + E[Slog S] < D + ﬁ

7Some of the bounds we used were loose, so more detailed analysis
(omitted) can improve the constant, though not the decay rate.

Since we showed that a k-ary quantizer with the given
average distortion exists, the standard single-letter lower bound
from rate-distortion implies the bound [35, Ch 25]. If px is
the density of each X, then by scaling R(px, W) =
R(pz,D +1/(2ak)) where Z ~ Gamma(a, «). O

Proposition 7. For any o,k such that ak > 1, there exist
centers Q(1),...,Q(m) such that

c k/2
e (D(l - (ak)—1/3)2)
D (PlIQ(j)) < D
Proof. Let S ~ Gamma(ak, 3) (we will determine [ later)

and P = (ph. ,pk) ~ Dirk(a). Let X; = Sp; so X; ~
Gamma(a, 8). Setting E[d(XZ-,Y-)] < D'/k gives

ZX log ]

_ XS
S —1
; Y/Ez 1

> E[SDu(Pl|Q)] -
The log-sum inequality shows that E [Slog(S/ > 1, ¥;)] > 0
With Proposition 5, this shows that (¢/D’)*/? centers produces

Ep,s[SD(P||Q)] < D’. Note that @ depends on S and
P.If Z1,Z5 > 0 are random variables then for any o > 0,

and EPwDirk () minj

D’>ZE (X:,Y5)]

=1

=E —l—Slog

8
Y Y

E[Z;] < E[[ZZI Z;]] Therefore, for any o > 0,
E[SDw (P[|Q)] D’
Dy (P < < .
(PllQ) oP[S > o] oP[S > o]
We can then fix s to minimize E[Dy, (P||Q)|S = s] to get
. D'
mslnE[ w(PllQ) S =s] < W.

We then want to set o (and the rate parameter ) to maximize
oP[S > o]. We use 8 = ak; then E[S] = ak/8 = 1
and Var[S] = ak/B? = L. Thus, defining t = 1 — o
(assuming o < 1), applying Chebyshev’s inequality, and

setting ¢ = (ak)™1/3 gives P[S > 1 —t] > 1 — 1/(akt?):
D' D'
Du(PlIQ) = < :
0000~ ) ~ (1= () /92

(here the expectation is only over P, and use fixed S = s).
We can then define our coding of P € P([k]) to a center
Q € {Q(j)}~, to be the result of the following procedure:
P Xk Yk — @ where X* = sP, Y* is the encoding
of X* using Proposition 5, and Q = Y*/ Y% | v;.

Recall that each X* maps to one of m = (¢/D’ )k/ 2 centers.
Thus, letting D = W, we get a coding scheme on
m centers where ]ETEDKL(PHQ)] < D, giving the result. [

Finally, we can put these together to prove Theorem 1:

Proof of Theorem 1. The first part follows from Proposition 6
and Theorem 2, and the second from Proposition 7. O
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